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Preface

In this book, we consider various structures associated to the dynamical system,
given by the difference equations{

xj+1 = Axj + Buj ,

yj = Cxj + Duj, j = 0,±1,±2, · · · ,

on Hilbert spaces, and the discrete time algebraic Riccati equation (DARE)

A∗PA − P + C∗JC

= (D∗JC + B∗PA)∗ (D∗JD + B∗PB)−1 (D∗JC + B∗PA) ,

where J is a self-adjoint, bounded cost operator. Various types of algebraic
Riccati equations are connected to a number of fields in mathematics where
state space realizations for analytic operator-valued functions are of importance.
Typical applications within system theory are feedback control and stabilization
of systems, initial state estimation by the Kalman filter, system identification
by the spectral factorization of an estimated spectral function, state space H∞

control theory, and various applications in game theory. Our main interest lies
on the operator and analytic function theory aspects of the DARE, such as
the spectral factorization, the inner-outer factorization and certain invariant
subspace problems.

Our treatment does not require the finite dimensionality of any of the Hilbert
spaces, but a certain compactness assumption is often required to reduce the
“infinite dimensionality” of the system. For the full results, the cost operator J
is required to be nonnegative. State space isomorphism techniques and special
realizations of transfer functions are neither considered nor applied, due to time
and page limitations.
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Notation

We use the following notations throughout the paper: Z is the set of integers.
Z+ := {j ∈ Z | j ≥ 0}. Z− := {j ∈ Z | j < 0}. T is the unit circle and D
is the open unit disk of the complex plane C. If H is a Hilbert space, then
L(H) denotes the bounded and LC(H) the compact linear operators on H . If
A ∈ L(H), then A0 := I, by convention. Elements of a Hilbert space are
denoted by lower case letters; for example u ∈ U . Sequences in Hilbert spaces
are denoted by ũ = {ui}i∈I ⊂ U , where I is the index set. Usually I = Z or
I = Z+. Given a Hilbert space Z, we define the sequence spaces

Seq(Z) :=
{
{zi}i∈Z | zi ∈ Z and ∃I ∈ Z ∀i ≤ I : zi = 0

}
,

Seq+(Z) :=
{
{zi}i∈Z | zi ∈ Z and ∀i < 0 : zi = 0

}
,

Seq−(Z) :=
{
{zi}i∈Z ∈ Seq(Z) | zi ∈ Z and ∀i ≥ 0 : zi = 0

}
,

�p(Z; Z) :=
{
{zi}i∈Z ⊂ Z |

∑
i∈Z

||zi||pZ < ∞
}

for 1 ≤ p < ∞,

�p(Z+; Z) :=
{
{zi}i∈Z+ ⊂ Z |

∑
i∈Z+

||zi||pZ < ∞
}

for 1 ≤ p < ∞,

�∞(Z; Z) :=
{
{zi}i∈Z ⊂ Z | sup

i∈Z
||zi||Z < ∞

}
.

The following linear operators are defined for z̃ ∈ Seq(Z):

• the projections for j, k ∈ Z ∪ {±∞}

π[j,k]z̃ := {wj}; wi = zi for j ≤ i ≤ k, wi = 0 otherwise,
πj := π[j,j], π+ := π[1,∞], π− := π[−∞,−1],

π̄+ := π0 + π+, π̄− := π0 + π−,

• the bilateral forward time shift τ and its inverse, the backward time shift
τ∗

τũ := {wj} where wj = uj−1,

τ∗ũ := {wj} where wj = uj+1.

Other notations are introduced when they are needed.
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Chapter 1

Discrete Time Linear
Systems

1.1 Introduction

In this chapter, we develop the basic system theoretic tools that are required
to conveniently describe the behaviour of the dynamical system, given by the
difference equations{

xj+1 = Axj + Buj ,

yj = Cxj + Duj, j = 0,±1,±2, · · · ,
(1.1)

where A ∈ L(H), B ∈ L(U ; H), C ∈ L(H ; Y ), D ∈ L(U ; Y ), and U , H and Y
are Hilbert spaces. To equations (1.1), we associate a data structure φ, called
a discrete time linear system (DLS) in difference equation form. The DLS φ is
simply an ordered quadruple ( A B

C D ) of the bounded linear operators A, B, C and
D, appearing in equations (1.1. Basic theory of the DLS φ is given in Section 1.2.
In Section 1.3, we introduce another data structure Φ, called a DLS in I/O form.
Such Φ is a quadruple

[
Aj Bτ∗j

C D
]

of three linear mappings B, C and D, together
with the family of bounded linear operator {Aj}j≥0. By Theorem 15, these two
notions of DLSs give two equivalent formalisms to describe the general class
of dynamical systems, given by equations (1.1). Adjoints, compositions and
inverses of DLSs are introduced in Section 1.4. In Section 1.5, we develop the
state feedback structure for DLSs in difference form, and in Section 1.6 we do
this for DLSs in I/O form. It is shown in Lemma 26 that these feedback notions
are equivalent.

1



2 CHAPTER 1. DISCRETE TIME LINEAR SYSTEMS

Until now no stability assumptions or definitions for DLSs have been made, if
one does not regard the boundedness of the operators in (1.1), known as the
well-posedness of the DLS, as a stability assumption. In Section 1.7, the �2

norms and inner products are introduced to the input and output sequences.
Topological versions of the linear mappings B, C, D, together with their domains,
are defined. In Definition 32, several stability notions for DLSs are given, such as
input stability, output stability, strong H2 stability and I/O stability. The closed
graph property, the density of domain and the boundedness for the (topological)
operators C, Dπ0 and Dπ̄+ are studied. In Section 1.8, a stronger topology
for the state space is introduced. With this new topology, we transform the
original strongly H2 stable DLS into a modified system with the same I/O map
and algebraic properties, but with the additional property that the modified
system is output stable. In Section 1.9, we return to consider the state feedback
structure, but now we assume that the DLSs and feedback have some stability
properties. In the final Section 1.10, we consider the transfer functions and
nontangential limits of the transfer functions of DLSs. Most of the results of
this chapter appeared in [56] (Malinen, 1997).
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1.2 Difference equation systems

Let A, B, C and D be bounded linear operators between appropriate Hilbert
spaces U , H and Y . In this section, we introduce the basic algebraic notions
associated to the system of difference equations{

xj+1 = Axj + Buj,

yj = Cxj + Duj, j ∈ Z,
(1.2)

where uj ∈ U , xj ∈ H and yj ∈ Y for all j ∈ Z. The index j is regarded
as a discrete time parameter. For notational convenience, we associate a data
structure to equations (1.2).

Definition 1. Let U , H and Y be Hilbert spaces. Let the operators A ∈
L(H, H), B ∈ L(U, H), C ∈ L(H, Y ), D ∈ L(U, Y ) be arbitrary.

(i) The ordered quadruple φ := ( A B
C D ) of operators A, B, C and D is the

discrete time linear system (DLS) in difference equation form.

(ii) The space U is the input space, H is the state space, and Y is the output
space of φ.

(iii) The operator A is the semigroup generator of the DLS φ. The operator
B is the input operator, the operator C is the output operator, and the
operator D is the feed-through operator of the DLS φ. The operators A,
B, C and D are the generating operators of the DLS φ.

Let a sequence ũ := {uj}j∈Z ∈ Seq(U) be arbitrary. Then there is the largest
j′(ũ) ∈ Z, such that uj = 0 for all j < j′(ũ). Furthermore, there exists a unique
sequence of states {xj(ũ)}j∈Z, such that

xj+1(ũ) = Axj(ũ) + Buj

and xj(ũ) = 0 for all j ≤ j′(ũ). Define sequence ỹ := {yj}j∈Z ∈ Seq(Y ) by

yj = Cxj(ũ) + Duj .

It can be easily seen that the mapping Seq(U) 
 ũ �→ ỹ ∈ Seq(Y ) is well-defined
and linear. This mapping is the I/O (input-output) map of the DLS φ = ( A B

C D ),
associated to the equations (1.2).
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Definition 2. Let φ = ( A B
C D ) be a DLS.

(i) The I/O map Dφ is the linear map Seq(U) 
 ũ �→ ỹ ∈ Seq(Y ) associ-
ated to the DLS φ via (1.2), as explained above. The DLS φ is called a
realization of its I/O map Dφ.

(ii) The sequence ũ := {uj}j∈Z is the input sequence of the DLS φ. The
sequence {xj}j∈Z is a sequence of states, and ỹ := {yj}j∈Z is an output
sequence of φ, if they satisfy the equations (1.2) for some input sequence
ũ ∈ Seq(U).

It is not difficult to calculate the formula for Dφ:

Proposition 3. Let φ = ( A B
C D ) be a DLS, and let ũ ∈ Seq(U) be arbitrary.

The I/O map is given componentwise by

(Dφũ)j =
∞∑

i=0

CAiBuj−i−1 + Duj(1.3)

for all j ∈ Z.

Note that the sum (1.3) is actually finite (and thus well-defined), because we
assume that ũ ∈ Seq(U). Because Dφ depends only on the operators D and
CAiB for i ≥ 0, but not directly on A, B and C, it follows that several different
DLSs can have a common I/O map.

In order to study the time dynamics of various mappings associated to a DLS,
we define some projections and a shift operator on the sequence spaces.

Definition 4. Let Z be a Hilbert space, and let z̃ ∈ Seq(Z) be arbitrary. Then
we define the following linear mappings in Seq(Z):

(i) the interval projections for j, k ∈ Z

π[j,k]z̃ := {wj}; wi = zi for j ≤ i ≤ k, 0 otherwise;
πj := π[j,j],

(ii) the future and past projections

π+ := π[1,∞], π− := π[−∞,−1],

(iii) the composite projections

π̄+ := π0 + π+, π̄− := π0 + π−,
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(iv) the bilateral forward time shift τ and its (formal) adjoint, backward time
shift τ∗

τũ := {wj} where wj = uj−1,

τ∗ũ := {wj} where wj = uj+1.

We call τ∗ to be the “adjoint” of τ rather than inverse for notational simplicity.
At this stage, we do not yet have a Hilbert space structure on the sequence
spaces that would make τ∗ a true adjoint. However, such structure will be
introduced later.

Definition 5. Let D : Seq(U) → Seq(Y ) be a linear mapping. Then

(i) D is shift-invariant, if τD = Dτ ,

(ii) D is causal, if it is shift-invariant and π̄+Dπ− = 0,

(iii) D is anticausal, if it is shift-invariant and π−Dπ̄+ = 0,

(iv) D is static, if it is shift-invariant and π0D = Dπ0.

Clearly, if D is static then πjD = Dπj for all j ∈ Z. Furthermore, each static
mapping is causal and anticausal. Conversely, a causal and anticausal mapping
is static.

Proposition 6. Let D : Seq(U) → Seq(Y ) be a linear mapping. Then the
following are equivalent:

(i) D is static.

(ii) There is a linear mapping D : U → Y such that

D{uj}j∈Z = {Duj}j∈Z.

Proof. Assume (i), and define D = π0Dπ0. With the obvious identification of
range (π0) with U and Y , it follows from the linearity of D that D : U → Y is
linear. The mapping D extends to a mapping D̃ : Seq(U) → Seq(Y ) by setting
D̃{uj}j∈Z := {Duj}j∈Z for all {uj}j∈Z ∈ Seq(U). It is easy to see that D̃ is a
static mapping. If we show that D = D̃ on Seq(U), claim (ii) is established.

For contradiction, assume that D = D̃. Then there is a ũ ∈ Seq(U) and
j ∈ Z such that πjDũ = πjD̃ũ. By shifting ũ, we may assume that j = 0.
Because D is static, it follows that π0Dũ = π0 · π0Dũ = π0Dπ0ũ and similarly
π0D̃ũ = π0D̃π0ũ. But both π0D̃π0ũ and π0D̃π0ũ are identifiable with Du0, by
the definitions of D and D̃. So, the counter assumption πjDũ = πjD̃ũ leads to
a contradiction, and D = D̃ follows. It is a triviality that (ii) implies (i).



6 CHAPTER 1. DISCRETE TIME LINEAR SYSTEMS

So, static mappings are identifiable with the linear mappings D : U → Y . In
fact, we write from now on

D{uj}j∈Z = {Duj}j∈Z

for all {uj}j∈Z ∈ Seq(U). In the following proposition, we deal with certain
limits and infinite sums of linear, shift-invariant and causal mappings.

Proposition 7. Let {Tj}j≥0 ⊂ L(U ; Y ) be a countable family.

(i) For arbitrary n ≥ 1, the mapping D(n) : Seq(U) → Seq(Y ), given by

D(n) :=
n∑

i=0

Tiτ
i,

is a linear, shift-invariant and causal.

(ii) There is a unique linear, shift-invariant and causal mapping D : Seq(U) →
Seq(Y ) such that for all ũ ∈ Seq(U) and j ∈ Z

πjD(n)ũ → πjDũ(1.4)

(in the norm of Y ) as n → ∞. We write
∑∞

i=0 Tiτ
i := D.

Proof. It is a matter of easy computation to see that claim (i) holds. For the
converse implication, let ũ ∈ Seq(U) and j ∈ Z be arbitrary. Then, by the
definition of D(n), we have

πjD(n)ũ =
n∑

i=0

Tiπjτ
iũ =

n∑
i=0

Tiτ
iπj−iũ.

Because ũ ∈ Seq(U), the sum
∑n

i=0 Tiτ
iπj−iũ remains a constant finite sum

for all n large enough. So we can define yj ∈ Y for all z ∈ Z by setting yj :=
limn→∞ πjD(n)ũ with the obvious identification of spaces Y and range (πj).
Define ỹ := {yj}j∈Z. Clearly yj = 0 if j is small enough, because ũ ∈ Seq(U).
So we have constructed a mapping D : Seq(U) → Seq(Y ) by setting Dũ = ỹ.
Clearly D is linear, and it is the only mapping that can serve as a candidate
for the limit of the sequence {D(n)} because equation (1.4) is satisfied, by the
construction.

We show that D is shift-invariant. Let ũ ∈ Seq(U) and j ∈ Z be arbitrary.
Because each D(n) is shift-invariant, we have

πjD(n)τũ = πjτD(n)ũ = τπj−1D(n)ũ → τπj−1Dũ

(in the norm of Y ) as n → ∞. But also πjD(n)τũ → πjDτũ, and the uniqueness
of the limit implies that πjDτũ = πjτDũ. Because both ũ and j are arbitrary,
it follows that Dτ = τD on Seq(U). The causality of D is proved in a similar
way.
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We say that the infinite sum
∑∞

i=0 Tiτ
iũ exists in the sense of componentwise

convergence. This notion of convergence gives the vector spaces Seq(U) and
Seq(Y ) the topology of componentwise (pointwise) convergence. We are now
prepared to show that linear, shift-invariant and causal mappings on Seq(U)
can be represented with the aid of countable combinations of static mappings
and the forward shift τ .

Proposition 8. Let D : Seq(U) → Seq(Y ) be a linear, shift-invariant and
causal mapping, such that πiDφπ0 ∈ L(U ; Y ) with the obvious identification of
range (πi) with Y and range (π0) with U .

Then there is a unique countable family {Ti}i≥0 ⊂ L(U ; Y ) such that D =∑∞
i=0 Tiτ

i in the sense of componentwise convergence.

Proof. Define Ti := πiDπ0 for i ≥ 0. By the identification of range (πi) with
Y and range (π0) with U , it follows that {Ti}i≥0 ⊂ L(U ; Y ). By Proposition
ii, there is a unique linear, shift-invariant and causal mapping D′ : Seq(U) →
Seq(Y ), such that for all j ∈ Z and ũ ∈ Seq(U)

πjD′ũ :=
∞∑

i=0

πjTiπjτ
iπj−iũ.(1.5)

Here Ti is regarded as a static operator on Seq(U), and the sum contains only
a finite number of nonzero terms. We proceed to show that D = D′ on Seq(U).
It is enough to show that πjDũ = πjD′ũ for all j ∈ Z and ũ ∈ Seq(U).

By the definition of the static operator Ti : Seq(U) → Seq(Y ), it follows that
πjTiπj = τ j−iπiDπ0τ

∗j . But then

πjTiπjτ
i = τ j−iπiDπ0τ

∗(j−i)

= πjτ
j−iDτ∗(j−i)πj−i = πjDπj−i.

By combining this with equation (1.5), we obtain

πjD′ũ =
∞∑

i=0

πjDπj−iũ = πjD
∞∑

i=0

πj−iũ = πjDπ[−∞,j]ũ,(1.6)

where we have used the linearity of D and the fact that all the sums have only
a finite number of nonzero terms, by assumption ũ ∈ Seq(U). Because D is
causal, we have πjDπ[j+1,∞]ũ = 0. This, together with equation (1.6), implies
that πjD′ũ = πjDũ. The uniqueness of the representing family {Ti}i≥0 is trivial,
and the proof is complete.

As a combination of Propositions 3 and 8, we can represent the I/O map as the
sum

Dφũ = Dũ +
∑
i≥0

CAiBτ i+1ũ.(1.7)
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The sum in formula (1.7) converges componentwise in Seq(Y ).

In some subspaces of Seq(U), the shift τ can be realized as a multiplication by
a complex variable z. This gives us the transfer function representation for the
I/O map. The operator-valued analytic transfer function is given by

Dφ(z) = D +
∑
i≥0

CAiBzi+1 for z ∈ C,(1.8)

where the power series converges in a neighborhood of the origin. For example,
this is true for all z satisfying |z| < ||A||−1. We return to these questions in
Section 1.10

We have now considered the linear, shift-invariant and causal mappings be-
tween the vector spaces Seq(U) and Seq(Y ). The following realization lemma
characterizes the set of I/O maps for DLSs in this larger set.

Lemma 9. Let D : Seq(U) → Seq(Y ) be a linear, causal and shift-invariant
mapping. Then the following are equivalent

(i) D is an I/O map of a DLS.

(ii) The mapping D has a unique componentwise convergent series represen-
tation

D =
∑
i≥0

Ti τ i,(1.9)

where the operators Ti ∈ L(U ; Y ), i ≥ 0, satisfy the growth bound ||Ti|| <
C ri for some C < ∞ and r > 0.

Proof. The implication (i) ⇒ (ii) follows trivially from formula (1.7) and the
fact that the generating operators A, B, C and D are bounded. The proof of
the converse implication (ii) ⇒ (i) requires the construction of a DLS whose
I/O maps equals D. Let us first show that any linear, causal and shift-invariant
mapping D : Seq(U) → Seq(Y ) can always be written in the form of (1.9) where
Ti ∈ L(U ; Y ). For ũ ∈ Seq(U) satisfying π0ũ = ũ we have

Dπ0ũ =
∑
i≥0

πiDπ0ũ =
∑
i≥0

τ i (τ∗iπiDπ0)ũ =
∑
i≥0

Tiτ
iπ0ũ(1.10)

where Ti : U → Y is given by Ti := τ∗iπiDπ0 = π0τ
∗iDπ0 with the obvious

identification of spaces. The uniqueness of this representation for the inputs of
type π0ũ is clear, and ever more so for more general inputs. The boundedness
of Ti’s follows from the assumed growth bound ||Ti|| < C ri. The assumed shift-
invariance, linearity and causality of D makes it possible to extend equation
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(1.10) for all ũ ∈ Seq(U), by using the unique formal sum representation ũ =∑
j>J πj ũ for elements of Seq(U) and noting that the sum defining πjD is

finite, for all j ∈ Z. We conclude that formula (1.9) holds, in the sense of
componentwise convergence.

To complete the proof, we must find bounded operators A, B, C and D on some
Hilbert spaces U , Y and H such that

D = T0, CAi−1B = Ti for i ≥ 1.

The choice of D is clear. The input space U and the output spaces Y are fixed
by the choice of D, but the state space H will have to be constructed. We first
define

A := π̄+τ∗ : Seq+(Y ) → Seq+(Y )

B := [T1 T2 T3 · · · ]T : U → Seq+(Y )
C := π0 : Seq+(Y ) → Y

and the define the state space H to be a certain Hilbert subspace of Seq+(Y )
such that the operators become continuous.

By using the growth bound ||Ti|| < C ri assumption, we can choose r < ∞ so
large that

∑
i≥0 r−i ||Ti||2 < ∞. An inner product can be defined in a subset of

Seq+(Y ) by

〈ỹ, w̃〉H :=
∑
i≥0

r−2i 〈yi, wi〉Y .

Now the state space H ⊂ Seq+(Y ) is, by definition, the closure of the finite
length sequences in this inner product. For u ∈ U , we have

||Bu||2H =
∑
i≥0

r−2i 〈Tiu, Tiu〉Y

=
∑
i≥0

||r−iTiu||2Y ≤ ||u||2U
∑
i≥0

r−i ||Ti||2.

This proves that B maps U into H boundedly. To show the boundedness of A
on H , we calculate

||Aỹ||2H
||ỹ||2H

=

∑
i≥1 r−2(i−1) 〈yi, yi〉Y∑

i≥0 r−2i 〈yi, yi〉Y

= r2

∑
i≥1 r−2i 〈yi, yi〉Y∑
i≥0 r−2i 〈yi, yi〉Y

≤ r2.

Thus we obtain the norm estimate ||A||H < r. The boundedness of C = π0 is
trivial. This completes the proof.
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The realization that has been constructed in the proof of Lemma 9 is a variant
of the shift realization of a H∞ transfer function. For further information about
shift realizations, see [35, Chapter III]. The number

inf {r > 0 | ∃C < ∞ : ||Ti|| ≤ C ri}

majorizes the spectral radius ρ(A) of the semigroup generator A. The proof of
Lemma 9 implies that given a DLS φ = ( A B

C D ) and an arbitrary r > ρ(A), we
can find another DLS φ′ such that Dφ = Dφ′ , whose semigroup generator A′

satisfies ||A′|| ≤ r. Because the generating operators of a DLS φ are bounded,
it follows that the transfer function Dφ(z) is analytic in a neighborhood of the
origin. In the continuous time language of [89] and [98], this can be called the
well-posedness of the system. Thus DLSs are well-posed discrete time linear
systems.

In addition to the I/O map, we also define two other linear mappings — the
controllability and observability maps.

Definition 10. Let φ = ( A B
C D ) be a DLS.

(i) The controllability map Bφ : Seq(U) → H is the linear mapping defined
by

Bφũ :=
∑
i≥0

AiBu−i−1(1.11)

for all ũ ∈ Seq(U).

(ii) The observability map Cφ : H → Seq(Y ) is the linear mapping defined by

(Cφx0)j :=

{
CAjx0, for j ≥ 0,

0, for j < 0,
(1.12)

for all x0 ∈ H.

As we shall see in a moment, the controllability map brings data into the DLS.
The state space H serves as a “memory” of the DLS, and the semigroup gen-
erator A “processes the data” there. Finally, the observability map “reads the
memory”, and outputs its contents.

It is not always the case that we want to “start” the DLS with initial condition
xJ = 0 indefinitely far in the past, even though the input sequence space Seq(U)
has been designed for this purpose. In the initial value setting, we start at some
specific time point (usually chosen to be j = 0) with a given initial state x0 ∈ H .
The input sequences ũ as well as the output sequences ỹ would then lie in the
spaces Seq+(U) and Seq+(Y ), respectively. In practice, we postulate that we
have a capability of “loading a state” of our choice into the “memory” of a DLS
— or at least being able “reset” the state of a DLS to zero at a given moment.
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Proposition 11. Let φ = ( A B
C D ) be a DLS. Let x0 ∈ H be an initial state at

time j = 0, and ũ ∈ Seq+(U) be an input sequence.

(i) The state of φ at time j ≥ 0 is denoted by xj(x0, ũ) ∈ H, and given by

xj(x0, ũ) = Ajx0 +
j−1∑
i=0

AiBuj−i = Ajx0 + Bφτ∗j ũ,(1.13)

where τ is the time shift defined in Definition 4.

(ii) The output sequence ỹ(x0, ũ) := {yj(x0, ũ)}j≥0 ∈ Seq+(Y ) of φ is given
by

y0(x0, ũ) = Cx0 + Du0 = π0(Cφx0 + Dφũ),(1.14)

yj(x0, ũ) = CAjx0 +
j−1∑
i=0

CAiBuj−i + Duj

= πj(Cφx0 + Dφũ) for j ≥ 1.

It is true that the mappings Dφ, Bφ and Cφ share an important property with our
(classical notion of the) universe, namely the causality. The following proposi-
tion collects the results how the I/O map, controllability map and observability
map interact with the time projections and shifts.

Lemma 12. Let φ = ( A B
C D ) be a DLS. Then

(i) Dφ, Bφ and Cφ are causal; i.e. they satisfy

π−Dφπ̄+ = 0, Bφπ̄+ = 0, π−Cφ = 0,

(ii) Bφ satisfies

Bφτ∗ũ = (ABφ + Bφτ∗π0) ũ

= ABφũ + Bu0,

Bφτ∗j ũ = Aj Bφũ +
j−1∑
i=0

AiBuj−i−1,

for all j ≥ 1, ũ ∈ Seq(U),

(iii) Cφ satisfies

π̄+τ∗Cφ = CφA,
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(iv) Dφ satisfies

π̄+Dφ −Dφπ̄+ = π̄+Dφπ− = CφBφ, Dφτ = τDφ, Dφτ∗ = τ∗Dφ.

Proof. Claim (i) is a direct consequence of Definition 10. The first part of claim
(ii) will be proved by calculating for any ũ ∈ Seq(U)

Bφτ∗ũ =
∑
i≥0

AiBu−i = A
∑
i≥0

AiBu−i−1 + Bu0 = ABφũ + Bu0.

Quite easily we note that Bu0 = Bφτ∗π̄+ũ. This gives the first part of claim
(ii). The latter part of claim (ii) follows from the first part by induction. The
claim (iii) is an immediate conclusion of Definition 10.

The first equality of claim (iv) is trivial. For the proof of the second equality
we proceed as follows (j ≥ 0)

(Dφπ−ũ)j =
∞∑

i=0

CAiB(π−ũ)j−i−1 + D(π−ũ)j

=
∞∑

i≥j

CAiBuj−i−1 =
∞∑

i≥0

CAi+jBuj−(i+j)−1

= CAj
∞∑

i≥0

AiBu−i−1 = (CφBφũ)j .

This proves the former part of claim (iv). The remaining part in claim (iv) is
clear. This completes the proof the lemma.



1.3. DLS IN I/O FORM 13

1.3 DLS in I/O form

In previous Section 1.2, we associated three linear mappings Bφ, Cφ, Dφ to any
DLS φ = ( A B

C D ). In this section, we forget the generating operators B, C and
D for a while and work only with operators A, B, C and D that are postulated
to satisfy the properties of A, Bφ, Cφ and Dφ as given by Lemma 12. We can,
in fact, characterize the DLS starting from such operators A, B, C and D. This
will be the main result of this section.

Definition 13. Let U , Y and H be Hilbert. Let A ∈ L(H). Let B, C and D be
linear operators of the following kind:

(i) B : Seq−(U) → H, C : H → Seq+(Y ) and D : Seq(U) → Seq(Y ).

(ii) D, B and C are causal in the sense of Lemma 12

π−Dπ̄+ = 0, Bπ̄+ = 0, π−C = 0.

(iii) B satisfies

Bτ∗ = AB + Bτ∗π0,

Bπ−1 ∈ L(U, H),

where U is identified with range (π−1) on Seq(U) in the natural way.

(iv) C satisfies

π̄+τ∗C = CA,

π0C ∈ L(H, Y ),

where Y is identified with range (π0) on Seq(Y ) in the natural way.

(v) D satisfies

π̄+Dπ− = CB,

Dτ = τD, Dτ∗ = τ∗D,

π0Dπ0 ∈ L(U, Y ),

where U and Y are identified with range (π0) in the natural way.

Then the ordered quadruple

Φ =
[
Aj Bτ∗j

C D

]
(1.15)

is the discrete time linear system (DLS) in I/O form. The operator A is the
semigroup generator of Φ, and the family of the operators {Aj}j≥0 is the (dis-
crete) semigroup of Φ. The mapping B is the controllability map, the mapping
C is the observability map, and the mapping D is the I/O map of Φ.
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We remind that the DLS φ = ( A B
C D ) in Definition 1 is called a DLS in difference

equation form. Lemma 12 associates to each DLS φ in difference equation form
a unique DLS in I/O form, namely Φ =

[
Aj Bφτ∗j

Cφ Dφ

]
. It appears that also the

converse of Lemma 12 holds.

Lemma 14. Let Φ =
[

Aj Bτ∗j

C D
]

be a DLS in I/O form. Then there are unique
linear operators B ∈ L(U, H), C ∈ L(H, Y ), D ∈ L(U, Y ) such that B = Bφ,
C = Cφ, D = Dφ for the DLS φ = ( A B

C D ) in difference equation form. The
semigroup generator φ is the same operator A as the semigroup generator of Φ.
Furthermore, we have

(i) B := Bπ−1 where range (π−1) and U are identified in the natural way,

(ii) C := π0C where range (π0) and Y are identified in the natural way,

(iii) D := π0Dπ0, where the range of the right π0 is identified with U , and the
range of the left π0 is identified with Y in the natural way.

Proof. We begin the proof by considering the mapping B. Define B := Bπ−1.
Then by assumption B ∈ L(U, H), and Bτ∗ũ = ABũ + Bu0 for all ũ ∈ Seq(U).
By induction, just as in the proof of the last part of claim (ii) of Lemma 12, we
have for all j ≥ 1 and ũ = {uj} ∈ Seq(U)

Bτ∗j ũ = Aj Bũ +
j−1∑
i=0

AiBuj−i−1.(1.16)

We have the finite sum representation π−ũ =
∑

j<0 πj ũ for each ũ ∈ Seq(U).
This and the linearity of B imply

Bũ = Bπ−ũ =
∑
j<0

Bπjũ =
∑
j<0

Bτ∗|j|π0τ
|j|ũ.(1.17)

By formula (1.16), we have for all j < 0

Bπjũ = Bτ∗|j|
(
π0τ

|j|ũ
)

(1.18)

= A|j|B(π0τ
|j|ũ) +

j−1∑
i=0

AiB(π0τ
|j|ũ)|j|−i−1

= A|j|−1Bu−|j| = A−j−1Buj.

Formulae (1.17) and (1.18) together give

Bũ =
∑
j<0

A−j−1Buj =
∑
j≥1

Aj−1Bu−j =
∑
j≥0

AjBu−j−1.



1.3. DLS IN I/O FORM 15

This proves that B = Bφ for the DLSs of the form φ = ( A B∗ ∗ ), where ∗ stands
for an irrelevant entry.

To make a similar analysis for C, we first define C := π0C. By assumption,
C ∈ L(H, Y ). For any x0 ∈ H and j ≥ 0, a direct calculation gives

(Cx0)j = (τ∗jCx0)0 = π0τ
∗jCx0.

But by assumption (iv) and definition of C

π0τ
∗jCx0 = π0CAjx0 = CAjx0.

Thus (Cx0)j = CAjx0, and C = Cφ for all DLSs φ = ( A ∗
C ∗ ).

Our final task is to construct an operator a D ∈ L(U, Y ) such that D = Dφ

for the DLS φ = ( A B
C D ), where B and C are as constructed above. Define

D := π0Dπ0 with the obvious identifications of spaces. Set φ = ( A B
C D ). Clearly

B = Bφ and C = Cφ, by what we have already proved above. Because the choice
of the feed-through operator does not change the controllability and observ-
ability maps, it remains to check that the we have Dφ = D on Seq(U). By
an application of the representation formula (1.9) of Lemma 9 on the mapping
Dφ −D, it is enough to show that Dφũ = Dũ for sequences satisfying ũ = π0ũ.
But we have in Seq(U)

(Dφ −D)π0 = π−(Dφ −D)π0 + π0(Dφ −D)π0 + π+(Dφ −D)π0.

Now, π−(Dφ − D)π̄+ = 0 because both Dφ and D are causal. Furthermore,
π+(Dφ − D)π0 = π+τ(Dφ − D)τ∗π0 = τ · π̄+(Dφ − D)π− · π0τ

∗ = τ(CφBφ −
CB)π0τ

∗ = 0, because B = Bφ and C = Cφ. We conclude that

(Dφ −D)π0 = π0(Dφ −D)π0 = 0,

because π0Dφπ0 − π0Dπ0 = D − D = 0, by the choice of D. This proves the
last part of the lemma.

We now summarize an immediate conclusion of Lemmas 12 and 14.

Theorem 15. There is one-to-one correspondence between DLS in difference
equation form and DLS in I/O form. To get the DLS given in difference equation
form into the I/O form, the formulae of Lemma 12 are used. To get the DLS
given I/O form into difference equation form, the formulae of Lemma 14 are
used.

If the DLSs φ = ( A B
C D ) and Φ =

[
Aj Bτ∗j

C D
]
are equivalent in the sense of Theorem

15, we write φ = Φ. We adopt the convention that a symbol in lower case denotes
a DLS in difference equation form, and the same symbol in upper case denotes
the same DLS in I/O form. For example, φ2

1 = Φ2
1 and so on.
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1.4 Adjoint, product and inverse DLS

In this section, we define and study three algebraic operations on DLSs.

Definition 16. Let φ1 =
(

A1 B1
C1 D1

)
, φ2 =

(
A2 B2
C2 D2

)
be two DLSs. Assume that

the input space of φ2 is U , the output space of φ2 and the input space of φ1 is
W , and the output space of φ1 is Y .

(i) If D−1
1 ∈ L(Y ; U) exists, then define

φ−1
1 =

(
A1 − B1D

−1
1 C1 B1D

−1
1

−D−1
1 C1 D−1

1

)
This DLS is the inverse DLS of φ1.

(ii) Define

φ1φ2 =

[A1 B1C2

0 A2

] [
B1D2

B2

]
[
C1 D1C2

]
D1D2

 .

This DLS is the product DLS of φ1 and φ2.

(iii) Define

φ̃1 =
(

A∗
1 C∗

1

B∗
1 D∗

1

)
.

This DLS is the adjoint DLS of φ1.

Proposition 17. Let φ1, φ2 be as in Definition 16.

(i) Dφ1 : Seq(W ) → Seq(Y ) is invertible and its inverse is a I/O maps of
a DLS if and only if D−1

1 ∈ L(Y ; W ) exists. In this case, the inverse
D−1

φ1
: Seq(Y ) → Seq(W ) is given by D−1

φ1
= Dφ−1

1
.

(ii) The composition of the I/O maps Dφ1 and Dφ2 satisfies Dφ1 Dφ2 = Dφ1φ2 .

(iii) The adjoint DLSs satisfy (̃φ̃1) = φ1, and (̃φ−1
1 ) = (φ̃1)−1. Furthermore,

D
φ̃1φ2

= Dfφ2fφ1
.

Proof. Consider first the “if” part of claim (i). Assume that the feed-through
operator of φ1 has a bounded inverse D−1

1 . Assume ỹ := {yj}j∈Z ∈ Seq(Y )
and ũ := {uj}j∈Z ∈ Seq(W ) satisfy ỹ = Dφ1 ũ. By j′(ũ) ∈ Z denote the largest
integer such that uj = 0 for all j < j′(ũ). Then, by Definition 2 of the causal I/O
map, yj = 0 for all j < j′(ũ). Because the state sequence satisfies xj(ũ) = 0 for
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all j ≤ j′(ũ) by the definition of the I/O map, it follows that yj′(ũ) = D1uj′(ũ).
Thus yj′(ũ) = 0 and j′(ỹ) = j′(ũ). By the shift-invariance of Dφ1 , we may assume
without loss of generality that j′(ỹ) = j′(ũ) = 0, ũ ∈ Seq+(W ), ỹ ∈ Seq+(Y ),
and the initial condition for the difference equations defining Dφ1 is given by
x0 = 0. Then we have the equivalences

ỹ = Dφ1 ũ

⇔
{

xj+1 = A1xj + B1uj,

yj = C1xj + D1uj,
for all j ≥ 0,

⇔
{

xj+1 = A1xj + B1uj,

uj = −D−1
1 C1xj + D−1

1 yj,
for all j ≥ 0,

⇔
{

xj+1 = (A1 − B1D
−1
1 C1)xj + B1D

−1
1 yj ,

uj = −D−1
1 C1xj + D−1

1 yj,
for all j ≥ 0,

⇔ ũ = Dφ−1
1

ỹ

We conclude that Dφ−1
1
Dφ1 = I on Seq(U). By using (φ−1

1 )−1 = φ1, also
Dφ1Dφ−1

1
= I. So Dφ−1

1
is a two-sided inverse of Dφ1 .

To prove the “only if” part of claim (i), assume that D−1
φ1

is an I/O map of some
DLS φ′. Then, because I = D−1

φ1
Dφ1 = Dφ1D−1

φ1
, we have π0 = π0D−1

φ1
Dφ1π0 =

π0D−1
φ1

π0 · π0Dφ1π0, by causality of both D−1
φ1

and Dφ1 . Now, π0Dφ1π0 = D,
and I = D′D, where D′ = π0D−1

φ1
π0. Similarly, I = DD′. It follows that D is a

bounded bijection between Hilbert spaces U , Y . It thus has a bounded inverse
D−1 = D′. This completes the proof of claim (i).

For the second claim (ii), recall formula (1.7) for the I/O map of a DLS. Use
this to obtain a formula for Dφ1 Dφ2

Dφ1 Dφ2 = D1D2 +
∑
k≥1

Tkτk,(1.19)

where

Tk := D1C2A
k−1
2 B2 + C1A

k−1
1 B1D2(1.20)

+
k−1∑
j=1

C1A
j−1
1 B1C2A

k−j−1
2 B2, k ≥ 2

T1 := D1C2B2 + C1B1D2

and all Tk ∈ L(U ; Y ). Sum (1.19) converges in the same sense as formula (1.7)
but we omit these details. We calculate the similar formula for the I/O map of
the DLS φ1φ2. For this end, note that the powers of an upper triangular (block)
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matrix can be calculated by[
a c
0 b

]k

=
[
ak

∑k−1
j=0 aj c bk−j−1

0 bk

]
, k ≥ 1.

An application of this gives for k ≥ 1

Cφ1φ2A
j
φ1φ2

Bφ1φ2 =
[
C1 D1C2

] [A1 B1C2

0 A2

]k [
B1D2

B2

]
=
[
C1 D1C2

] [Ak
1

∑k−1
j=0 Aj

1 B1C2 Aj−i−1
2

0 Ak
2

] [
B1D2

B2

]

= C1A
k
1B1D2 + D1C2A

k
2B2 + C1

k−1∑
j=0

Aj
1 B1C2 Aj−i−1

2

B1.

But this equals Tk+1 of equation (1.20). The case k = 0 gives

[
C1 D1C2

] [B1D2

B2

]
= C1B1D2 + D1C2B2 = T1.

Because also the static parts of Dφ1Dφ2 and Dφ1φ2 are both D1D2, equations
(1.19) and (1.20) give also the I/O map of φ1φ2. The last claim (iii) is immediate.
This completes the proof.

We remark the there is no uniqueness in the product realization φ1φ2 of the
shift-invariant causal operator Dφ1Dφ2 . Furthermore, generally φ̃1φ2 = φ̃2φ̃1

but the state spaces of these product DLSs are unitarily isomorphic. Given an
I/O map Dφ, its adjoint I/O map D̃φ is defined by D̃φ := Deφ. It is easy to show,

by using formula (1.7), that D̃φ is independent of the choice of the realization
φ.
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1.5 State feedback in difference equation form

The state feedback is a basic tool in control theory that is used to change some
characteristics of a given system. In this section we study the state feedback of
DLSs in difference equation form. In Section 1.6 we carry out the similar work
for DLSs in I/O form. It will finally appear that these two feedback notions are
equivalent, see Lemma 26. This is essentially a conclusion of Theorem 15.

We first introduce the notion of the (state) feedback pair, originally introduced
in [82]. It comprises a pair of such bounded linear operators that can be “cou-
pled” into a given DLS. These operators will serve as an “extra output” that
can directly be used as a feedback signal for the original system. Because one
of the operators in the feedback pair is allowed to read the whole state space,
we speak about state feedback.

Definition 18. Let φ = ( A B
C D ) be a DLS with input space U , output space Y

and state space H.

(i) The feedback pair (K, F ) (in difference equation form) is an ordered pair
of linear operators K ∈ L(H, U) and F ∈ L(U, U) satisfying (I − F )−1 ∈
L(U, U). The operator K is the output operator, and the operator F is the
feed-through operator of (K, F ).

(ii) Let (K, F ) a feedback pair. Then

φext :=

 A B[
C
K

] [
D
F

]
is the extended DLS (in difference equation form) from φ with feedback
pair (K, F ). We also write φext = (φ, (K, F )). The input space of φext is
U , the output space is Y ⊕ U and the state space is H.

Following the language of [98], we can call the requirement (I −F )−1 ∈ L(U, U)
admissibility of the feedback pair. We shall see in Proposition 22 that this is
equivalent with the invertibility on Seq(U) of certain I/O map. The following
diagram illustrates the signals for the extended system φext with a given initial
state x0 ∈ H at time j = 0.

A B[
C
K

] [
D
F

]�
x0

�xj+1(x0, ũ)
�yj(x0, ũ)
�wj(x0, ũ)

�
uj
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Here the input sequence of φext is ũ = {uj}j≥0 ∈ Seq+(U). The state trajectory
xj = xj(x0, ũ) and the output sequence yj = yj(x0, ũ) are given by Proposition
11. The new output sequence is defined with the aid of the feedback pair (K, F )
by setting

wj(x0, ũ) := Kxj + Fuj

for all j ≥ 0.

The feedback associated to pair (K, F ) arises in a natural way, by using ũ =
{uj}j≥0 as the input signal for φext, where

uj := vj + wj(x0, ũ) for j ≥ 0.

Here ṽ := {vj}j≥0 ∈ Seq+(U) is an arbitrary external perturbation signal into
the feedback loop. Clearly ũ = ũ(x0, ṽ). By the admissibility of the feedback
pair (K, F ), this is equivalent with

uj = (I − F )−1(Kxj + vj), for j ≥ 0.(1.21)

Trivially, ũ = ũ(x0, ṽ) := {uj}j≥0, given by equation (1.21), is an element of
Seq+(U). It can thus be used as an input sequence for the (open loop) DLS
φext. This procedure is referred to as “closing the feedback loop” at time j = 0.
We could, of course, close the feedback loop at any other time j ∈ Z, but this
would not give us essentially new structure, by the shift-invariance. The initial
state x0 ∈ H of the closed loop system is either given explicitly, or formed by
applying to the open loop DLS φext an initial state xj′ and the past inputs
{uj}0>j≤j′ for some j′ < 0.

In the following diagram, the feedback connection is shown. We call the resulting
object the closed loop system. It is not a DLS itself but it nevertheless it defines
a linear, shift-invariant and causal mapping ṽ �→

[
ỹ
w̃

]
which is an I/O map of

an associated DLS. The input signal ũ = ũ(x0, ṽ) to φext is given by equation
(1.21).

A B[
C
K

] [
D
F

]�
x0

�xj+1(x0, ũ)
�yj(x0, ũ)
�wj(x0, ũ)

�

�
+

�
�� vj

Suppose that we are given an initial state x0 ∈ H and a perturbation signal
ṽ ∈ Seq+(U) of the closed loop system, described in the previous diagram.
Our task is to compute the state trajectory {xj(x0, ũ)}j≥0 and the output se-
quences {yj(x0, ũ)}j≥0 and {wj(x0, ũ)}j≥0 in the closed loop. It appears, as
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a consequence of the admissibility of (K, F ), that these equal the state trajec-
tory and the output sequence of another DLS, with initial state x0 and input
ṽ ∈ Seq+(U), see Lemma 20. By using equation (1.21), the open loop input
signal ũ can be removed from the difference equations (1.2). As a result of
a straightforward computation, obtain a new set of difference equations, that
define a new DLS — the closed loop extended DLS φext

� .

Definition 19. Let φ = ( A B
C D ) be a DLS and (K, F ) a feedback pair for φ. By

φext := (φ, (K, F )) denote the extended DLS of Definition 18. The the closed
loop extended system φext

� = (φ, (K, F ))� is a DLS, given by

φext
� =

 A + B(I − F )−1K B(I − F )−1[
C
K

]
+
[
D
F

]
(I − F )−1K

[
D
F

]
(I − F )−1


≡

 A + B(I − F )−1K B(I − F )−1[
C + D(I − F )−1K

(I − F )−1K

] [
D(I − F )−1

(I − F )−1 − I

] .

A straightforward calculation constitutes the proof of the following lemma.

Lemma 20. Let φ = ( A B
C D ) be a DLS and (K, F ) a feedback pair. Let the DLSs

φext = (φ, (K, F )) and φext
� = (φ, (K, F ))� be as in Definitions 18 and 19. Let

x0 ∈ H and ṽ = {vj}j≥0 ∈ Seq+(U) be arbitrary.

Then the state and output sequences of φext in the closed loop are given by

xj(x0, ũ) = Aj
�x0 + Bφext� τ∗j ṽ for all j ≥ 0,[

ỹ(x0, ũ)
w̃(x0, ũ)

]
= Cφext� x0 + Dφext� ṽ,

where A� := A+B(I −F )−1K is the semigroup generator of the DLS φext
� , and

ũ = ũ(x0, ṽ) ∈ Seq+(U) is the input signal to φext, given by equation (1.21).

The iterated feedbacks behave in an expected way. Given a DLS φ, we can
define a product in the set of feedback pairs for φ by setting

(K2, F2) (K1, F1) := ((I − F1)K1 + K2, F1 + F2 − F2F1) .

This gives the set of feedback pairs the structure of a noncommutative group,
where the unit element is (0, 0). The iterated feedback is given by the formula

((φ, (K1, F1)) , (K2, F2)) = (φ, (K1, F1)(K2, F2)) .

The feedback pairs of form (K, 0) are an abelian subgroup of all the feedback
pairs. In the literature, it is customary to use just these feedbacks. Clearly,
such state feedbacks are a class “general enough” because the left hand column
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of DLS φext
� in Definition 19 depends only upon (I − F )−1K but not on the

operators F and K separately. It follows that all the feedback pairs (K, F ) for
which (I − F )−1K is equal, give closed loop DLSs (φ, (K, F ))� that differ only
by a left multiplication by the static operator (I − F )−1.

In this chapter, we have chosen to have a nonvanishing feed-through operator
F , because then the formulae of the closed loops systems in difference equation
form will look like the corresponding formulae in the I/O form, as introduced
in Section 1.6. Also, to have a complete one-to-one correspondence between
difference equation form feedbacks of this section, and the I/O form feedbacks
of the following section 1.6, we have to include F = 0, corresponding the feed-
through part π0Fπ0 of operator F in [K,F ] in Definition 21. In later chapters
of this book, we use F = 0 as the feed-through operator of the feedback pairs.

Suppose that a DLS φ = ( A B
C D ) is a model for some physical process. It is

possible that the generating operators A, B, C and D correspond to some phys-
ically realized and clearly isolated components of this process. After adjoining
a feedback pair and closing the feedback loop, both the input-output behavior
and the evolution of the state is described by the DLS φext� , by Lemma 20.
It could be difficult (and even impossible) to find the physical counterparts of
the closed loop generating operators of φext

� , even if the open loop generating
operators are easily identifiable, and conversely. The open loop and closed loop
semigroup generators A and A� = A+B(I−F )−1K are generally very different,
even in the special case when they differ by a rank one operator. The reader
will find a plenty of such examples in later chapters.
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1.6 State feedback in I/O form

In Section 1.5, it was a fairly straightforward task to introduce the notion of
state feedback for DLSs in difference equation form. Things get somewhat more
complicated when we study the state feedback structure for DLSs in I/O form.
We must make lengthy calculations to show that the closed loop “system” is,
indeed, a DLS. Again, we start with a basic definition.

Definition 21. Let Φ =
[

Aj Bτ∗j

C D
]

be a DLS (in I/O form) whose input space
is U , output space is Y and state space is H. Then the feedback pair [K,F ] (in
I/O form) for Φ is an ordered pair of linear operators K : H → Seq+(U) and
F : Seq(U) → Seq(U) such that

(i) Φfb =
[

Aj Bτ∗j

K F
]
is a DLS (in I/O form) with the input space U , the output

space U and the state space H.

(ii) The operator I − F : Seq+(U) → Seq+(U) is a bijection, and the inverse
(I − F)−1 is an I/O map of a DLS.

The following proposition, together with Definition 18, explains the condition
(ii) of Definition 21. It is a direct consequence of Proposition 17.

Proposition 22. Let Φfb =
[

Aj Bτ∗j

K F
]

be a DLS and F its I/O map. Define
F := π0Fπ0, regarded as an operator in L(U), with the natural identification of
spaces range (π0) and U . Then condition (ii) of Definition 21 holds if and only if
I −F has a bounded inverse in L(U). In that case, π0(I −F)−1π0 = (I −F )−1.

As in Definition 19, we first introduce an extended DLS Φext and another object,
the closed loop system Φext

� .

Definition 23. Let Φ =
[
Aj Bτ∗j

C D

]
be a DLS and [K,F ] a feedback pair for

Φ.

(i) The DLS

Φext :=

 Aj Bτ∗j[
C
K

] [
D
F

]
is the extended DLS (in I/O form) from Φ with feedback pair [K,F ]. The
input space of Φext is U , the output space is Y ⊕ U and the state space is
H. For brevity, we write Φext = [Φ, [K,F ]].
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(ii) The closed loop extended system Φext
� is the 6-tuple of linear mappings

Φext
� :=

 Aj + Bτ∗j(I −F)−1K B(I −F)−1τ∗j[
C + D(I −F)−1K

(I − F)−1K

] [
D(I − F)−1

(I − F)−1 − I

] 
=:

A�(j) B�τ∗j[
C�
K�

] [
D�
F�

]
between appropriate vector spaces Seq(U), Seq(Y ) and Hilbert space H.
For brevity, we write Φext

� = [Φ, [K,F ]]�.

It is a matter of easy checking that all the composite mappings in Φext� make
sense for all j. Thus Φext

� is well defined 6-tuple of linear mappings, but we do
not yet claim that Φext� is a DLS. The fact that Φext� is a DLS will be proved in
Lemma 24.

Now that we have defined the feedback pairs and related objects, we have to
associate a notion of feedback to them. We use the feedback pair [K,F ] roughly
in the same way as the feedback pair (K, F ) in equation (1.21). We also use
the same symbols for signals as in Section 1.5. Let x0 ∈ H and ũ ∈ Seq+(U)
be arbitrary. The new output sequence of Φext, associated to the feedback pair
[K,F ], is given by

w̃(x0, ũ) := Kx0 + F ũ ∈ Seq+(U).

We define the feedback by requiring that the input signal ũ = ũ(x0, ṽ) satisfies

ũ(x0, ṽ) = ṽ + w̃(x0, ũ(x0, ṽ)),

where ṽ ∈ Seq+(U) is an arbitrary external perturbation signal. By solving
ũ(x0, ṽ) in the previous equation, we get the equivalent formula

ũ(x0, ṽ) = (I − F)−1(Kx0 + ṽ)(1.22)

because I −F is assumed to be invertible on Seq(U). Now, ũ(x0, ṽ) ∈ Seq+(U)
for any initial state x0 and external perturbation signal ṽ. Thus it is a perfectly
valid input sequence for the DLS Φext, and the following closed loop connection
of signals for Φext makes sense.

Aj Bτ∗j[
C
K

] [
D
F

]�
x0

�xj(x0, ũ)
�̃y(x0, ũ)
�̃w(x0, ũ)

�

�
+

�
�� ṽ
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As in Section 1.5, it is desirable to compute formulae for the state trajectory
{xj(x0, ũ)}j≥0 and the output sequences ỹ(x0, ũ) and w̃(x0, ũ), where the input
signal ũ = ũ(x0, ṽ) to Φext is given by equation (1.22). By Lemma 20 for a
DLS φ in difference equation form, these are given by the state and output
trajectories of the closed loop DLS φext� , with the initial state x0 and the input
signal ṽ. So as to the DLSs in I/O form, an easy computation, based on equation
(1.22), reveals that such a DLS must be Φext

� of Definition 23, if any DLS at all.
It remains to show that the 6-tuple of mappings Φext� is, in fact, a DLS in I/O
form.

Lemma 24. The system Φext� = [Φ, [K,F ]] of Definition 23 is a DLS. The input
space of Φext

� is U , the output space is Y ⊕ U and the state space is H.

Proof. It is sufficient to show that the system

Φ� =
[
A�(j) B�τ∗j

C� D�

]
is a DLS, where the linear mappings are given by Definition ii. This is because
the linear mappings A, B, K and F form the DLS Φfb of Definition 21, and
[K,F ] is a feedback pair for Φfb, too. In order to consider the lowest row of
Φext

� in Definition 13, we can consider the middle row of the closed loop system[
Φfb, [K,F ]

]
instead. We proceed to show that the linear mappings A�, B�, C�

and D� satisfy the conditions of Definition 13.

Because Φfb, we have KB = π̄+Fπ− by property (v) of Definition 13 (K in place
of C). This and the causality of both F and (I − F)−1 implies the identity

(I − F)−1KB(I − F)−1 = (I − F)−1π̄+Fπ−(I −F)−1(1.23)

= π̄+(I − F)−1π−

that will be used several times in the course of this proof.

We start by showing that the family of linear mappings {Aj+Bτ∗j(I−F)−1K}j≥0

is a discrete time semigroup in L(H). It is a triviality that this family consists
of bounded linear operators on H . Furthermore, we have for all j ≥ 1

(A + Bτ∗(I − F)−1K)(Aj + Bτ∗j(I − F)−1K)(1.24)

= Aj+1 +

(i)︷ ︸︸ ︷
Bτ∗(I − F)−1KAj

+

(ii)︷ ︸︸ ︷
ABτ∗j(I − F)−1K+

(iii)︷ ︸︸ ︷
Bτ∗(I − F)−1KBτ∗j(I − F)−1K .

Now we study the terms (i), (ii) and (iii) of the equation (1.24) separately. Term
(i) satisfies

Bτ∗(I − F)−1KAj = Bτ∗π0(I − F)−1π̄+τ∗jK,(1.25)
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where property (iv) of Definition 13 (K in place of C) and the causality of
(I − F)−1 has been used. Term (ii) satisfies

ABτ∗j(I − F)−1K = Bτ∗(j+1)(I − F)−1K − Bτ∗π0(I − F)−1τ∗jK,(1.26)

where the property (iii) of Definition 13 has been used. The last term (iii)
requires the most work. Now we have by the shift invariance of (I −F)−1 and
formula (1.23)

Bτ∗(I − F)−1KBτ∗j(I − F)−1K(1.27)

= Bτ∗(I − F)−1π̄+Fπ−(I − F)−1τ∗jK
= Bτ∗π̄+(I − F)−1π−τ∗jK
= Bτ∗π0(I − F)−1π−τ∗jK,

where the last equality follows immediately from the definition of B. Now sum-
ming up formulae (1.25), (1.26) and (1.27) and combining that with formula
(1.24), we obtain

(A + Bτ∗(I − F)−1K)(Aj + Bτ∗j(I − F)−1K)

= (Aj+1 + Bτ∗(j+1)(I − F)−1K),

for all j ≥ 1. By induction, this is equivalent with

(Aj + Bτ∗j(I − F)−1K) =
(
A + Bτ∗(I − F)−1K)

)j
=: Aj

�,

where A� denotes the generator of the closed loop semigroup. This proves the
claim about the semigroup.

In order to prove that B� := B(I−F)−1 is a valid controllability map satisfying
the conditions of Definition 13, we first check the causality of B�. We have

B�π̄+ = B(I − F)−1π̄+ = Bπ̄+(I − F)−1π̄+

= Bπ−π̄+(I − F)−1π̄+ = 0,

where we have used the causality of (I − F)−1. In order to see whether B�
interacts correctly with the time shift τ∗ and the semigroup generator A�, we
have to show that B�τ∗ = A�B� + B�τ∗π0. We have

B�τ∗ = B(I −F)−1τ∗ = Bτ∗(I −F)−1(1.28)

= AB(I − F)−1 + Bτ∗π0(I − F)−1.

On the other hand, we have by the causality of (I − F)−1 and equation (1.23)

A�B� + B�τ∗π0

= (A + B(I − F)−1τ∗K)(B(I − F)−1) + B(I − F)−1τ∗π0

= AB(I − F)−1 + Bτ∗(I − F)−1KB(I − F)−1 + B(I − F)−1τ∗π0

= AB(I − F)−1 + Bτ∗π̄+(I − F)−1π− + Bτ∗(I − F)−1π0.
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The causality of (I−F)−1 and the basic properties of B now allow us to continue

= AB(I − F)−1 + Bτ∗π0(I − F)−1π− + Bτ∗π0(I − F)−1τ∗π0

= AB(I − F)−1 + Bτ∗π0(I − F)−1.(1.29)

Now is it sufficient to compare the right sides of equations (1.28) and (1.29) to
see that B�τ∗ = A�B� + B�τ∗π0. This proves that B� is a valid controllability
map for any DLS whose semigroup generator is A�.

Next we check that the mapping C� := C+D(I −F)−1K is a valid observability
map for a DLS whose semigroup generator is A�. It is clear that C� maps H
into Seq+(Y ). To establish C�A� = π̄+τ∗C�, we calculate

C�A� = (C + D(I − F)−1K)(A + Bτ∗(I − F)−1K)(1.30)

=

(i)︷︸︸︷
CA +

(ii)︷ ︸︸ ︷
D(I − F)−1KA +

(iii)︷ ︸︸ ︷
CBτ∗(I − F)−1K

+

(iv)︷ ︸︸ ︷
D(I − F)−1KBτ∗(I − F)−1K .

The term (i) clearly equals π̄+τ∗C by applying formula (iv) of Definition 13.
Term (ii) can be seen to equal π̄+D(I −F)−1π̄+τ∗K by applying condition (iv)
of Definition 13, and noting that D is causal. So as to term (iii) we note that
CB = π̄+Dπ−, by condition (v) of Definition 13. Then term (iii) takes form
π̄+Dπ−(I − F)−1τ∗K = π̄+Dπ−(I − F)−1π−τ∗K. The last term (iv) is again
of the form of equation (1.23), and equals π̄+Dπ̄+(I − F)−1π−τ∗K, where we
have used the causality of D, too. Summing these formulae for all the terms (i)
— (iv) of formula (1.30) gives the required identity C�A� = π̄+τ∗C�.

So our final task is to check that the I/O map candidate D� interacts correctly
with the mappings A�, B�, C� and time shifts. Causality of D� is again no
issue, and neither is the fact τ∗D� = D�τ∗. Our work lies in checking that
π̄+D�π− = C�B�. The proof of this equality goes now in the familiar way by
using equation (1.23) and causality of D

C�B� = (C + D(I − F)−1K)B(I − F)−1

= CB(I − F)−1 + D(I − F)−1KB(I − F)−1

= π̄+Dπ−(I − F)−1 + Dπ̄+(I − F)−1π−
= π̄+Dπ−(I − F)−1π− + π̄+Dπ̄+(I − F)−1π−
= π̄+D(I − F)−1π− = π̄+D�π−.

Now we have proved that the quadruple Φ� =
[
Aj

� B�τ∗j

C� D�

]
is a DLS.

Analogues for well-posed linear systems can be found in [98, Theorem 6.1] and
[89]. The proof in the latter reference follows these lines, too.
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We have proved that the state feedback in I/O form gives a closed loop system,
which still is a DLS Φext� , by Lemma 24. In Theorem 15 we stated that the
DLSs in difference form and I/O form have one-to-one correspondence. Then
the open loop system Φ has a representation φ in difference equation form, and
so has the closed loop system Φext� a representation φ′, too. The final question
is, whether φ′ is equal to a closed loop system (φ, (K, F ))� for some feedback
pair (K, F )? And if so, then how how to relate the feedback pairs [K,F ] and
(K, F )? The answer to these questions is what one would expect.

Definition 25. Let Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D ) = φ be a DLS. Let [K,F ] be a

feedback pair for Φ, and (K, F ) for φ.

We say that the feedback pairs [K,F ] and (K, F ) correspond to each other if[
Aj Bτ∗j

K F

]
=
(

A B
K F

)
.(1.31)

In this case, we write [K,F ] = (K, F ).

If [K,F ] = (K, F ), it is easy to find formulae connecting the linear mappings
K, F , K and F by applying Theorem 15 to equation (1.31).

Lemma 26. Let Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D ) = φ be a DLS. Let [K,F ] be a feedback

pair for Φ, and (K, F ) a feedback pair for φ.

Then [K,F ] = (K, F ) if and only if [Φ, [K,F ]]� = (φ, (K, F ))�.

Proof. We have to study when [Φ, [K,F ]]� = (φ, (K, F ))� or equivalently Aj + Bτ∗j(I − F)−1K B(I − F)−1τ∗j[
C + D(I − F)−1K

(I − F)−1K

] [
D(I − F)−1

(I − F)−1 − I

] (1.32)

=

 A + B(I − F )−1K B(I − F )−1[
C + D(I − F )−1K

(I − F )−1K

] [
D(I − F )−1

(I − F )−1 − I

]
under the assumption that Φ = φ.

Assume that [K,F ] = (K, F ). We are to show that the equality hold in (1.32).
We show only that the semigroup generators and observability maps in the right
and left sides of formula (1.32) are equal. The other parts are left for the reader.
For the semigroup generators we have

A + Bτ∗(I − F)−1K = A + Bπ−1τ
∗π0(I − F)−1π̄+K

= A + Bπ−1 · τ∗ · π0(I − F)−1π0 · π0K,
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where the latter equality holds by the causality of (I −F)−1 (see Definition 21).
Now, by (1.31), we have K = π0K and π0(I − F)−1π0 = (I − F )−1 where also
Proposition 22 has been used. Also B = Bπ−1, because Φ = φ. Thus

A + Bτ∗(I − F)−1K = A + B(I − F )−1K,

where natural identifications of appropriate intermediate spaces have been done.

We check that the observability maps in the right and left sides of formula
(1.32) are equal. Because we have already proved the equality of the closed loop
semigroup generators, it suffices to consider only the first component mappings
of the observability maps. We have

π0(C + D(I − F)−1K) = π0C + π0Dπ̄+(I − F)−1π+K
= π0C + π0Dπ0(I − F)−1π0K,

where the second equality is by the causality of both D and (I − F)−1. Now,
C = π0C and D = π0Dπ0, because Φ = φ. Also K = π0K and π0(I −F)−1π0 =
(I − F )−1 as above, because [K,F ] = (K, F ). It follows that

π0(C + D(I − F)−1K) = C + D(I − F )−1K,

again with the natural identifications of the intermediate spaces.

For the converse direction, assume that the equality holds in (1.32). By iden-
tifying range (π0) and U , we have π0((I − F)−1 − I)π0 = (I − F )−1 − I) and
π0(I − F)−1π0 = (I − F )−1. Claim (i) of Proposition 17 implies that

π0 (I − F)−1 π0 = (π0(I − F)π0)
−1 = (I − π0Fπ0)

−1

But then (I − π0Fπ0)−1 = (I − F )−1 and thus π0Fπ0 = F .

By causality and the above proved identity (I−π0Fπ0)−1 = (I−F )−1, we have

π0(I − F)−1K = π0(I − F)−1π0 · π0K = (I − F )−1 · π0K = (I − F )−1K.

Because (I − F )−1 ∈ L(U) has a bounded inverse, it follows π0K = K. Now
we have shown that π0Fπ0 = F and π0K = K. Thus [K,F ] = (K, F ) and the
proof is complete.

In the end of Section 1.5, we considered the group structure of the feedback
pairs (K, F ) in the difference equation form. We now give a formula for opening
a feedback loop by another feedback. Let Φ be a DLS, [K,F ] a feedback pair
for it and Φext

� := [Φ, [K,F ]]� the corresponding closed loop DLS. Define the
ordered pair of linear mappings

[
K̄, F̄

]
, by setting K̄ = −(I − F)−1K and

F̄ = I − (I − F)−1. Clearly, apart from the minus sign, the pair of mappings
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[
K̄, F̄

]
constitute the lowest row of the DLS Φext

� , given in Definition 23. This
implies that

[
K̄, F̄

]
is a feedback pair for Φext

� . The closed loop extended DLS
(Φext� )ext

� :=
[
[Φ, [K,F ]] ,

[
K̄, F̄

]]
is of the form

(
Φext

�
)ext

� =


Aj Bτ∗j C
K
−K

  D
F
−F


(1.33)

as can be seen by a straightforward calculation, based on the identity (I − F)−1 =
I − F̄ . We conclude that any state feedback can be undone by another, inverse
state feedback.



1.7. STABILITY NOTIONS OF DLSS 31

1.7 Stability notions of DLSs

In this section, we introduce an inner product space structure to certain sub-
spaces of the input and output sequences for a DLS Φ =

[
Aj Bτ∗j

C D
]
. This gives

us the notions of “energy” and “cost” of such input and output sequences of Φ,
and various related stability notions for Φ itself, too.

Two kinds of stability notions are considered here. In Definition 27 we review
the stability notions of the semigroup generator A of Φ, see Definition 27. The
latter kind of stability notions are considered in Definition 32, and they depend
on more than one of the generating operators of the DLS Φ. We also study the
conditions under which the mappings C, Dπ0 and Dπ̄+ of DLS Φ are closed,
densely defined and finally bounded.

Definition 27. Let A ∈ L(H). Then

(i) A is power (or exponentially) stable, if its spectral radius satisfies ρ(A) <
1,

(ii) A is strongly �p stable for p ∈ [1,∞), if for all x ∈ H we have∑
j≥0

||Ajx||pH < ∞,

(iii) A is strongly stable, if Ajx → 0 as j → ∞,

(iv) A is power bounded, if supj≥0 ||Aj ||H < ∞.

The semigroup stability notions as related to each other in the following way:

Proposition 28. Let A ∈ L(H). Then, given the following enumeration of
propositions:

(i) ||A||L(H) < 1,

(ii) A is power stable,

(iii) ||Aj ||L(H) < M δj for a constant M < ∞ and 0 < δ < 1,

(iv) ||Ajx||H < C(x)δj , where C(x) < ∞ in a set of the second category in H,
and

∑
j≥0 δj < ∞,

(v) A is strongly �p stable for some (and then, for all) p ∈ [1,∞),

(vi) A is strongly stable,
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(vii) there is an operator Ã ∈ L(H) such that Ajx → Ãx ∈ H for all x ∈ H,

(viii) A is power bounded,

(ix) ρ(A) ≤ 1,

we have the following implications and equivalences:

(i) ⇒ (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) ⇒ (vi) ⇒ (vii) ⇒ (viii) ⇒ (ix)

Proof. The first implication (i) ⇒ (ii) is the inequality ρ(A) ≤ ||A||. The impli-
cation (ii) ⇒ (iii) is trivial, because

ρ(A) = lim sup
j→∞

||Aj ||
1
j

L(H),(1.34)

and we can define δ := ρ(A)+ ε < 1 for ε > 0 arbitrarily small. The implication
(iii) ⇒ (iv) is trivial. The implication (iv) ⇒ (ii) is proved as follows. Define
the bounded linear operators Tk(z) :=

∑k
j=0 (zA)j on H for any |z| ≤ 1 and

k ≥ 1. Then we have for each x for which C(x) < ∞ and m ≤ l

|| (Tm(z) − Tl(z))x||H ≤
l∑

j=m

||Ajx||H ≤ C(x)
m∑

j=l

δj .

Because {δj} is absolutely summable, {Tj(z)x} is Cauchy for all x belong-
ing to a set of the second category. The pointwise limit operator T (z)x :=
limj→∞ Tj(z)x is bounded, [79, Theorem 2.7(b)]. It is easy to check that
T (z)(I − zA) = (I − zA)T (z) = I and thus 1

z /∈ σ(A). Because |z| ≤ 1 was
arbitrary, we have σ(A) ⊂ D and ρ(A) < 1.

It is trivial that (iii) ⇒ (v). The implication (v) ⇒ (ii) is proved by the following
argument presented in [96, Proposition 1]. Assume that A is strongly �p stable.
Each of the mappings Tn : H → �p(Z+; H) for n ≥ 1, given by

Tnx = {x Ax A2x · · · Anx 0 0 0 · · · },

is bounded, and by the �p stability assumption, the orbits {Tnx}n≥0 ⊂ �p(Z+; H)
are bounded for all x ∈ H . By the Banach–Steinhaus Theorem [79, Theorem
2.5], the set {Tn}n≥0 ⊂ L(H ; �p(Z+; H)) is uniformly bounded, and we have a
constant K < ∞ such that∑

j≥0

||Ajx||pH

1/p

≤ K ||x||H .(1.35)
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In particular, ||Aj ||L(H) ≤ K for any j ≥ 0. Then we have

||Ajx||pH =
1
n

n−1∑
j=0

||An−jAjx||pH

≤ Kp

n

n−1∑
j=0

||Ajx||pH ≤ Kp

n

∑
j≥0

||Ajx||pH .

By equation (1.35), we obtain ||Ajx||pH ≤ K2p

n ||x||pH for all x ∈ H , and then
||Aj ||pL(H) ≤

K2p

n . But this implies that ||An|| < 1 for n large enough, and thus
the power stability σ(An) ⊂ D. By using the Spectral Mapping Theorem [79,
Theorem 10.28], we conclude that ρ(A) < 1. This completes the proof of the
equivalence part of this proposition.

The implications (v) ⇒ (vi) ⇒ (vii) are trivial. The implication (vii) ⇒ (viii)
is an immediate consequence of Banach–Steinhaus Theorem, and the last im-
plication (viii) ⇒ (ix) follows from formula (1.34). This completes the proof of
the proposition.

For variants of claim (v) of previous proposition , see [96]. For power bounded
operators, see [69] and the references therein. See also [30].

Let Φ =
[

Aj Bτ∗j

C D
]

be a DLS whose input space is U , state space is H and
output space is Y . In Definition 10, the controllability map B : Seq−(U) → H
and the observability map C : H → Seq(Y ) have been introduced by algebraic
constructions, without using any topological properties of any of the vector
spaces. So as to the I/O map D : Seq(U) → Seq(Y ), the same comment can
be made. In Proposition 8, we have obtained an infinite sum representation
for the I/O map of DLS, where we have used the notion (topology) of the
componentwise convergence in vector spaces Seq(U) and Seq(Y ). In fact, such a
result could have been proved for general shift-invariant, causal linear mappings
on Seq(U), because all the necessary component mappings are represented by
well-defined finite sums by causality. We have required that the generating
operators A, B, C and D of the DLS φ = ( A B

C D ) are bounded; this gives us the
well-posedness of the DLS. Now we shall require boundedness of the mappings
B, C and several variants of D in certain Hilbert space norms, to introduce
various stability notions for the DLS Φ =

[
Aj Bτ∗j

C D
]
.

In this section, we take the input and output sequences from the inner product
spaces �2(Z; U) ∩ Seq(U) and �2(Z; Y ) ∩ Seq(Y ), respectively. The projections
π+, π−, π0, π̄+, π̄−, π[j,k] and the bilateral shift τ of Definition 4 are restricted
to these spaces. Then all these projections are orthogonal projections and their
operator norms are 1. The shift τ becomes a unitary operation satisfying τ−1 =
τ∗. The following definition gives us vector subspaces of H and Seq(U) that
will be domains of linear operators.
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Definition 29. Let Φ =
[

Aj Bτ∗j

C D
]

be a DLS. Define the following domain
spaces

dom(B) := Seq−(U),(1.36)

dom(C) := {x0 ∈ H | Cx0 ∈ �2(Z+; Y )},(1.37)

dom(D) := {ũ ∈ �2(Z; U) ∩ Seq(U) | Dũ ∈ �2(Z; Y )},(1.38)

dom(Dπ̄+) := {ũ ∈ �2(Z+; U) | Dπ̄+ũ ∈ �2(Z+; Y )},(1.39)

dom(Dπ0) := {ũ ∈ range (π0) | Dπ0ũ ∈ �2(Z+; Y )},(1.40)

dom(Dπj) := τ jdom (Dπ0) for all j ∈ Z \ {0},(1.41)

where �2(Z+; Y ) and π̄+�2(Z; Y ) are identified in (1.39).

It easy to see that the sets of Definition 29 are vector spaces. We throughout use
the �2-topology on dom(B), dom (D) and dom(Dπ̄+). The set dom (Dπj) has
the topology of U . This gives all these spaces an inner product space structure.
In dom(C) we use the topology of H , but later we introduce a stronger (inner
product) topology there.

Clearly the vector space dom(B) is dense in �2(Z−; U), and it does not depend
on the structure of the DLS Φ in any way. The other spaces dom(C), dom(D),
dom (Dπ̄+) and dom(Dπj) need not be dense, and for DLSs “unstable enough”
they even might be empty. Trivially, the kernels of C and D are always in the
respective domains. If there is nothing else, then we say that the domains in
question are trivial. The following definition is to be expected.

Definition 30. Let Φ =
[

Aj Bτ∗j

C D
]

be a DLS. The following restriction map-
pings are defined

B := B|dom(B) , C := C|dom (C) ,

D := D|dom (D) , Dπ̄+ := D|dom (Dπ̄+) ,

Dπj := D|dom (Dπj) for all j ∈ Z.

These mappings are as follows: B is the topological controllability map, C is the
topological observability map and D is the topological I/O map of Φ. Dπ̄+ is
the causal Toeplitz operator of D. The operators Dπ̄j are the impulse response
operator of Φ. The sets dom (B), dom(C), dom(D), dom(Dπ̄+) and dom(Dπj),
as introduced in Definition 29, are the domains of the respective operators.

The ranges of these operators are defined in the natural way; e.g. range (B) :=
B dom(B), range (D) := D dom (D), range (Dπ̄+) := Dπ̄+ dom (Dπ̄+) and so on.
We shall make a notational difference between B, C, D, Dπ̄+ and B, C, D, Dπ̄+

only in this section of this book.

The bad news is that various topological pathologies can occur as far as a general
DLS Φ is concerned. Most of this section handles the cases when we have good
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news. We start by showing that three of the operators in Definition 30 are
closed. In particular, the closed graph property of C will be used in Section 1.8.

Lemma 31. Let Φ =
[

Aj Bτ∗j

C D
]

be a DLS. Then the operators C, Dπ̄+ and Dπj

are closed for all j ∈ Z.

Proof. We prove only the claim for the Toeplitz operator Dπ̄+. The proofs of
the other two claims are analogous. Let dom(Dπ̄+) 
 ũj → ũ ∈ �2(Z+; U) be a
convergent sequence in the norm of �2(Z; U), such that

Dπ̄+ũj → ỹ ∈ �2(Z+; Y )

in the norm of �2(Z+; Y ). We show that ũ ∈ dom (Dπ̄+) and Dπ̄+ũ = ỹ, which
proves the closed graph property for Dπ̄+.

For each k ≥ 0 we have

πkDπ̄+ũj → πk ỹ as j → ∞(1.42)

in the norm of Y , with range (πk) and Y identified. On the other hand, we have

πkDπ̄+ũj = πkDπ̄+ũj(1.43)
= πkDπ[0,k]ũj → πkDπ[0,k]ũ = πkDπ̄+ũ as j → ∞

in the norm of Y , because πkDπ[0,k] is a bounded operator on �2(Z+; U). The
boundedness follows because πkDπ[0,k]ũ is given by the finite sum

πkDũ =
k−1∑
i=0

CAiBuk−i−1 + Duk

for all j ∈ Z and ũ = {uj}j≥0 ∈ Seq+(U), by Proposition 3. Here A, B, C and
D are the generating operators of Φ, and range (πk) has been identified with Y .

Now equations (1.42) and (1.43) imply, by the uniqueness of the limit in Y , that
πkDπ̄+ũ = πkỹ for all k ≥ 0, or equivalently Dπ̄+ũ = ỹ. But then, because
ỹ ∈ �2(Z+; Y ), we have ũ ∈ dom(D) and ỹ = Dπ̄+ũ. This completes the proof
of the lemma.

The fundamental stability notions for DLSs are as follows.

Definition 32. Let Φ =
[

Aj Bτ∗j

C D
]

be a DLS.

(i) If dom (Dπ̄+) = �2(Z+; U), then Φ is I/O stable.

(ii) If dom (Dπ0) = U , then Φ is strongly H2 (Hardy 2) stable.
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(iii) If B ∈ L(dom (B) , H), then Φ is input stable.

(iv) If dom(C) = H, then Φ is output stable.

(v) If all the above holds, and the semigroup generator A of Φ is power
bounded, then Φ is stable.

(vi) If Φ is stable, and the semigroup generator A of Φ is strongly stable, then
Φ is strongly stable.

Clearly I/O stability implies strong H2 stability. An I/O stable Toeplitz op-
erator Dπ̄+ is a bounded linear operator from dom(Dπ̄+) = �2(Z+; U) into
�2(Z+; Y ) because a closed operator with complete (closed) domain is bounded,
by the Closed Graph Theorem (see [79, Theorem 2.15]). In this case, the oper-
ator norm of Dπ̄+ is given by

||Dπ̄+||�2(Z+;U)→�2(Z+;Y )

:= sup {||Dπ̄+ũ||�2(Z+;Y ) | ũ ∈ �2(Z+; U) ||ũ||�2(Z+;U) = 1}.

If the �2(Z+; U) norm of the input sequence is regarded a a measure of energy,
then ||Dπ̄+||�2(Z+;U)→�2(Z+;Y ) is the energy gain of Dπ̄+. If the Hilbert spaces U
and Y are separable, then the I/O stability is equivalent with the requirement
that the transfer function D(z) is bounded in D, see Proposition 55.

By analogous considerations, an H2 stable DLS has a bounded impulse response
operator Dπ0 : U → �2(Z+; U), with the natural identification of range (π0) and
U . The basic properties of H2 stable DLSs are given in the Lemmas 33 and 35.

Lemma 33. Let Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D ) be a DLS. Enumerate the statements

as follows:

(i)
∑

j≥0 ||CAjB||2 < ∞,

(ii) Φ is (strongly) H2 stable,

(iii) �1(Z+; U) ⊂ dom(Dπ̄+) and Dπ̄+ ∈ L(�1(Z+; U), �2(Z+; Y )),

(iv) Dπ̄+ is a densely defined closed operator on �2(Z+; U).

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

Proof. The first implication (i) ⇒ (ii) is trivial because

||Dπ0ũ||2�2(Z+;U) = ||Du0||2 +
∑
j≥0

||CAjBu0||2
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for all ũ = {uj}j≥0 ∈ Seq+(U). Here A, B, C and D are the generating
operators of Φ.

To prove the implication (ii) ⇒ (iii), we note that any ũ ∈ �1(Z+; U) can be
written as ũ =

∑
j≥0 πj ũ, where the sum converges in the norm of �1(Z+; U).

The triangle inequality gives

||Dπ̄+ũ||�2(Z+;Y ) ≤
∑
j≥0

||Dπj ũ||�2(Z+;Y )

≤
∑
j≥0

||Dπj ||U→�2(Z+;Y ) ||πj ũ||U = ||Dπ0||U→�2(Z+;Y )

∑
j≥0

||πj ũ||U ,

where the last equality is by the shift invariance of D. Now
∑

j≥0 ||πj ũ||U =:
||ũ||�1(Z+;U) and the claim follows. The final implication (iii) ⇒ (iv) is trivial
because �1(Z+; U) is dense in �2(Z+; Y ).

The condition (i) of Lemma 33 can be called the uniform H2 stability. The
strong H2 stability is characterized by the equivalent conditions of Lemma 35.
However, we need a preliminary result.

Proposition 34. Let Φ =
[

Aj Bτ∗j

C D
]

be a DLS. Then Adom (C) ⊂ dom (C).

Proof. Let x ∈ dom(C) be arbitrary. Then Cx ∈ �2(Z+; Y ) ⊂ Seq+(Y ) by
Definition 29, and CAx = π̄+τ∗Cx ∈ Seq+(Y ), by claim (iii) of Lemma 12. But
now, because both π̄+ and τ∗ are of norm 1 in �2(Z; Y ), it follows that CAx ∈
�2(Z+; Y ). By Definition 29, Ax ∈ dom (C), and thus Adom (C) ⊂ dom (C).

Lemma 35. Let Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D ) be a DLS. Then the following are

equivalent:

(i) BU ⊂ dom(C),

(ii) range (B) ⊂ dom (C),

(iii) Φ is strongly H2 stable.

Proof. Assume now that claim (i) holds. Let ũ = {uj}j≥0 ∈ Seq+(U) be arbi-
trary. Denote the corresponding trajectory by xj(0, ũ) = Bτ∗j ũ ∈ dom (C) for
j ≥ 0. Clearly x0(0, ũ) = 0 ∈ dom (C). Assume that it has already been proved
that xj(0, ũ) ∈ dom(C) for some j ≥ 0. Now xj+1(0, ũ) = Axj(0, ũ) + Buj ,
where Axj(0, ũ) ∈ dom(C) by Proposition 34. But Buj ∈ dom (C) because
claim (i) is assumed to hold. Because dom(C) is a vector space, it follows that
xj+1(0, ũ) ∈ dom (C). We have now shown that

Bπ−τ∗j ũ ∈ dom (C) ,
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for all j ≥ 0 and for all ũ ∈ Seq+(U). But clearly

dom (B) := Seq−(U) = {π−τ∗j ũ | j ≥ 0, ũ ∈ Seq+(U)},

and claim (ii) follows. It is a triviality that (ii) implies (i). Thus claims (i) and
(ii) are equivalent.

Assume that (i) holds, and let ũ = {uj}j≥0 ∈ Seq(U) be arbitrary. Because
BU ⊂ dom (C), then CBu0 ∈ �2(Z+; Y ) for all u0 ∈ U . But then Dπ0ũ =
Dπ0ũ+τCBu0 ∈ �2(Z+; Y ) for all ũ = {uj}j≥0. Because the component u0 ∈ U
is arbitrary, it follows that dom(Dπ0) = U and claim (iii) follows.

It remains to prove the implication (iii) ⇒ (i). Let ũ = {uj}j≥0 ∈ �2(Z+; U) be
arbitrary. Then

Dπ0ũ = Dπ0ũ + τCBu0.(1.44)

Trivially Dπ0ũ ∈ �2(Z+; Y ), and Dπ0ũ ∈ �2(Z+; Y ) by the assumed claim (iii).
It follows that τCBu0 ∈ �2(Z; Y ) and equivalently CBu0 ∈ �2(Z; Y ). But this
implies that Bu0 ∈ dom (C). Because u0 ∈ U is arbitrary, claim (i) follows.

Now we have dealt with the strong H2 stability, and we proceed to consider the
I/O stable DLSs. Two extensions of the Toeplitz operator Dπ̄+ are given in the
following lemma.

Lemma 36. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable DLS, and the operators D and
Dπ̄+ as in Definition 30.

(i) The domain of D satisfies

dom (D) = �2(Z; U) ∩ Seq(U),(1.45)

and Dπ̄+ũ = Dũ for all ũ ∈ �2(Z+; U). The domain dom (D) is dense in
�2(Z; U), and

Dũ = lim
j→∞

τ∗jDπ̄+τ j ũ(1.46)

for all ũ ∈ dom (D). Furthermore,

||D||dom(D)→�2(Z+;Y ) = ||Dπ̄+||�2(Z+;U)→�2(Z+;Y ).(1.47)

(ii) The topological I/O map D has a unique bounded extension to all of
�2(Z; U), denoted by D̄. The extension D̄ satisfies

||D̄||�2(Z;U)→�2(Z;Y ) = ||Dπ̄+||�2(Z+;U)→�2(Z+;Y ).

Furthermore, D̄ is shift-invariant and causal; i.e. D̄τ = τD̄ and
π−D̄π̄+ = 0.
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Proof. It is easy to see that �2(Z; U)∩Seq(U) = {τ∗j ũ | j ≥ 0, ũ ∈ �2(Z+; U)}.
If ũ ∈ {τ∗j ũ | j ≥ 0, ũ ∈ �2(Z+; U)}, then there is a j ≥ 0 such that
τ j ũ ∈ �2(Z+; U). Because Φ is I/O stable, it follows that τ jDũ = Dτ j ũ =
Dπ̄+τ j ũ ∈ �2(Z+; Y ). Because τ∗ is unitary, Dũ = τ∗jDπ̄+τ j ũ ∈ �2(Z; Y ).
Because trivially ũ ∈ Seq(U), it follows that ũ ∈ dom (D). We have now shown
that �2(Z; U)∩Seq(U) ⊂ dom (D). The converse inclusion dom(D) ⊂ �2(Z; U)∩
Seq(U) is a triviality, and equation (1.45) follows, together with the density of
domain dom (D) in �2(Z; U). Because always dom (Dπ̄+) ⊂ dom (D) ⊂ Seq(U)
and the operators Dπ̄+ and D are restrictions of the I/O map D to the respective
domains, it follows that Dπ̄+ũ = Dũ for all ũ ∈ �2(Z+; U) = dom (Dπ̄+).

In order to prove equation (1.46), let ũ ∈ dom (D) = �2(Z; U) ∩ Seq(U) be
arbitrary. Then there is a j′ ≥ 0 such that τ j′ ũ ∈ �2(Z+; U) and

Dũ = Dũ = τ∗(j′+j)Dτ j′+j ũ = τ∗(j′+j)Dπ̄+τ j′+j ũ

for all j ≥ 0. But then, the {τ∗(j′+j)Dπ̄+τ j′+j ũ}j≥0 is a constant sequence,
and equation (1.46) follows. The equality of the norms (1.47) follows from the
unitarity of the shift τ and equation (1.46). The unique bounded extension D̄
of D, of the same norm, exists by [42, Theorem II.3.1]. An easy limit argument
is required to prove the causality and shift-invariance of the extension. We
consider this lemma to be proved.

In Lemma 9, it is shown that general shift-invariant causal mappings on Seq(U)
can be regarded as I/O maps of DLSs, provided that a certain growth bound,
related to the well-posedness of DLSs, is satisfied. The analogous results holds
also for the bounded, shift-invariant and causal operators on �2(Z; U).

Lemma 37. Let T : �2(Z; U) → �2(Z; Y ) be a bounded operator, satisfying
T τ = τT and π−T π̄+ = 0. Then there is an I/O stable DLS Φ =

[
Aj Bτ∗j

C D
]
,

such that T = D̄ on �2(Z; U). Here D̄ is the (extended topological) I/O map,
given in claim (ii) of Lemma 36.

Proof. Let ũ = {uj}j∈Z ∈ �2(Z; U) be arbitrary. Then, by linearity and causal-
ity of T , we have T π0ũ = {yj(u0)}j≥0 ∈ �2(Z+; Y ), where the component
mappings

Tj : u0 �→ yj(u0) for j ≥ 0

are linear from U to Y . Now, for arbitrary ũ, we have

||Tju0||Y = ||πjT π0ũ||�2(Z+;Y )

≤ ||T π0ũ||�2(Z+;Y ) ≤ ||T ||�2(Z;U)→�2(Z;Y )||u||U .

Thus Tj ∈ L(U ; Y ) for all j ≥ 0, and the family {Tj}j≥0 is uniformly bounded
by the norm of T . By claim (ii) of Proposition 7, there is a unique shift-invariant
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and causal mapping D : Seq(U) → Seq(Y ) such that for arbitrary ũ ∈ Seq(U)
we have

πjD(n)ũ → πjDũ as n → ∞

in the norm of Y , where the causal shift-invariant operators are given by D(n) :=∑n
j=0 Tjτ

j . By Lemma 9 and the uniform boundedness of the family {Tj}j≥0,
the mapping D is an I/O map of a DLS.

We proceed to show that T and D coincide on �2(Z; U) ∩ Seq(U). By the
construction of D, πjT π0ũ = πjDπ0ũ for any ũ ∈ Seq(U) and j ≥ 0. By the
shift-invariance of both T and D, πjT πkũ = πjDπkũ for any ũ ∈ Seq(U) and
j ≥ k. It now follows for any ũ ∈ �2(Z; U) ∩ Seq(U) and j ∈ Z that

πjT ũ = πjT π[−∞,j]ũ = πjT
∑
k≤j

πkũ =
∑
k≤j

(πjT πkũ)

=
∑
k≤j

(πjDπkũ) = πjDũ

where all the sums are finite. We conclude that T ũ = Dũ for all ũ ∈ �2(Z; U)∩
Seq(U). Because T : �2(Z; U) → �2(Z; Y ) is bounded, Dũ ∈ �2(Z; Y ) for all
ũ ∈ �2(Z; U) ∩ Seq(U). In particular, Dπ̄+ũ ∈ �2(Z+; Y ) for all ũ ∈ �2(Z+; U),
and thus dom (Dπ̄+) = �2(Z+; U). We conclude that D is an I/O map of an
I/O stable DLS.

By claim (i) of Lemma 36, dom (D) = �2(Z; U) ∩ Seq(U) and D : dom(D) →
�2(Z; Y ) is bounded. Because D coincides with T on the dense set dom (D), its
unique bounded extension D̄ must equal T . This completes the proof.

By Lemma 37, we can use the expressions “I/O map of an I/O stable DLS” and
“bounded shift-invariant causal operator on �2(Z; U)” synonymously.

In this section, we have introduced different notations for different versions of
controllability, observability and I/O maps. In order to give precise definitions
and rigorous proofs, this has been unavoidable. From now on, we work with
considerably lighter notation. We consistently write C instead of C, and B
instead of B. For the domains, we write dom (C) and dom (B) instead of dom (C)
and dom (B). Ranges are defined by range (C) = Cdom(C) and range (B) =
Cdom(B); i.e. these refer to the topological versions of C and B.

The causal Toeplitz operators Dπ̄+ : Seq+(U) → Seq+(Y ) and Dπ̄+ :
dom (Dπ̄+) → �2(Z+; Y ) are both denoted by Dπ̄+. The domain dom (Dπ̄+) is
denoted by dom(Dπ̄+) and range (Dπ̄+) = Dπ̄+dom (Dπ̄+). Analogously, the
impulse response operators Dπ0 : range (π0) = Seq+(Y ) and Dπ̄0 : range (π0) →
�2(Z+; Y ) are both denoted by Dπ0.
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If Φ =
[

Aj Bτ∗j

C D
]

is an I/O stable DLS, then both the linear mappings D :
Seq(U) → Seq(Y ) and D̄ : �2(Z; U) → �2(Z; Y ) are called I/O maps of Φ and
denoted by D. This should not cause confusion, because D and D̄ coincide on
�2(Z; U)∩Seq(U) = dom (D), and are thus unique extensions of the restriction:
D : Seq(U) → Seq(Y ) by causality and D̄ : �2(Z; U) → �2(Z; Y ) by continuity.
Both the operators are also (in their respective spaces unique) shift-invariant
and causal extensions of the Toeplitz operator Dπ̄+ : �2(Z+; U) → �2(Z+; Y ).
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1.8 Graph topology of the state space

Let Φ =
[

Aj Bτ∗j

C D
]
be a strongly H2 stable DLS. In this section, we study certain

topologies of the state space H of Φ in detail. If we are only interested in the
I/O map of Φ, the vector space dom (C) alone is the essential part of the state
space H , see Lemma 35. Clearly, Dπ̄+ũ can be computed for all ũ ∈ Seq+(U),
by using the state space realization Φ, without ever referring to any vector in
H \ dom(C). However, dom (C) need not be closed in the norm of H , and
thus it cannot generally be used as a (restricted) state space of a DLS. To deal
with this problem, we can do two things. Firstly, we can replace dom(C) by
its closure in H . In this case, C : dom (C) → �2(Z+; U) becomes a possibly
unbounded, densely defined closed operator which is still an observability map
of a DLS. Secondly, we can construct a stronger Hilbert norm into the vector
space dom(C) which makes C : dom (C) → �2(Z+; U) not only bounded, but
an observability map of an output stable DLS φg, too. Moreover, we have the
equality of the I/O-maps Dπ̄+ = Dφg π̄+ on Seq+(U). The closed graph property
of C is the key in the construction of the new Hilbert space topology, see [42,
Chapter 2].

Let us consider the limits of state trajectories. Suppose Φ =
[

Aj Bτ∗j

C D
]

be a
strongly H2 stable DLS. Because range (B) ⊂ dom (C), it follows that range (B) ⊂
dom (C), where the closure is taken in the norm of H . Now dom(C) is a Hilbert
subspace of H , and it is tempting use it as a a state space of a modified version of
the DLS Φ. We want to see how the possible limits of trajectories behave under
this restriction. Clearly, if ũ ∈ Seq+(U) is such that x∞(0, ũ) := limj→∞ Bτ∗j ũ

exists, then x∞(0, ũ) ∈ dom (C). If, in addition, ũ ∈ �1(Z+; U), then in fact
x∞(0, ũ) ∈ ker (C). Then we have for all j ≥ 1

Cxj(0, ũ) = τ∗jπ[j,∞]Dπ[0,j−1]ũ = τ∗jπ[j,∞]

(
Dπ̄+ũ −Dπ[j,∞]ũ

)
.

Because π[j,∞]ũ → 0 in �1(Z+; U), it follows that Dπ[j,∞]ũ → 0 in �2(Z+; U)
because Dπ̄+ : �1(Z+; U) → �2(Z+; U) is bounded, by claim (iii) of Lemma 33.
Because Dπ̄+ũ ∈ �2(Z+; U) by claim (iii) of Lemma 33, also π[j,∞]Dπ̄+ũ → 0.
Thus limj→∞ Cxj(0, ũ) = 0 for all ũ ∈ �1(Z+; U) for which the limit x∞(0, ũ)
exists. Because C is closed by Lemma 31, it follows that Cx∞(0, ũ) = 0 and
x∞(0, ũ) ∈ ker (C). Clearly, the same reasoning could have been made for I/O
stable Φ and ũ ∈ �2(Z+; U).

We assume that dom (C) = H for the rest of this section. Then C is a densely
defined closed operator in H . Based on the above discussion, there is no great
loss of generality. Because Φ is strongly H2 stable, we have dom(C) = 0. If
D = 0, then we have range (B) ⊂ ker (C). In particular, this is the case when
dom (C) = ker (C) and ker (C) = dom (C) = H because the null space of a closed
operator is closed.
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We proceed to consider the natural Hilbert space norm of dom (C). The neces-
sary technical tools are Definition 38 and Lemmas 39, 40 and 41.

Definition 38. Let Φ =
[

Aj Bτ∗j

C D
]

be a DLS.

(i) The inner product 〈 , 〉E in dom(C) is defined by

〈x, y〉E := 〈x, y〉H + 〈Cx, Cy〉�2(Z+;Y ).

(ii) By E denote the vector space dom (C), when equipped with the inner prod-
uct 〈, 〉E .

It is easy to check that 〈 , 〉E is an inner product in dom (C). As usual, the inner
product of E provides the corresponding norm ||x||E = 〈x, x〉E . This norm of
E is called the graph norm of the observability map. Clearly,

||x||H ≤ ||x||E for all x ∈ E,

and the equality holds if and only if x ∈ ker (C). The set ker (C) is a closed
subspace of both E and H . The following consequences of the closed graph
property of C are basic.

Lemma 39. Let Φ =
[

Aj Bτ∗j

C D
]

be a DLS, and let E be the inner product space
given in Definition 38. Then

(i) E is a Hilbert space,

(ii) C ∈ L(E; �2(Z+; Y )) and ||C||E→�2(Z+;Y ) ≤ 1,

(iii) C := π0C ∈ L(E; Y ) and ||C||E→Y ≤ 1.

Proof. In order to show claim (i), it is sufficient to show that E is complete.
Let {xj} ⊂ dom(C) = E be a Cauchy sequence in E. Because the norm of
E majorizes the norm of H , it follows that {xj} is also a Cauchy sequence
in the topology of H . Similarly, the sequence {Cxj} is a Cauchy sequence in
�2(Z+; U). It follows that the sequence {xj} has a limit x ∈ H and {Cxj} has
a limit ỹ ∈ �2(Z+; Y ), by the completeness of both H and �2(Z+; Y ). Because
C is closed by Lemma 31, it follows that x ∈ dom (C) = E and y = Cx. Now we
can write

||xj − x||2E = ||xj − x||2H + ||Cxj − Cx||2�2(Z+;Y ) → 0

as j → ∞. Thus the arbitrary Cauchy sequence {xj} has a limit x ∈ E, and
the completeness of E follows. Claim (ii) follows because

||Cx||2�2(Z+;Y ) < ||x||2H + ||Cx||2�2(Z+;Y ) = ||x||2E
for all x ∈ E, x = 0. Claim (iii) follows from claim (ii), because π0 is of norm
1. The proof of this lemma is now complete.
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Under the same assumptions, we can also say several facts about the semigroup
generator A when restricted into E.

Lemma 40. Introduce the same notations as in Definition 38. Then

(i) A maps E into itself, and

(ii) A|E ∈ L(E).

(iii) If A is a power bounded of L(H), then A|E is a power bounded element
of L(E). Furthermore,

supj>0||(A|E)j ||E ≤ max (supj>0||Aj ||H , 1).

(iv) For all x ∈ E we have

||Ajx||H → 0 ⇒ ||Ajx||E → 0.

If A is strongly stable, then A|E is strongly stable.

Proof. Because E = dom (C) as the algebraic vector space, claim (i) is given by
Proposition 34. Claims (ii) and (iii) follow immediately from the calculation

||Ajx||2E
||x||2E

=
||Ajx||2H + ||CAjx||2�2(Z+;Y )

||x||2H + ||Cx||2�2(Z+;Y )

=
||Ajx||2H + ||π̄+τ∗jCx||2�2(Z+;Y )

||x||2H + ||Cx||2�2(Z+;Y )

≤
||Aj ||2L(H) ||x||2H + ||Cx||2�2(Z+;Y )

||x||2H + ||Cx||2�2(Z+;Y )

≤ max (||Aj ||L(H), 1).

To prove claim (iv), note that for arbitrary x ∈ E we have

||Ajx||2E = ||Ajx||2H + ||π̄+τ∗jCx||2�2(Z+;Y ).

Now the first term of the right hand side approaches zero by assumption.
The second term approaches zero, because Cx ∈ �2(Z+; Y ) by Definition 29
of dom (C) = E. This completes the proof of the lemma.

One could regard claim (iv) of the previous lemma as a partial converse to the
obvious implication

||xj ||E → 0 ⇒ ||xj ||H → 0(1.48)

for all sequences {xj} ⊂ E. If there is an equivalence instead of implication in
(1.48), then the bijective inclusion mapping from the Hilbert space (E, || · ||E)
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onto the normed vector space (dom (C) , || · ||H) is a bounded with a bounded
inverse, by [79, Theorem 1.32]. Furthermore, the norms || · ||E and || · ||H on
dom(C) are equivalent, which happens if and only if dom(C) = dom(C) is a
closed Hilbert subspace of (H, || · ||H). If dom (C) = H is assumed a priori,
then the output stability of Φ follows. We conclude that the topology of E
is in general genuinely stronger that that inherited from H , and the full con-
verse to formula (1.48) is in general not true. The input operator B and the
controllability map B behave expectedly, too.

Lemma 41. Let Φ =
[

Aj Bτ∗j

C D
]

be an H2 stable DLS, whose input operator is
B. Then

(i) The input operator B maps U into E boundedly. The norm estimate

||B||2L(U ;E) ≤ ||B||2L(U ;H) + ||Dπ0||2U→�2(Z+;Y )

holds.

(ii) Assume, in addition, that Φ is I/O stable and input stable. Then B ∈
L(dom (B) ; E) and

||B||2dom(B)→E ≤ ||B||2dom(B)→H + ||D||2dom(D)→�2(Z;Y ).

Proof. Because E = dom(C), it follows from Lemma 35 that B maps U into E.
It follows from Definition 32 and formula (1.44) that

||CBu0||�2(Z+;Y ) ≤ ||Dπ0ũ||�2(Z+;Y ) ≤ ||Dπ0||U→�2(Z+;Y )||u0||U < ∞

for any ũ = {uj}j≥0 ∈ Seq(U). Furthermore, for arbitrary u0 ∈ U we have

||Bu0||2E = ||Bu0||2H + ||CBu0||2�2(Z+;Y )

≤
(
||B||2L(U ;H) + ||Dπ0||2U→�2(Z+;Y )

)
||u0||2U ,

and claim (i) follows. In order to prove claim (ii), let ũ ∈ dom (B) ⊂ dom (D)
be arbitrary. Then ||ũ||2�2(Z;U) < ∞ because dom (B) = Seq−(U) ⊂ �2(Z−; U),
and

||Bũ||2E = ||Bũ||2H + ||CBũ||2�2(Z+;U)

≤ ||Bũ||2H + ||π̄+Dπ−ũ||2�2(Z+;Y )

≤
(
||B||2dom(B)→H + ||D||2dom(D)→�2(Z;Y )

)
||ũ||2�2(Z;U),

because both dom (B) and dom(D) have the norm of �2(Z; U). This completes
the proof of the lemma.
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Actually, the I/O stability is not required to make the conclusion of claim (ii).
It would have been sufficient to assume that the Hankel operator π̄+Dπ− :
�2(Z−; U) → �2(Z+; U) is bounded.

Given a strongly H2 stable DLS Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D ), we have constructed a

restricted state space E = dom (C), equipped with the Hilbert space norm ||·||E .
The restricted generating operators satisfy A|E ∈ L(E) and C|E ∈ L(E; Y ), by
Lemmas 39 and 40. Even the input operator satisfies B ∈ L(U ; E), by Lemma
41. It is now possible to define the DLS φg whose generating operators we have
constructed.

Definition 42. Let φ = ( A B
C D ) be a strongly H2 stable DLS, whose input space

is U , state space is H and the output space is Y . The graph topology DLS φg,
associated to φ, is the DLS

φg :=
(

A|E B
C|E D

)
,

where E is the vector space dom (C), equipped with the Hilbert space inner prod-
uct of Definition 38. The space U is the input space, Y the output space and E
the state space of φg.

The basic properties of φg are collected to the following theorem.

Theorem 43. Let φ = ( A B
C D ) be a strongly H2 stable DLS.

(i) The graph norm DLS φg is given in I/O form by

Φg =
[
(A|E)j Bτ∗j

C|E D

]
.

The DLS φg is an output stable DLS. φg is I/O stable if and only if φ is.

(ii) If the semigroup generator A of φ is power bounded, then so is the semi-
group generator A|E of φg. If A is strongly stable, then so is A|E.

(iii) Assume, moreover, that φ is I/O stable and input stable. Then φg is I/O
stable and input stable.

Proof. To prove claim (i), we only prove that Dφg = Dφ on Seq(U). The cases
of observability and controllability maps are similar. By formula (1.7), it is
sufficient to show that CAjBu = C|E · (A|E)j · Bu for all u ∈ U and j ≥ 0.
Because A : E → E by claim (i) of Lemma 40, it follows that (A|E)j = Aj |E
for all j ≥ 0. Because B : U → E by Lemma 41, it follows that (A|E)j · Bu =
AjBu ∈ E for all u ∈ U . But then C|E ·(A|E)j ·Bu = CAjBu, and the equality
of I/O maps follows. The output stability of φg is shown in claim (ii) of Lemma
39. Claim (ii) follows directly from claims (iii) and (iv) of Lemma 40. Claim
(iii) is shown in claim (ii) of Lemma 41. This completes the proof.
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We complete this section with a discussion of the presented results. Let φ be
strongly H2 stable DLS. By Theorem 43, we can change φ to an output stable
DLS φg by a simple restriction and renorming of the state space H of φ. The
properties of φg are almost identical to those of the original φ, However, the
state space is genuinely restricted, except for a trivial case. The drawback is
that we cannot consider all initial states x0 ∈ H of φ with the aid of φg, but
only those which give an �2(Z+; Y ) output with the zero input.

The lack of output stability of φ tells us that the state space of φ is “too large”
or “inconveniently normed”, and a better norm should be chosen for the state
space. We regard it as a assumption to require that the H2 stable DLSs are,
in addition, output stable. The Riccati equation theory of output stable DLSs,
as presented in Chapters 3, 4 and 5, does not require an introduction of new,
topologies of the state space. In other words, once the original state space
(H, || · ||H) is replaced by (E, || · ||E) of Definition 38, the full description of
the φ and the related Riccati equation can be conveniently done in this fixed
topology.
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1.9 Stability of the closed loop DLS

In this section we study the feedbacks of DLSs with the additional requirement
that the input and output sequences lie in the Hilbert spaces �2(Z+; U) and
�2(Z+; Y ). We restrict the notion of feedback pair as presented in Section 1.6
to take these additional requirements into consideration. We study both I/O
stable and stable systems, and how the open loop stability is preserved in the
closed loop system.

Definition 44. Let Φ =
[

Aj Bτ∗j

C D
]

be a DLS, and [K,F ] a feedback pair for the
DLS Φ in the sense of Definition 21.

(i) The feedback pair [K,F ] is I/O stable if Φfb :=
[

Aj Bτ∗j

K F
]

is an I/O stable
DLS and

dom (C) ⊂ {x0 ∈ H | Kx0 ∈ �2(Z+; U)} =: dom (K) .(1.49)

(ii) The feedback pair [K,F ] is output stable if dom (K) = H.

(iii) The feedback pair [K,F ] is stable if it is I/O stable and output stable.

(iv) The feedback pair [K,F ] is outer if (I − F)−1 is an I/O map of an I/O
stable DLS.

If the semigroup generator A of Φ is power stable, then all feedback pairs for Φ
are stable but only very exceptional of those are outer. Because the mapping K
is the observability map of the DLS Φfb, and all observability maps are closed,
it follows that dom(K) = H is equivalent with K ∈ L(H, �2(Z+; U)). The
meaning of inclusion (1.49) is that K is not allowed to be “more unbounded”
than C. It follows that for an output stable DLS, any I/O stable feedback pair
is stable. A feedback pair [K,F ] is stable if and only if K : H → �2(Z+; U)
and F : �2(Z; U) → �2(Z; U) map boundedly. Note that Φfb need not be input
stable for a stable feedback pair [K,F ].

Clearly, [K,F ] is I/O stable and outer if and only if the Toeplitz operator of
the I/O map (I − F)π̄+ : �2(Z+; U) → �2(Z+; U) is a bounded bijection and
inclusion (1.49) holds. Such I/O maps are needed in this section, and we give
their basic properties now.

Definition 45. Let X be an I/O map of an I/O stable DLS.

(i) If range (X π̄+) = �2(Z+; U), then X is outer.

(ii) If, in addition, X π̄+ is injective and range (X π̄+) = �2(Z+; U), then X is
outer with a bounded inverse.
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Between Banach spaces, bounded bijections are exactly those bounded operators
that have bounded inverses. Thus, the I/O map X is outer with a bounded
inverse if and only if the Toeplitz operator X π̄+ is a bounded bijection on
�2(Z+; U).

Proposition 46. Let X be an I/O map of an I/O stable DLS. Assume that X
is outer with a bounded inverse.

(i) The Toeplitz operator X π̄+ has a bounded inverse on �2(Z+; U), denoted by
(X π̄+)−1. The feed-through operator X := π0Xπ0 ∈ L(U) has a bounded
inverse, and the algebraic inverse X−1 of X on Seq(U) exists as an I/O
map of a DLS. In fact, (X π̄+)−1 = X−1π̄+ on �2(Z+; U), and X−1 is I/O
stable and outer with a bounded inverse.

(ii) The I/O map X has a unique bounded extension from dom (X ) = �2(Z; U)∩
Seq(U) to all of �2(Z; U), denoted by X̄ . The operator X̄ : �2(Z; U) →
�2(Z; U) is shift-invariant, causal and a bounded bijection on �2(Z; U).
The bounded inverse X̄−1 equals the unique bounded extension of X−1

from dom
(
X−1

)
= �2(Z; U) ∩ Seq(U) to all of �2(Z; U). The operator

X̄−1 : �2(Z; U) → �2(Z; U) is shift-invariant, causal and a bounded bijec-
tion on �2(Z; U).

(iii) The Toeplitz operator π−X̄π− : �2(Z−; U) → �2(Z−; U) is a bounded bi-
jection, and its inverse equals π−X̄−1π−.

Proof. We start with claim (i). We have already stated that X π̄+ has a bounded
inverse (X π̄+)−1 on �2(Z+; U). We want to conclude that X := π0Xπ0 has a
bounded inverse. We first consider the surjectivity. Let w0 ∈ U be arbitrary,
and denote w̃ := {wj}j≥0 ∈ �2(Z+; U) a sequence such that wj = 0 for j > 0.
Because the Toeplitz operator X π̄+ is surjective, there is a ũ ∈ �2(Z+; U) such
that w̃ = X π̄+ũ. But then,

w0 = π0X π̄+ũ = π0Xπ0ũ = Xu0,

by the causality of X , and the natural identification of range (π0) and U .
Because w0 is arbitrary, it follows that X is surjective. Assume that X is
not injective. Then there is a u0 ∈ U such that π0X ũ = Xu0 = 0, where
ũ := {uj}j≥0 ∈ �2(Z+; U) is the sequence satisfying uj = 0 for j > 0. Because
X is bounded, π+(X π̄+ũ) ∈ �2(Z+; U). Because X π̄+ is surjective, there exists
a ũ′ ∈ �2(Z+; U) such that

X π̄+ũ′ = −π̄+τ∗(X π̄+ũ) = −τ∗π+(X π̄+ũ).

But now

X π̄+ (ũ + τũ′) = X π̄+ũ + τX π̄+ũ′ = X π̄+ũ − π+X π̄+ũ

= π0X π̄+ũ = π0Xπ0ũ = Xu0 = 0.
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Thus (ũ + τũ′) ∈ ker (X π̄+) which is contradiction against the injectivity of
X π̄+. We have concluded that X ∈ L(U) is a bijection. So it has a bounded
inverse X−1 ∈ L(U).

Because X is the feed-through operator of any realization of X (and such re-
alizations exist), claim (i) of Proposition 17 implies that the inverse mapping
X−1 : Seq(U) → Seq(U) exists. Let ũ ∈ �2(Z+; U) ⊂ Seq(U) be arbitrary.
Then, by the definition of the inverse operator, ũ = X π̄+(X π̄+)−1ũ. Because
ũ ∈ �2(Z+; U), it follows that

X−1π̄+ũ = X−1ũ = X−1X π̄+(X π̄+)−1ũ = π̄+(X π̄+)−1ũ.

Because ũ is arbitrary and (X π̄+)−1ũ ∈ �2(Z+; U), it follows that
X−1π̄+ = (X π̄+)−1, as invertible operators on �2(Z+; U). Because X π̄+ is
a bounded bijection on �2(Z+; U), so is its inverse (X π̄+)−1. But the latter
equals the Toeplitz operator X−1π̄+, and thus the I/O map X−1 is outer with
a bounded inverse.

We prove claim (ii). From the shift-invariance of X and boundedness of X π̄+

it follows easily that X : �2(Z; U) ∩ Seq(U) → �2(Z; U) is bounded because the
shift τ is unitary �2(Z; U). The density of �2(Z; U) ∩ Seq(U) in �2(Z; U) gives
the unique bounded linear extension of X to all of �2(Z; U), denoted by X̄ . It
is a matter of a simple limit argument that the extended X̄ is shift-invariant
and causal. It remains to check that X̄ : �2(Z; U) → �2(Z; U) is a bounded
bijection. We start with its coercivity. Let ũ ∈ �2(Z; U) be arbitrary, and define
ũj := π[−j,∞]ũ for all j ≥ 0. Then {ũj}j≥0 ⊂ �2(Z; U) ∩ Seq(U) and ũj → ũ in
�2(Z; U). Then, because τ is unitary, we have

||X̄ ũj ||�2(Z;U) = ||X π̄+τ j ũj||�2(Z+;U)

≥ K · ||π̄+τ j ũj ||�2(Z+;U) = K · ||ũj ||�2(Z;U)

where the existence of the constant K > 0 follows from the coercivity of the
Toeplitz operator X π̄+. Because X̄ is continuous, ||X̄ ũj||�2(Z;U) → ||X̄ ũ||�2(Z;U)

as j → ∞, and it follows that the limits of the norms satisfy ||X̄ ũ||�2(Z;U) ≥
K·||ũ||�2(Z;U). Thus the extension X̄ is coercive on �2(Z+; U). Because range (X π̄+)
= �2(Z+; U), the shift-invariance of X implies that

∪j≥0{τ∗j�2(Z+; U)} ⊂ range (X ) ⊂ range
(
X̄
)

:= X̄ �2(Z; U).

But then range
(
X̄
)

is dense and, by the coercivity of X̄ , it follows that range
(
X̄
)

= �2(Z+; U). It also follows that X̄ is injective, by the coercivity. Thus X̄ is a
bounded bijection on �2(Z+; U).

We proceed to show that X̄−1 equals the unique bounded extension of the
I/O stable I/O map X−1 from �2(Z; U) ∩ Seq(U) to all of �2(Z; U). Let w̃ ∈
�2(Z; U)∩Seq(U) be arbitrary. Then there is a ũ ∈ �2(Z; U)∩Seq(U) such that
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w̃ = X ũ = X̄ ũ. Now

X−1w̃ − X̄−1w̃ = X−1X ũ − X̄−1X̄ ũ = ũ − ũ = 0.

Thus X̄−1 is an extension of X−1, and claim (ii) follows.

We prove the last claim (iii) by showing that the bounded linear operator
π−X̄−1π− : �2(Z−; U) → �2(Z−; U) is the inverse of π−X̄π−. We have

π−X̄−1π− · π−X̄π− = π−X̄−1X̄π− − π−X̄−1π̄+ · X̄π−
= π− − π−X̄−1π̄+ · X̄π−

where all operators are bounded on �2(Z; U). But because X̄−1 is causal on
�2(Z; U), π−X̄−1π̄+ = 0, and π−X̄−1π− · π−X̄π− = π− follows. Similarly,
π−X̄π− · π−X̄−1π− = π−, and because π− is (identifiable with) the identity
operator on �2(Z−; U), the proof is complete.

As has been discussed after Definition 32 for general I/O stable I/O maps, we
use the same symbol X for the original I/O map X : Seq(U) → Seq(U) and
X̄ : �2(Z; U) → �2(Z; U). An immediate conclusion of claim (i) of previous
proposition is the following corollary.

Corollary 47. Let X be an I/O map of a DLS. Then X is outer with a bounded
inverse if an only if X−1 : Seq(U) → Seq(U) exists and is outer with a bounded
inverse.

Now we have made the necessary preparations and proceed to consider the
stability of the closed loop DLSs. In Theorem 48 we connect an I/O stable
feedback pair to an I/O stable DLS. In Theorem 51 we do the same thing
with a stable DLS and a stable feedback pair. Stability properties of the open
loop and closed loop semigroup generators are considered in Proposition 49.
Throughout this section, we use the following notation for the mapping of the
closed loop DLS

Φext
� =

 Aj
� B�τ∗j[

C�
K�

] [
D�
F�

](1.50)

=

 Aj + Bτ∗j(I − F)−1K B(I −F)−1τ∗j[
C + D(I −F)−1K

(I − F)−1K

] [
D(I − F)−1

(I − F)−1 − I

]  .

Theorem 48. Let Φ =
[

Aj Bτ∗j

C D
]

an I/O stable DLS. Let [K,F ] be an I/O
stable feedback pair for Φ. Then the following holds.
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(i) The (open loop) extended DLS Φext = [Φ, [K,F ]], given in Definition 23,
is I/O stable, and the domain of its observability map satisfies

dom
([

C
K

])
= dom(C) .(1.51)

(ii) Assume, in addition, that [K,F ] is outer. Then the closed loop extended
DLS Φext

� = [Φ, [K,F ]]�, given in Definition 23, is I/O stable, and the
domain of its observability map satisfies

dom
([

C�
K�

])
= dom (C�) ∩ dom (K�) = dom(C) .(1.52)

Proof. The cartesian products of observability maps C1 : dom(C1) → �2(Z+; Y1)
and C2 : dom (C2) → �2(Z+; Y2) satisfy

dom
([

C1

C2

])
= dom (C1) ∩ dom (C2) ,(1.53)

by Definition 29 and noting that �2(Z+; Y1) ⊕ �2(Z+; Y2) = �2(Z+; Y1 ⊕ Y2).
Claim (i) follows because dom (C) ⊂ dom (K) by Definition 44.

We proceed to prove claim (ii). The closed loop mappings in Φext
� are given by

C� := C + D(I − F)−1K, K� := (I − F)−1K,

D� := D(I − F)−1, F� := (I − F)−1 − I,

by formula (1.50). We first show that Φext� is I/O stable. The Toeplitz operator
of its I/O map satisfies on Seq(U)[

D�
F�

]
π̄+ =

[
D(I − F)−1π̄+(

(I − F)−1 − I
)
π̄+

]
=
[

Dπ̄+ (I − F)−1
π̄+

F π̄+ (I − F)−1
π̄+

]
by the causality of D and (I − F)−1. Now, Dπ̄+ and F π̄+ are bounded on
�2(Z+; U), by the assumptions that both Φ and [K,F ] are I/O stable. Because
[K,F ] is outer, (I − F)−1

π̄+ maps �2(Z+; U) onto �2(Z+; U) boundedly. By
Definition 29, dom

([D�
F�

]
π̄+

)
= �2(Z+; U), and the I/O stability of Φext

� follows.

The first equality in formula (1.52) has already been established in formula
(1.53). Let x0 ∈ dom(C) be arbitrary. By Definition 44, it follows that Kx0 ∈
�2(Z+; U). But now

K�x0 = (I − F)−1π̄+Kx0 ∈ �2(Z+; U)

because (I − F)−1
π̄+ maps �2(Z+; U) onto �2(Z+; U) boundedly. Thus x0 ∈

dom (K�). Because Dπ̄+ is bounded from �2(Z+; U) into �2(Z+; Y ), it follows

C�x0 = Cx0 + Dπ̄+K�x0 ∈ �2(Z+; Y ),
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and so x0 ∈ dom (C�) ∩ dom (K�).

For the converse direction, let x0 ∈ dom(C�) ∩ dom (K�) be arbitrary. Then
K�x0 ∈ �2(Z+; U) and Dπ̄+K�x0 ∈ �2(Z+; Y ) because Φ is I/O stable. Also
C�x0 = Cx0 + Dπ̄+K�x0 ∈ �2(Z+; Y ). It immediately follows that Cx0 ∈
�2(Z+; Y ) and x0 ∈ dom (C). This completes the proof the theorem.

Note that the closed loop mapping F� is I/O stable if and only if [K,F ] is outer.
In all other cases, perturbations to the closed feedback loop cause instability in
the feedback loop. However, the closed loop I/O map D� = D(I − F)−1 can
be I/O stable even if neither D nor (I − F)−1 are I/O stable. In this case, the
feedback stabilized the DLS Φ. In Chapter 4, we consider a particular case,
associated to nonnegative solutions of a Riccati equation, when a DLS Φ and
its feedback pair [K,F ] are stable, [K,F ] is generally not outer but nevertheless
D� is I/O stable.

As has been considered in connection with equation (1.33), any state feedback
can be undone by using another, inverse feedback pair. I/O stable and outer
feedback pairs behave as follows.

Proposition 49. Let Φ be a DLS, [K,F ] a feedback pair for it, and Φext
� =

[Φ, [K,F ]]� the corresponding closed loop DLS. By

[K̄, F̄ ] := [−K�, −F�] = [−(I − F)−1K, I − (I − F)−1]

denote the inverse feedback pair of [K,F ].

(i) [K,F ] is an output stable and outer feedback pair for Φ if and only if
[K̄, F̄ ] is a stable feedback pair for Φext

� . [K̄, F̄ ] is an output stable and
outer feedback pair for Φext� if and only if [K,F ] is a stable feedback pair
for Φ. [K,F ] is a stable and outer feedback pair for Φ if and only if [K̄, F̄ ]
is a stable and outer feedback pair for Φext

� .

(ii) Assume, in addition, that Φ is I/O stable. Then [K,F ] is an I/O stable
and outer feedback pair for Φ if and only if

[
K̄, F̄

]
is an I/O stable and

outer feedback pair for Φext
� .

Proof. We have already seen in connection with equation (1.33) that [K̄, F̄ ]
is a feedback pair for Φext

� . Claim (i) follows immediately from the formulae
connecting [K,F ] and [K̄, F̄ ]. We proceed to prove claim (i). Assume that
[K,F ] is an I/O stable and outer feedback pair for the I/O stable DLS Φ.
Because [K,F ] is outer, the mapping (I − F)−1 is an I/O map of an I/O stable
DLS, by Definition 44. Because clearly (I − F)−1 = I − F̄ holds on Seq(U),
it follows that F̄ is an I/O map of an I/O stable DLS. Also,

(
I − F̄

)−1 is an
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I/O-stable I/O map because it equals I−F on Seq(U), and [K,F ] is I/O stable.
The domains of the observability maps satisfy

dom
([

C�
K�

])
= dom (C) ⊂ dom (K) = dom

(
K̄
)
,

where the first equality is by the I/O stability of Φ and claim (ii) of Theorem
48, and the inclusion is by assumption that [K,F ] is an I/O stable feedback pair
for the DLS Φ. The final equality follows because K̄ = −(I − F)−1π̄+K where
(I − F)−1π̄+ is a bounded bijection on �2(Z+; U). We have now checked that
[K̄, F̄ ] is an I/O stable feedback pair for Φext

� .

To prove the converse direction, assume [K̄, F̄ ] is an I/O stable feedback pair
for Φext

� . We first show that the closed loop DLS Φext
� itself is I/O stable. It

I/O map is
[D(I−F)−1

F(I−F)−1

]
: Seq(U) → Seq(Y ⊕U). The I/O map D : �2(Z; U) →

�2(Z; Y ) is bounded because Φ is assumed to be I/O stable. The I/O map
(I − F)−1 : �2(Z; U) → �2(Z; U) is bounded because (I − F)−1 = I − F̄ and
[K̄, F̄ ] is I/O stable. Finally, the I/O-map F : �2(Z; U) → �2(Z; U) is bounded
because F = I − (I − F̄)−1 and [K̄, F̄ ] is outer. It now follows that Φext

� is I/O
stable.

We can now proceed as in the first direction of this proof, but using the I/O
stable DLS Φext� in place of Φ and the I/O stable [K̄, F̄ ] in place of [K,F ]. It
follows that the inverse feedback pair [K′,F ′] of [K̄, F̄ ] is an I/O stable feedback
pair for the closed loop extended DLS (Φext

� )ext
� :=

[
[Φ, [K,F ]] ,

[
K̄, F̄

]]
. By for-

mula (1.33), [K′,F ′] is also an I/O stable feedback pair for the DLS Φ because
the semigroups and controllability maps of these DLSs are equal. It is an im-
mediate consequence of the identity (I − F)−1 = I − F̄ that [K′,F ′] = [K,F ].
Now claim (ii) is proved. To see that claim (i) holds, it is enough to note
that K̄ := −(I − F)−1K is bounded from H into �2(Z+; U) is and only if K is
bounded from H into �2(Z+; U), because (I − F)−1π̄+ is a bounded bijection
on �2(Z+; U).

The next theorem shows us, how the stability of the semigroup is preserved
under the closing of the feedback loop. The role of input stability should be
carefully noted.

Theorem 50. Let Φ =
[

Aj Bτ∗j

C D
]

be an input stable DLS. Let [K,F ] be a stable
and outer feedback pair for Φ. By A� denote the semigroup generator of Φext� =
[Φ, [K,F ]]. Then

(i) A is strongly stable if and only if A� is strongly stable, and

(ii) A is power bounded if and only if A� is power bounded.



1.9. STABILITY OF THE CLOSED LOOP DLS 55

Proof. We prove the “only if” part of claim (i). Assume that A is strongly
stable and x0 ∈ H is arbitrary. Then

Aj
�x0 = Ajx0 + Bτ∗jK�x0.

It is enough to estimate the second term on the right hand side and see that it
gets small if j is increased. Because K� = (I − F)−1K and [K,F ] is stable and
outer, it follows that Kx0 ∈ �2(Z+; U). We have

||Bτ∗jK�x0||H < ||Bτ∗jπ[0,J]K�x0||H(1.54)

+ ||Bτ∗j ||�2(Z+;U)→H · ||π[J+1,∞]K�x0||�2(Z+;U).

The second term on the right hand side of equation (1.54) gets small by increas-
ing J because K�x0 ∈ �2(Z+; U) and B is bounded. We estimate the first term.
By claim (ii) of Lemma 12, we have

||Bτ∗jπ[0,J]ũ||H ≤ ||AjBπ− · π[0,J]ũ||H + ||
j−1∑
i=0

AiB(π[0,J]ũ)j−i−1||H

= ||
j−1∑

i=j−J−1

AiBuj−i−1||H = ||Aj−J−1

(
J∑

i=0

AiBuJ−i

)
||H

for any ũ ∈ �2(Z+; U) and j > J . Letting j → ∞, the right hand side approaches
zero because A is strongly stable. This proves that A� is strongly stable, thus
establishing the “only if” part of claim (i). We outline the proof of the “if” part.
By claim (i) of Proposition 49, we see that [K̄, F̄ ] is a stable and outer feedback
pair for Φext

� . Also, Φext
� is input stable because its input operator satisfies

B� = B(I−F)−1 and [K,F ] is outer. Now the semigroup generator of the closed
loop extended DLS (Φext� )ext

� :=
[
[Φ, [K,F ]] ,

[
K̄, F̄

]]
is strongly stable, by the

argument presented above. However, it also equals A; the semigroup generator
of Φ. Now claim (i) is proved. In order to prove claim (ii), we calculate∣∣ ||Aj

�||L(H) − ||Aj ||L(H)

∣∣ ≤ ||Aj
� − Aj ||L(H)

≤ ||B||�2(Z−;U)→H) ||K�||H→�2(Z−;U) < ∞

Thus either both A� and A are power bounded, or neither are. This completes
the proof of the theorem.

Note that if [K,F ] is an output stable and outer feedback pair for an input
stable Φ with a strongly stable semigroup generator A, then A� is strongly
stable. The proof of the “only if” part in claim (i) of Theorem 50 does not use
the I/O stability of Φ. We now consider the case when the feedback pair [K,F ]
is not only I/O stable, but stable and outer. Roughly, outer feedback pairs give
stable closed loop DLSs Φext

� .
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Theorem 51. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable DLS, and [K,F ] an I/O
stable and outer feedback pair for it. Define Φext := [Φ, [K,F ]] and Φext� :=
[Φ, [K,F ]]�.

(i) Both Φext and Φext� are I/O stable.

(ii) Φ is input stable if and only if Φext is input stable if and only if Φext� is
input stable.

(iii) Φ is output stable and [K,F ] is stable if and only if Φext is output stable
if and only if Φext� is output stable.

(iv) Φ and [K,F ] are stable if and only if Φext is stable if and only if Φext� is
stable.

(v) Φ is strongly stable and [K,F ] is stable if and only if Φext is strongly stable
if and only if Φext� is strongly stable.

Proof. Claim (i) is claim (i) of Theorem 48. We prove claim (ii). Because
[K,F ] is I/O stable and outer, the anticausal Toeplitz operator π−(I −F)−1π−
is a bounded bijection with a bounded inverse on �2(Z−; U), by claim (iii) of
Proposition 46. Claim (ii) follows because B� = B(I−F)−1 = B·π−(I−F)−1π−,
and both the DLSs Φ and Φext have the same controllability map.

The first equivalence of claim (iii) is trivial. We prove the “only if” part of the
latter equivalence. Assume that Φ is output stable and [K,F ] is stable. Then
K� = (I−F)−1K : H → �2(Z+; U) because [K,F ] is output stable and outer. It
follows that C� = C + DK� : H → �2(Z+; U) is bounded because Φ is both I/O
stable and output stable. Thus the observability map

[ C�
K�

]
: H → �2(Z+; U⊕Y )

of Φext� is bounded, and Φext� is output stable. To prove the “if” part, assume
that Φext

� is output stable. Then both C� and K� are bounded. It follows that
C = C� − DK� is bounded because Φ is I/O stable. Thus Φ is output stable.
Because K = (I−F)K� and [K,F ] is I/O stable, it follows that [K,F ] is output
stable and hence stable.

In claim (iv) it is trivial that Φ and [K,F ] are stable if and only if Φext is stable.
Assume that Φ and [K,F ] are stable. Then claims (i), (ii) and (iii) of this
theorem imply that Φext� is I/O stable, input stable and output stable. Claim
(ii) of Theorem 50 implies that A� is power bounded, and thus Φext

� is stable.
Assume that Φext� is stable. Then the I/O stable Φ is input stable and output
stable, by claims (ii) and (iii) of this theorem. Claim (iii) also implies that the
I/O stable feedback pair [K,F ] is in fact stable. Now claim (ii) of Theorem 50
implies that A is power bounded. Thus Φ is stable and claim (iv) follows.

The proof of claim (v) is analogous to claim (iv), only claim (i) of Theorem 50
must be used instead of claim (ii) of Theorem 50.
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1.10 Transfer functions and boundary traces

In this section, we introduce some necessary tools from the operator-valued
analytic function theory, measure theory and harmonic analysis.

Transfer functions

For the I/O map D of a DLS Φ = φ := ( A B
C D ), formula (1.7) is given. The

bilateral shift operator can be formally replaced by a complex variable z, and
the formal sum is obtained

D +
∑
i≥0

CAiBzi+1.(1.55)

Because A is bounded by the definition of the DLS, this sum converges for |z| <
||A−1||−1, thus defining an analytic L(U ; Y )-valued function D(z) in a neigh-
borhood of the origin. In fact, D(z) = D + zC(I − zA)−1B for |z| < ||A−1||−1.
The analytic function D(z) is called the transfer function of Φ. Because all I/O
maps of DLSs have transfer functions analytic in a neighborhood of origin, we
say that the the DLS is a well-posed linear system. The well-posedness makes
it possible to add and multiply two transfer functions of appropriate type in a
common neighborhood of the origin where both are analytic. We remark that
the corresponding continuous time notion of well-posedness is deeper, see [89].
Because the power series coefficient (centered at the origin) of an analytic func-
tion are unique, we have one-to-one correspondence between the I/O maps of
DLSs and operator-valued functions, analytic in a neighborhood of the origin of
the complex plane, see Lemma 9.

In the following definition, we consider signals instead of systems.

Definition 52. Let Z be a Hilbert space.

(i) The sequence ũ = {uj}j∈Z+ ∈ Seq+(Z) is well posed, if the power series

ũ(z) :=
∞∑

j=0

ujz
j

converges to an analytic function in some neighborhood of the origin.

(ii) The mapping Fz : ũ �→ ũ(z) is the z-transform.

The set WSeq+(Z) of well-posed sequences is a vector subspace of Seq+(Z). It
is a matter of taste whether z-transform should be defined to be analytic in a
neighborhood of the origin or of the infinity. It seems that in the function theory
the former alternative is used, and in the control theory the latter is preferred.
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Proposition 53. Let D be an I/O map of a DLS, and D(z) its transfer func-
tion. Let ũ ∈ WSeq+(U) and ũ(z) its z-transform. Let ỹ ∈ Seq+(Y ). Then the
following are equivalent:

(i) ỹ = Dũ

(ii) ỹ is well-posed, and ỹ(z) = D(z)ũ(z) in some neighborhood of the origin.

Proof. Assume claim (i). Because both D(z) and ũ(z) are analytic in a some
common neighborhood of the origin, so is the Y -valued function f(z) := D(z)ũ(z).
Identify the unilateral shift τ by the multiplication by the complex variable z.
By comparing the expression of both Dũ and D(z)ũ(z), with the aid of formulae
(1.7) and (1.55), it is clear that the power series coefficients fj of f equal the
components yj of ỹ. So ỹ ∈ WSeq+(Y ) is well posed and (ii) follows. The
converse direction is similar.

Corollary 54. Let φ1 and φ2 be DLSs with compatible input and output spaces.
Then Dφ1φ2(z) = (Dφ1Dφ2)(z) = Dφ1(z)Dφ2(z).

Proof. Let ũ ∈ WSeq(U) be arbitrary. Then Dφ1φ2 ũ and Dφ2 ũ are well posed
sequences by Proposition 53, and

(Dφ1φ2 ũ)(z) = Dφ1φ2(z)ũ(z) = (Dφ1(Dφ2 ũ))(z)
= Dφ1(z)(Dφ2 ũ)(z) = Dφ1(z)Dφ2(z)ũ(z),

where all the equalities are by Proposition 53, except the second which is by
claim (ii) of Proposition 17. Because ũ is arbitrary, the claim follows.

We conclude that the algebraic structure of corresponding I/O maps and trans-
fer functions is equivalent, when only the well-posed input sequences are con-
sidered. In particular, because I/O map is known if its action on sequences
ũ ∈ WSeq(U) satisfying πj ũ = 0 for j = 0, no uniqueness problems can arise
if we restrict to well posed inputs. We have �2(Z+; U) ⊂ WSeq+(U). This is
trivially true because ũ ∈ �2(Z+; U) is a bounded sequence, and thus the power
series

∑
j≥0 ujz

j converge for all z ∈ D by a simple argument.

At this point, it is necessary to introduce the Hardy spaces Hp(D;L(U ; Y ))
(operator-valued) and Hp(D; U) (Hilbert space -valued) for each 1 ≤ p < ∞.
They are defined as the Banach spaces of analytic functions in D with the norms

||D(z)||pHp(D;L(U ;Y )) := sup
0<r<1

1
2π

2π∫
0

||D(reiθ)||pL(U ;Y ) dθ,

||ũ(z)||pHp(D;U)) := sup
0<r<1

1
2π

2π∫
0

||ũ(reiθ)||pU dθ.
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Out of these, the cases p = 2 are most important to us. The space H2(D; U) is
Hilbert, with the inner product

〈ũ(z), ṽ(z)〉H2(D;U) = lim
r→1−

1
2π

2π∫
0

〈
ũ(reiθ), ṽ(reiθ)

〉
U

dθ

and the Parseval identity

〈ũ(z), ṽ(z)〉H2(D;U) = 〈ũ, ṽ〉�2(Z+;U) .(1.56)

The interpretation of equation (1.56) is that the z-transform Fz : ũ �→ ũ(z) is
an isometric isomorphism of the Hilbert spaces �2(Z+; U) and H2(D; U). For
further information, see [77, Section 1.15] and [46, Chapter III].

Now that we have identified the z-transforms of finite energy signals, we identify
the transfer functions of I/O stable DLSs. For this end, we meet one more
Hardy space, namely the celebrated H∞(D;L(U ; Y )). We say that D(z) ∈
H∞(D;L(U ; Y )) if it is L(U ; Y )-valued analytic function in the whole of D,
and

||D(z)||H∞(D;L(U ;Y )) := sup
z∈D

||D(z)||L(U ;Y ) < ∞.

Proposition 55. Let D be a I/O map of a DLS, such that all the Hilbert
spaces U , H and Y are separable. Then D is I/O stable if and only if D(z) ∈
H∞(D;L(U ; Y )). Furthermore, ||D(z)||H∞(D;L(U ;Y )) = ||D||�2(Z+;U) 	→�2(Z+;Y ).

Proof. This is the contents of [77, Theorem 1.15B]), or [27, Theorem 1.1, Section
IX, p. 235], to mention few possible references. In [77], the input and output
spaces are written to be the same space. However, by using the Cartesian
product Hilbert space W = U ⊕Y as both input and output space, and extend-
ing the operators T ∈ L(U ; Y ) to T ′ = ( 0 0

T 0 ), the notational inconvenience is
resolved.

For the representation of bounded causal shift-invariant operators by H∞ func-
tions, see also [91] and [97]. Related to the operator-valued H2(D;L(U, Y ))-
space, another less known variant, called the strong H2(D;L(U, Y )) is defined
as follows:

Definition 56. The strong H2(D;L(U, Y )) (briefly: sH2(D;L(U ; Y ))) is the
set of L(U ; Y )-valued analytic functions D(z) in D, such that D(z)u0 ∈ H2(D; Y ),
for all u0 ∈ U .

Clearly sH2(D;L(U ; Y )) is a vector space. The following proposition gives a
hint why sH2(D;L(U ; Y )) is important to us.
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Proposition 57. The DLS φ := ( A B
C D ) is strongly H2 stable if and only if the

transfer function Dφ(z) ∈ sH2(D;L(U ; Y )).

Proof. Let φ be a strongly H2 stable DLS. We first show that the transfer
function Dφ(z) is analytic in the whole of D. We have for arbitrary ũ :=
{uj}j≥0 ∈ Seq+(U)

||Du0||2Y +
∑
j≥0

||CAjBu0||2Y

= ||{Du0} ∪ {CAj−1Bu0}j≥1||2�2(Z+;Y ) = ||Dφπ0ũ||2�2(Z+;Y ) < ∞.

Because ũ is arbitrary, we have supj≥0 ||CAjBu0||Y < ∞ for all u0 ∈ H . Now
Banach–Steinhaus Theorem implies that the family {CAjB}j≥0 is uniformly
bounded, and clearly the power series

∑∞
j=0 CAjBzj converges for all z ∈ D.

The power series expansion of transfer function Dφ(z) is given by

Dφ(z) = D +
∑
j≥1

CAj−1Bzj, z ∈ D.

By the strong H2 stability, {CAjBu0}j≥0 ⊂ �2(Z+; Y ) for any u0 ∈ U . The
Parseval identity implies now that Dφ(z)u0 ∈ H2(D; Y ) for each u0 ∈ U . So
Dφ(z) ∈ sH2(D;L(U ; Y )). The converse direction is similar.

Nontangential limits of transfer functions

We have seen that the I/O maps of DLSs and well-posed signals have a one-
to-one correspondence to their transfer functions and z-transforms, respectively.
Furthermore, the I/O stability and finite signal energy notions behave well under
the z-transform. The following question arises: what essentially new does the
replacement of the bilateral shift τ by the complex variable z bring us? A
(partial) answer is: point evaluations of the transfer function D(z) at all points
of analyticity z. This gives us the notion of zeroes and poles of the transfer
function, at least in the case when all the Hilbert spaces U , H and Y are finite
dimensional.

The notions of zeroes and poles are not central in this book, and if it was only
for this reason, we would not need to define the transfer functions in the first
place. However, there is another reason to introduce transfer functions that
is important to us. Namely, there are restricted classes of (transfer) functions
D(z) and (signals) ũ(z), analytic for z ∈ D, that can be evaluated in a useful
sense at the boundary points eiθ ∈ T = ∂D, too. In these classes, the notion of
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the nontangential limit functions or, equivalently, boundary traces D(eiθ) and
ũ(eiθ) can be defined by

D(eiθ)u0 = lim
zj→eiθ

D(zj)u0 for all u0 ∈ U,

ũ(eiθ) = lim
zj→eiθ

ũ(zj),

for all such eiθ ∈ T, where the limit exists for all u0 ∈ U and all sequences
D 
 zj → eiθ ∈ T lying inside some nontangential approach region, as defined
in [25, p. 6], [78, Theorem 11.18], or any other book of basic function theory.
We remark that the operator limit D(eiθ) is taken pointwise, in the strong
operator topology. If D(z) is matrix-valued, then the strong nontangential limit
is actually a nontangential norm limit, because in a finite dimensional space
pointwise convergence implies norm convergence. We proceed to define the
classes where boundary traces ũ(eiθ) and D(eiθ) are available in a practical
sense.

Suppose now that ũ(z) ∈ Hp(D; U) for 1 ≤ p < ∞, and D(z) ∈ Hp(D;L(U ; Y ))
for 1 ≤ p ≤ ∞. By [77, Theorem 4.6A], if U , Y are separable, the nontangential
limit functions, denoted by ũ(eiθ) and D(eiθ), exist a.e. eiθ ∈ T modulo the
Lebesgue measure of the unit circle T. Actually this is true in much larger
classes N(D; U), N(D;L(U ; Y )), N+(D; U), N+(D;L(U ; Y )), defined in the
following.

Definition 58. Let X be U or L(U ; Y ).

(i) Then N(D; X) is the set of analytic X-valued functions f(z), such that

sup
0<r<1

2π∫
0

log+||f(reiθ)||X dθ < ∞.

The set N(D; X) is called the Nevanlinna class, and its elements are called
the functions of bounded type.

(ii) Hg(D; X) is the set of analytic X-valued functions f(z), such that

sup
0<r<1

2π∫
0

g(log+||f(reiθ)||X) dθ < ∞,

where g is a strongly convex function. The space Hg(D; X) is called the
Hardy-Orlicz class.

(iii) N+(D; X) := ∪Hg(D; X), where the union is taken over all strongly con-
vex functions g.
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A function g : R → R+ is strongly convex (in the sense of [77, p. 135]) if
it is convex, nondecreasing, satisfies limt→∞ g(t)/t = ∞, and for some c > 0
there exists M ≥ 0 and a ∈ R such that g(t + c) ≤ Mg(t) for all t ≥ a.
All the sets Hg(D; X), N+(D; X), N(D; X) are vector spaces, and Hg(D; X) ⊂
N+(D; X) ⊂ N(D; X). For additional information, see [77, Chapter 4]. In
particular, choosing g(t) = ept gives the Hp(D; X) space, for 0 < p < ∞.
Because H∞(D; X) ⊂ H2(D; X), also the bounded analytic functions are of
bounded type.

These spaces are introduced because for f(z) ∈ N(D; X), the boundary trace
function f(eiθ) exists almost everywhere on T. The set of the correspond-
ing boundary traces is denoted, quite naturally, by N(T; X). The mapping
N(D; X) 
 f(z) �→ f(eiθ) ∈ N(T; X) is one-to-one and linear. Further-
more, the operator products of such functions behave expectedly: If F (eiθ) ∈
N(T;L(U ; Y )) and G(eiθ) ∈ N(T;L(U)), then F (eiθ)G(eiθ) ∈ N(T;L(U ; Y )).
If f(eiθ) ∈ N(T; U), then F (eiθ)f(eiθ) ∈ N(T;L(Y )). Not only the sensible
products of bounded type functions are of bounded type, but also the bound-
ary trace of the product is always the product of the boundary traces. In the
infinite-dimensional cases these are nontrivial facts because the operator mul-
tiplication is not continuous in the strong operator topology — in the poetic
words of [77, p. 88]: “there is more here than meets the eye”. The proofs of
these results are based on a powerful representation for the Nevanlinna class
functions as a fraction of two H∞ functions, with a scalar zero-free denomina-
tor. The H∞ case can then be handled more easily. For further information,
see [77, Theorem 4.2D and Theorem 4.5A].

Let us return to discuss the special case of Hp(D; X)-spaces and the correspond-
ing boundary trace spaces Hp(T; X). Ultimately, the spaces Hp(T; X) are iden-
tified with subspaces of certain Lebesgue spaces Lp(T;L(U ; Y ))
(operator-valued) and Lp(T; U) (Hilbert space -valued), for each 1 ≤ p ≤ ∞.
In order to introduce the operator and vector Lebesgue spaces, it is necessary
to remind some notions of measure theory.

Definition 59. Let U and Y be separable Hilbert spaces. Let the measure space
(T,B, dθ) be the usual (Lebesgue completion of the) Borel σ-algebra of the unit
circle T, where dθ denotes the Lebesgue measure of T.

(i) The U -valued function f(eiθ), defined dθ-almost everywhere on eiθ ∈ T,
is weakly (Lebesgue) measurable, if for all u ∈ U , the C-valued function
fu(eiθ) :=

〈
f(eiθ), u

〉
U

is (T,B, dθ)-measurable.

(ii) The L(U ; Y )-valued function F (eiθ), defined dθ-almost everywhere on eiθ ∈
T, is weakly (Lebesgue) measurable, if for all u ∈ U , y ∈ Y , the C-valued
function Fu,y(eiθ) :=

〈
F (eiθ)u, y

〉
Y

is (T,B, dθ)-measurable.
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If f(eiθ), g(eiθ), F (eiθ), G(eiθ) are weakly measurable, then so are
F (eiθ)f(eiθ) and F (eiθ)G(eiθ), if the products make sense. Furthermore, the fol-
lowing scalar functions are measurable:

〈
f(eiθ), g(eiθ)

〉
U

, ||f(eiθ)||U and
||F (eiθ)||L(U ;Y ). If r(eiθ) is a measurable scalar function and u ∈ U , A ∈
L(U ; Y ), then r(eiθ)u and r(eiθ)A are weakly measurable, see [24, Part I, Chap-
ter III]), [46, Chapter III, p. 74], [77, comment on p. 81], and [91].

Definition 60. Let 1 ≤ p < ∞. The Lebesgue spaces are defined as follows:

(i) Lp(T; U) is the vector space of weakly measurable U -valued functions f(eiθ),
defined a.e. eiθ ∈ T, such that

||f(eiθ)||pLp(T;U) :=
1
2π

2π∫
0

||f(eiθ)||pU dθ < ∞.

(ii) Lp(T;L(U ; Y )) is the vector space of weakly measurable L(U ; Y )-valued
functions F (eiθ), defined a.e. eiθ ∈ T, such that

||F (eiθ)||pLp(T;L(U ;Y )) :=
1
2π

2π∫
0

||F (eiθ)||pT;L(U ;Y ) dθ < ∞.

(iii) L∞(T;L(U ; Y )) is the vector space of weakly measurable L(U ; Y )-valued
functions F (eiθ), such that

||F (eiθ)||L∞(T;L(U ;Y )) := ess supeiθ∈T||F (eiθ||L(U ;Y ) < ∞.

Note that the scalar integrals appearing in Definition 60 are well defined, by
the assumed weak measurability. All the Lebesgue spaces are Banach spaces.
L2(T; U) is a Hilbert space with the inner product

〈
f(eiθ), g(eiθ)

〉
L2(T;U)

:=
1
2π

2π∫
0

〈
f(eiθ), g(eiθ)

〉
U

dθ.

Because of the nice properties of the weak measurability, much of the scalar
Lebesgue space theory can be carried over to the corresponding vector-valued
theory, by quite straightforward arguments. For example, because T is of the
finite Lebesgue measure, the Hölder inequality implies that if 1 ≤ p1 ≤ p2 ≤ ∞,
then Lp2(T; X) ⊂ Lp1(T; X).

For 1 ≤ p ≤ ∞, Hp(T; X) can be regarded as a closed subspace of L2(T; X),
such that the Fourier coefficients of f(eiθ) (to be introduced in the next sub-
section) satisfy fj = 0 for all j < 0 , see [77, Theorem 4.7C]. Furthermore, f(z)
can be recovered from f(eiθ) by both Poisson and Cauchy integrals. Finally,
the Hp(D; X)-functions f(z) and their boundary traces f(eiθ) ∈ Hp(T; X) can
be and usually are identified by an isometry, see [77, Theorem 4.7D].
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Vector-valued integration and Fourier transform

Let U and Y be separable Hilbert spaces. In order to define the Fourier trans-
form in the Lebesgue spaces Lp(T;L(U ; Y )) and Lp(T; U) for p ≥ 1, we must
have an integration theory for these Banach space -valued functions. Note that
in previous subsection, only a scalar Lebesgue integration theory, together with
a characterization of weakly measurable Banach space -valued functions, was
required to define the spaces Lp(T;L(U ; Y )) and Lp(T; U). Also recall that if
1 ≤ p1 ≤ p2 ≤ ∞, then Lp2(T;L(U ; Y )) ⊂ Lp1(T;L(U ; Y )) and Lp2(T; U) ⊂
Lp1(T; U). It is well known that in the largest classes L1(T;L(U ; Y )) and
L1(T; U), a vector-valued integration theory (and in fact many of those) can be
developed:

Proposition 61. Let U and Y be separable Hilbert spaces. Let f(eiθ) ∈ L1(T; U)
and F (eiθ) ∈ L1(T;L(U ; Y )).

(i) There is a unique c ∈ U such that for all u ∈ U

〈c, u〉U =

2π∫
0

〈
f(eiθ), u

〉
U

dθ.

We call c the weak Lebesgue (Pettis) integral of f(eiθ) and write∫ 2π

0
f(eiθ) dθ := c.

(ii) There is a unique C ∈ L(U ; Y ) such that for all u ∈ U , y ∈ Y

〈Cu, y〉Y =

2π∫
0

〈
F (eiθ)u, y

〉
Y

dθ.

We call C the weak Lebesgue (Pettis) integral of F (eiθ) and write∫ 2π

0
F (eiθ) dθ := C.

Proof. For claim (i), see [46, Definition 3.7.1 and Theorem 3.7.1], and note that
U , as a Hilbert space, is reflexive. We outline the proof how claim (ii) follows
from claim (i). Let u ∈ U . Then F (eiθ)u is a Y -valued weakly measurable
function, and by claim (i) there is a unique cu ∈ Y such that

〈cu, y〉Y =

2π∫
0

〈
F (eiθ)u, y

〉
Y

dθ

for all y ∈ Y . It is easy to show that the mapping U 
 u �→ cu ∈ Y is linear,
and we define a linear mapping C : U → Y by Cu := cu. It remains to be shown
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that C is bounded. Let now u ∈ U and y ∈ Y be arbitrary. Then

| 〈Cu, y〉Y | ≤
2π∫
0

|
〈
F (eiθ)u, y

〉
Y
| dθ ≤ ||u||U · ||y||Y ·

2π∫
0

||F (eiθ)|| dθ,

where the first estimate holds by the property of scalar Lebesgue integral, and
second by the Schwarz inequality. Because F (eiθ) ∈ L1(T;L(U ; Y )), the integral
of its norm is finite, and it the follows that

||T ||L(U ;Y ) := sup
||u||U=||y||Y =1

| 〈Cu, y〉Y | ≤ ||F (eiθ)||L1(T;L(U ;Y )) < ∞.

We regard this proposition as proved.

Now that we can integrate, we are prepared to introduce the Fourier transforms.
Let f(eiθ) ∈ L1(T; U) and F (eiθ) ∈ L1(T;L(U ; Y )). Trivially, the functions
eiθ �→ eijθf(eiθ) ∈ L1(T; U) and eiθ �→ eijθF (eiθ) ∈ L1(T;L(U ; Y )) for all
j ∈ Z, and we can uniquely define the weak integrals

fj :=
1
2π

2π∫
0

f(eiθ)e−ijθ dθ ∈ U, Fj :=
1
2π

2π∫
0

F (eiθ)e−ijθ dθ ∈ L(U ; Y ).

These integrals are called the Fourier coefficients of the respective functions.
We call the formal series

f(eiθ) ∼
∑

fje
ijθ , F (eiθ) ∼

∑
Fje

ijθ

the Fourier series of the respective functions. Two Fourier series are identical
if all their respective coefficients fj or Fj are identical. The mappings

f(eiθ) �→ {fj}j∈Z ⊂ U, F (eiθ) �→ {Fj}j∈Z ⊂ L(U ; Y )

are called the Fourier transforms of the respective spaces. It is easy to show
that the Fourier transform is a linear mapping, and the Fourier coefficient are
uniformly bounded: ||fj|| ≤ ||f(eiθ)||L1(T;U) ≤

√
2π||f(eiθ)||L2(T;U) and ||Fj || ≤

||F (eiθ)||L1(T;L(U ;Y )) ≤
√

2π||F (eiθ)||L2(T;L(U ;Y )). The questions of convergence
of the Fourier series (in various topologies) are generally highly nontrivial. In
this paper, the classes L2(T; U) and L2(T;L(U ; Y )) are of particular interest.
The case of the Hilbert space is well known:

Proposition 62. The Fourier transform FU : f(eiθ) �→ {fj}j∈Z is an isometric
isomorphism of the Hilbert space L2(T; U) onto the Hilbert space �2(Z; U). The
Fourier series

∑
fje

iθ converges to f(eiθ) in L2(T; U). The Parseval identity
holds 〈

f(eiθ), g(eiθ)
〉

L2(T;U)
= 〈{fj}, {gj}〉�2(Z;U) .
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The Fourier transform intertwines the shift τ and the multiplication operator
Mξ by the function ξ(eiθ) = eiθ on T

FUMξ = τFU .

The closed subspace H2(U) ⊂ L2(T; U) is mapped onto the closed subspace
�2(Z+; U) ⊂ �2(Z; U).

However, we need the following result on the operator-valued L2(T;L(U ; Y )).

Proposition 63. Let U and Y be separable Hilbert spaces, and u ∈ U arbitrary.
Let F (eiθ) ∈ L1(T;L(U ; Y )). Define the Y -valued function Fu(eiθ) := F (eiθ)u.
Then

(i) Fu(eiθ) ∈ L1(T; Y ),

(ii) the Fourier coefficients {Fj}j∈Z of F (eiθ) and {(Fu)j}j∈Z of Fu(eiθ) sat-
isfy

Fju = (Fu)j for all j ∈ Z,

(iii) the Fourier series
∑

j∈Z (Fju) eijθ converges in L2(T; Y ) to F (eiθ)u.

Proof. Claim (i) is trivial. To prove claim (ii), fix u ∈ U , j ∈ Z, and let
y ∈ Y be arbitrary. By the definition of weak integral, the Fourier coefficient
Fj ∈ L(U ; Y ) is an operator such that

〈Fju, y〉Y =
1
2π

2π∫
0

〈
F (eiθ) e−ijθu, y

〉
Y

dθ(1.57)

=
1
2π

2π∫
0

〈
F (eiθ)u, y

〉
Y

e−ijθ dθ.(1.58)

for all y ∈ Y . By the definition of the weak Hilbert space -valued integral, the
Fourier coefficient (Fu)j ∈ Y is an element such that

〈(Fu)j , y〉Y =
1
2π

2π∫
0

〈
Fu(eiθ) e−ijθ , y

〉
Y

dθ(1.59)

=
1
2π

2π∫
0

〈
F (eiθ)u, y

〉
Y

e−ijθ dθ.(1.60)

for all y ∈ Y . Comparing the right hand sides of equations (1.57) and (1.59)
implies that 〈Fju, y〉Y = 〈(Fu)j , y〉Y for all y, or equivalently Fju = (Fu)j .
Because u and j are arbitrary, this proves claim (ii). The last claim (iii) follows
from the previous claim and Proposition 62.
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1.11 Notes and references

In the monograph [44] (Halanay, Ionescu, 1994) the authors state at the begin-
ning of the preface

Thus we have often found ourselves in something of a dilemma:
on the one hand many facts should be known and on the other
hand it is nearly impossible to give an adequate reference to all.

It is curious that after several decades of intensive research on linear dynamical
systems of various kinds, even the field of time-invariant systems appears still
to deserve the same comment. Analogous structures have been and are being
studied, more or less independently, by several authors under various formalisms.
This makes it a rather challenging task for a researcher to obtain even a most
humble general understanding of the modern system theory. Nevertheless, such
an understanding is quite necessary, as new mathematics should be built upon
old mathematics.

Discrete time linear systems and their I/O maps

Let us make a brief and definitely not an exhaustive survey into the literature,
with an emphasis on monographs. One of the early books on mathematical
system theory is [48] (Kalman, Falb and Arbib, 1969). This book is divided into
four parts, of which Parts I and IV, written by Kalman, are most interesting
to us. Part I is written in the language of matrix algebra, and basic definitions
and results of time-invariant linear discrete time systems are given. The state
estimation (Kalman filter) and regulator construction problem are solved for
such systems. In Part IV, a purely algebraic theory of discrete time linear
systems is developed as a beautiful application of the module theory. The I/O
maps of systems are seen as certain module homomorphisms over a polynomial
ring. The involved vector spaces can be over any field, also finite. Canonical
realizations for finite dimensional systems are given by using the restricted I/O
map (corresponding to the Hankel operator) and a certain factorial module as
state space. These ideas are presented in the first part of [35] (Fuhrmann, 1981),
too. In the final part of [35], the linear systems are considered whose state space
is an infinite-dimensional Hilbert space. Realization theoretic results for such
I/O maps and systems are given, and the failure of the state space isomorphism
techniques is indicated. Special realizations, built around the shift operator, are
constructed. Generally speaking, many ideas, modulo natural restrictions, can
be carried over from the polynomial models and the algebraic system theory
to the operator models and the infinite dimensional system theory on Hilbert
spaces, in a quite transparent manner. In fact, [38] (Fuhrmann, 1996) is an
exposition of the linear algebra, written by an operator theorist. The article
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[37] contains interesting historical notes and an outline of the algebraic system
theory. Also [4] (Baras, Brockett and Fuhrmann, 1974), [3] (Baras and Brockett,
1975), [31], [32], [29], [33] and [34] (Fuhrmann) are valuable references, even
though much of their contents can be found in the monograph [35].

Monographs on related but more general operator theory and harmonic analy-
sis are [90] (Sz.-Nagy and Foias, 1970), [77] (Rosenblum and Rovnyak, 1985),
[70] (Nikolskii, 1986), [27] (Frazho and Foias, 1990) and [28] (Foias, Özbay and
Tannenbaum, 1996). These books contain, among other things, descriptions of
linear, causal and shift-invariant operators on Hilbert spaces and their appli-
cations to a number of system theoretic problems, including the H∞ control
problem. Representations of shift-invariant operators by analytic functions are
considered in [97] (G. Weiss, 1991) and [91] (Thomas, 1997). However, these
works do not contain an (essential) contribution to the state space realizations
of analytic operator-valued functions, i.e. DLSs.

In the monograph [44] (Halanay and Ionescu, 1994), a formalism for time-variant
linear discrete time systems is developed, and a number of references and his-
torical remarks are given. Exponentially dichotomic or exponentially stable
evolutions are considered, see [44, Chapter 1, Section 3]. The aim of the book
is to solve the operator discrete time disturbance attenuation problem, which
is a time-variant version of the suboptimal (state space) H∞ control problem.
The systems are assumed to be exponentially stabilizable, and the required
closed loop system is exponentially stable, by the definition of the disturbance
attenuation problem. Naturally, this time-variant theory can be applied to
time-invariant power stabilizable and power stable problems as well.

Continuous time systems and their I/O maps

In continuous time, there is a number of possibilities to develop a linear state
space system theory. A classical approach is to consider the dynamical system{

x′(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t), t ≥ 0

(1.61)

where A is a generator of a strongly continuous semigroup, and B, C and D
are bounded operators on Hilbert spaces. Such systems, together the associ-
ated linear quadratic optimal control and controller synthesis problems, are the
subject of monograph [18] (Curtain and Zwart, 1995). Also the matrix-valued
Callier–Desoer class of transfer functions is introduced; the original references
are [6], [7] (Callier and Desoer, 1978, 1980) and [10] (Callier and Winkin, 1986).
We remark that the impulse response of a linear system of type (1.61) is always
a strongly continuous function by the strong continuity of the semigroup. See
also [18, Lemma 7.3.1] for semigroups having a more general growth bound.
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This severely restricts the applicability of the dynamical system (1.61) with B
and C bounded.

To be able to cover a larger class of transfer functions, the more general class
of well-posed linear systems (WPLS) (abstract linear system in the sense of
Salamon and G. Weiss) is defined in roughly the same way as our DLS in I/O
form. Three equivalent axiomatizations are used, by Salamon, Staffans and G.
Weiss. Our formalism of DLSs has been created, with small modifications, from
that appearing in articles [82], [83], [84], [86], [85], [88] and the monograph [89]
(Staffans, 1995 – 1999). The general question is, to what extent a WPLS can
be written in the form of the differential equations (1.61) for some (possibly
unbounded) generating operators A, B, C and D. This is analogous to the
relations between DLS in I/O form and in difference equation form, except that
a fair amount of extra complication is now present due to the unboundedness of
the generating operators and inclusions of various state (vector) subspaces with
various topologies.

We first consider the question how to make sense out of the equations (1.61) for
unbounded B and C. Let A be a generator of a strongly continuous semigroup.
If the input operator B and the output operator C are admissible for A (or
the semigroup generated by A) in the sense of [80], [81], (Salamon, 1987, 1989)
and [93], [94] (G. Weiss), then controllability and observability maps can be
associated to pairs (A, B) and (C, A), respectively. Such a triple of operators
(A, B, C) defines a family of (nonstandardly defined) transfer functions z �→
G(z), analytic in some right half plane, by setting

G(z) = −(s − β)C(z − A)−1(β − A)−1B + G(β),

where z, β ∈ C, z = β are in the resolvent set of A. An extra well-posedness
assumption is imposed by requiring that these transfer functions are bounded
in some right half plane — such triples (A, B, C) are called well-posed. A well-
posed triple (A, B, C) defines a family of WPLSs because now even the I/O
map can be defined (but only in a nonstandard way). The nonuniqueness of the
WPLS comes from the fact that the bounded feed-through operator D has not
been fixed, for the reason that a general WPLS need not have a feed-through
operator in the first place, see [21] (Curtain and G. Weiss, 1989).

Conversely, a WPLS defines a well-posed triple of operators (A, Ba, Ca) such
that a variant of the differential equation (1.61) holds. It is given by{

x′(t) = Ax(t) + Bau(t)
y(t) = CL

(
x(t) − (β − A)−1Bau(t)

)
+ G(β)u(t),

(1.62)

where CL is the Lebesgue extension of Ca, G(z) is any well-posed (nonstan-
dardly defined) transfer function associated to the triple (A, Ba, Ca), and β ∈ C
is arbitrary in the resolvent set of A. The operators Ba and Ca are given by rep-
resentation theorems in [81] (Salamon, 1989), [21] (Curtain and G. Weiss, 1989),
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[94] and [93] (G. Weiss, 1989). See also survey [19] (Curtain, 1997). Stability
notions for WPLSs can be found in [76] (Rebarber, 1993) and [83] (Staffans,
1997). State feedback and output injection, stabilizability and detectability no-
tions, together with coprime factorizations of the I/O map are considered in
[84] (Staffans, 1998). The family of possible transfer functions for WPLSs is de-
scribed in [98] and [81]; in particular, all H∞ transfer functions can be realized
by WPLSs.

Unfortunately, the dynamical system (1.62) is not of the form of equation (1.62)
because we cannot generally write CL

(
x(t) − (β − A)−1Bau(t)

)
+ G(β)u(t) =

CLx(t) +
(
G(β) − CL(β − A)−1Ba

)
u(t) without getting out of dom(CL). Also

the transfer functions G(z) are not of the familiar form D + C(z − A)−1B. To
fix this problem, the generality of the notion of the WPLS has to be reduced.
Following [95] (G. Weiss, 1989), the subclass of the regular WPLSs is introduced
by requiring the existence of the limit

Dv =
1
τ

lim
τ→0

τ∫
0

yv(σ) dσ,

defining a bounded feed-through operator D, where yv(σ) is the step response
of the I/O map, corresponding to any constant input v ∈ U . The transfer
functions of regular WPLSs (in the set of transfer functions of general WPLSs)
are characterized by a radial limit condition at +∞ in [99] (G. Weiss, 1994), and
the state feedback structure is considered in [98] (G. Weiss, 1994). In Section
1.1 of Chapter 2, we shortly review the optimal control and Riccati equation
theories of regular WPLSs.

The Pritchard–Salamon systems are a well-known subclass of the regular WPLSs.
Practically all the results of the finite dimensional theory generalize to this class.
Basic references are [74], [75] (Pritchard and Salamon, 1985, 1987), [17] (Cur-
tain, Logemann, Townley and H. Zwart, 1994) and [92] (van Keulen, 1993). For
the characterization of the I/O maps of (slightly differently defined) Pritchard–
Salamon systems, see [52] (Kaashoek, van der Mee and Ran, 1997).

The discrete time and continuous time transfer functions can be mapped to each
other by using the Cayley mapping, see [20] (Curtain and Oostveen) and [71]
(Ober and Montgomery-Smith, 1990). By this technique, some continuous time
results can be converted to discrete time results, and vice versa.

Discussion of the DLS formalism

We conclude this section with a general discussion of the formalism presented in
this chapter. We have introduced two equivalent formalisms (DLS in difference
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equation form and in I/O form) to describe the same class of objects, namely
the well-posed, causal shift-invariant linear operators in discrete time. At first
sight, this might seem a little superfluous, and we now try to defend ourselves.

We note that all the operators A, B, C, D, B, C and D appearing in quadruples
( A B

C D ) and
[

Aj Bτ∗j

C D
]

are separate functional blocks, present in any (linear)
state space model. The interaction between controllability, observability and
I/O maps can be conveniently described because these operators constitute the
DLS in I/O form in our formalism. What we have actually done is to collect the
operators of the same kind into two different structures: DLS in I/O form and
in difference equation form. In applications we use the structure that has less
notational overhead. In this framework, the discrete time theory is presented
in the analogous manner as the continuous time theory in [89] (Staffans, 1999).
Also nonlinear generalizations are admitted.

Our DLS formalism is rather heavy because it is two-fold. Of course, we could
use either only the DLSs in difference equation form, or DLSs in I/O form,
to obtain an equally powerful theory. If we abandon the difference equation
formalism, we would have much trouble in writing down the basic difference
equations of systems and the algebraic Riccati equations. If we leave out the
I/O formalism, then we would lose the notational analogy to the continuous
time WPLSs. Furthermore, we would be compelled to either use the mappings
B, C and D as separate objects, or to represent them by the corresponding
transfer functions. In the former choice, we would have lost only the (abstract
but useful) notion of the DLS in I/O form, but have the same notational burden.
In the latter case, we would end up in notational clumsiness, because the basic
operators would be written down as multiplication operators.

For DLS φ = ( A B
C D ) in difference equation form, the bilateral shift τ is an exter-

nal object in the sense that the four operators defining φ have no “dynamical
properties”. In the same sense, the shift τ is an internal object for the same
DLS Φ =

[
Aj Bτ∗j

C D
]

in I/O form, because the mappings B and C intertwine the
shift τ to the semigroup generator, and the I/O map D to the shift on another
space. Because the full theory of time-invariant well-posed discrete time sys-
tems can be written in two formalisms, it becomes an interesting question to ask
how a notion in one formalism is interpreted in the other. In this chapter, we
have considered the case of the DLSs itself and the state feedback. The output
injection structure, being dual to the state feedback structure, has not been
explicitly considered as it has no application in this book. In Chapters 2 and 3,
we see that the discrete time algebraic Riccati equation (DARE) (a difference
equation form object) is connected to the spectral factorization (an I/O form
object). In Chapter 4, the same work is done for the natural order relation of
the self-adjoint solutions of the DARE (a difference equation form object), and
the partial ordering of inner factors of the I/O map (an I/O form object). This
is what a decent DARE theory basically is: identifying corresponding objects
under sufficiently but not too restrictive technical assumptions.
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Chapter 2

Critical control problem

2.1 Introduction

In this chapter, we present and solve an abstract control problem, associated
to an I/O stable DLS Φ =

[
Aj Bτ∗j

C D
]

and a self-adjoint, possibly nondefinite
cost operator J penalizing the outputs of Φ. We first define a critical control
problem with the aid of Φ and J . Then, under proper technical assumptions,
we prove the equivalence of

• the solvability of a minimax cost optimization problem, associated to the
pair Φ and J ,

• the solvability of a certain inner-outer factorization problem for the I/O
map D, or equivalently, a spectral factorization problem of the Popov
operator D∗JD, and

• the existence of a special, critical solution of an associated (weak) discrete
time algebraic Riccati equation.

We make it a standing hypothesis that dom (C) = H throughout this chapter.
Because we do not generally assume the DLS Φ to be output stable, we must
present the algebraic Riccati equation in such a form that its solutions are
conjugate-symmetric sesquilinear forms. Under the output stability assumption,
the sesquilinear forms can be replaced by bounded self-adjoint operators on the
state space of Φ.

The technical outline of this chapter is as follows. In Section 2.2 we define
and prove basic facts about the critical control problem, associated to Φ and

73
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J . Section 2.3 is devoted to the study of (J, S)-inner-outer factorizations of the
(extended topological) I/O map D and S-spectral factorizations of the Popov
operator D∗JD. In Section 2.4 we show that the critical control problem can
be solved in state feedback form if and only if D has a (J, S)-inner-outer fac-
torization, see Theorem 89. Under the same conditions, the sesquilinear form
P crit

0 ( , ) of Definition 76 satisfies the discrete time algebraic Riccati equation
of Definition 94, as shown in Section 2.5. The converse result is given in Sec-
tion 2.6. There the existence of a critical solution of the same weak algebraic
Riccati equation implies, under stronger technical assumptions, that the equiv-
alent conditions of Theorem 89 hold. Finally, the three equivalent conditions
are collected in Theorem 103, the main result of this chapter.

Most of the results of this chapter appeared in [55] (Malinen, 1997). A short
version [54] has been presented in the ECC97 conference (Brussels, July, 1997).
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2.2 Critical controls and operators

In this section, we associate a minimax control problem to a DLS Φ =
[

Aj Bτ∗j

C D
]

and a possibly nondefinite cost functional that evaluates the outputs of Φ.

Let J ∈ L(Y ) a self-adjoint operator. This operator induces a nonstandard (i.e.
not necessarily positive definite) inner product on the output space Y of the
DLS Φ. The operator J is called the cost operator, and the associated cost
functional is defined as follows.

Definition 64. Let Φ =
[

Aj Bτ∗j

C D
]

be a DLS, and let J ∈ L(Y ), R ∈ L(U) be
self-adjoint. Then the nonstandard cost for the output ỹ = ỹ(x0, ũ) of Φ is

J(x0, ũ) :=
∑
j≥0

(
〈yj(x0, ũ), Jyj(x0, ũ)〉Y + 〈uj, Ruj〉U

)
,(2.1)

whenever the sum converges either to a finite or infinite limit. Here ũ ∈
�2(Z+; U) is an input sequence, and x0 ∈ dom (C) is the initial state of the
DLS at time j = 0.

It is a known fact that the control sequence ũ can always be thought to be “free
of charge” because the input can be made visible in the output, by changing
the DLS Φ. More precisely, define C′ ∈ L(U, Y × U), D′ ∈ L(H, Y × U), and
J ′ ∈ L(Y × U, Y × U) by

C′ =
(

C
0

)
, D′ =

(
D
I

)
, J ′ =

(
J 0
0 R

)
.

Then replace the original DLS φ = ( A B
C D ) by the extended system φ′ =

(
A B
C′ D′

)
.

Now, if zk(x0, ũ) := C′xk + D′uk is the output of φ′, we get

〈yj(x0, ũ), Jyj(x0, ũ)〉Y + 〈uj, Ruj〉U = 〈zk(x0, ũ), J ′zk(x0, ũ)〉Y ⊕X .

We conclude that there is no loss of generality if we set R = 0 in equation (2.1),
and this is what we always do. In this case equation (2.1) takes the form

J(x0, ũ) = 〈Cx0 + Dπ̄+ũ, J(Cx0 + Dπ̄+ũ)〉�2(Z+;Y ) .(2.2)

Note that we use the same letter J for both the self-adjoint operator and for the
associated cost functional. Furthermore, in equation (2.2), the cost operator J
is extended to a self-adjoint static operator on �2(Z+; Y ) in a natural way. We
shall make this extension throughout this book.

Proposition 65. Let J ∈ L(Y ) and Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable DLS.
Then |J(x0, ũ)| < ∞ for all x0 ∈ dom(C) and ũ ∈ �2(Z+; U).
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Proof. If x0 ∈ dom (C) and ũ ∈ �2(Z+; U), then by the definition of dom(C) and
I/O stability, Cx0 + Dũ ∈ �2(Z+; Y ). The claim immediately follows.

If J is nonnegative, then one would be tempted to find an optimal control
sequence ũopt(x0) that minimizes the cost J(x0, ũ

opt(x0)) for an arbitrary given
initial state x0. With the nonstandard case, the cost could be made as large or
small as we please, just by choosing a suitable input ũ. So, there is not much
sense in speaking about minimal or maximal cost. We are led to look for certain
control sequences, the critical control sequences in �2(Z+; U).

Definition 66. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable DLS, and let x0 ∈ dom (C)
be an initial state. The control ũ′ ∈ �2(Z+; U) is critical at x0 if the Frechet
derivative of the function

�2(Z+; U) 
 ũ �→ J(x0, ũ) ∈ R

vanishes at ũ = ũ′.

So, all the critical control sequences are saddle points of the cost functional
J(x0, ũ). For a fixed x0 ∈ dom (C) it is not a priori known whether there is
a critical control sequence at all, or whether the critical control is unique if it
exists. Let us first calculate a necessary and sufficient condition for a control to
be critical, and worry the existence and uniqueness questions later.

Lemma 67. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable DLS, and let x0 ∈ dom (C)
be an initial state. Then the control sequence ũ′ ∈ �2(Z+, U) is critical at x0 if
and only if

π̄+D∗JC x0 = −π̄+D∗JDπ̄+ũ′.(2.3)

Furthermore, the corresponding (critical) output sequence ỹ(x0, ũ
′) satisfies

π̄+D∗Jỹ(x0, ũ
′) = 0.(2.4)

Proof. We have for all ũ ∈ �2(Z+; U) and x0 ∈ dom(C)

J(x0, ũ) = 〈Cx0 + Dπ̄+ũ, J (Cx0 + Dπ̄+ũ)〉�2(Z+;Y ) .

The control sequence ũ′ is critical at x0 if and only if

d

dε
J(x0, ũ

′ + εw̃) = 0 at ε = 0

for all w̃ ∈ �2(Z+; U). Here ε is a real-valued variable. By a simple calculation,
we obtain

d

dε
J(x0, ũ

′ + εw̃)|ε=0

= 2Re 〈w̃, π̄+D∗JCx0 + π̄+D∗JDπ̄+ũ′〉�2(Z+;Y ) = 0,

which gives equations (2.3) and (2.4).
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We have to comment on the precise meaning of the notation π̄+D∗, appear-
ing in Lemma 67. Because the DLS Φ =

[
Aj Bτ∗j

C D
]

is assumed to be I/O
stable, the Toeplitz operator Dπ̄+ : �2(Z+; U) → �2(Z+; Y ) is bounded, see
Definition 32 and the discussion following it. As discussed after Definition 32,
Dπ̄+ : �2(Z+; U) → �2(Z+; U) can be extended (by shift-invariance and bound-
edness) to a unique bounded, shift-invariant and causal operator D̄ : �2(Z; U) →
�2(Z; Y ). Clearly, an I/O stable Toeplitz operator Dπ̄+ can always be regarded
as a restriction of D̄ to �2(Z+; U). It now follows from the boundedness of all
the operators that

(Dπ̄+)∗ = (D̄π̄+)∗ = π̄+D̄∗.

For brevity, we write D instead of D̄ throughout this book. This gives the precise
meaning to expression π̄+D∗. When we identify the cost operator J ∈ L(Y ) with
the unique self-adjoint static operator (I/O map) that it induces on �2(Z; Y )
by Proposition 6, also the expressions π̄+D∗JC and π̄+D∗JDπ̄+ appearing in
equations (2.3) and (2.4) get a precise meaning. The latter of these operators is
important enough to deserve a name of its own, given in the following definition.

Definition 68. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable DLS and J ∈ L(Y ) a cost
operator.

(i) The Toeplitz operator π̄+D∗JDπ̄+ ∈ L(�2(Z+; U)) is the Popov operator
of Φ and J .

(ii) The DLS Φ is J-coercive, if the Toeplitz operator π̄+D∗JDπ̄+ has a bounded
inverse on �2(Z+; U).

The name “Popov operator” comes from [47]. The Fourier transform of the
Popov operator is called the Popov function. In [45], the Popov operator is
known as the power spectrum operator. A fair amount of control theory has
been written around the Popov operator, see [100], [102] and the references
therein. By Lemma 71, the J-coercivity serves as a sufficient condition for the
existence of the unique critical control sequence at any x0 ∈ dom (C).

Proposition 69. Let Φ be an I/O stable and J-coercive DLS. Then Dπ̄+ :
�2(Z+; U) → �2(Z+; Y ) is coercive and range (Dπ̄+) is closed. Similarly, JDπ̄+ :
�2(Z+; U) → �2(Z+; Y ) is coercive and range (JDπ̄+) is closed. Furthermore,
D : �2(Z; U) → �2(Z; Y ) is coercive.

Proof. To show the coercivity, assume for contradiction that there is a sequence
{ũj} ⊂ �2(Z+; U), ||ũj ||�2(Z+;U) = 1, such that Dπ̄+ũj → 0 as j → 0. Be-
cause D is bounded by the assumed I/O stability, so is π̄+D∗J . But then
π̄+D∗JDπ̄+ũj → 0 as j → 0. This is a contradiction against the J-coercivity of
the DLS Φ. The claim involving JDπ̄+ is quite analogous. The coercivity of D
follows from its I/O stability, shift-invariance and the coercivity of Dπ̄+, an in
the proof of claim (ii) of Proposition 46.
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Now equation (2.3) calls for the following definition and Lemma 71.

Definition 70. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable and J-coercive DLS, such that dom (C) = H.

(i) The densely defined linear operator Kcrit : H ⊃ dom
(
Kcrit

)
→ �2(Z+; U),

defined by

Kcrit := −(π̄+D∗JDπ̄+)−1π̄+D∗JC

is the critical (closed loop) feedback map, where dom
(
Kcrit

)
:= dom (C).

(ii) The densely defined linear operator Kcrit : H ⊃ dom
(
Kcrit

)
→ �2(Z+; U),

defined by

Kcrit := π0Kcrit

(the spaces range (π0) and U have been identified) is the critical (closed
loop) one step feedback operator, where dom

(
Kcrit

)
:= dom (C).

(iii) The densely defined linear operator Ccrit : H ⊃ dom
(
Ccrit

)
→ �2(Z+; Y ),

defined by

Ccrit := C + DKcrit,

is the critical (closed loop) observability map, where dom
(
Ccrit

)
:= dom (C).

The domains are dense because our standing assumption that dom (C) is dense
in H . We shall not state this explicitly from now on. It is easy to see that the
above operators are well defined. If Kcrit is bounded, we can identify it with its
continuous extension to the whole of H . By a simple manipulation, we see that

Ccrit = (π̄+ − π̄+Dπ̄+(π̄+D∗JDπ̄+)−1π̄+D∗J) C =: Π C,

where Π is a bounded projection (by I/O stability and J-coercivity) in �2(Z+; U)
that commutes with the cost operator J . The following lemma is a consequence
of Definitions 68 and 70, Lemma 67 and basic properties of DLSs.

Lemma 71. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable and J-coercive DLS.

(i) For each x0 ∈ dom(C) there exists a unique critical control sequence
ũcrit(x0) satisfying equation (2.3),

(ii) The critical control sequence ũcrit(x0) is given by

ũcrit(x0) = Kcritx0.
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The critical state trajectory is given by

xcrit
j (x0) := Ajx0 + Bτ∗j ũcrit(x0) = Acrit(j)x0

where Acrit(j) := Aj + Bτ∗jKcrit are linear mappings on dom (C) for all
j ≥ 0. The critical output sequence satisfies

ỹcrit(x0) := Cx0 + Dũcrit(x0) = Ccritx0.

By our convention, Acrit(0) = A0 = I, even if A is not invertible. The family
of linear mappings {Acrit(j)}j≥0) is in fact a semigroup on dom(C). This is the
subject of the following lemma.

Lemma 72. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable and J-coercive DLS.

(i) The linear mappings Acrit(j) := Aj + Bτ∗jKcrit : dom (C) → H for j ≥ 1
satisfy

Acrit(j) dom (C) ⊂ dom (C) .

(ii) The family {Acrit(j)}j≥0 of linear mappings on dom(C) is a semigroup;
i.e.

Acrit(j) = (Acrit)j for all j ≥ 0,(2.5)

Acrit(0) = A0 = I,

where Acrit := Acrit(1).

(iii) The critical state trajectory {xcrit
j (x0)}j≥0 at the initial value x0 ∈ dom (C)

is given by

xcrit
j (x0) = (Acrit)jx0.(2.6)

Proof. The proof of claim (i) is a consequence of the fact that the I/O stable
DLS Φ is strongly H2 stable. By Lemma 35, range (B) := B dom (B) ⊂ dom (C).
Because always π−τ∗jKcritx0 ∈ dom(B) := Seq−(U), claim (i) immediately
follows. To prove claim (ii) we use a same kind of approach as in the proof
of Lemma 67. Fix x0 ∈ dom

(
Kcrit

)
= dom (C) and j ≥ 1. Let ε > 0 and

w̃ ∈ �2(Z+; U) be arbitrary. By ũcrit(x0) := Kcritx0 denote the unique critical
control sequence, given by Lemma 71. Then we have

J(x0, ũ
crit(x0) + ετ jw̃)

=
〈
π[0,j−1]

[
Cx0 + Dũcrit(x0)

]
, J(−, ,−)

〉
�2(Z+;Y )

+
〈
π[j,∞]

[
Cx0 + D(ũcrit(x0) + ετ jw̃)

]
, J(−, ,−)

〉
�2(Z+;Y )

,
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because π[0,j−1]D(ετ jw̃) = π[0,j−1]τ
j π̄+D(εw̃) = 0 D is causal and w̃ ∈ �2(Z+; U).

A simple calculation, together with part (iii) of Definition 70, allows us to con-
tinue

J(x0, ũ
crit(x0) + ετ jw̃)(2.7)

=
〈
π[0,j−1]Ccritx0, JCcrit

〉
�2(Z+;Y )

+
〈
π[j,∞]

[
Ccritx0 + ετ jDw̃

]
, J
[
Ccritx0 + ετ jDw̃

]〉
�2(Z+;Y )

=
〈
Ccritx0, JCcrit

〉
�2(Z+;Y )

+ 2ε Re
〈
π[j,∞]Ccritx0, Jτ jDw̃

〉
�2(Z+;Y )

+ ε2 〈D∗JDw̃, w̃〉�2(Z+;Y ) .

Now because ũcrit(x0) is critical, we must have d
dεJ(x0, ũ

crit(x0) + ετ jw̃)) = 0
at ε = 0 for all w̃ ∈ �2(Z; U), j ≥ 0. It follows that

Re
〈
π[j,∞]Ccritx0, Jτ jDw̃

〉
�2(Z+;Y )

= 0

for all w̃. But then we have for all j ≥ 0 and x0 ∈ dom (C)

π̄+D∗Jπ̄+τ∗jCcritx0 = π̄+D∗Jπ̄+τ∗j(C + DKcrit)x0 = 0

and

π̄+D∗JCAjx0 = π̄+D∗Jπ̄+τ∗jCx0 = −π̄+D∗Jπ̄+Dτ∗jKcritx0

= −(π̄+D∗JDπ̄+)τ∗jKcritx0 − π̄+D∗J(π̄+Dπ−)τ∗jKcritx0.

Apply π̄+Dπ− = CB to the last term on the right hand side. This gives
π̄+D∗JC(Aj + Bτ∗jKcrit)x0 = −(π̄+D∗JDπ̄+)τ∗jKcritx0 for x0 ∈ dom (C) and
j ≥ 1. This implies by part (i) of Definition 70

π̄+τ∗jKcritx0 = KcritAcrit(j)x0(2.8)

because Acrit(j) := Aj + Bτ∗jKcrit. The rest of the proof is now a calculation.
For k ≥ 0, j ≥ 1 we have by Lemma 71

Acrit(k)Acrit(j)x0 = Akxcrit
j (x0) + Bτ∗kKcritAcrit(j)x0(2.9)

= Akxcrit
j (x0) + Bτ∗kπ̄+τ∗jKcritx0,

where the last equality is by equation (2.8). The former part in the right of
(2.9) can be decomposed as

Akxcrit
j (x0) = Ak+jx0 + AkBτ∗jKcritx0(2.10)

=Ak+jx0 + Bτ∗(k+j)π[0,j−1]Kcritx0.

The latter part in the right of (2.9) can be decomposed as

Bτ∗kπ̄+τ∗jKcritx0 = Bτ∗(k+j)Kcritx0 − Bτ∗(k+j)π[0,j−1]Kcritx0.(2.11)
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Formulae (2.9), (2.10) and (2.11) together show that

Acrit(k)Acrit(j)x0 = Acrit(k + j)x0

for all x0 ∈ dom (C), and the proof of claim (ii) is compete. Claim (iii) is quite
clear, too.

Definition 73. Let the DLS Φ, the cost operator J and Acrit(j) be as in Lemma
72. The densely defined linear operator Acrit : H ⊃ dom(C) → H, defined by
Acrit := Acrit(1) is the critical (closed loop) semigroup generator of Φ. The
family of operators {(Acrit)j}j≥0 is the critical (closed loop) semigroup.

If we write Kcrit := π0Kcrit, then trivially Acrit = A + BKcrit. We also define
the critical output operator Ccrit := π0Ccrit : dom (C) → Y . Clearly, Ccrit =
C + DKcrit. The following lemma describes the common algebraic structure of
operators Acrit, Ccrit and Kcrit.

Lemma 74. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable and J-coercive DLS. Then the following equations

KcritAcrit = π̄+τ∗Kcrit(2.12)

CcritAcrit = π̄+τ∗Ccrit(2.13)

are valid on dom (C).

Proof. The proof of equation (2.12) is given in the proof of Lemma 72. To verify
claim (2.13), we calculate

CcritAcrit =
(
C + DKcrit

)
Acrit = CA + CBτ∗Kcrit + Dπ̄+τ∗Kcrit

= π̄+τ∗C + π̄+Dπ−τ∗Kcrit + π̄+Dπ̄+τ∗Kcrit

= π̄+τ∗C + π̄+τ∗DKcrit = π̄+τ∗Ccrit,

where the identity π̄+Dπ− = CB has been used.

We have now given the algebraic properties of operators Acrit, Ccrit and Kcrit as
possibly unbounded linear mappings on the vector space dom(C). We remark
that Ccrit and Kcrit are valid observability maps for a DLS whose semigroup
generator is Acrit and state space dom (C) = H , provided that certain continu-
ity requirements of these operators, associated to well-posedness of the DLS,
are satisfied. In particular, Acrit should be continuous in the norm of H . Gen-
erally this is not the case. Basic stability conditions for closed loop semigroup
generator Acrit are given in the following lemma.

Lemma 75. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable and J-coercive DLS.
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(i) Φ is output stable ⇒ Kcrit ∈ L(H ; �2(Z+; U)) ⇒ Kcrit := π0Kcrit ∈
L(dom (C) ; U) ⇒ BKcrit ∈ L(dom (C)) ⇔ Acrit ∈ L(dom (C)), where
dom (C) is given the norm of H.

(ii) If Φ is stable, then the critical semigroup satisfies {Acrit(j)}j≥0 ⊂ L(H),
and there is a constant C < ∞ such that

||(Acrit)j ||L(H) ≤ C ∀j ≥ 1,

i.e. Acrit is power bounded.

(iii) If Φ is strongly stable, then

(Acrit)jx0 → 0 ∀x0 ∈ H,

i.e. Acrit is strongly stable.

Proof. The only not completely trivial part of (i) is the equivalence. This follows
because on dom (C) we have

Acrit = A + Bτ∗Kcrit = A + Bπ−τ∗π̄+Kcrit = A + Bπ0Kcrit,

where B is the input operator of Φ and range (π0) and U have been identified.
The proofs of claims (ii) and (iii) are analogous to the proof of Theorem 50.
Note that the stability and J-coercivity of Φ imply the boundedness of Kcrit :
H → �2(Z+; U). Then proceed as in the proof of Theorem 50, by using Kcrit in
place of K�.

We remark that if Kcrit := π0Kcrit ∈ L(dom (C) ; U) in claim (i) of previous
lemma, then Kcrit has a unique bounded extension to dom (C) = H . We denote
this extension by Kcrit, too. Under the same conditions, also Acrit can be
extended to all of H , and the extension is denoted by Acrit. The requirement
that Kcrit ∈ L(H ; U) is central in this work. It is sufficient but not necessary
to make Acrit bounded. On the other hand, it is a necessary condition for
the critical closed loop DLS Φext of equation (2.29) to be a (well-posed) DLS,
because the output operator and the semigroup generator of a DLS has to
be bounded. A trivial sufficient condition for Kcrit ∈ L(H ; U) is that JC ∈
L(H, �2(Z+; Y )). Weaker sufficient conditions are not easy to give.

We end this section by introducing a conjugate symmetric sesquilinear form
P crit

0 ( , ) on dom (C)× dom (C) ⊂ H ⊕H whose diagonal values give the critical
cost of the initial state x0.

Definition 76. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable J-coercive DLS. The conjugate symmetric sesquilinear form P crit

0 ( , ) in
dom (C) × dom (C) given by

P crit
0 (x0, x1) :=

〈
Ccritx0, J Ccritx1

〉
�2(Z+;Y )



2.2. CRITICAL CONTROLS AND OPERATORS 83

is the critical sesquilinear form, associated to the DLS Φ and the cost operator
J .

The sesquilinear form P crit
0 ( , ) is a solution of an algebraic Riccati equation, see

Sections 2.5 and 2.6. The I/O stability of Φ has an effect to the limit behavior
of the diagonal evaluation of P crit

0 ( , ) along the state trajectories.

Proposition 77. Let J ∈ L(Y ) be a cost operator. Let Φ be an I/O stable and
J-coercive DLS. Then for all x0 ∈ dom(C) and ũ ∈ �2(Z+; U)

P crit
0 (xj(x0, ũ), xj(x0, ũ)) → 0 as j → ∞.

Proof. Fix ũ ∈ �2(Z+; U) and x0 ∈ dom (C). We first remark that

|P crit
0 (xj(x0, ũ), xj(x0, ũ))| ≤ ||J || · ||Ccritxj(x0, ũ)||2

≤ ||J || · ||Π||2 · ||Cxj(x0, ũ)||2,

where Π is the bounded projection that has been introduced after Definition 70.
It suffices to show that Cxj(x0, ũ) → 0. We have

Cxj(x0, ũ) = C
(
Ajx0 + Bτ∗jπ̄+ũ

)
(2.14)

= π̄+τ∗jCx0 + CBτ∗jπ̄+ũ = τ∗jπ[j,∞]Cx0 + π̄+Dπ−τ∗j π̄+ũ.

The first part of equation (2.14) approaches zero, because Cx0 ∈ �2(Z+; Y ). For
the second part, we decompose

||(π̄+Dπ−τ∗j) π̄+ũ||�2(Z+;U)(2.15)

≤ ||(π̄+Dπ−τ∗j)π[0,N ]ũ||�2(Z+;U) + ||(π̄+Dπ−τ∗j)π[N+1,∞]ũ||�2(Z+;U).

Let ε > 0 be arbitrary. Fix N > 0 so large that

||π[N+1,∞]ũ||�2(Z+;U) < ε/(2||D||�2(Z;U)→�2(Z;Y )).

Because the shift τ is unitary, we get the estimate ||(π̄+Dπ−τ∗j)π[N+1,∞]ũ|| <
ε/2 for the second term in equation (2.15) for all j. We have for j > N

π̄+Dπ−τ∗jπ[0,N ]ũ = π̄+Dτ∗jπ[−∞,j−1] · π[0,N ]ũ = π̄+τ∗j
(
Dπ[0,N ]ũ

)
.

By the I/O stability of Φ, Dπ[0,N ] ∈ �2(Z+; Y ) and the the first term in (2.15)
can be made less that ε/2 by increasing j. It follows that the second term in
(2.14) approaches zero when j increases, and the proof is complete.

In the following proposition, the last one of this section, we separate the cost of
input into two parts, the first of which does not depend on the input sequence
ũ we are applying, but only on the initial value x0. The second part of the cost
depends only on the deviation from the criticality of the applied input sequence
ũ.
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Proposition 78. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an
I/O stable and J-coercive DLS. Then the cost functional has the decomposition

J(x0, ũ) = J(x0, ũ
crit(x0)) + J(0, ũ − ũcrit(x0))(2.16)

for all input functions w̃ ∈ �2(Z; U) where ũcrit(x0) = Kcritx0. Moreover, we
have

P crit
0 (x0, x0) = J(x0, ũ

crit(x0)),(2.17)

where the sesquilinear form P ( , ) is defined in Definition 76.

Proof. Define w̃ := ũ − ũcrit(x0) ∈ �2(Z+; Y ). Then quite easily

J(x0, ũ) = J(x0, ũ
crit(x0) + w̃)(2.18)

= J(x0, u
crit(x0)) + J(0, w)

+ 2Re
〈
π̄+D∗ J Cx0 + π̄+D∗JDũcrit(x0), w̃

〉
�2(Z+;Y )

But now the last term in the left of (2.18) vanishes because the critical con-
trol sequence ũcrit(x0) satisfies formula (2.3). This immediately proves (2.16).
Equation (2.17) is immediate from the definition of Ccrit.

We consider a special case for an I/O stable and J-coercive DLS Φ, under the
additional assumption π̄+D∗JDπ̄+ ≥ 0. Then, by J-coercivity, π̄+D∗JDπ̄+ ≥
επ̄+ for some ε > 0. It follows that

J(x0, ũ) ≥ P crit
0 (x0, x0)

for all x0 ∈ dom (C) and ũ ∈ �2(Z+; U) because

J(0, w̃) = 〈π̄+D∗JDπ̄+w̃, w̃〉�2(Z+;U) ≥ ε||w̃||2�2(Z+;U)

for all w̃ ∈ �2(Z+; U). Furthermore, equality J(x0, ũ) = P crit
0 (x0, x0) implies

that ũ = ucrit(x0). This reveals the connection of the sesquilinear form P crit
0 ( , )

to the unique solution of the cost optimization problem, associated to the DLS
Φ and the cost operator J .
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2.3 Factorization of the I/O map
and the Popov operator

Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable DLS and J ∈ L(Y ) a cost operator. In
this section we consider certain factorizations of the I/O map D : �2(Z; U) →
�2(Z; Y ) and the Popov operator π̄+D∗JDπ̄+ : �2(Z+; U) → �2(Z+; U). The
present approach is similar to that given in [83] and [86]. We remark that all
the I/O maps considered in this section are I/O stable. Such I/O maps can be
regarded as bounded linear operator on the space �2(Z; U), see the discussion
presented at the end of Section 1.7. By Lemma 37, we could as well speak about
abstract bounded, shift-invariant causal operators on �2(Z; U).

Definition 79. Let J ∈ L(Y ) be self-adjoint, and let S ∈ L(U) self-adjoint and
invertible. Let D and N be I/O maps of I/O stable DLSs whose input space is
U and output space is Y . Let X be an I/O map of an I/O stable DLS whose
input space and output space is U .

(i) The operator E ∈ L(U) is S-unitary, if E−1 ∈ L(U) and E∗SE = S.

(ii) The I/O map N is (J, S)-inner, if N ∗JN = S.

(iii) The I/O map X is outer, if range (X π̄+) = �2(Z+; U). If, in addition, X
is injective and range (X π̄+) = �2(Z+; U), we say that X is outer with a
bounded inverse.

In fact, part (iii) of previous definition is a reiteration of Definition 45. Ba-
sic properties of outer I/O maps have been considered in Proposition 46. We
proceed to define the spectral factors.

Definition 80. Let J ∈ L(Y ) and S ∈ L(U) be self-adjoint. Let D be an
I/O map of an I/O stable DLS. The mapping X is a stable S-spectral factor of
D∗JD, if

(i) X is an I/O map of an I/O stable DLS, whose input space and output
space is U ,

(ii) X : Seq(U) → Seq(U) has an inverse X−1 : Seq(U) → Seq(U) which is
an I/O map of a DLS, and

(iii) D∗JD = X ∗SX .

If, in addition, X−1 is an I/O map of an I/O stable DLS, then X is a stable
outer S-spectral factor of D∗JD.
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In this book, we consider only stable spectral factors and we will not state that
explicitly from now on. In Chapter 3, nonouter spectral factors of D∗JD are
investigated. We also need factorizations of the I/O stable I/O map D.

Definition 81. Let J ∈ L(Y ) and S ∈ L(U) be self-adjoint. Let D be the I/O
map of an I/O stable DLS whose input space is U and output space is Y . Then
D has a a (J, S)-inner-outer factorization D = NX , if

(i) the operator N is a (J, S)-inner I/O map of an I/O stable DLS whose
input space is U and output space is Y

(ii) the operator X is an outer I/O map of an I/O stable DLS whose input
space and output space is U , and

(iii) the operator equation D = NX holds.

We say that N is the (J, S)-inner factor of D, and X is the outer factor of D.

The operator S is called the sensitivity operator of the factorization in [87]. By
Proposition 46, X is outer with a bounded inverse if and only if the Toeplitz
operator X π̄+ has a bounded inverse on �2(Z+; U). Expectedly, there is a
strong link between S-spectral factorizations of D∗JD and (J, S)-inner-outer
factorizations of D.

Proposition 82. Let D be the I/O map of an I/O stable DLS. Then the fol-
lowing are equivalent:

(i) D = NX is a (J, S)-inner-outer factorization of D, where X is outer with
a bounded inverse.

(ii) X is a stable outer S-spectral factor of D∗JD for some S ∈ L(U), and
N = DX−1.

Proof. Let us first show that (i) implies (ii). Assume that D = NX is a (J, S)-
inner-outer factorization. Then

D∗JD = X ∗ (N ∗JN )X = X ∗SX

because all the operators are bounded. Because X is outer with a bounded
inverse, the bounded inverse operator X−1 on �2(Z; U) exists as an I/O map of
an I/O stable DLS, by claim (ii) Proposition 46. Now claim (ii) follows.

To show that (ii) implies (i), assume that we have the outer S-spectral factor-
ization D∗JD = X ∗SX . Define N := DX−1. Because both D and X−1 are I/O
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maps of DLS, so is their product N by claim (ii) of Proposition 17. It is trivial
that N is I/O stable. We have

N ∗JN = (X−1)∗ (D∗JD) (X−1) = (X−1)∗ (X ∗SX )X−1 = S,

which proves that N is (J, S)-inner. It is trivial consequence of causality that
(X−1π̄+)X π̄+ = X π̄+(X−1π̄+) = π̄+. Thus (X π̄+)−1 exists on �2(Z+; U), and
it equals the bounded operator X−1π̄+. Because X π̄+ is a bounded bijection, X
is outer with a bounded inverse. It follows that D = NX is a (J, S)-inner-outer
factorization of D and X has a bounded inverse. The proof is complete.

Not all operators of the form D∗JD have S-spectral factorization for any S.
Those that have the factorization are more interesting to us. If we know one
(J, S)-inner-outer factorization of D for some S, then we know them all. This
is because all the (J, S)-inner-outer factorization can be parameterized by the
set of all S-unitary operators.

Proposition 83. Let J ∈ L(Y ) be self-adjoint and D be the I/O map of an
I/O stable DLS. Let D = NX be a (J, S) -inner-outer factorization for some
S ∈ L(U), such that the outer factor X has a bounded inverse. Then the set of
all possible (J, SE)-inner-outer factorizations D = NEXE (with the outer factor
XE having a bounded inverse) can be parameterized by

NE = NE, XE = E−1X , SE = E∗SE,(2.19)

where E ranges over the set all boundedly invertible operators in L(U). In
particular, if we in addition require that SE = S, the E is allowed to range over
the set of all S-unitary operators E ∈ L(U).

Proof. We first show that for each invertible E we have the factorization as
claimed. So let E ∈ L(U) be boundedly invertible and D = NX be a (J, S)-
inner-outer factorization for some S ∈ L(U). The operators NE , XE and X−1

E

in equation (2.19) are I/O maps of I/O stable DLSs, and trivially D = NX =
NEXE . We have

N ∗
EJNE = (NE)∗J(NE) = E∗N ∗JNE = E∗SE = SE ,(2.20)

i.e. NE is (J, SE)-inner. It is trivial that XE is outer with a bounded inverse.

In order to prove the remaining part, we must show that if there is another
(J, S′)-inner-outer factorization D = N ′X ′, then it is of the form N ′ = NE and
X ′ = XE for some boundedly invertible E ∈ L(U). Because all the operator X ,
X−1, X ′ and (X ′)−1 are assumed to be I/O maps of I/O stable DLSs, both the
operators U := X ′X−1 and U−1 := X (X ′)−1 are I/O maps of I/O stable DLSs,
by claim (ii) of Proposition 17. By definition, the following identity on �2(Z; U)
holds

N = N ′U .(2.21)
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Now, because N is (J, S)-inner, and N ′ is (J, S′)-inner, we have

S = N ∗JN = (N ′U)∗J(N ′U) = U∗(N ′∗JN ′)U = U∗S′U ,

which implies

SU−1 = U∗S′,(2.22)

where the operators are considered as bounded shift-invariant operators on
�2(Z; U). Both S and S′ are (extended to) static operators. U∗ is anticausal and
U−1 causal. It is a triviality that the right side of equation (2.22) is causal and
the left side is anticausal shift-invariant operator. It follows that the both sides
of equation (2.22) are static in the sense of part (iv) of Definition 5. By Propo-
sition 6, U−1 is equal to a componentwise multiplication by some E ∈ L(U).
Because the same is true for U∗, it follows that E has a bounded inverse. This
together with equation (2.21) implies N ′ = NE = NE and also by the definition
of U we obtain X ′ = E−1X = XE . Finally (2.22) gives S′ = E∗SE = SE . The
statement about the S-unitary parameterizations is trivial, and the proof of the
proposition is now completed.

The existence of (J, S)-inner-outer factorization D = NX affects the properties
of the Popov operator π̄+D∗JDπ̄+. The following lemma is the main result of
this section.

Lemma 84. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable DLS. Let J ∈ L(Y ) be self-
adjoint and S ∈ L(U) self adjoint with bounded inverse. Assume that the I/O
map D has a (J, S)-inner-outer factorization D = NX , such that the outer
factor X has a bounded inverse.

(i) Φ is J-coercive.

(ii) The inverse of the Popov operator operator π̄+D∗JDπ̄+ satisfies

(π̄+D∗JDπ̄+)−1 = (π̄+X−1π̄+)S−1(π̄+(X ∗)−1π̄+).

(iii) The critical operators Acrit, Ccrit and Kcrit can be written in forms

Acrit = A − BX−1τ∗S−1π̄+N ∗JC,

Ccrit = C − NS−1π̄+N ∗JC,

Kcrit = −X−1S−1π̄+N ∗JC.

Proof. We prove parts (i) and (ii) at the same time. Given an arbitrary π̄+w̃ ∈
�2(Z+; U), we try to solve π̄+ũ in equation

π̄+D∗JDπ̄+ũ = π̄+w̃.(2.23)
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We first replace D by NX and use the fact that N is (J, S)-inner to get

π̄+w̃ = π̄+X ∗SX π̄+ũ(2.24)

Because the outer factor X is assumed to be outer with a bounded inverse,
its inverse X−1 exists on �2(Z; U) as an I/O map of an I/O stable DLS, by
claim (ii) of Proposition 46. By the theory of the bounded linear operator, the
adjoint (X−1)∗ exists and satisfies (X−1)∗ = (X ∗)−1. Because the existence of
S−1 ∈ L(U) is assumed, the operator S−1π̄+(X ∗)−1π̄+ : �2(Z+; U) → �2(Z+; U)
is bounded, and we can multiply equation (2.24) from the left by it, to obtain

(S−1π̄+(X ∗)−1)π̄+w̃ = S−1(π̄+(X ∗)−1π̄+ · π̄+X ∗π̄+)SX π̄+ũ(2.25)

= S−1(π̄+(X ∗)−1X ∗π̄+)SX π̄+ũ = X π̄+ũ,

where we have used π̄+(X−1)∗π− = 0, implied by the causality of the outer
factor X . Equation (2.25) is equivalent to

π̄+ũ = X−1S−1π̄+(X ∗)−1π̄+w̃(2.26)

which is the equation of claim (ii). This π̄+ũ is the only possible solution
to equation (2.23). In particular, it follows that π̄+D∗JDπ̄+ is injective on
�2(Z+; U). To check that π̄+ũ given by (2.26), indeed, is a solution, it suffices
to compute

(π̄+D∗JDπ̄+)X−1S−1π̄+(X ∗)−1π̄+w̃ = π̄+D∗J(DX−1)S−1π̄+(X ∗)−1π̄+w̃

= π̄+X ∗(NJNS−1)π̄+(X ∗)−1π̄+w̃ = (π̄+X ∗(X ∗)−1π̄+) π̄+w̃ = π̄+w̃.

So there is a solution for each π̄+w̃ ∈ �2(Z+; U), and it follows that π̄+D∗JDπ̄+

is surjective.

We have shown that π̄+D∗JDπ̄+ is a bounded bijection on �2(Z+; U), and it
follows that π̄+D∗JDπ̄+ has a bounded inverse; i.e. Φ is J-coercive. This proves
the first two claims of the lemma. In order to prove the remaining claim (iii), is
is sufficient to apply the formula of claim (ii) to the formulae of Definition 70.
This completes the proof of the lemma.

Corollary 85. Assume that D is an I/O map of an I/O stable DLS Φ having
a (J, S)-inner-outer factorization D = NX . Then outer factor X is outer with
a bounded inverse and S−1 ∈ L(U) if and only if Φ is J-coercive.

Proof. To prove the “if” part, assume that Φ is J-coercive. For a (J, S)-inner-
outer factorization D = NX we have π̄+D∗JDπ̄+ = π̄+X ∗SX π̄+. The outer
factor X is an I/O map of an I/O stable DLS, say Φ′. Trivially, Φ is J-coercive
if and only if Φ′ is S-coercive. Proposition 69 implies that the Toeplitz operator
X π̄+ is coercive. Thus range (X π̄+) is closed and X π̄+ is injective on �2(Z+; U).
Because X is outer, range (X π̄+) = range (X π̄+) = �2(Z+; U), and it follows
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that X is outer with a bounded inverse. Because S = (X ∗)−1 (D∗JD)X−1 as
a static operator, and all the bounded operators (X ∗)−1, D∗JD and X−1 are
boundedly invertible, so is S, as a static operator. It immediately follows from
Proposition 6 that S−1 ∈ L(U). The “only if” part is given by claim (i) of
Lemma 84.
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2.4 Critical control and state feedback

Let J ∈ L(Y ) be a cost operator, an Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable and J-
coercive DLS. In this section, we give necessary and sufficient conditions for a
class of critical control problems to be solvable by state feedback. This class
is associated to Φ and J as in Section 2.2, but now we additionally require
that we have a bounded critical one step feedback operator Kcrit = π0Kcrit :
dom(C) → H , see part (ii) of Definition 70. Here dom(C) is given the norm of
H . We remark that this additional well-posedness requirement is imposed on
the common structure of Φ and J , and not on these objects separately. The
formulations and proofs of the results are divided into two Lemmas 87 and 88,
and then stated in Theorem 89. Analogous considerations for the continuous
time well-posed linear systems can be found in [85].

Let Φ be an I/O stable and J-coercive DLS, such that well-posedness assumption
Kcrit ∈ L(dom (C, H)) holds. Because dom(C) = H by our standing assump-
tion, we may (and always will) assume that Kcrit ∈ L(H) because a unique
extension exists, by the continuity and the completeness of H . Then, the crit-
ical closed loop semigroup generator Acrit, satisfying Acrit = A + BKcrit on
dom(C), can also be extended to a bounded operator on H , see Lemma 75. By
Lemma 74, we see that the closed loop feedback map Kcrit is a valid observ-
ability map for any DLS whose semigroup generator is Acrit, provided that no
trouble emerges with the right hand column of the DLS in question. So as to
the closed loop critical observability map Ccrit = C + DKcrit, the same holds.

After these preliminary considerations, we are led to ask the following question:
Given a cost operator J and an I/O stable and J-coercive DLS Φ, is there an I/O
stable and outer feedback pair [K,F ] for Φ such that the closed loop extended
DLS Φext

� := [Φ, [K,F ]] outputs the critical state trajectory {xcrit
j (x0)}j≥0, crit-

ical output sequence ỹcrit(x0) and critical control sequence ũcrit(x0)? Here
x0 ∈ dom (C) is an arbitrary initial state of Φ, the sequences {xcrit

j (x0)}j≥0,
ỹcrit(x0) and ũcrit(x0) are given by Lemma 71, and the external input sequence
to the feedback loop is ṽ = 0. The feedback connection and the signals are
illustrated in the following feedback diagram.

Aj Bτ∗j[
C
K

] [
D
F

]�
x0

�x
crit
j (x0)

�̃y
crit(x0)

�̃ucrit(x0) �

�
+

�
�� ṽ = 0

Definition 86. Let J ∈ L(Y ) be a cost operator and Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable J-coercive DLS.
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If the critical state trajectory {xcrit
� (x0)} and the critical sequences ũcrit(x0) and

ỹcrit(x0) are given by the signals of the closed loop extended DLS

Φext
� := [Φ, [K,F ]]� =

 Aj + Bτ∗j(I − F)−1K Bτ∗j(I − F)−1[
C + D(I − F)−1K

(I − F)−1K

] [
D(I − F)−1

(I − F)−1 − I

]  ,

for some I/O stable and outer feedback pair [K,F ] as explained above, we say
that the critical control problem (associated to Φ and J) is solvable by state
feedback. Any such feedback pair [K,F ] is called a critical feedback for Φ and J .
Any such Φext

� is called a critical closed loop DLS.

We remark that even if a critical feedback pair exists, it (and consequently, a
critical closed loop DLS) is not unique. In the following Lemma, we associate
a critical feedback pair to each (J, S)-inner-outer factorization D = NX of the
I/O map. Such factorizations are parameterized in Proposition 83.

Lemma 87. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable DLS. Assume that

(i) D has a (J, S)-inner-outer factorization D = NX for some boundedly
invertible S ∈ L(U), such the outer factor X is outer with a bounded
inverse, and

(ii) Kcrit := π0Kcrit : dom(C) → U is bounded.

Then the following holds:

(i) Φ is J-coercive.

(ii) There is a unique I/O stable and outer feedback pair [K,F ] for Φ, such
that the mappings K : H → Seq(U) and F : Seq(U) → Seq(U) satisfy

Kx0 = −S−1π̄+N ∗JCx0 for all x0 ∈ dom (C) ,(2.27)

F ũ = (I − X )ũ for all ũ ∈ �2(Z+; U).(2.28)

(iii) The critical control problem, associated to Φ and J , is solvable by state
feedback. Furthermore, [K,F ] is a critical feedback pair.

(iv) Assume, in addition, that Φ is output stable. Then [K,F ] is a stable
feedback pair for Φ; i.e. K : H → �2(Z+; U) is bounded. Furthermore, the
requirement Kcrit ∈ L(dom (C) , U) need not explicitly assumed.
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Proof. Claim (i) is an implication of Corollary 85. In order to prove claim (ii)
we first show that equations (2.27) and (2.28) in fact uniquely define a feedback
pair [K,F ] for Φ. This is nontrivial because the right hand side of equation
(2.27) does not make sense for x0 ∈ H \ dom (C) which is a nonempty set if Φ
is not output stable. However, an observability map of any DLS is defined on
all of the state space, not just on a dense subset (here dom (C)) of it.

Define the linear operator K′ := −S−1π̄+N ∗JC on dom (C). Define the lin-
ear operator K := π0K′ : dom (C) → U . By claim (i) of Proposition 46, the
feed-through operator X := π0Xπ0 ∈ L(U) has a bounded inverse X−1 =
π0X−1π0 ∈ L(U). Now we obtain on dom (C) the identity

X−1K = π0X−1π0K′ = π0X−1K′

= −π0X−1S−1π̄+N ∗JC = π0Kcrit = Kcrit,

where the fourth equality is by claim (iii) of Lemma 84. Because Kcrit :
dom(C) → U is bounded by assumption, so is K : dom (C) → U . Because of
our standing assumption dom (C) = H , the operator K has a unique bounded
extension to an element of L(H ; U), also denoted by K.

On the other hand, we have on dom(C)

K′A = −S−1π̄+N ∗JCA = −S−1π̄+N ∗π̄+τ∗JC = −S−1π̄+N ∗τ∗JC
= −S−1π̄+τ∗N ∗JC = −π̄+τ∗(S−1π̄+N ∗JC) = π̄+τ∗K′,

where we have used the fact that N ∗ is anticausal and shift-invariant, and S
is regarded as a static operator on �2(Z; U). It now follows for all j ≥ 0 and
x0 ∈ dom(C) that

KAjx0 = π0K′Ajx0 = π0τ
∗jK′x0 = τ∗jπjK′x0,

and thus K′x0 = {KAjx0}j≥0 =: Kx0. Here K := Cφ for any DLSs of the form
φ = ( A B

K F ), where F ∈ L(U) is arbitrary. In particular, K is a closed extension
of K′, and dom(C) ⊂ dom(K). Because I − X is shift-invariant and causal on
�2(Z; U) ∩ Seq(U), it can be uniquely extended to a shift-invariant and causal
linear mapping F : Seq(U) → Seq(U), by using the causality. We now proceed
to show that the quadruple of mappings

[
Aj Bτ∗j

K F
]

can be regarded as a DLS.

The output operator candidate for
[

Aj Bτ∗j

K F
]

is the familiar K := π0K, which
belongs to L(H ; U) as discussed above. Also F := π0Fπ0 = π0(I − X )π0 =
I − X ∈ L(U), where range (π0) and U have been identified, and I denotes the
identity operator on U . By construction, K is an observability map of the DLS
( A B

K F ), which clearly equals
[

Aj Bτ∗j

K F
]

if the latter is a DLS at all. Finally, we
have on Seq−(U) ⊂ �2(Z−; U)

KB = −S−1π̄+N ∗JCB = −S−1π̄+N ∗(π̄+JDπ−)

= −S−1π̄+N ∗JDπ− = −S−1π̄+(N ∗JN )Xπ−
= −S−1Sπ̄+Xπ− = −π̄+Xπ− = −π̄+(I − F)π− = π̄+Fπ−.
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We have now shown that
[

Aj Bτ∗j

K F
]
is a DLS. It is I/O stable, because X is an I/O

map of an I/O stable DLS, by assumption. Because also dom (C) ⊂ dom(K), it
follows that the pair [K,F ] is an I/O stable feedback pair for Φ. It is an outer
feedback pair because (I − F)−1 = X−1 is an I/O map of an I/O stable DLS.
Now claim (ii) follows.

The proof of claim (iii) is now rather straightforward. The closed loop extended
DLS Φext

� :=
[
Φ, [K,F ]

]
� is I/O stable by claim (ii) of Theorem 48, and it is

given by

Φext
� =

 Aj
� B�τ∗j[

C�
K�

] [
D�
F�

]
:=

 Aj + Bτ∗j(I − F)−1K Bτ∗j(I − F)−1[
C + D(I − F)−1K

(I − F)−1K

] [
D(I − F)−1

(I − F)−1 − I

]  .

For all x0 ∈ dom (C), it clearly follows that

K�x0 = (I − F)−1Kx0 = −X−1S−1π̄+N ∗JCx0 = Kcritx0 = ũcrit(x0),

by claim (iii) of Lemma 84 and Lemma 71. Then, also

A�jx0 = Ajx0 + Bτ∗jKcritx0 = (Acrit)jx0 = xcrit
j (x0),

and

C�x0 = Cx0 + DKcritx0 = Ccritx0 = ỹcrit(x0),

by Lemmas 71 and 72. This verifies claim (iii). Claim (iv) is trivial, and the
proof of this lemma is complete.

Let us now consider more carefully the case when the DLS Φ, in addition,
is output stable. In this case dom (C) = H and the linear operator K′ :=
−S−1π̄+N ∗JC : dom (C) → �2(Z+; U) equals its (bounded) extension K : H →
�2(Z+; U) that has been constructed in the previous proof. Now, the corre-
sponding critical feedback pair is given by

[K,F ] =
[
−S−1π̄+N ∗JC, I − X

]
where X is regarded as the linear extension (by causality) of X|

(
�2(Z; U) ∩ Seq(U)

)
to all of Seq(U). The critical closed loop DLS Φext

� = [Φ, [K,F ]]� is given by

Φext
� =

 Aj − BX−1τ∗jS−1π̄+N ∗JC BX−1τ∗j[
C − NS−1π̄+N ∗JC
−X−1S−1π̄+N ∗JC

] [
N

X−1 − I

] (2.29)

=

 (Acrit)j BX−1τ∗j[
Ccrit

Kcrit

] [
N

X−1 − I

]  .



2.4. CRITICAL CONTROL AND STATE FEEDBACK 95

As we have noted earlier, Proposition 83 gives a parameterization for the critical
feedback pairs. In fact, all the critical feedback pairs are parameterized this way
because the previous lemma has a converse.

Lemma 88. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable DLS. Assume that

(i) Φ is J-coercive, and

(ii) the critical control problem, associated to Φ and J , is solvable by state
feedback.

Then the following holds:

(i) There exists a boundedly invertible S ∈ L(U) such that D = NX is a
(J, S)-inner-outer factorization, where the outer factor X is outer with a
bounded inverse. One such factorization is characterized by

X ũ = (I − F) ũ for all ũ ∈ �2(Z; U) ∩ Seq(U),(2.30)

N ũ = DX−1ũ for all ũ ∈ �2(Z; U) ∩ Seq(U),(2.31)

where [K,F ] is an I/O stable and outer, critical feedback pair for Φ.

(ii) Kcrit := π0Kcrit : dom (C) → U is bounded.

Proof. Much of the work in the proof of claim (i) lies in making various exten-
sions and restrictions of linear operators. Let [K,F ] be an I/O stable and outer,
critical feedback pair for the DLS Φ. Then equation (2.30) defines a densely
defined, bounded linear operator X : �2(Z; U) ∩ Seq(U) → �2(Z; U) ∩ Seq(U).
By density, X has a bounded extension to all of �2(Z; U), denoted by X̄ . The
extended operator X̄ is shift-invariant and causal, by a simple continuity argu-
ment.

Because the feedback pair [K,F ] is assumed to be outer, (I −F)−1 : Seq(U) →
Seq(U) exists, and it is an I/O map of an I/O stable DLS. It follows that
G := (I −F)−1 : �2(Z; U) ∩ Seq(U) → �2(Z; U) ∩ Seq(U) is a bounded, densely
defined operator on �2(Z; U). By the definitions of X̄ and G,

GX̄ ũ = X̄Gũ = ũ(2.32)

for all ũ ∈ �2(Z; U) ∩ Seq(U). As before, G has a bounded extension to all
of �2(Z; U), denoted by Ḡ. By continuity of X̄ and Ḡ, identity (2.32) holds
for the extended Ḡ and for all ũ ∈ �2(Z; U). Thus the bounded inverse X̄−1 :
�2(Z; U) → �2(Z; U) exists and equals Ḡ. Because X̄−1 coincides with the I/O
map (I − F)−1 on the dense set �2(Z; U) ∩ Seq(U), it follows that X̄−1 is
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shift-invariant and causal, by continuity. We can now define N := DX̄−1 as a
bounded operator on �2(Z; U). From now on, we write X in place of X̄ , too.
Clearly, such N and X satisfy equations (2.30) and (2.31).

It remains to be shown that D = NX is a (J, S)-inner-outer factorization for
some S ∈ L(U). Because Φ is I/O stable, by Proposition 82 it is sufficient to
show that X is an outer S-spectral factor of D∗JD for some S ∈ L(U); i.e.

D∗JD = X ∗SX .(2.33)

Let the bounded shift-invariant operator Z : �2(Z; U) → �2(Z; U) be defined
through its adjoint

Z∗ := D∗JDX−1 = D∗JN .

We next show that Z∗ is anticausal; i.e. π̄+Z∗π− = 0.

The critical closed loop DLS Φext
� = [Φ, [K,F ]], associated to the critical feed-

back pair [K,F ], is given by

Φext
� =

 Aj + Bτ∗j(I − F)−1K B(I − F)−1τ∗j[
C + D(I − F)−1K

(I − F)−1K

] [
D(I − F)−1

(I − F)−1 − I

]  .

Because Φext
� is a critical closed loop DLS, we have a unique critical output

sequence for all x0 ∈ dom(C), given by

ỹcrit(x0) =
(
C + D(I − F)−1K

)
x0.(2.34)

Let ũ ∈ dom(B) := Seq−(U) be arbitrary. Then π−(I − F)−1π−ũ ∈ dom (B)
by causality, and because always B = Bπ− there exists

x(ũ) := B(I − F)−1π−ũ = Bπ−(I − F)−1π−ũ ∈ range (B) .

We have range (B) ⊂ dom(C), by Lemma 35 and I/O stability of Φ. Thus
x(ũ) ∈ dom (C) for any ũ ∈ dom (B), and we can set x0 = x(ũ) in equation
(2.34). This gives for the critical output sequence the expression

ỹcrit(x(ũ)) =
(
C + D(I − F)−1K

)
·
(
B(I − F)−1

)
π−ũ(2.35)

= π̄+D(I − F)−1π−ũ = π̄+DX−1π−ũ = π̄+Nπ−ũ.

Here the third equality follows from claim (iv) of Lemma 12 because(
C + D(I − F)−1K

)
is a component of the observability map and B(I−F)−1 is

the controllability map of the DLS Φext
� . The third equality holds because π−ũ ∈

Seq−(U) ⊂ �2(Z−; U) and X−1 coincides with (I −F)−1 on �2(Z; U)∩Seq(U).
Because x(ũ) ∈ dom (C), we have by formula (2.4) of Lemma 67

π̄+D∗Jỹcrit(x(ũ)) = 0.(2.36)
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Now the equations (2.35) and (2.36) together give for all ũ ∈ dom (B)

π̄+D∗JNπ−ũ = π̄+Z∗π−ũ = 0,

by the anticausality of D∗. Because dom (B) is dense in �2(Z−; U), it follows
that the bounded shift-invariant operator Z∗ is anticausal.

Because D∗JD is self-adjoint, we have

D∗JD = Z∗X = X ∗Z,

or equivalently,

(X ∗)−1D∗JDX−1 = (ZX−1)∗ = ZX−1.(2.37)

Because (ZX−1)∗ is anticausal and ZX−1 is causal, it follows that
(X ∗)−1D∗JDX−1 is a static operator. By Proposition 6, it is a componen-
twise multiplication by a self-adjoint operator S ∈ L(U). Thus the spectral
factorization (2.33) follows.

We have now shown that X is an outer stable S-spectral factor of D∗JD. Propo-
sition 82 implies that D = NX is a (J, S)-inner-outer factorization, where the
outer factor X is outer with a bounded inverse. The sensitivity operator S has
a bounded inverse S−1 ∈ L(U), by the assumed J-coercivity of Φ and Corollary
85. This completes the proof of claim (i). The second claim (ii) holds because
for all x0 ∈ dom (C)

Kcritx0 = π0Kcritx0 = π0(I − F)−1Kx0 = π0X−1π0 · π0Kx0

where the feed-through part of the outer factor has a bounded inverse, by Propo-
sition 46, and π0K : H → U is bounded, by the definition of the feedback pair.
This completes the proof.

Now we are ready to present the first main result of this chapter. Under certain
conditions, the (J, S)-inner-outer factorization problem of the I/O map D of Φ
is equivalent with the problem of solving the critical control problem, associated
to Φ and J , by state feedback.

Theorem 89. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable DLS. Then the following conditions (i) and (ii) are equivalent:

(i) a) Φ is J-coercive, and

b) the critical control problem, associated to Φ and J , is solvable by
state feedback. The critical feedback pair [K,F ] for Φ is I/O stable
and outer.
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(ii) a) There is a self-adjoint boundedly invertible operator S ∈ L(U) such
that D has a (J, S)-inner-outer factorization D = NX , where the
outer factor X is outer with a bounded inverse, and

b) π0N ∗JC ∈ L(dom (C) ; U), where dom (C) is given the norm of H.

Furthermore, if the above conditions hold, then Kcrit ∈ L(dom (C) ; U), and
both the open loop extended DLS Φext :=

[
Φ, [K,F ]

]
and the critical closed loop

extended DLS Φext� are I/O stable. Assume, in addition, that Φ is output stable.
Then the critical feedback pair [K,F ] is stable and outer, both Φext and Φext

� are
output stable, and part ( b)) of condition (ii) need not be stated explicitly.

Proof. The implication (i) ⇒ (ii) is given in Lemma 88. We prove the converse
implication (ii) ⇒ (i). By claim (iii) of Lemma 84 and causality of X−1 we
have

Kcrit = π0Kcrit = −π0X−1π0S
−1 · π0N ∗JC

where π0X−1π0 ∈ L(U) is bounded with bounded inverse, by claim (i) of Propo-
sition 46. It follows that Kcrit : dom (C) → U is bounded if and only if π0N ∗JC
is. Thus, condition (ii) implies condition (i) of Lemma 87. But now condition
(i) follows, by Lemma 87. The I/O stability of Φext and Φext� follows from The-
orem 48. The additional claim involving the output stability of Φ is a trivial
consequence of Theorem 48 and the fact that an observability map is bounded
if and only if its domain is all of the state space.

Further stability results for the critical closed loop DLS Φext
� and its semigroup

generator Acrit are given by Theorems 50 and 51.
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2.5 Weak algebraic Riccati equation

Let J ∈ L(Y ) be a cost operator and Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable and
J-coercive DLS. In the remaining part of this chapter, a weak form of a discrete
time algebraic Riccati equation is introduced. Such an equation is associated
to the minimax control problem that has been introduced in Section 2.2. More
precisely, we show that the critical cost sesquilinear form P crit

0 ( , ), as introduced
in Definition 76, satisfies an algebraic Riccati equation, provided that D has a
(J, S)-inner-outer factorization. A converse result to this is given in Section 2.6.

Definition 90. Let J ∈ L(Y ) be a cost operator, and φ = ( A B
C D ) be an I/O

stable DLS. Let P ( , ) : H × H ⊃ dom(C) × dom (C) → C denote a conjugate
symmetric sesquilinear form. Then the conjugate symmetric sesquilinear form
ΛP ( , ) on U × U defined by

ΛP (u0, w0) := 〈Du0, JDw0〉Y + P (Bu0, Bw0)

is the indicator of the sesquilinear form P ( , ), associated to DLS φ and cost
operator J .

The indicator ΛP ( , ) is well-defined on the whole of U × U . The possible
problem would arise if we had to go outside the domain dom(C) × dom (C)
of P ( , ) for some u0, w0 ∈ U . However, I/O stability of φ implies the inclusion
BU ⊂ dom (C), see Lemma 35. Even more can be said about the critical
sesquilinear form P crit

0 ( , ) of Definition 76.

Proposition 91. Let J ∈ L(Y ) be a cost operator. Let φ = ( A B
C D ) =

[
Aj Bτ∗j

C D
]

be an I/O stable and J-coercive DLS. By P crit
0 ( , ) denote the critical sesquilin-

ear form as defined in Definition 76. Then there exists a unique self-adjoint
operator ΛP crit

0
∈ L(U) such that the indicator sesquilinear form ΛP crit

0
( , ) can

be represented by

ΛP crit
0

(u0, w0) =
〈
ΛP crit

0
u0, w0

〉
U

,

where

ΛP crit
0

:= D∗JD + (CcritB)∗J(CcritB).

Proof. The claim immediately follows, once we remember that the I/O stability
of φ implies that CB ∈ L(U, �2(Z+; Y )). Then

KcritB = −(π̄+D∗JDπ̄+)−1π̄+D∗JCB,

is bounded, and so is CcritB =
(
C + DKcrit

)
B, too. This makes it possible to

speak about (CcritB)∗ as an adjoint of a bounded operator. The self-adjointness
and uniqueness of ΛP crit

0
is clear.
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The operator ΛP crit
0

is the critical indicator operator, associated to Φ and J . In
the following lemma, we couple the critical sesquilinear form P crit

0 ( , ), its indi-
cator operator ΛP crit

0
and the critical one step feedback operator Kcrit together.

Lemma 92. Let J ∈ L(Y ) be a cost operator. Let Φ = ( A B
C D ) be an I/O stable

and J-coercive DLS, such that Kcrit := π0Kcrit : dom (C) → U is bounded.
Let the critical indicator operator ΛP crit

0
be given by Proposition 91. Then the

critical sesquilinear cost P crit
0 ( , ) satisfies the equations

P crit
0 (Acritx0, Bw0) +

〈
Ccritx0, JDw0

〉
Y

= 0,(2.38)

P crit
0 (Ax0, Bw0) +

〈
(ΛP crit

0
Kcrit + D∗JC)x0, w0

〉
U

= 0,(2.39)

ΛP crit
0

Kcritx0 = −
(
(CcritB)∗JCcritA − D∗JC

)
x0,(2.40)

for all x0 ∈ dom (C) and w0 ∈ U . Furthermore,

P crit
0 (Ax0, Ax1) − P crit

0 (x0, x1)(2.41)

=
〈
((Kcrit)∗ΛP crit

0
Kcrit − C∗JC)x0, x1

〉
H

for all x0, x1 ∈ dom (C), where Acrit = A + BKcrit and Ccrit := C + DKcrit =
π0Ccrit.

Proof. In order to establish equation (2.38), we consider the following perturbed
critical control sequences for arbitrary x0 ∈ dom (C), w̃ = {wj}j≥0 ∈ �2(Z+; U)
and ε ∈ R

Kcritx0 + ε
(
π0w̃ + τKcritBw0

)
= π0

(
Kcritx0 + εw̃

)
+ τ

(
π̄+τ∗Kcritx0 + KcritBεw0

)
= π0

(
Kcritx0 + εw̃

)
+ τKcrit

(
Acritx0 + Bεw0

)
= π0

(
Kcritx0 + εw̃

)
+ τKcrit

(
Ax0 + B(Kcritx0 + εw0)

)
= π0

(
ũcrit(x0) + εw̃

)
+ τũcrit

(
Ax0 + B(ucrit

0 (x0) + εw0)
)

where the second equality is by Lemma 74 and the critical control sequence
satisfies ũcrit(x) = {ucrit

j (x)}j≥0 = Kcritx for all x ∈ dom(C), by Lemma 71.
This gives us the identity

J
(
x0,Kcritx0 + ε(π0w̃ + τKcritBw0)

)
(2.42)

=
〈
Cx0 + D

(
ucrit

0 (x0) + εw0

)
, J(−, ,−)

〉
Y

+ J
(
Ax0 + B

(
ucrit

0 (x0) + εw0

)
, ũcrit

(
Ax0 + B(ucrit

0 (x0) + εw0)
))

=
〈
Ccritx0 + εDw0, J(−, ,−)

〉
Y

+ P crit
0

(
Ax0 + B(ucrit

0 (x0) + εw0), (−, ,−)
)
,

=
〈
Ccritx0 + εDw0, J(−, ,−)

〉
Y

+ P crit
0

(
Acritx0 + εBw0, (−, ,−)

)
,
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where the second equality follows because Ccritx0 = Cx0 + DKcritx0 = Cx0 +
Ducrit

0 (x0), and equation (2.17) of Proposition 78 holds.

Now we Frechet differentiate identity (2.42) with respect to ε at ε = 0 where
w̃ := {wj}j≥0 ∈ �2(Z+; U) is arbitrary. This Frechet derivative must equal zero
for any w̃, by the definition of the critical control ũcrit(x0) = Kcritx0 appearing
on the left hand side. We obtain the equality

Re
(
P crit

0 (Acritx0, Bw0) +
〈
Ccritx0, JDw0

〉
Y

)
= 0.

By replacing x0 with ix0, we see that this is true for the imaginary part, as well.
Equation (2.38) now follows.

The proof of equation (2.39) is based upon equation (2.38). We have by a
straightforward calculation, starting from the definition of the indicator operator
ΛP crit

0

ΛP crit
0

(Kcritx0, w0) := P crit
0 (BKcritx0, Bw0) +

〈
DKcritx0, JDw0

〉
Y

= P crit
0 (Acritx0, Bw0) +

〈
Ccritx0, JDw0

〉
Y

− P crit
0 (Ax0, Bw0) − 〈D∗JCx0, w0〉Y .

This proves that equation (2.39) is equivalent to equation (2.38).

Equation (2.40) follows immediately from equation (2.39) and the definition of
P crit

0 ( , ). The proof of equation (2.41) is based on Lemma 74 and the first part
of this lemma. Lemma 74 implies

P crit
0 (Acritx0, A

critx1) =
〈
CcritAcritx0, JCcritAcritx1

〉
�2(Z+;Y )

=
〈
π̄+τ∗Ccritx0, π̄+τ∗JCcritx1

〉
�2(Z+;Y )

=
〈
Ccritx0, JCcritx1

〉
�2(Z+;Y )

−
〈
Ccritx0, JCcritx1

〉
Y

= P crit
0 (x0, x1) −

〈
Ccritx0, JCcritx1

〉
Y

.

We conclude that that

P crit
0 (Acritx0, A

critx1) − P crit
0 (x0, x1) +

〈
Ccritx0, JCcritx1

〉
Y

= 0(2.43)

for all x0, x1 ∈ dom(C). Now, a straightforward calculation, based on the
identities Acrit = A + BKcrit and Ccrit = C + DKcrit, gives

P crit
0 (Ax0, Ax1) − P crit

0 (x0, x1) + 〈C∗JCx0, x1〉H
= P crit

0 (Acritx0, A
critx1) − P crit

0 (x0, x1) +
〈
Ccritx0, JCcritx1

〉
Y

− P crit
0 (BKcritx0, A

critx1) − P crit
0 (Ax0, BKcritx1)

−
〈
DKcritx0, JCcritx1

〉
Y
−
〈
Cx0, JDKcritx1

〉
Y

= −
(
P crit

0 (BKcritx0, A
critx1) +

〈
JDKcritx0, C

critx1

〉
Y

)
−
(
P crit

0 (Ax0, BKcritx1) +
〈
D∗JCx0, K

critx1

〉
Y

)
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where equation (2.43) has been used. By equation (2.38), the (conjugate of)
first term on the right hand side vanished. The second term equals

P crit
0 (Ax1, BKcritx0) +

〈
D∗JCx1, K

critx0

〉
U

= −
〈
(Kcrit)∗ΛP crit

0
Kcritx1, x0

〉
U

by equation (2.39). This completes the proof.

Under certain conditions, the indicator operator ΛP crit
0

has a bounded inverse in
L(U). At the same time we get a connection between the (J, S)-inner-outer fac-
torization of D and the indicator operator. This is the contents of the following
lemma.

Lemma 93. Let J ∈ L(Y ) be a cost operator, and Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D )

be an I/O stable DLS. Assume that the equivalent conditions of Theorem 89
are satisfied. By P crit

0 ( , ) denote the critical cost sesquilinear form. Then the
indicator operator ΛP crit

0
∈ L(U) has a bounded inverse.

Proof. Because the equivalent conditions of Theorem 89 hold, it follows that Φ
is J-coercive and the critical cost sesquilinear form P crit

0 ( , ) of Definition 76 is
defined. By Theorem 89, there is an (J, S′)-inner-outer factorization D = N ′X ′,
where the outer factor X ′ is outer with a bounded inverse and S′−1 ∈ L(U). By
claim (i) of Proposition 46, the feed-forward part X ′ = π0X ′π0 has a bounded
inverse. Choosing E = X ′ in Proposition 83, we see that there is another (J, S)-
inner-outer factorization D = NX , where the outer factor X ′ is outer with a
bounded inverse and its feed-forward part satisfies π0X ′π0 = I; here range (π0)
and U are identified, and I denotes the identity operator in L(U). Finally, the
sensitivity operator of the factorization is given by S = X ′∗S′X ′, and this is
boundedly invertible because S′ is.

Let [K,F ] be the critical feedback pair as in the proof of Lemma 87, correspond-
ing to the above constructed factorization D = NX . By Φext� = [Φ, [K,F ]]�
denote the critical closed loop DLS. Let ũ = {uj}j≥0 ∈ �2(Z+; U) be arbitrary.
By the basic properties of the DLS, the impulse response of the I/O map of Φext�
is given by(

D(I − F)−1

(I − F)−1 − I

)
π0ũ(2.44)

=
(

D(I − F )−1

(I − F )−1 − I

)
π0ũ + τ

(
C + D(I − F)−1K

(I − F)−1K

)
B(I − F )−1u0

where (K, F ) = [K,F ] is the critical feedback pair in difference equation form,
and we have used Lemma 26 to find the feed-through operator of the closed
loop DLS Φext

� . In fact, the feed-through operator of the feedback pair satisfies
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F = 0 because F = I − X and we have normalized the feed-through operator
X = π0Xπ0 of the outer factor to the identity operator on U .

By Lemma 35 Bu0 ∈ dom(C), and trivially π0ũ ∈ �2(Z; U) ∩ Seq(U). Because
Φext� is a critical closed loop DLS, it follows that

(I − F)−1Kx0 = Kcritx0,
(
C + D(I − F)−1K

)
x0 = Ccritx0,

for all x0 ∈ dom (C), and in particular for x0 = Bu0. Similarly, Fw̃ = (I −X )w̃
and (I −F)−1w̃ = X−1w̃ for w̃ ∈ �2(Z; U)∩Seq(U), and in particular w̃ = π0ũ.
The impulse response formula (2.44) for Φext� takes now the form(

N
X−1 − I

)
π0ũ =

(
D
0

)
π0ũ + τ

(
Ccrit

Kcrit

)
Bu0.(2.45)

We need only the lower row of equation (2.45) which implies

X−1π0ũ = π0ũ + τKcritBu0 = π0ũ + τũcrit(Bu0)(2.46)

for all ũ = {uj}j≥0 ∈ �2(Z+; U).

By using the spectral factorization D∗JD = X ∗SX , equation (2.46) implies

J(0, π0ũ + τũcrit(Bu0))(2.47)

=
〈
D∗JD(π0ũ + τũcrit(Bu0)), (−, ,−)

〉
�2(Z+;U)

=
〈
SX (π0ũ + τũcrit(Bu0)),X (−, ,−)

〉
�2(Z+;U)

=
〈
SX (X−1π0ũ),X (X−1π0ũ)

〉
�2(Z+;U)

= 〈Su0, u0〉U

On the other hand, for all ũ = π0ũ we have

J(0, π0ũ + τũcrit(Bu0))(2.48)

= 〈Du0, JDu0〉Y + P crit
0 (Bu0, Bu0) =: ΛP crit

0
(u0, u0).

Now the combination of equations (2.47) and (2.48) gives

〈Su0, u0〉U = ΛP crit
0

(u0, u0) =
〈
ΛP crit

0
u0, u0

〉
U

for all u0 ∈ U , where S ∈ L(U) is self-adjoint with a bounded inverse. The last
equality is by Proposition 91. By [79, Theorem 12.7], ΛP crit

0
= S, and is thus

boundedly invertible.

We proceed to discuss the critical feedback pair [K,F ] = (K, F ), associated to
the (J, S)-inner-outer factorization D = NX , where the feed-through part of the
outer factor X is normalized to identity, as has been done in the proof of Lemma
93. We have already indicated that the feed-forward operator of this feedback
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pair satisfies F = 0. By comparing the formula for Kcrit in claim (iii) of Lemma
84 and equation (2.27) of Lemma 87 for the observability map K of the critical
feedback pair, we see that the output operator of the critical feedback pair
satisfies K = Kcrit = π0Kcrit because π0Xπ0 = I. Thus the critical feedback
pair, associated to this specially normalized factorization, satisfies [K,F ] =(
Kcrit, 0

)
.

The proof of Lemma 93 reveals the system theoretic meaning of the indicator
operator ΛP crit

0
, too. Let ũ = {uj}j≥0 ∈ �2(Z+; U) be arbitrary. Cost of the

(external perturbation) impulse π0ũ to the critical closed loop DLS Φcrit� =
[Φ, [K,F ]]�, initially resting at zero initial state x0 = 0, is given by

J(0, π0ũ + τũcrit(Bu0)) =
〈
ΛP crit

0
u0, u0

〉
U

because x1 = Bu0. Of course, one can see this identity from the definition of
ΛP crit

0
and equation (2.17), too. Note that the indicator ΛP crit

0
does not depend

on the particular (J, S)-inner-outer factorization D = NX that has been used to
form the critical feedback pair. The sensitivity operator S is generally different
for different (J, S)-inner-outer factorizations. Always

ΛP crit
0

= X∗SX

where X = π0Xπ0. If we normalize the outer factor by requiring π0Xπ0 = I,
we get the identity ΛP crit

0
= S.

Now we are ready to approach the main result of this section, namely Lemma
96. We show there that the critical sesquilinear form P crit

0 ( , ) satisfies the weak
discrete time Riccati equation, defined as follows.

Definition 94. Let J ∈ L(Y ) be a cost operator. Let φ = ( A B
C D ) be a strongly

H2 stable DLS. We say that the conjugate symmetric sesquilinear form P ( , ) :
dom (C)× dom(C) → C is a solution of the weak discrete time Riccati equation
(WDARE), associated to φ and J , if there exists QP ∈ L(H ; U) and a boundedly
invertible self-adjoint ΛP ∈ L(U) such that

P (Ax, Ax′) − P (x, x′) + 〈C∗JCx, x′〉H =
〈
Q∗

P Λ−1
P QP x, x′〉

H

〈ΛP u, u′〉U = 〈D∗JDu, u′〉U + P (Bu, Bu′)
〈QP x′′, u′′〉U = −〈D∗JCx′′, u′′〉U − P (Ax′′, Bu′′)

(2.49)

for all u, u′, u′′ ∈ U and x, x′, x′′ ∈ dom(C). The operator ΛP is the indicator
of the solution P ( , ). The linear operator KP := Λ−1

P QP ∈ L(H ; U) is the
feedback operator of the solution P ( , ).

By Proposition 34, Lemma 35 and the strong H2 stability requirement, each
of the terms P (Ax, Ax′), P (Bu, Bu′) and P (Ax′′, Bu′′) that appear in the
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WDARE are well-defined complex numbers. Given φ = ( A B
C D ), J and P ( , ), it

is clear that at most one bounded operator can serve as the indicator operator
ΛP in equation (2.49). Because of our standing assumption dom (C) = H , the
same holds also for the operator QP , too. We conclude that the indicator ΛP

and the feedback operator KP of any solution P ( , ) are uniquely defined.

In general, WDARE (2.49) has a plenty of solutions. We need to classify these
solutions.

Definition 95. Let J ∈ L(Y ) be cost operator, and φ = ( A B
C D ) be an I/O stable

DLS. Let P ( , ) be a solution of WDARE (2.49).

(i) The solution P ( , ) satisfies the ultra weak residual cost condition, if

P (Ajx0, A
jx0) → 0 as j → ∞

for all x0 ∈ range (Bφ).

(ii) The DLS

φP :=
(

A B
−KP I

)
(2.50)

is the spectral DLS of the solution P ( , ), associated to φ and J . Here KP

is the feedback operator of the solution P ( , ), given in Definition 94.

(iii) The solution P ( , ) critical, if it satisfies the ultra weak residual cost con-
dition, the spectral DLS φP is I/O stable, and the I/O map DφP is outer
with a bounded inverse.

Now the main result of this section:

Lemma 96. Let J ∈ L(Y ) be self-adjoint, and Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D ) be

an I/O stable DLS. Assume that the equivalent conditions of Theorem 89 are
satisfied, and by P crit

0 ( , ) denote the critical sesquilinear form of Definition 76.

Then P crit
0 ( , ) is a critical solution of the weak discrete time algebraic Riccati

equation of Definition 94.

Proof. Because the equivalent conditions of Theorem 89 hold, it follows that
Φ is J-coercive and P crit

0 ( , ) is defined. By Definition 90, Proposition 91 and
Lemma 93 there is an unique self-adjoint, boundedly invertible operator, namely
the critical indicator ΛP crit

0
, such that〈

ΛP crit
0

u, u′
〉

U
= 〈D∗JDu, u′〉U + P crit

0 (Bu, Bu′)
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is satisfied. Because the conditions of Theorem 89 hold, the one step feedback
operator Kcrit = π0Kcrit : dom (C) → U is bounded, and identifiable to its
bounded extension Kcrit ∈ L(H ; U). Define the operator QP crit

0
:= ΛP crit

0
Kcrit ∈

L(H ; U). Equations (2.39) and (2.41) of Lemma 92 imply that P crit
0 ( , ) is a

solution of WDARE (2.49).

It remains to be shown that P crit
0 ( , ) is a critical solution. By Lemma 35,

range (B) ⊂ dom (C). By Proposition 77, it follows that P crit
0 ( , ) satisfies the

ultra weak residual cost condition of part (i) of Definition 95. It remains to
show that the spectral DLS

φP crit
0

=
(

A B
−KP crit

0
I

)
=
(

A B
−Kcrit I

)
is I/O stable, and its I/O map is outer with bounded inverse.

Because the conditions of Theorem 89 hold, we have a (J, S′)-inner-outer factor-
ization D = N ′X ′ for some S′ ∈ L(U), where the outer factor X ′ is outer with a
bounded inverse. As in the first part of the proof of Lemma 93, there is another
(J, S)-inner-outer factorization D = NX such that the feed-through operator
of the outer factor satisfies π0Xπ0 = I, the identity operator in L(U). As in
Lemma 87, this factorization is associated to a critical feedback pair [K,F ] that
has been defined through equations (2.27) and (2.28). Because [K,F ] is a criti-
cal feedback pair, it is I/O stable and outer, by Definition 86. This means that
the DLS Φfb =

[
Aj Bτ∗j

K F
]

is I/O stable, and (I −F)−1 is an I/O map of an I/O
stable DLS. Because π̄+ = (I −F)−1π̄+ · (I −F)π̄+ = (I −F)π̄+ · (I −F)−1π̄+

on �2(Z+; U), it follows that (I − F)π̄+ : �2(Z+; U) → �2(Z+; U) is a bounded
bijection. It follows that the DLS

Φ′ :=
[

Aj Bτ∗j

−K I − F

]
.

is I/O stable, and its I/O map is outer with a bounded inverse.

However, the critical feedback pair is given in the difference equation form by
[K,F ] =

(
Kcrit, 0

)
, where Kcrit ∈ L(H ; U) is the extension of the bounded one

step feedback operator π0Kcrit : dom (C) → U ; for details see the discussion
following Lemma 93. It now follows from Theorem 15 that Φ′ = φP crit

0
, and

thus the spectral DLS φP crit
0

is I/O stable, and its I/O map is outer with a
bounded inverse. By part (iii) of Definition 95, P crit

0 ( , ) is a critical solution.
This completes the proof.
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2.6 Solution of the weak algebraic Riccati equa-

tion

In this section we give a number of partial converses to Lemma 92. We show
that if WDARE (2.49) of Definition 94 has a solution P crit( , ) of a special kind,
then the equivalent conditions of Theorem 89 are satisfied under some extra
conditions. The specialty of the solution P crit( , ) is that it must be a critical
solution, in the sense of part (iii) of Definition 95. Such a critical solution of
WDARE is associated to the existence of a (J, ΛP crit)-inner-outer factorization
the I/O map. However, stronger assumptions are required to guarantee that
the critical closed loop is well-posed, i.e. Kcrit ∈ L(dom (C) ; U). In fact, this
well-posedness problem, present for non-output stable DLSs, in fact, is deeper
than the factorization problem. We start with a preliminary proposition which
almost solves the question of the spectral factorization.

Proposition 97. Let φ = ( A B
C D ) be a strongly H2 stable DLS. Let P ( , ) be a

solution of WDARE (2.49). Let ũ = {uj}j≥0 ∈ �2(Z+; U) and x0 ∈ dom (C)
be arbitrary. Denote the corresponding state trajectory by xk = xk(x0, ũ) =
Akx0 + Bτ∗kũ for all k ≥ 0.

(i) We have

P (xk, xk) − P (xk+1, xk+1)(2.51)
= 〈J(Cxk + Duk), (−, ,−)〉Y
− 〈ΛP (−KP xk + uk), (−, ,−)〉U

for all k ≥ 0. For all n ≥ 1, we have

P (x0, x0) − P (xn+1, xn+1)(2.52)

=
n∑

k=0

〈J(Cxk + Duk), (−, ,−)〉Y

−
n∑

k=0

〈ΛP (−KP xk + uk), (−, ,−)〉U .

(ii) Assume, in addition, that φ is I/O stable, and limk→∞ P (xk, xk) = 0.
Then

J(x0, ũ) = P (x0, x0) +
∞∑

k=0

〈ΛP (−KP xk + uk), (−, ,−)〉U ,(2.53)

where the sum converges.
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(iii) Assume, in addition, that both φ and φP are I/O stable, x0 ∈ dom(C) ∩
dom (CφP ), and limk→∞ P (xk, xk) = 0. Then

J(x0, ũ) = P (x0, x0) + 〈ΛP (CφP x0 + DφP ũ), (−, ,−)〉�2(Z+;U) .(2.54)

Proof. Claim (i) is proved by first calculating

P (xk, xk) − P (xk+1, xk+1) = P (xk, xk) − P (Axk + Buk, Axk + Buk)
= P (xk, xk) − P (Axk, Axk) − P (Axk, Buk) − P (Buk, Axk) − P (Buk, Buk).

Because the sesquilinear form P ( , ) satisfies WDARE (2.49), the previous equals

=
〈
(C∗JC − Q∗

P Λ−1
P QP )xk, xk

〉
H

+ 〈(QP + D∗JC)xk, uk〉U + 〈uk, (QP + D∗JC)xk〉U
+ 〈(D∗JD − ΛP )uk, uk〉U
= (〈C∗JCxk, xk〉H + 〈D∗JCxk, uk〉U + 〈uk, D∗JCxk〉U + 〈D∗JDuk, uk〉U )

+
(〈
−Q∗

P Λ−1
P QP xk, xk

〉
H

+ 〈QP xk, uk〉U + 〈uk, QP xk〉U − 〈ΛP uk, uk〉U
)

= 〈J(Cxk + Duk), (−, ,−)〉Y −
〈
Λ−1

P (−QP xk + ΛP uk), (−, ,−)
〉

U

where the last equality is obtained simply by grouping terms. This proves
equation (2.51), by replacing the feedback operator KP = Λ−1

P QP . Equation
(2.52) is now an immediate consequence. Claim (ii) is proved by inspection of
equation (2.52). We have for each n ≥ 1

n∑
k=0

〈ΛP (−KP xk + uk), (−, ,−)〉U

= −P (x0, x0) + P (xn+1, xn+1) +
n∑

k=0

〈J(Cxk + Duk), (−, ,−)〉Y

Because φ is I/O stable, x0 ∈ dom (C) and ũ ∈ �2(Z+; U), we have

{Cxk + Duk}k≥0 = Cx0 + Dπ̄ũ ∈ �2(Z+; Y ).

On the other hand, we have for each k ≥ 0

| 〈J(Cxk + Duk), (−, ,−)〉Y | ≤ ||J ||L(Y ) · ||Cxk + Duk||2Y .

It follows that the sum in the right hand side converges absolutely as n →
∞. By assumption, also P (xn+1(x0, ũ), xn+1(x0, ũ)) → 0 as n → ∞ for this
particular ũ. It follows that limn→∞

∑n
k=0 〈ΛP (−KP xk + uk), (−, ,−)〉U exists

and satisfies (2.53).

In order to prove the final claim (iii), note that the I/O stability of φP implies
for x0 ∈ dom (CφP ) and ũ ∈ �2(Z+; U)

{−KP xk + uk}k≥0 = CφP x0 + DφP π̄+ũ ∈ �2(Z+; U),



2.6. SOLUTION OF THE WEAK ALGEBRAIC RICCATI EQUATION 109

by the definition of the spectral DLS φP . Then the sum in (2.53) is majorizes
by

| 〈ΛP (−KP xk + Iuk), (−, ,−)〉U | ≤ ||ΛP ||L(U) · || − KP xk + uk||2U ,

and it thus converges absolutely.

Note that the intersection dom(C) ∩ dom(CφP ) in claim (iii) of Proposition 97
is far from empty for I/O stable φ and φP . In particular, because B = BφP , and
for I/O stable systems always range (B) ⊂ dom(C), it follows that range (B) ⊂
dom(C) ∩ dom (CφP ). The connection between a solution of Riccati equation
system and a class of stable spectral factorizations of the Popov operator is
given below.

Lemma 98. Let J ∈ L(Y ) be a cost operator, and Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable DLS. Let P ( , ) be the solution of the Riccati equation system (2.49) of
Definition 94 such that the spectral DLS φP is I/O stable and the ultra weak
residual cost condition of part (i) of Definition 95 holds; i.e.

P (Akx0, A
kx0) → 0 as k → ∞

for all x0 ∈ range (B). Then the following stable spectral factorization identity
holds on �2(Z; U).

D∗JD = D∗
φP

ΛPDφP .(2.55)

Proof. The both sides of (2.55) are bounded, causal and shift invariant opera-
tors. Let j, k ≥ 0 be arbitrary. For all ũ ∈ �2(Z+; U) we have by definition

J(0, π[0,j]ũ) =
〈
D∗JDπ[0,j]ũ, π[0,j]ũ

〉
�2(Z+;U)

.(2.56)

By linearity of P (x0, x1) in x0 we get P (0, 0) = 0. Because we use inputs of
form π[0,j]ũ and the initial state x0 = 0, we have

xk(x0, π[0,j]ũ) = Ak−j
(
Ajx0 + Bτ∗jπ[0,j]ũ

)
= Ak−j · Bτ∗jπ[0,j]ũ,

for all k ≥ j. Because the solution P ( , ) satisfies the ultra weak residual
cost condition, limk→∞ P (xk(x0, π[0,j]ũ), xk(x0, π[0,j]ũ)) = 0. By claim (iii) of
Proposition 97 we have for all ũ ∈ �2(Z+; U)

J(0, π[0,j]ũ) =
〈
D∗

φP
ΛPDφP π[0,j]ũ, π[0,j]ũ

〉
�2(Z+;U)

.(2.57)

By combining equations (2.56) and (2.57),〈
(π[0,j]D∗JDπ[0,j] − π[0,j]D∗

φP
ΛPDφP π[0,j])ũ, ũ

〉
�2(Z+;U)

= 0,
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because ũ ∈ �2(Z+; U) was arbitrary. It follows that the truncated Popov
operators satisfy π[0,j]D∗JDπ[0,j] = π[0,j]D∗

φP
ΛPDφP π[0,j] for all j ≥ 0, by [79,

Theorem 12.7].

Clearly T := D∗JD − D∗
φP

ΛPDφP is a self-adjoint shift-invariant operator on
�2(Z; U). For contradiction, assume that T = 0. Then there is ũ ∈ �2(Z; U)
such that ||T ũ||�2(Z;U) ≥ 4ν > 0. Because T is bounded, there is j1 > 0
such that ||T π[−j1,j1]ũ||�2(Z;U) ≥ 2ν. Similarly, there is a j2 > 0 such that
||π[−j2,j2]T π[−j1,j1]ũ||�2(Z;U) ≥ ν. Denote note j = max (j1, j2). Then

||π[j−j2,+j+j2]T π[j−j1,+j+j1 ]ũ||�2(Z;U) = ||π[−j2,j2]T π[−j1,j1]ũ||�2(Z;U) ≥ ν.

But this is a contradiction against π[0,j]D∗JDπ[0,j] = π[0,j]D∗
φP

ΛPDφP π[0,j], and
the proof is complete.

If the solution P ( , ) is critical, then the factorization of Lemma 98 can be put
in a more familiar form:

Corollary 99. Let J ∈ L(Y ) be a cost operator, and Φ =
[

Aj Bτ∗j

C D
]

be an
I/O stable DLS. Let P crit( , ) be a critical solution of WDARE (2.49). Then
D = NX is a (J, ΛP crit)-inner-outer factorization, where

N := DD−1
φP crit

, X := Dφ
P crit .

The outer factor X is outer with a bounded inverse, and the critical sesquilinear
form P crit

0 ( , ) exists.

Proof. The the existence of the factorization follows from equation (2.55) and
Proposition 82. In particular, the outer factor X is outer with a bounded inverse,
by condition (iii) of Definition 95. The DLS Φ is J-coercive, by Lemma 84
and the fact that ΛP crit is boundedly invertible. By Definition 76, the critical
sesquilinear form P crit

0 ( , ) exists.

Note that when the conditions of Corollary 99 are satisfied, the I/O map DφP

equals the outer spectral factor X of D∗JD, such that the feed-through operator
π0Xπ0 = I. The previous results are collected in the following lemma, the main
result of this section. It is the first partial converse of Lemma 92.

Lemma 100. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an
output stable and I/O stable DLS. Assume that the sesquilinear form P crit( , ) :
dom (C) × dom (C) → C is a critical solution of WDARE (2.49).

Then the equivalent conditions of Theorem 89 hold. In particular, ΛP crit =
ΛP crit

0
, where P crit

0 ( , ) is the critical sesquilinear form of Definition 76.
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Proof. By Corollary 99, we have the (J, ΛP crit)-inner-outer factorization D =
NX , where X = Dφ

Pcrit and N = DD−1
φP crit

. Also, the outer factor X is
outer with a bounded inverse. Because Φ is output stable, dom(C) = H and
π0N ∗JC : H → U is bounded. It follows that condition (ii) of Theorem 89
holds. In particular, the critical sesquilinear form P crit

0 ( , ) exists and satisfies
the WDARE (2.49), by Lemma 96. This gives us another (J, ΛP crit)-inner-outer
factorization D = N ′X ′, where the outer factor X is outer with a bounded
inverse. Both the outer factors satisfy the normalization π0Xπ0 = π0X ′π0 = I.
By Proposition 83, X = X ′ and ΛP crit = ΛP crit

0
. The proof is complete.

In previous lemma, we have made a rather strong assumption of output stability
of Φ to ensure that the well-posedness condition π0N ∗JC ∈ L(dom (C) ; U)
holds. We now try to motivate why this has been necessary. We also give to
variants of Lemma 100.

Assume that the conditions of Corollary 99 hold, and by D = NX denote the
(J, ΛP crit)-inner-outer factorization. By writing the spectral DLS φP in I/O
form

φP crit =
(

A B
−KP crit I

)
=
[

Aj Bτ∗j

−K I − F

]
,(2.58)

we define the observability map K = −Cφ
Pcrit and the I/O map F = I−Dφ

Pcrit .
Clearly, [K,F ] is a feedback pair for Φ. By definition, (I − F)ũ = X ũ for all
ũ ∈ �2(Z; U) ∩ Seq(U). Because φP is I/O stable and its I/O map DφP crit is
outer with a bounded inverse, it follows that [K,F ] is an I/O stable and outer
feedback pair for Φ, provided we have the inclusion dom (C) ⊂ dom

(
Cφ

Pcrit

)
.

We make this additional assumption explicitly in Lemma 102.

We proceed to consider the operator

K′ = −Λ−1
P crit π̄+N ∗JC : dom (C) → �2(Z+; U).

A similar calculation as in the proof of Lemma 87 implies that K′A = π̄+τ∗K′

on dom (C), and −K′B = π̄+Xπ− = π̄+(I−F)π− on dom (B). If we could verify
that −ΛP crit

0
π0K′ = π0N ∗JC : dom(C) → U is bounded, then the quadruple of

linear mappings [
Aj Bτ∗j

K′ I − F

]
(2.59)

would be an I/O stable DLS, whose I/O map is outer with a bounded inverse.
Here the observability map K′ : dom

(
K′) → �2(Z+; U) is a closed extension of

K′ : dom(C) → �2(Z+; U), and dom (C) ⊂ dom
(
K′). From equation (2.58)

and the fact −K′B = π̄+(I − F)π− we conclude that

− ΛP crit

(
Λ−1

P critKP crit + π0N ∗JC
)
x

= (π0K′ − π0K)x = 0 for all x ∈ range (B) ⊂ dom (C)(2.60)
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with the natural identification of range (π0) and U . Suppose now that we have
no a priori knowledge of the boundedness of π0N ∗JC : dom (C) → U but
range (B) = H . Then ∆Q :=

(
Λ−1

P critKP crit + π0N ∗JC
)

: dom (C) → U is a
densely defined operator, whose null space contains the dense set range (B). We
cannot conclude that ∆Q = 0 because there exists a densely defined linear op-
erator on a Hilbert space, whose null space is dense. For example, define the
vector space by

dom(T ) := {ũ = {uj}j≥0 ∈ �2(Z+;C) | lim
j→∞

juj exists}

and the linear functional T : dom(T ) �→ C by T {uj}j≥0 := limj→∞ juj . Then
T is densely defined, T = 0 but T ũ = 0 for all ũ that have only finitely many
nonzero components. Because such ũ are dense in �2(Z+;C), it follows that
ker (T ) is dense. See also [79, Theorem 1.18].

Another variant of Lemma 100 is the following proposition.

Proposition 101. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an
I/O stable DLS, such that range (B) = H. Assume that the sesquilinear form
P crit( , ) : dom (C)× dom(C) → C is a critical solution of WDARE (2.49), and
π0N ∗JC : dom(C) → U is closable, where N := DD−1

φ
P crit
0

.

Then the equivalent conditions of Theorem 89 hold. In particular, π0N ∗JC ∈
L(dom (C) ; U).

Proof. As in the proof of Lemma 100, we have the (J, ΛP crit
0

)-inner-outer fac-
torization D = NX , where X = Dφ

P crit and N = DD−1
φP crit

. The outer factor X
is outer with a bounded inverse, too.

Suppose now that π0N ∗JC : dom (C) → U is closable. Let dom (C) 
 xj →
0 be such that ∆Qxj → u, where ∆Q = Λ−1

P critKP crit + π0N ∗JC. Because
Λ−1

P critKP crit ∈ L(H ; U) by Definition 94 of WDARE, it follows that

||π0N ∗JCxj − u|| ≤ ||∆Qxj − u|| + ||Λ−1
P critKP critxj || → 0 as j → ∞.

Because π0N ∗JC is closable, it follows that u = 0. Thus ∆Q is closable, and
it has a minimal closed extension ∆Q. By the discussion following equation
(2.60), ∆Q vanishes on the vector space range (B). Now, range (B) ⊂ ker

(
∆Q

)
and then ∆Q = 0 because the null space of a closed operator is closed. We
conclude that ∆Q = 0 and π0N ∗JC = −Λ−1

P critKP crit on dom (C). It follows that
π0N ∗JC ∈ L(dom (C) ; U).

It is a consequence of the compactness of the unit ball in finite dimensional
spaces, that finite rank closed operators are bounded. Thus, assuming π0N ∗JC :
dom (C) → U to be closable is equivalent to assuming it bounded, if dim U < ∞.
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If the approximate controllability assumption is strengthened, then we obtain
another analogue of Lemma 100.

Lemma 102. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable DLS. Assume that range (B) = E, where the Hilbert space E = dom (C) is
given in Definition 38, and the closure is taken in the norm of E. Assume that
the sesquilinear form P crit( , ) : dom (C)× dom (C) → C is a critical solution of
WDARE (2.49), such that dom(C) ⊂ dom

(
Cφ

Pcrit

)
.

Then the equivalent conditions of Theorem 89 hold. In particular, π0N ∗JC ∈
L(dom (C) ; U).

Proof. As before, we have the (J, ΛP crit
0

)-inner-outer factorization D = NX ,
where the outer factor X is outer with a bounded inverse. Our task is to show
that π0N ∗JC ∈ L(dom (C) ; U).

Because Φ and the spectral DLS φP crit share the same semigroup generator A,
we can form an extended DLS whose observability map is[

C
Cφ

Pcrit

]
: dom

([
C

Cφ
Pcrit

])
→ �2(Z+; Y ⊕ U).

As in the proof of Theorem 48, dom
([ C

Cφ
P crit

])
= dom (C), because dom (C) ⊂

dom
(
Cφ

Pcrit

)
is assumed. By Definition 38, the vector space dom (C) gets two

norms

||x||2E = ||x||2H + ||Cx||2�2(Z+;Y ), and

||x||′E2 = ||x||2H + ||
[

C
Cφ

Pcrit

]
x||2�2(Z+;Y ⊕U)

= ||x||2H + ||Cx||2�2(Z+;Y ) + ||Cφ
Pcrit x||2�2(Z+;U).

By E and E′ denote the vector space dom (C), equipped with the norms || · ||E
and || · ||E′ , respectively. By Lemma 39, both E and E′ are Hilbert spaces.
Because ||x||E ≤ ||x||E′ for all x ∈ dom (C), it follows that the inclusion operator
Inc : E′ → E is a bounded operator. It is a bijection because E = E′, as vector
spaces. Thus the inverse operator Inc−1 : E → E′ is bounded. We now have
for each x ∈ E = dom (C) ⊂ dom(CP crit) the estimate

||CP critx||2�2(Z+;U) ≤ ||x||2H + ||Cx||2�2(Z+;Y ) + ||Cφ
P crit x||2�2(Z+;U)

= ||x||2E′ = ||Inc−1x||2E′ ≤ ||Inc−1||2E→E′ · ||x||2E .

We conclude that there is a constant M < ∞ such that ||Cφ
Pcrit x||�2(Z+;U) ≤

M ||x||E for all x ∈ E.

It follows that ||KP critx|| ≤ M ||x||E for all x ∈ E. Because C : E → �2(Z+; U)
is bounded by Lemma 39, so is the operator π0N ∗JC. We conclude that ∆Q =
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Λ−1
P critKP crit + π0N ∗JC : E → U is bounded, and it vanished on the vector

subspace range (B) ⊂ dom (C) = E. By assumption, range (B) = E in the
norm of E. By continuity, ∆Q = 0 on E, and thus π0N ∗JC = −Λ−1

P critKP crit on
dom (C) because E = dom (C) as vector spaces. Because Λ−1

P critKP crit ∈ L(H ; U),
we conclude that π0N ∗JC ∈ L(dom (C) ; U), where the original norm of H is
used on dom(C). This completes the proof.

We remark that the inclusion dom (C) ⊂ dom
(
Cφ

Pcrit

)
is necessary to make

[K,F ] =
[
−Cφ

Pcrit , I − Dφ
Pcrit

]
an I/O stable and outer feedback pair for Φ, see

Definition 44. As a consequence of the approximate controllability assumptions,
it follows that the closed loop DLSs (φ, (KP crit , 0))� are critical in Proposition
101 and Lemma 102. So as to Lemma 100, the same need not be true.
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2.7 Equivalence theorem for the critical control

The main theorem of this chapter is a conclusion of Theorem 89 and Lemmas
92, 100. In Theorem 114 of Chapter 3 we give the same result in the particular
case that the DLS Φ is output stable, and the solution of the Riccati equation
are self-adjoint operators, rather than conjugate symmetric sesquilinear forms.

Theorem 103. Let J ∈ L(Y ) be a cost operator and Φ =
[

Aj Bτ∗j

C D
]

an I/O
stable DLS. Enumerate the conditions (i), (ii) and (iii) as follows:

(i) a) Φ is J-coercive, and
b) the critical control problem, associated to Φ and J , is solvable by

state feedback. The critical feedback pair [K,F ] for Φ is I/O stable
and outer.

(ii) a) There is a self-adjoint, boundedly invertible operator S ∈ L(U) such
that D has a (J, S)-inner-outer factorization D = NX , where the
outer factor X is outer with a bounded inverse, and

b) π0N ∗JC ∈ L(dom (C) ; U), where dom(C) is given the norm of H.

(iii) There is a critical solution P crit( , ) of the weak discrete time algebraic
Riccati equation (2.49).

Then (i) ⇔ (ii) ⇒ (iii). If, in addition, the DLS Φ is output stable, then (iii)
⇒ (ii).

When the equivalent conditions (i) and (ii) hold, the critical sesquilinear form
P crit

0 ( , ) of Definition 76 exists, it is a critical solution of WDARE (2.49) and
satisfies

P crit
0 (xj(x0, ũ), xj(x0, ũ)) → 0 as j → ∞

for all x0 ∈ dom (C) and ũ ∈ �2(Z+; U). If, in addition, the feed-through opera-
tor of the outer factor X is normalized to identity, then ΛP crit

0
= S.

For other sufficient conditions for the implication (iii) ⇒ (ii) to hold, see Propo-
sition 101 and Lemma 102. For analogous results, see [45, Theorem 2.1] for
equivalence of type (i) ⇔ (ii), and [45, Theorem 4.1] for equivalence of type (ii)
⇔ (iii). In continuous time, we refer to [64], [83], [86], and [103].

In the light of claim (iii) of Theorem 103, sufficient conditions for the I/O
stability of φP in terms of the solution P ( , ) would be useful. We remind that
for I/O stable and J-coercive DLS Φ, the critical sesquilinear form satisfies
P crit

0 (xk(x0, ũ), xk(x0, ũ)) → 0 for x0 ∈ dom (C), ũ ∈ �2(Z+; U), by Proposition
77. Under a nonnegativity assumption of the indicator, an additional speed
estimate appears to be the key observation.
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Proposition 104. Let φ = ( A B
C D ) be an I/O stable DLS. Let P ( , ) be a solution

of WDARE (2.49) such that its indicator ΛP > 0 and

P (xk(0, ũ), xk(0, ũ)) → 0 for all ũ ∈ �2(Z+; U),

where xk = xk(0, ũ) = Bτ∗j ũ.

Then the spectral DLS φP is I/O stable if and only if

∞∑
k=0

|P (xk, xk) − P (xk+1, xk+1)| < ∞(2.61)

for all ũ ∈ �2(Z+; U).

Proof. For any nonnegative, boundedly invertible operator T on a Hilbert space,
we can estimate

||T−1||−1 〈x, x〉 ≤ 〈Tx, x〉 ≤ ||T || 〈x, x〉 .

The latter equality is proved by 〈Tx, x〉 = ||Tx||·||x|| = ||T ||·||x||2 = ||T ||·〈x, x〉.
The former inequality follows from the latter by choosing T−1 in place for T ,
and T

1
2 x in place for x. Because the nonnegative indicator of a solution P ( , ) is

boundedly invertible, we can apply this with T = ΛP and obtain the equivalence:

∞∑
k=0

| 〈ΛP (−KP xk + uk), (−, ,−)〉U | < ∞(2.62)

if and only if

∞∑
k=0

| 〈(−KP xk + uk), (−, ,−)〉U | = ||{−KP xk + uk}k≥0||2�2(Z+;U) < ∞.(2.63)

We first show that inequality (2.63) is equivalent with the I/O stability of φP .
By Lemma 31, the causal Toeplitz operator DφP π̄+ : dom (DφP π̄+) → �2(Z+; U)
is closed when equipped with the domain

dom (DφP π̄+) := {ũ ∈ �2(Z+; U) | DφP π̄+ũ ∈ �2(Z+; U)}.

By Definition 32, the spectral DLS φP is I/O stable if and only if dom (DφP π̄+) =
�2(Z+; U).

Now, let ũ ∈ �2(Z+; U) be arbitrary and xk = xk(0, ũ) = BφP τ∗j ũ = Bτ∗j ũ.
Then {−KP xk + uk}k≥0 = DφP π̄+ũ ∈ Seq+(U), by the definition of the spec-
tral DLS. It follows that (2.63) holds for all ũ ∈ �2(Z+; U) if and only if
dom (DφP π̄+) = �2(Z+; U). We conclude that the inequality (2.62) holds if
and only if φP is I/O stable.
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So it remains to prove that the conditions of (2.61) and (2.62) are equivalent.
From equation (2.51), we obtain the estimates

|P (xk, xk) − P (xk+1, xk+1)|
≤ ||J || · | 〈Cxk + Duk, (−, ,−)〉Y | + | 〈ΛP (−KP xk + uk), (−, ,−)〉U |,
| 〈ΛP (−KP xk + uk), (−, ,−)〉U |
≤ ||J || · | 〈Cxk + Duk, (−, ,−)〉Y | + |P (xk, xk) − P (xk+1, xk+1)|

for all k ≥ 0. The I/O stability of Φ implies that {Cxk + Duk}k≥0 = Dφπ̄+ũ ∈
�2(Z+; Y ), and the sequence {〈Cxk + Duk, (−, ,−)〉Y }k≥0 in equation (2.51) is
absolutely summable for all ũ ∈ �2(Z+; U). But then the sequence
{〈ΛP (−KP xk + uk), (−, ,−)〉U}k≥0 is absolutely summable if and only if
{|P (xk, xk) − P (xk+1, xk+1)|}k≥0 is absolutely summable. This completes the
proof.

So by Proposition 104, only the condition in claim (iii) of Theorem 103 that φP

should be outer with bounded inverse remains less concrete. It is easy to see
that for power stable systems this follows from the familiar requirement that
P ( , ) should be a (power) stabilizing solution of the Riccati equation: if both
ρ(A) < 1 and ρ(A + BKP ) < 1 then φP is both I/O stable and outer (see [66],
[67]). For infinite dimensional power stable result we refer to e.g. [44], [72].
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2.8 Notes and references

Optimal control in discrete and continuous time

We make a short and superficial review on the literature and development of
various cost optimization problems for linear systems. Because in this book we
concentrate in the state feedback solutions, we consider only full information
problems. This means that the whole state space is assumed to be visible for
the optimal controller. Under favorable circumstances, such an optimal control
problem can be shown to be equivalent to finding a solution of an algebraic
Riccati equation. An example of an unfavorable situation is the failure of well-
posedness of the closed loop that appeared in Section 2.6 for general non-output
stable DLSs. For the continuous time WPLSs, it is generally not even possible
to write down an algebraic Riccati equation in a standard way because a feed-
through operator is needed for such an equation.

In the case when the proper algebraic Riccati equation can be written down, we
remark that the information structure of the optimization problem affects the
form of the algebraic Riccati equation. For the reason of notational simplicity,
we now consider the case when the DARE is presented in the “strong” form,
i.e. {

A∗PA − P + C∗JC = (D∗JC + B∗PA)∗ Λ−1
P (D∗JC + B∗PA)

ΛP = D∗JD + B∗PB,
(2.64)

where the solutions P ∈ L(H) are required to be bounded self-adjoint operators.
There is another variant of DARE{

A∗PA − P + C∗JC = A∗PB · Λ−1
P · B∗PA

ΛP = D∗JD + B∗PB,
(2.65)

characterized by the fact that the cross term D∗JC vanishes. The algebraic
Riccati equation of type (2.65), together with its continuous time analogue,
appears in linear quadratic control problems where J ≥ 0, and a direct coercive
cost is imposed on the input. For this reason, we call the cross term free equation
(2.65) LQDARE, even if the cost operator J in indefinite. As discussed at the
beginning of Section 2.2, each LQDARE (2.65) can be reduced to the form of
DARE (2.64) by expanding the state space. The relation of these two equations
is briefly considered in Section 4.9.

After these preparations, let us proceed to consider the literature. The con-
tinuous time linear quadratic control problem, corresponding to the dynamical
system {

x′(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t), t ≥ 0

(2.66)
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with bounded operators on Hilbert spaces, is solved in [48, Section 3.5] (Kalman,
Falb and Arbib, 1969). Both the time-variant finite and time-invariant infinite
horizon problems are considered, and the latter is regarded as a limit case of
the former. This leads to the use of both the Riccati differential equation and
the algebraic Riccati equation. Both the finite and infinite time linear quadratic
control problem is solved in [18, Chapter 6] (Curtain and Zwart, 1995) in the
case when A generates a strongly continuous semigroup, but B, C and D in
(2.66) are bounded operators. Also a nice survey of the history is presented
there.

Early papers about spectral factorization techniques, feedback control and sta-
bilizing solutions of matrix algebraic Riccati equations are [66] (Molinari, 1973)
and [73] (Payne and Silverman, 1973) for discrete time, and [65] and [67] (Moli-
nari, 1973, 1975) for continuous time. The classical infinite-dimensional discrete
time operator Riccati equation reference is [45] (Helton, 1976) where LQDARE
with a nondefinite cost operator is considered. References to this paper appear
throughout this book, and we do not consider it here in length. For a nonlinear
variant, see also [2] (Ball and Helton, 1991). In the monograph [44] (Halanay
and Ionescu, 1995), the suboptimal (state space) disturbance attenuation prob-
lem is solved for exponentially stabilizable discrete time time-variant systems,
and the solution is presented with the aid of stabilizing nonnegative solutions of
two algebraic Riccati equations. The monograph [49] (Lancaster and Rodman,
1995) contains plenty of historical remarks and references. In particular, [49,
Chapter 16] contains the solutions of both the continuous and discrete time lin-
ear quadratic control problem, with the algebraic Riccati equation of the general
type (2.64) but an additional nondegeneracy condition is imposed, related to
the lack of cross term. This additional condition is satisfied by all LQDAREs
(2.65).

We proceed to consider the continuous time papers [74] and [75] (Pritchard and
Salamon, 1985, 1987). In the latter of these papers, both the finite and the
infinite horizon version of the linear quadratic control problems are covered for
Pritchard–Salamon realizations. The Riccati integral and differential equations
are derived for the finite horizon problem. The Riccati operator of the infinite
cost problem, giving the optimal cost of an arbitrary initial state, is recovered
by using a limit argument of finite horizon problems in the spirit of [48, Section
3.5]. It is shown that the Riccati operator is a minimal nonnegative solution
of an algebraic Riccati equation. The Riccati operator corresponds to the criti-
cal sesquilinear form P crit

0 ( , ) of this paper. Under extra conditions, related to
stabilizability and detectability of the system, it can be shown that the Riccati
operator is the only nonnegative solution of the algebraic Riccati equation, and
that the closed loop semigroup is exponentially stable. The paper [74] gives the
solution of the linear quadratic control problem for retarded functional differ-
ential equations, using the tools of [75]. See also [43] (Grabowski, 1993), where
examples of time delay systems are considered.
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The infinite horizon optimal control problem can be solved in a conceptually
different manner; not by an approximation with finite horizon problems but by
solving a spectral factorization problem. The reader has surely noticed that the
spectral factorization approach is the one that we have taken in this chapter for
DLSs. Let us begin with the continuous time case when A generates a strongly
continuous semigroup, the generating operators B, C and D are bounded, and
the transfer function is in the matrix-valued Callier–Desoer algebra. The pi-
oneering works are [11], [12] and [13] (Callier and Winkin, 1987, 1988, 1990)
where the optimal state feedback operator for the linear quadratic control prob-
lem is connected to a nonnegative solution of an algebraic Riccati equation, and
to an invertible spectral factor of the spectral (Popov) function. A necessary
and sufficient coercivity condition for the existence of such a spectral factor
(in the stable Callier–Desoer class) is given in terms of the determinant of the
spectral function, in case the impulse response of the system does not contain
delays. These ideas are extended in [14] (Callier and Winkin, 1992), and even
an example involving the heat equation is worked out in detail. In their later
work [15] Callier and Winkin extend the necessary and sufficient condition for
the existence of a spectral factor to systems whose impulse response is allowed
to have arbitrary delays.

So as to the WPLSs and the spectral factorization approach, the first works
for WPLSs are [82] (Staffans, 1995), [83] (Staffans, 1997) for stable (regular)
WLPSs and [103] (G. Weiss and M. Weiss, 1997) for stable (weakly regular)
WPLSs. For stable WPLSs in the sense of [83, Definition 1], it is shown in
[83] that the state feedback solution of the optimal control problem is equiva-
lent to a spectral factorization problem, without ever appealing to the possibly
unbounded input and output operators B and C. Furthermore, the Riccati op-
erator, corresponding to the critical sesquilinear form P crit

0 ( , ) of this chapter,
can be written down by an explicit formula. The trouble begins when an alge-
braic Riccati equation is to be written down; now the operators B and C are
needed. Furthermore, the WPLS must be regular, together with its adjoint, so
that the feed-through operator D is defined. However, even more is required.
Also the (outer, stable) spectral factor X of D must be regular, together with
its adjoint X ∗. Under these assumptions, an algebraic Riccati equation can
be written down, and the Riccati operator solves it, but surprisingly, the feed-
through operator X of the spectral factor appears in the equation. This was
first reported in [82] and [103]. The converse result for WPLSs, concluding the
existence of the spectral factor from the assumed existence of a critical solution
for the algebraic Riccati equation, is given in [64] (Mikkola, 1997). Some re-
sults of [83] on the optimal control are extended to the corresponding critical
control results in [85] (Staffans, 1998) when the unique saddle point of the cost
functional is to be expressed by a static state feedback law. The unstable linear
quadratic control problem is considered in [83] for jointly stabilizable and de-
tectable WPLSs in the sense of [84] (Staffans, 1998). The information structure
of the algebraic Riccati equation in [64], [83], [85] and [103] corresponds to that
of DARE (2.64) with a nonvanishing cross term.
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Let us compare the finite horizon approach and the spectral factorization ap-
proach. It appears in [75] that the unboundedness of the input and output
operators B and C and the presence of a number of state spaces produce a lot
of extra trouble in the solution of the linear quadratic control problem. This is
true for the Pritchard–Salamon systems in particular, and a WPLSs in general.
It is a clear advantage of the spectral factorization approach that the use of
these unbounded operators can be avoided in the solution of the optimal con-
trol problem, since an algebraic Riccati equation need not be written down or
solved. It is also an advantage that it gives an explicit formula for the Riccati
operator rather than an existence result, as is the case with the limit process
involved with the finite horizon approach. However, a natural analogy to the
solution of the finite horizon problem is lost. A clear disadvantage is that the
spectral factorization approach relies on the possibility of (numerical) compu-
tation of the spectral factor which is a somewhat elusive object. However, on
the level of generality of WPLSs, even the (approximate numerical) solution
of a proper algebraic Riccati equation would be a formidable task. We remark
that there could exists practical ways of solving a spectral factorization problem
without resorting to a difficult continuous time algebraic Riccati equation. In
the scalar case, an outer (spectral) factor can be recovered from its boundary
values by a well-known integral formula, see e.g. [78, Theorem 17.17]. In the
operator-valued case, the Cayley transform of the transfer function to the unit
disk is possible, and the outer factor can then be found by the discrete time
methods, presented in this chapter.
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Chapter 3

Spectral Factorization

3.1 Introduction

Let φ := ( A B
C D ) be an I/O stable DLS and J ∈ L(Y ) a cost operator. By

restricting the solution set of WDARE (2.49) of Definition 94 to sesquilinear
forms that can be expressed with the aid of bounded self-adjoint operators, we
obtain the corresponding discrete time algebraic Riccati equation (DARE),

A∗PA − P + C∗JC = K∗
P ΛP KP ,

ΛP = D∗JD + B∗PB,

ΛP KP = −D∗JC − B∗PA,

(3.1)

which will be introduced in Section 3.2. Even though DARE Ric(φ, J) can be
written for an arbitrary (even non-I/O stable) DLS φ, in the rest of this book we
consider the special case when the DLS φ is output stable and I/O stable. Note
that by the additional output stability, the critical (closed loop) observability
map

Ccrit
φ := Cφ − π̄+Dφ(π̄+D∗

φJDφπ̄+)−1π̄+D∗
φJCφ : H → �2(Z+; Y )

is a bounded operator, provided that the equivalent conditions of Theorem 103
hold. Now the critical sesquilinear form

P crit
0 (x1, x2) :=

〈
JCcrit

φ x1, Ccrit
φ x2

〉
�2(Z+;Y )

can be represented by the bounded self-adjoint operator P crit
0 := (Ccrit

φ )∗JCcrit
φ ∈

L(H). Furthermore, the operator P crit
0 satisfies DARE (3.1). We conclude

that replacing WDARE (2.49) by the less general DARE (3.1) is not entirely

123
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unsatisfactory because the theory of Chapter 2 can be written by using only
DARE (3.1), under a standing hypothesis of output stability. Recall that a
non-output stable DLS can be made output stable, by change of norm in the
state space as discussed at the end of Section 2.8. In this chapter, we develop a
more general spectral factorization theory for such output stable and I/O stable
DLSs and their DAREs.

Let us give a technical outline of this chapter. Given a DLS φ = ( A B
C D ) and a

cost operator J , DARE (3.1) is denoted by Ric(φ, J). If P ∈ L(H) is a self-
adjoint solution of Ric(φ, J), we write P ∈ Ric(φ, J). Thus the symbol Ric(φ, J)
represents both the equation itself and its solution set. If, in addition, φ is output
stable and I/O stable, we call equation (3.1) an H∞DARE, and write ric(φ, J)
instead of Ric(φ, J). In Definition 106, we associate to each P ∈ Ric(φ, J)
an indicator operator ΛP and two additional DLSs: the spectral DLS φP and
the inner DLS φP , centered at P ∈ Ric(φ, J). These three objects are central
in this book. In Section 4.2 they appear in the open and closed loop DLSs
when certain state feedbacks, associated to solutions P ∈ Ric(φ, J), are applied
to φ. The solutions of the H∞DARE ric(φ, J) are classified in Definition 107
according to the stability properties of the spectral DLS φP , and in Definition
108 according to their residual cost behavior “at infinite time”. The smallest
subset of solutions for H∞DARE is denoted by ric0(φ, J) — the set of regular
H∞ solutions P ∈ ric0(φ, J). Our strongest results are given in this subset. In
Theorem 114 we specialize Theorem 103 for additionally output stable DLSs.
In this process, WDARE (2.49) is replaced by DARE (3.1), and we get rid of
all the well-posedness problems of the critical closed loop DLS that have been
discussed at the end of Section 2.6. The three equivalent conditions of Theorem
114 hold if and only if P crit

0 := (Ccrit
φ )∗JCcrit

φ ∈ ric0(φ, J). The existence of such
a solution P crit

0 is almost a standing hypothesis for the rest of this book. Well
known sufficient conditions for the existence of P crit

0 ∈ ric0(φ, J), relying on
the nonnegativity of J or D∗

φJDφ, are given in Proposition 117 and Corollary
118. In Section 3.4 we present some auxiliary results from the operator-valued
function theory. A result of particular importance to us is Lemma 130, which
allows us later to deal with an infinite-dimensional input space U , provided that
the input operator B ∈ L(U ; H) is restricted to be a compact Hilbert–Schmidt
operator. This result has some application in Section 3.5.

Section 3.5 contains two spectral factorization results, namely Lemma 138 (the
spectral factorization of truncated Toeplitz operators) and Proposition 139 (the
spectral factorization of the Popov function Dφ(eiθ)∗JDφ(eiθ), constructed from
the boundary trace of the H2 transfer function Dφ(eiθ)). Despite of this, our
main interest lies in the characterization of the solution subset ric0(φ, J) ⊂
Ric(φ, J). So we must consider the output stability and I/O stability of the
spectral DLS φP for various solutions P ∈ Ric(φ, J). The output stability of
φP is easier, and it is treated in Proposition 136 by nonnegativity techniques.
The I/O stability of φP is considered in Corollary 140 and the remarks following
it.
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In Section 3.6, a spectral factorization of the Popov operator

D∗
φJDφ = D∗

φP
ΛPDφP(3.2)

is associated to each solution of the Riccati equation P ∈ ric0(φ, J) satisfying
a certain residual cost condition. We say that such an operator DφP is a stable
spectral factor of the Popov operator D∗

φJDφ. Also the converse it true: each
such factorization induces a solution P ∈ ric0(φ, J), if range (Bφ) = H . This
is the content of Theorem 142. We remark that the factorization of the Popov
operator does not require the cost operator J to be nonnegative, if we have an
a priori knowledge that φP is output stable and I/O stable. For nonnegative J ,
this stability of φP follows as in the previous Section 3.5, under proper technical
assumptions. If P = P crit

0 := (Ccrit
φ )∗JCcrit

φ is the regular critical solution in
the sense of Theorem 114, then the factorization (3.2) is the ΛP crit

0
-spectral

factorization D∗
φJDφ = X ∗ΛP crit

0
X , where the spectral factor X := Dφ

P crit
0

is
I/O stable and outer with a bounded causal inverse. This leads to the (J, ΛP crit

0
)-

inner-outer factorization of the I/O map Dφ = NX , see Proposition 82. We
remark that if P ∈ ric0(φ, J) but P = P crit

0 , then we do not always obtain an
analogous factorization of Dφ, as a composition of two I/O stable I/O maps.
The circumstances related to the partial ordering of ric0(φ, J) when we get such
stable factors, are considered in Chapter 4. Lemma 145 is an inertia result for
the indicator operators ΛP , P ∈ ricuw(φ, J) in a possibly indefinite metric. The
positive indicators are considered in Corollary 146.

In Proposition 147, the spectral factor DφP in equation (3.2) is (ΛP , ΛP crit
0

)-
inner-outer factorized as DφP = NPX , under the assumption that the original
DARE ric(φ, J) has a regular critical solution P crit

0 . Quite expectedly, the outer
factor of DφP does not depend on the choice of the solution P ∈ ric0(φ, J). Real-
izations for the factors are computed. Section 3.6 is concluded with Proposition
148, where a realization algebra is developed for the inner factors NP .

A preliminary version of the contents of this chapter is [61] (Malinen, 1999).



126 CHAPTER 3. SPECTRAL FACTORIZATION

3.2 H∞ algebraic Riccati equation

In this section we give basic definitions of the discrete time algebraic Riccati
equation, associated to an output stable and I/O stable DLS Φ and a possibly
indefinite cost operator J ∈ L(U). The solutions P of such equation are classi-
fied according to stability properties of an associated DLS φP , see Definitions
106 and 107. An additional classification is done according to the residual cost
properties, as introduced in Definition 108. After that, inclusions of the various
solution sets are considered.

Definition 105. Let J ∈ L(Y ) be self-adjoint, and Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D ) be

a DLS. Then the following system of operator equations
A∗PA − P + C∗JC = K∗

P ΛP KP

ΛP = D∗JD + B∗PB

ΛP KP = −D∗JC − B∗PA

(3.3)

is called the discrete time algebraic Riccati equation (DARE) and denoted by
Ric(Φ, J). The linear operators are required to satisfy ΛP , Λ−1

P ∈ L(U) and
KP ∈ L(H ; U). Here P is a unknown self-adjoint operator to be solved. If
P ∈ L(H) satisfies (3.3), we write P ∈ Ric(Φ, J).

We use the same symbol Ric(Φ, J) both for the solution set of a DARE, and
the DARE itself. This should not cause confusion. Clearly the equations (3.3)
can be put into form

A∗PA − P + C∗JC(3.4)

= (D∗JC + B∗PA)∗ (D∗JD + B∗PB)−1 (D∗JC + B∗PA).

This is the usual form of the DARE in the literature. Because ΛP and KP are
quite fundamental objects in our treatment, the system (3.3) is used instead.
For a given P ∈ Ric(Φ, J), the operator ΛP is called the indicator of P , and the
operator KP is called the (state) feedback operator of solution P . The operators
AP := A + BKP and CP = C + DKP are the closed loop semigroup generator
and the closed loop output operator, respectively. Sometimes DARE (3.4) has
a trivial solution; if we can write (D∗JD)−1 = D−1J−1(D−1)∗, then clearly
0 ∈ Ric(Φ, J).

To each solution P ∈ Ric(Φ, J), two additional DLSs are associated:

Definition 106. Let J ∈ L(Y ) be self-adjoint, and Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D ) be

a DLS. Let KP , AP and CP be as above.

(i) For P ∈ Ric(Φ, J), the DLS

φP :=
(

A B
−KP I

)
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is the spectral DLS, associated to the pair (Φ, J) and centered at P .

(ii) For P ∈ Ric(Φ, J), the DLS

φP :=
(

AP B
CP D

)
is called the inner DLS, associated to the pair (Φ, J) and centered at P .

In this work, we consider DAREs Ric(Φ, J), such that Φ is output stable and
I/O stable. These are called H∞DAREs, and defined as follows:

Definition 107. Let the objects Φ, J , Ric(Φ, J), P ∈ Ric(Φ, J), and φP be
as in Definitions 105 and 106. Assume that Φ is, in addition, I/O stable and
output stable.

(i) We denote the DARE (3.3) by ric(Φ, J) instead of Ric(Φ, J). The DARE
ric(Φ, J) is called H∞DARE.

(ii) If P ∈ Ric(Φ, J) is such that the spectral DLS φP is I/O stable and output
stable, then we say that P ∈ ric(Φ, J). We say that such P is an H∞

solution of a H∞DARE.

When we write inclusions and equalities like Ric(Φ, J) ⊂ Ric(Φ′, J ′), Ric(Φ, J) =
Ric(Φ′, J ′), then these symbols refer to the solution sets of the respective
DAREs. We remark that a H∞DARE ric(Φ, J) could have a non-H∞ solu-
tion P . This this case we write P ∈ Ric(Φ, J) instead of P ∈ ric(Φ, J).

A number of residual cost conditions are required in our work.

Definition 108. Let the objects Φ, J , Ric(Φ, J), P ∈ Ric(Φ, J), and φP be as
in Definitions 105 and 106.

(i) If the residual cost operator

LA,P := s − lim
j→∞

A∗jPAj

exists as a bounded operator in L(H), we write P ∈ Ric00(Φ, J).

(ii) If LA,P = 0, we write P ∈ Ric0(Φ, J). Such P satisfies the strong residual
cost condition.

(iii) If
〈
PAjx0, A

jx0

〉
→ 0 for all x0 ∈ H, we write P ∈ Ric000(Φ, J). Such

P satisfies the weak residual cost condition.

(iv) If
〈
PAjx0, A

jx0

〉
→ 0 for all x0 ∈ range (B), we write P ∈ Ricuw(Φ, J).

Such P satisfies the ultra weak residual cost condition.
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We also define the solution sets ric0(Φ, J) := Ric0(Φ, J)∩ric(Φ, J), ric00(Φ, J) :=
Ric00(Φ, J)∩ric(Φ, J), ric000(Φ, J) := Ric000(Φ, J)∩ric(Φ, J) and ricuw(Φ, J) :=
Ricuw(Φ, J) ∩ ric(Φ, J). The elements of ric0(Φ, J) are called regular H∞ so-
lutions.

We remark that the residual cost conditions (i), (ii), and (iii) depend on the
structure of the solution P in the whole state space H . The ultra weak residual
cost condition (iii) imposes only requirements on P restricted to the (possi-
bly nonclosed) controllable vector subspace range (B). Recall that range (B) =
B(dom(B)) where dom (B) := Seq−(U) consists of sequences in �2(Z−; U) with
only finitely many nonzero components. Equivalently, P ∈ Ricuw(Φ, J) if and
only if limj→∞

〈
PBτ∗jũ,Bτ∗j ũ

〉
= 0 for all {uj}j≥0 = ũ ∈ �2(Z+; U) having

only finitely many nonzero components uj. Solutions P ∈ Ricuw(Φ, J) are of
particular interest in the factorization theory of Theorem 114 and Theorem 142.
The residual cost conditions (i) and (ii) of Definition 108 are convenient for the
Liapunov equation techniques. The following inclusions are basic:

Proposition 109. Let the objects Φ, J , Ric(Φ, J), P ∈ Ric(Φ, J), and φP be
as in Definitions 105 and 108. Then the following holds

(i) If A is strongly stable, then Ric(Φ, J) = Ric0(Φ, J).

(ii) {P ∈ Ric000(Φ, J) | P ≥ 0} ⊂ Ric0(Φ, J) ⊂ Ric000(Φ, J).

(iii) Ric0(Φ, J) ∪ Ric000(Φ, J) ⊂ Ricuw(Φ, J).

(iv) Ric00(Φ, J) ∩ Ric000(Φ, J) ⊂ Ric0(Φ, J). If range (B) = H, then
Ric00(Φ, J) ∩ Ricuw(Φ, J) ⊂ Ric0(Φ, J).

(v) If range (B) = H and A is power bounded, then Ricuw(Φ, J) ⊂ Ric000(Φ, J)
and {P ∈ Ricuw(Φ, J) | P ≥ 0} ⊂ Ric0(Φ, J).

(vi) We have the inclusion:

{P ∈ Ric(Φ, J) | lim
j→∞

〈
PBτ∗jũ,Bτ∗j ũ

〉
= 0 for all ũ ∈ �2(Z+; U)}

⊂ Ricuw(Φ, J).

If Φ is, in addition, input stable, then the inclusion is equality.

Proof. If A is strongly stable, then for all x0 ∈ H we have

||A∗jPAjx0|| ≤ ||A∗j || · ||P || · ||Ajx0|| for all j ≥ 1.

By the strong stability of A, ||Ajx0|| → 0 as j → ∞. Furthermore, by Banach–
Steinhaus Theorem, supj≥1 ||Aj || < ∞ and thus also supj≥1 ||A∗j || < ∞. Thus
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||A∗jPAjx0|| → 0 for all x0 and LA,P := s − limj→∞ A∗jPAj = 0. This verifies
claim (i).

Assume that P ∈ Ric000(Φ, J) is nonnegative. Then it follows that〈
PAjx0, A

jx0

〉
= ||P 1

2 Ajx0||2 → 0 for all x0 ∈ H . Again, by Banach–Steinhaus
Theorem, C := supj≥1 ||A∗jP

1
2 || < ∞. It now follows that ||A∗jPAjx0|| ≤

C · ||P 1
2 Ajx0|| → 0, and thus P ∈ Ric0(Φ, J). Now claim (ii) follows. Claim

(iii) is trivial.

Let P ∈ Ric00(Φ, J) ∩ Ric000(Φ, J). Thus LA,P exists, and for all x0 ∈ H we
have

0 = lim
j→∞

〈
PAjx0, A

jx0

〉
= lim

j→∞
〈
A∗jPAjx0, x0

〉
= 〈LA,P x0, x0〉 .

Now, [79, Theorem 12.7] implies that LA,P = 0, and the first part of claim
(iv) follows. Because range (B) = H and P ∈ Ricuw(Φ, J), it follows that
limj→∞

〈
PAjx0, A

jx0

〉
= 0 for all x0 in a dense set. Thus LA,P x0 = 0 in a

dense set, and vanishes, by continuity. Now claim (iv) follows.

To prove claim (v), assume that range (B) = H and supj≥0 ||Aj || < ∞. Because
P ∈ Ricuw(Φ, J), we have

〈
PAjx, Ajx

〉
→ 0 for all x ∈ range (B). Let x0 ∈ H

be arbitrary, and let range (B) 
 xk → x0 in the norm of H , as k → ∞. Then

|
〈
PAjx0, A

jx0

〉
|

≤ |
〈
A∗jPAjxk, xk

〉
| + |

〈
A∗jPAjxk, (x0 − xk)

〉
| + |

〈
A∗jPAj(x0 − xk), x0

〉
|

≤ |
〈
A∗jPAjxk, xk

〉
| + sup

j≥0
||A∗jPAj || · ||x0 − xk|| · (||xk|| + ||x0||)

Because {xk} is a convergent sequence, it is a bounded set. Because A is power
bounded, supj≥0 ||A∗jPAj || < ∞. Then, by first increasing k sufficiently the
latter term get arbitrarily small, and the former term gets small as j is increased.
Now

〈
PAjx0, A

jx0

〉
→ 0 for all x0 ∈ H , not just x0 ∈ range (B); or P ∈

Ric000(Φ, J). The additional claim for P ≥ 0 follows from claim (ii) of this
Proposition.

The inclusion part of claim (vi) is trivial. For the rest, let ε > 0, ũ ∈ �2(Z+; U)
and P ∈ Ricuw(Φ, J) be arbitrary. Let K ≥ 0 so large that ||π[k,∞]ũ|| ≤ ε/||B||
for all k ≥ K, where the input stability is used. Then for j > k ≥ K,

|
〈
PBτ∗j ũ,Bτ∗jũ

〉
|(3.5)

≤ |
〈
PBτ∗jπ[0,k−1]ũ,Bτ∗jπ[0,k−1]ũ

〉
| + |

〈
PBτ∗jπ[0,k−1]ũ,Bτ∗jπ[k,∞]ũ

〉
|

+ |
〈
PBτ∗jπ[k,∞]ũ,Bτ∗jπ[0,k−1]ũ

〉
| + |

〈
PBτ∗jπ[k,∞]ũ,Bτ∗jπ[k,∞]ũ

〉
|

≤ 2 ||P || · ||B|| · ||ũ|| · ε + ||P || · ε2 + |
〈
PBτ∗jπ[0,k−1]ũ,Bτ∗jπ[0,k−1]ũ

〉
|.
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Now we estimate the latter term. Because j ≥ k, Bτ∗jπ[0,k−1]ũ = Aj−kx0, where
x0 = Bτ∗kπ[0,k−1]ũ ∈ range (B). But because P ∈ Ricuw(Φ, J) by assumption,〈
PAj−kx0, A

j−kx0

〉
→ 0 as j → ∞. So there is J ≥ K such that the latter

term satisfies |
〈
PBτ∗jπ[0,k−1]ũ,Bτ∗jπ[0,k−1]ũ

〉
| < ε for all j > J . Now the

claim follows from estimate (3.5).

We proceed to consider the H∞ solutions. The symbols ric(φ, J) and ric00(φ, J)
can be used synonymously, as far as they refer to the solution sets.

Proposition 110. Let Φ be an output stable and I/O stable DLS. Let J be a
cost operator. Then ric(Φ, J) = ric00(Φ, J), and we have

P − LA,P = C∗JC − C∗
φP

JCφP .

Proof. By iterating on DARE (3.3), we obtain for all j ≥ 0:

P − (A∗)j+1PAj+1 =
(
π[0,j]C

)∗
J
(
π[0,j]C

)
−
(
π[0,j]CφP

)∗ ΛP

(
π[0,j]CφP

)
(3.6)

= C∗J · π[0,j]C − C∗
φP

J · π[0,j]CφP ,

where we have written the adjoints by the assumed output stabilities. Clearly
C∗JC = C∗Jπ[0,j]C + C∗Jπ[j+1,∞]C. Now s − limj→∞ π[j+1,∞]C = 0 because
C : H → �2(Z+; Y ). Because C∗J is bounded, s − limj→∞ C∗Jπ[j+1,∞]C = 0 and
thus s − limj→∞ C∗Jπ[0,j]C = C∗JC. Similarly s − limj→∞ C∗

φP
ΛP π[0,j]CφP =

C∗
φP

ΛPCφP . Now we see from (3.6) that the strong limit LA,P :=
s − limj→∞ (A∗)j+1PAj+1 on the left hand side exists, and the claim follows.
Also the identity immediately follows.

Note that the I/O stability of φ and φP played no part in the proof of previous
proposition.

The question to what extent the operators ΛP , KP (or, equivalently the indi-
cator ΛP and the spectral DLS φP in case range (Bφ) = H) uniquely define a
solution P ∈ Ric(φ, J), is discussed in the following.

Proposition 111. Let φ = ( A B
C D ) be an I/O stable output stable DLS. Let J

be a self-adjoint operator. Let P1, P2 ∈ Ric(φ, J) be such that ΛP1 = ΛP2 and
KP1 = KP2 .

(i) If either P1 or P2 ∈ Ric00(φ, J), then they both are in Ric00(φ, J). In this
case, P1 − P2 = LA,P1 − LA,P2 .

(ii) If, in addition, P1, P2 ∈ Ric0(φ, J), then P1 = P2. This is, in particular,
always the case when A is strongly stable.
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Proof. It follows from equation (3.3) that A∗P1A − P1 = A∗P2A − P2, and
immediately P1 − P2 = A∗j(P1 − P2)Aj = A∗jP1A

j − A∗jP2A
j for all j ≥ 1.

Now, if A∗jP2A
j → LA,P2 ∈ L(H) in the strong operator topology, A∗jP1A

j

converges in the strong operator topology, too. Now LA,P1 − LA,P2 = P1 − P2

and claim (i) follows. The other claim is trivial.

Proposition 112. Let φ = ( A B
C D ) be a DLS and J ∈ L(Y ) a cost operator.

Let P ∈ Ric00(φ) be arbitrary. If B∗LA,P B = 0 and B∗LA,P A = 0 then
P ′ = P − LA,P ∈ Ric(φ, J), and ΛP = ΛP ′ , KP = KP ′ .

Proof. The claim immediately follows, by noting that A∗LA,P A−LA,P = 0.

Under stronger assumptions, it in fact follows that LA,P = 0 and then P ′ = P ,
see Lemma 144. In this case, the indicator ΛP and the spectral DLS φP uniquely
determine P ∈ ric(φ, J).
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3.3 Critical solutions of H∞DARE

Let J ∈ L(Y ) be a cost operator and Φ =
[

Aj Bτ∗j

C D
]

an I/O stable DLS. As has
been considered in Chapter 2 and concluded in Theorem 103, there are funda-
mental connections between the feedback solution of a certain critical control
problem, the existence of a certain factorization of the I/O map D, and the
existence of a critical solution of WDARE (2.49) of Definition 94. In the special
case, when Φ is, in addition, output stable, this connection is the equivalence
of the following Theorem 114. In part (iii) of Definition 95, we have introduced
the notion of the critical solution of WDARE (2.49). So as to DARE (3.3), the
critical solutions are defined analogously.

Definition 113. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an
I/O stable and output stable DLS. The solution P crit ∈ Ricuw(Φ, J) is critical,
if such the spectral DLS φP crit is I/O stable, and its I/O map Dφ

P crit is outer
with a bounded inverse. If a critical solution P crit lies in ric0(Φ, J), we call it
a regular critical solution.

Theorem 114. Let J ∈ L(Y ) be a cost operator, and let Φ =
[

Aj Bτ∗j

C D
]

be an
I/O stable and output stable DLS. Then the following conditions (i), (ii) and
(iii) are equivalent:

(i) a) Φ is J-coercive, and

b) the critical control problem, associated to Φ and J , is solvable by state
feedback. The critical feedback pair [K,F ] for Φ is I/O stable, output
stable and outer.

(ii) There is a self-adjoint, boundedly invertible operator S ∈ L(U) such that
D has a (J, S)-inner-outer factorization D = NX , where the outer part X
has a bounded inverse.

(iii) There is a critical solution P crit ∈ Ricuw(Φ, J) of DARE (3.3).

If, in addition, the feed-through operator of the outer factor X is normalized to
identity, then ΛP crit = S.

Proof. The equivalence of claims (i) and (ii) is a particular case of Theorem 89,
applied to an additionally output stable DLS Φ. Note that the assumed output
stability trivializes the condition π0N ∗JC ∈ L(dom (C) ; U) of Theorem 89. To
study condition (iii), assume that the equivalent conditions (i) and (ii) of this
theorem hold. We first note that the critical (closed loop) observability map
Ccrit of equation

Ccrit :=
(
I − π̄+D(π̄+D∗JDπ̄+)−1π̄+D∗J

)
C(3.7)
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is bounded, because all its operators are bounded. In particular, the inverse
of the Popov operator (π̄+D∗JDπ̄+)−1 is bounded because Φ is J-coercive, by
condition (i). The observability map C is bounded because Φ is assumed to be
output stable. By Lemma 96, the conjugate symmetric sesquilinear form

P crit
0 (x0, x1) :=

〈
Ccritx0, JCcritx1

〉
for all (x0, x1) ∈ dom (C) × dom (C) = H × H , satisfies the weak algebraic
Riccati equation (WDARE) of Definition 94. Because Ccrit is bounded, the
sesquilinear form P crit

0 ( , ) can be written P crit
0 (x0, x1) =

〈
P crit

0 x0, x1

〉
, where

P crit
0 := (Ccrit)∗JCcrit is a bounded self-adjoint operator. Now P crit

0 satisfies the
DARE of Definition 105 because P crit

0 ( , ) satisfies the WDARE of Definition
94.

The spectral DLS φP crit
0

is I/O stable and outer with a bounded inverse, by
Lemma 96. Because Ccrit = (I − π̄D(π̄+D∗JDπ̄+)−1π̄+D∗J)C = ΠC, x0 ∈ H ,
we have

||A∗jP crit
0 Ajx0|| = ||A∗jC∗Π∗ΠCx0|| ≤ ||C∗|| · ||Π∗Π|| · ||π̄+τ∗Cx0|| → 0.

It now follows that LA,P crit
0

= 0, and in particular, P crit
0 ∈ ric0(Φ, J) ⊂

Ricuw(Φ, J). Claim (iii) immediately follows.

For the converse direction, assume that (iii) holds. We indicate how condition
(ii) follows. The solution P crit ∈ Ricuw(φ, J) defines a conjugate symmetric
sesquilinear form P crit( , ) as above. Lemma 98 and Corollary 99 imply that D =
NDφ

Pcrit , N := DD−1
φ

P crit
, is a (J, ΛP crit)-inner-outer factorization, where the

outer factor has a bounded inverse. But this is condition (ii), thus completing
the proof of the equivalence part. To see that ΛP crit

0
= S, note that each critical

solution gives a (J, ΛP crit)-inner-outer factorization of D, such that the feed-
through operator of the outer factor Dφ

Pcrit is identity. The equivalence of the
sensitivity operators S and ΛP crit follows from Proposition 83, as in the proof
claim (iii) of Proposition 115.

Note that Theorem 114 takes no position whether a critical solution P crit, when
it exists, is unique in the solution set Ricuw(Φ, J). We also remark that the
spectral DLS φP crit of a critical solution is not required to be output stable, and
thus P crit is not required to be a H∞ solution. However, the proof of Theorem
114 indicates that if a critical P crit ∈ Ricuw(Φ, J) exists, then also a regular
critical solution exists, and one of those can be given by an explicit formula
P crit

0 := (Ccrit)∗JCcrit where Ccrit is given by (3.7). It follows that a critical
solution P crit ∈ Ricuw(Φ, J) exists if and only if the regular critical solution
P crit

0 ∈ ric0(Φ, J) exists. Note that the critical observability map Ccrit does not
necessarily make sense as a bounded operator, if the conditions of Theorem 114
do not hold. Even if Ccrit is bounded and P crit

0 = (Ccrit)∗JCcrit is well-defined,
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we cannot conclude that it solves the DARE Ric(Φ, J) because its indicator
ΛP crit

0
:= D∗jD + B∗P crit

0 B could fail to have a bounded inverse. To exclude
this possibility, we have required in Lemma 93 that the equivalent conditions of
Theorem 89 hold. Under the present output stability assumption, it is equivalent
to require that the equivalent conditions (i) and (ii) of Theorem 114 hold. We
conclude that a successful construction of the operator P crit

0 = (Ccrit)∗JCcrit

does not allow us to conclude that the equivalent condition of Theorem 114
hold. The special regular critical solution P crit

0 is considered in the following.

Proposition 115. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable and output stable DLS,
and J ∈ L(Y ) be self-adjoint. Assume that a critical solution P crit ∈ Ricuw(Φ, J)
exists. Then

(i) P crit
0 := (Ccrit)∗JCcrit ∈ ric0(Φ, J) is a critical solution,

(ii) the residual cost operator LAcrit,P crit
0

exists and vanishes, where Acrit :=
A + BKcrit = A + BKP crit

0
, and

(iii) the indicators of all critical solutions are equal to ΛP crit
0

.

Proof. Because a critical solution P crit ∈ Ricuw(Φ, J) exists, the equivalent
conditions of Theorem 114 hold. It has been shown in the proof of Theorem
114 that P crit

0 := (Ccrit)∗JCcrit is a critical solution of DARE Ric(Φ, J), and it
satisfies the strong residual cost condition LA,P crit

0
= 0, too. We already know

that the spectral DLS φP crit
0

is I/O stable by Definition 113. To show that P crit
0

is an H∞ solution, it remains to consider the output stability of the spectral
DLS φP crit

0
.

Let D = NX be a (J, ΛP crit
0

)-inner-outer factorization of Corollary 99, where
the outer factor X := Dφ

Pcrit
0

is outer with a bounded inverse. The critical (one
step, state) feedback operator takes the form

Kcrit := π0Kcrit = −π0X−1Λ−1
P crit

0
π̄+N ∗JC = −Λ−1

P crit
0

π0N ∗JC,

where we have used claim (iii) of Lemma 84 and the fact that the feed-through
operator of X is identity. It follows that Kcrit ∈ L(H, U), because the DLS Φ
is assumed to be output stable.

It follows from equation (2.40) of Lemma 92 that ΛP crit
0

Kcrit = −D∗JC −
B∗P crit

0 A = QP crit
0

in the whole of dom (C) = H . The invertibility of the indica-
tor ΛP crit

0
implies that Kcrit = KP crit

0
, by Definition 105 of DARE. The fact that

we know this in the whole of H , and not only in range (B), is a specialty of this
particular critical solution P crit

0 . We now conclude that the observability map
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Cφ
Pcrit
0

= {−KP crit
0

Aj}j≥0 = {−KcritAj}j≥0 equals −K, where K is the observ-
ability map of the critical feedback pair [K,F ], see equations (2.27) and (2.28)
of Lemma 87. Because K = −ΛP crit

0
π̄+N ∗JC, where N is the (J, ΛP crit

0
)-inner

factor of D, it follows that K : H → �2(Z+; U) is bounded. We conclude that
φP crit

0
is output stable, and P crit

0 ∈ ric0(Φ, J).

The proof of claim (ii) is analogous to the proof of LA,P = 0. Because
CcritAcrit = π̄+τ∗Ccrit by Lemma 74, we have

||(Acrit∗)jP crit
0 (Acrit)jx0|| = ||(Acrit∗)j(Ccrit

)∗JCcrit
(Acrit)jx0||

≤ ||(Ccrit
)∗J || · ||π̄+τ∗jCcrit

x0|| → 0

as j → ∞. It now follows that LA,P crit
0

= 0.

It remains to prove claim (iii). Assume that both P crit
1 and P crit

2 are critical
solutions. Then, by Corollary 99, both the I/O maps Dφ

P crit
1

and Dφ
P crit
2

are
outer factors in the (J, ΛP crit

1
), (J, ΛP crit

2
)-inner-outer factorizations that they

induce, respectively. With the aid of Proposition 83, we conclude that there is
a boundedly invertible E ∈ L(U), such that

Dφ
P crit
1

= E−1Dφ
P crit
2

, and ΛP crit
1

= E∗ΛP crit
2

E.

Because the feed-through operators of both Dφ
P crit
1

and Dφ
P crit
2

are identity
operators, it follows that E = I, Dφ

P crit
1

= Dφ
Pcrit
2

and ΛP crit
1

= ΛP crit
2

. This
completes the proof.

Without the approximate controllability assumption range (B) = H , we cannot
conclude that a regular critical solution is unique in the set ric0(Φ, J). However,
the following uniqueness result is basic:

Corollary 116. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable and output stable DLS, such that range (B) = H. Assume that a critical
solution P crit ∈ Ricuw(Φ, J) exists.

(i) Then P crit
0 is the unique critical solution in the set Ric00(Φ, J). If A is

strongly stable, then P crit
0 is the unique critical solution.

(ii) Assume, in addition, that P crit ≥ 0. If P crit /∈ Ric0(Φ, J), then
supj≥0 ||(P crit)

1
2 Aj || = ∞.

Proof. Let P crit
0 be as in Proposition 115. By claim (iii) of Proposition 115,

we have Dφ
P crit
0

= DφP crit and ΛP crit
0

= ΛP crit . Also the restrictions satisfy
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KP crit
0

|range (B) = KP crit |range (B) because the controllability maps both spec-
tral DLSs φP crit

0
and φP crit equal to B. Because range (B) = H , it follows

KP crit
0

= KP crit .

By the definition of a critical solution, P crit ∈ Ricuw(Φ, J). Now, if P crit ∈
Ric00(Φ, J), then P crit ∈ Ric0(Φ, J), by claim (iv) of Proposition 109 and the
approximate controllability assumption range (B) = H . Proposition 111 implies
that P crit ∈ Ric00(Φ, J) satisfies

P crit = P crit
0 + LA,P crit − LA,P crit

0
= P crit

0 ,

because P crit
0 ∈ ric0(Φ, J), by Proposition 115. Now claim (i) follows.

By the definition of a critical solution, P crit ∈ Ricuw(Φ, J). Because P crit ≥
0, it follows that ||(P crit)

1
2 Ajx|| → 0 for all x ∈ range (B). Assume that

supj≥0 ||(P crit)
1
2 Aj || < ∞. Let range (B) 
 xk → x ∈ H \ range (B). Then,

||(P crit)
1
2 Ajx|| ≤ sup

j≥0
||(P crit)

1
2 Aj || · ||x − xk|| + ||(P crit)

1
2 Ajxk||.

The first term on the right can be made small by increasing k, and the latter
by increasing j. It follows that limj→∞ ||(P crit)

1
2 Ajx|| = 0 and then P crit ∈

Ric0(Φ, J), by the Banach–Steinhaus theorem. This completes the proof.

The rest of this section is devoted to the study of sufficient conditions that
guarantee that (one and hence all of) the equivalent conditions of Theorem 114
hold. We remark that this is practically a standing hypothesis in this work.

Proposition 117. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an
I/O stable DLS whose input space U is separable. If π̄+D∗JDπ̄+ ≥ επ̄+ > 0 for
some ε > 0, then the equivalent conditions of 114 hold. In particular, this is true
if Φ is J-coercive and J ≥ 0, or Φ is J-coercive and there is P ∈ ricuw(Φ, J)
such that ΛP > 0.

Proof. Assume that π̄+D∗JDπ̄+ is a nonnegative self-adjoint Toeplitz operator
on �2(Z+; U) with a bounded inverse. By [77, Theorem 3.7], there is an I/O
stable I/O map G ∈ L(�2(Z; U)) such that π̄+D∗JDπ̄+ = π̄+G∗Gπ̄+. By this
trick we get rid of the output space Y . By [77, Theorem 3.4], π̄+D∗JDπ̄+ =
π̄+G∗Gπ̄+ = π̄+H∗Hπ̄+, where H is outer in the sense of [77, Definition 1.6].
Now, two problems are present. Firstly, range (Hπ̄+) for the outer operator H
of [77, Definition 1.6] need not be even dense in �2(Z+; U). It is required that
the closure of range (Hπ̄+) reduces the unilateral shift and is consequently of the
form �2(Z+; U ′) for some Hilbert subspace U ′ ⊂ U . Secondly, even if U ′ = U ,
we must have range (Hπ̄+) closed, so that H is outer with a bounded inverse in
the sense of Definition 79. The latter of these problems is easy to resolve. By
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Proposition 69, the coercivity π̄+H∗Hπ̄+ ≥ επ̄+ > 0 implies that the Toeplitz
operator Hπ̄+ has a closed range.

To attack the former problem, note that U ′ ⊂ U implies dim U ′ ≤ dimU . We
proceed to prove that also dim U ′ ≥ dimU holds. By H := π0Hπ0 : U → U ′

denote the feed-through operator of H. We show that ker (H) = {0}. For
contradiction, assume that Hu0 = 0 for some nonzero u0 ∈ U . Denote ũ :=
{uj}j≥0 where uj = 0 for all j ≥ 1. Then

w̃ := Hũ = π+Hũ ∈ �2(Z+; U ′)(3.8)

and also τ∗w̃ ∈ �2(Z+; U ′). Because range (Hπ̄+) = �2(Z+; U ′), there is ũ′ ∈
�2(Z+; U) such that τ∗w̃ = Hπ̄+ũ′ and

w̃ = τHπ̄+ũ′ = Hτπ̄+ũ′ = Hπ+τũ′.(3.9)

From equations (3.8) and (3.9) we conclude that Hπ̄+(ũ − π+τũ′) = 0. Be-
cause π̄+H∗Hπ̄+ is coercive, it follows that π̄+(ũ − π+τũ′) = 0 and thus
π0ũ − π0π+τũ′ = π0ũ = 0. But then u0 = 0, and this is a contradiction.
We conclude that H : U → U ′ is an injection, and thus dimU ′ ≥ dimU .

Because dim U ′ = dimU , there is a unitary E ∈ L(U ′; U) such that E∗E = I.
Define X := EH. This is a stable I-spectral factor of D∗JD, see Definition 80.
Because Hπ̄+, together with X π̄+, is coercive on �2(Z+; U), it follows that X is
an I/O stable I/O map that is outer with a bounded inverse, see Definition 79.
By claim (i) of Proposition 46, X−1 is an I/O stable I/O map. By Definition 80,
X is a stable outer I-spectral factor of D∗JD, and by Proposition 82, D = NX
is a (J, I)-inner-outer factorization, where N := DX−1 and the outer factor X
is outer with a bounded inverse. Now condition (ii) of Theorem 114 holds.

If there is a solution in P ∈ ricuw(Φ, J) such that ΛP > 0, then we obtain the
factorization of the Popov operator π̄+D∗JDπ̄+ = π̄+D∗

φP
JDφP π̄+, by Lemma

98 or claim (i) of Theorem 142. We can now proceed as above, with D replaced
by DφP .

For a further comment on the nonnegativity of the indicators ΛP , see Lemma
145 and Corollary 146. The following equivalence is now an immediate corollary:

Corollary 118. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable and output stable DLS, such that the input space U is separable. Then
the following are equivalent:

(i) π̄+D∗JDπ̄+ ≥ επ̄+ for some ε > 0.

(ii) The Popov operator π̄+D∗JDπ̄+ is nonnegative, and the equivalent condi-
tions of Theorem 114 hold.
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Proof. The implication (i) ⇒ (ii) is in Proposition 117. The converse direction
is claim (i) of Theorem 114.

The case the nonnegative Popov operator π̄+D∗JDπ̄+ occurs in applications,
e.g. in the study of linear quadratic optimal control problems and in the factor-
ization versions of Bounded and Positive Real Lemmas, see [86, Section 8]. In
the latter two applications, the cost operator J is not nonnegative. We remark
that it is practically a standing hypothesis of this work that the equivalence of
Theorem 114 holds.
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3.4 Function theoretic definitions and tools

In this section, we present some relevant results from the operator-valued func-
tion theory. Let φ = ( A B

C D ) be a DLS. We work in terms of the boundary
trace Dφ(eiθ) of the transfer function Dφ(z) that must now be of bounded type
Dφ(z) ∈ N(D;L(U)). This requires the separability of the Hilbert spaces U
and Y . To obtain the full results, we must make a compactness assumption of
an input operator B of φ, as we shall later see.

The adjoints of transfer functions are considered in Proposition 119. Several
types of inner transfer functions are given in Definition 120. In Proposition 121,
inner from the left transfer functions are characterized via the associated I/O
maps and their Toeplitz operators. In Proposition 122, the inner functions are
characterized in the set H2(D;L(U ; Y )), rather than in H∞(D;L(U ; Y )). In
Proposition 123, we remind that an inner from the left analytic function on a
finite dimensional space is inner from both sides. In Lemma 125, we show, under
a compactness assumption, that an analytic function Θ(z) ∈ H2(D;L(U)),
whose boundary trace Θ(eiθ) is injective almost everywhere, has the property
that Θ(eiθ) is boundedly invertible almost everywhere. In Corollary 126, we
obtain an infinite dimensional generalization of Proposition 123. This allows us
to conclude that certain inner from the left operator-valued transfer functions
are, in fact, inner from both sides. Transfer functions and boundary traces of
outer I/O maps are considered in Proposition 127.

The Hilbert–Schmidt class of compact operators is introduced in Definition 128.
In Lemma 130 and Corollary 131, we use the Hilbert–Schmidt property of the
input operator B to conclude that the transfer function of an output stable DLS
φ = ( A B

C D ) is in H2(D;L(U ; Y )). In Lemma 134, we show that the nontangen-
tial limit Dφ(eiθ) ∈ L(U ; Y ) of an output stable, I/O stable and J-coercive DLS
φ = ( A B

C D ) is invertible almost everywhere, provided that the input operator B
is a Hilbert–Schmidt operator and the feed-through operator D is boundedly
invertible. Under the same assumptions, the invertibility properties of the (ex-
tended topological) I/O map Dφ : �2(Z; U) → �2(Z; Y ) and its Toeplitz operator
Dφπ̄+ : �2(Z+; U) → �2(Z+; Y ) are considered in Proposition 135.

We start by introducing some function theoretic notions. Let Θ(z) be an analytic
L(U ; Y ))-valued function in D. The adjoint function Θ̃(z) is defined by

Θ̃(z) := Θ(z̄)∗ for all z ∈ D.

If Θ(z) =
∑

j≥0 cjz
j for {cj}j≥0 ⊂ L(U, Y ), then Θ̃(z) =

∑
j≥0 c∗jz

j . It
is trivial that for all 1 ≤ p ≤ ∞, Θ̃(z) ∈ Hp(D;L(Y ; U)) if and only if
Θ(z) ∈ Hp(D;L(U ; Y )). The nontangential boundary limits of adjoint bounded
analytic functions behave expectedly.
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Proposition 119. Let 1 ≤ p ≤ ∞ and Θ(z) ∈ Hp(D;L(U ; Y )) be arbitrary,
and let Θ̃(z) denote the adjoint function. Then Θ̃(eiθ) = Θ(e−iθ)∗ for almost
all eiθ ∈ T. Furthermore, there exists a set E ⊂ T of measure zero such that

s − lim
zj→eiθ

Θ(zj) = Θ(eiθ) and s − lim
zj→eiθ

Θ(zj)∗ = Θ(eiθ)∗

for all eiθ ∈ T \ E and any sequence {zj}j≥0 approaching nontangentially eiθ.

Proof. Note first that the nontangential limit function Θ̃(eiθ) exists as a strong
operator limit a.e. eiθ ∈ T because Θ̃(z) ∈ Hp(D;L(Y ; U)). Denote the ex-
ceptional sets of measure zero for Θ(z) and Θ̃(z) by E1 and E2, such that the
nontangential limits Θ(eiθ) and Θ̃(eiθ) exists in sets T \E1 and T \E2, respec-
tively. Define the exceptional set E := E1 ∪ Ē2, where bar denotes the complex
conjugation. It can be shown that the set Ē2 is measurable (in the Lebesgue
completed σ-algebra of the Borel σ-algebra of the unit circle T) and of measure
zero. It follows that the set E is of measure zero.

Let eiθ ∈ T \ E be arbitrary. Let zj → eiθ be an arbitrary nontangentially
approaching sequence. Trivially, the sequence of conjugates z̄j → e−iθ nontan-
gentially, too. By the definition of E, s − limj→∞ Θ(zj) = Θ(eiθ) and

s − lim
j→∞

Θ(zj)∗ = s − lim
j→∞

Θ̃(z̄j) = Θ̃(e−iθ).(3.10)

But for a general sequence of bounded operator {Tj}j≥0 ⊂ L(U ; Y ), such that
both the strong limits T := s − lim Tj and S := s − lim T ∗

j exist as bounded
operators, we have

〈u, (T ∗ − S)y〉 = 〈Tu, y〉 − 〈u, Sy〉 = lim
j→∞

〈Tju, y〉 − lim
j→∞

〈
u, T ∗

j y
〉

= lim
j→∞

(
〈Tju, y〉 −

〈
u, T ∗

j y
〉)

= lim
j→∞

(〈Tju, y〉 − 〈Tju, y〉) = lim
j→∞

0 = 0,

where u ∈ U and y ∈ Y are arbitrary. It follows that S = T ∗. From equation
(3.10) we conclude that Θ̃(e−iθ) = Θ(eiθ)∗ a.e. eiθ ∈ T. This completes the
proof.

We proceed to introduce the inner functions with the aid of the boundary traces.
In Proposition 121 we state that this definition is in harmony with Definition
79 of inner I/O maps.

Definition 120. Let Θ(z) ∈ H∞(D;L(U ; Y )), where U and Y are separable.
Then

(i) Θ(z) is inner from the left if Θ(eiθ) ∈ L(U, Y ) is an isometry for almost
all eiθ ∈ T,
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(ii) Θ(z) is inner from the right if the adjoint function Θ̃(z) is inner from the
left,

(iii) Θ(z) is inner if Θ(eit) is unitary a.e. eiθ ∈ T.

Clearly Θ(z) is inner from the left if and only if Θ̃(z) is inner from the right.
The nontangential limit Θ(eiθ) of a function inner from the right is co-isometric
for almost all eiθ ∈ T. Also Θ(z) is inner if and only if it is inner from the left
and right. In this case we can say, for clarity, that Θ(z) is inner from both sides
or two-sided inner. In [27, p. 234 and 242], Θ(z) is inner (∗-inner) if Θ(eiθ) is
isometric (co-isometric, respectively) for almost all eiθ ∈ T. The same notation
is used in [90, p. 190]. In [77], inner function is an element of H∞(D;L(U)) such
that the values of the boundary trace are partial isometries almost everywhere,
and their initial spaces are constant, see [77, Theorem 5.3A and Example 1 on
p. 106]. The transfer functions of the isometric and unitary Toeplitz operators
of I/O maps N π̄+ : �2(Z+; U) → �2(Z+; Y ) are of particular interest.

Proposition 121. Let N : �2(Z; U) → �2(Z; Y ) be an (extended topological)
I/O map of an I/O stable DLS, with U and Y separable. Then the following
are equivalent:

(i) N is (I, I)-inner in the sense of Definition 79,

(ii) N π̄+ : �2(Z+; U) → �2(Z+; Y ) is an isometry, and

(iii) the transfer function N (z) is inner from the left.

Furthermore, N π̄+ is unitary if and only if N (z) is a unitary constant function.

Proof. This is [27, part (c) of Theorem 1.1 and Corollary 1.2, Chapter IX].

In Definition 120, we have required that the inner function Θ(z) is a priori in
H∞(D;L(U ; Y )). This makes it possible to speak about nontangential limits,
defined a.e. on T. Actually, it would have been sufficient to require that Θ(z)
lies in H2(D;L(U ; Y )) or even in N+(D;L(U ; Y )).

Proposition 122. Let T (z) ∈ H2(D;L(U ; Y )), with U and Y separable. As-
sume that the boundary trace satisfies ess supeiθ∈T ||T (eiθ)|| < ∞. Then T (z) ∈
H∞(D;L(U ; Y )). In particular, if T (z) ∈ H2(D;L(U ; Y )) has the isometry-
valued boundary trace T (eiθ) for almost all eiθ ∈ T, then T (z) is inner from the
left.

Proof. By the same comment that is present in the proof of Proposition 55, we
need to consider only the case Y = U . In this case, [77, Theorem 4.7A] proves
the claim because H2(D;L(U ; Y )) ⊂ N+(D;L(U ; Y )).



142 CHAPTER 3. SPECTRAL FACTORIZATION

On several occasions, it will be necessary to conclude that an inner from the left
function is in fact inner. If the Hilbert spaces U and Y are finite dimensional
with the same dimension, it is easy to show that inner from the left implies
inner from the both sides. This is because all isometries in a finite dimensional
space are unitary, by a basic dimension counting argument.

Proposition 123. Assume that Θ(z) ∈ H∞(D;L(U)) is inner from the left,
where dim U < ∞. Then Θ(z) is inner from both sides.

If the involved Hilbert spaces are infinite dimensional, much less it true. How-
ever, a sufficient generalization of Proposition 123 holds, see Corollary 126.
The following preliminary result allows us to conclude from the strong oper-
ator convergence the convergence in the operator norm, under a compactness
assumption.

Proposition 124. Let K ∈ LC(U) and κj ∈ L(U) for all j ≥ 0. Assume that
κju → κu for all u ∈ U . Then ||κK − κjK||L(U) → 0 as j → ∞.

Proof. For contradiction, assume that ||κK − κjK||L(U) does not converge to
zero as j → ∞. Then there is a sequence {ui}i≥0 ⊂ U , ||ui||U = 1, and a
subsequence {j(i)}j≥0 such that for all i ≥ 0 we have

||(κ − κj(i))Kui||U ≥ ν(3.11)

for some constant ν > 0. Because K is compact, there exists a subsequence
{ui(h)}h≥0 such that Kui(h) converges to a limit, say u ∈ U . We now estimate
for all h ≥ 0

||(κ − κj(i(h)))Kui(h)||U ≤ ||(κ − κj(i(h)))u||U + ||(κ − κj(i(h)))(Kui(h) − u)||U

≤ ||(κ − κj(i(h)))u||U +
(
||κ||L(U) + sup

j≥0
||κj ||L(U)

)
· ||Kui(h) − u||U .

The first term on the right hand side converges to zero because u ∈ U and κj →
κ in the strong operator topology. Because κj → κ in the strong operator topol-
ogy, it follows from the Banach–Steinhaus Theorem that supj≥0 ||κj ||L(U) < ∞.
We conclude that the latter term converges to zero, by the choice of the conver-
gent subsequence {Kui(h)}h≥0. Thus ||(κ − κj(i(h)))Kui(h)||U → 0 as h → ∞,
but this is a contradiction against the existence of a nonnegative lower bound
ν in equation (3.11). This completes the proof.

Lemma 125. Let K ∈ LC(U) and κ(z) ∈ H2(D;L(U)) be arbitrary. Define

Θ(z) := I + κ(z)K, z ∈ D.
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(i) Then Θ(z) ∈ H2(D;L(U)). Furthermore, there is an exceptional set E ⊂
T of measure zero, such that the nontangential limits

Θ(eiθ) = lim
zj→eiθ

Θ(zj), Θ(eiθ)∗ = lim
zj→eiθ

Θ(zj)∗(3.12)

exist and converge in the operator norm of L(U), for all eiθ ∈ T \ E and
for any sequence {zj}j≥0 ⊂ D that converges to eiθ nontangentially. The
boundary trace satisfies

Θ(eiθ) = I + κ(eiθ)K(3.13)

for all eiθ ∈ T \ E.

(ii) Assume, in addition, that the boundary trace Θ(eiθ) is injective for almost
all eiθ ∈ T. Then Θ(eiθ) is boundedly invertible for almost all eiθ ∈ T.

Proof. It is a triviality that Θ(z) ∈ H2(D;L(U)). Because κ(z) ∈ H2(D;L(U)),
there exists an exceptional set E ⊂ T of measure zero, such that for all eiθ ∈
T \ E, the strong limit

κ(eiθ) = s − lim
zj→eiθ

κ(zj)

converges, where {zj}j≥0 ⊂ D is an arbitrary sequence that converges nontan-
gentially to eiθ. Furthermore, the strong nontangential limit

Θ(eiθ) := s − lim
zj→eiθ

Θ(zj)

exists and satisfies equation (3.13) for all eiθ ∈ T \ E. For the rest of the
proof, fix an arbitrary eiθ ∈ T \ E and a nontangential sequence {zj}j≥0 ⊂ D,
converging to eiθ.

Define κj := κ(zj) and κ := κ(eiθ). Then κj → κ in the strong operator
topology, and κjK → κK in the norm of L(U), by Proposition 124. But now
we have

||Θ(zj) − Θ(eiθ)||L(U) = || (I − κ(zj)K) −
(
I − κ(eiθ)K

)
||L(U)

= ||κK − κjK||L(U) → 0.

We conclude that Θ(zj) → Θ(eiθ) in the norm of L(U), and immediately
Θ(zj)∗ → Θ(eiθ)∗ in the norm of L(U), too. This completes the proof of claim
(i).

We consider now claim (ii). By assumption, there is an exceptional set E′ ⊂ T
of measure zero, such that the evaluation of the nontangential limit Θ(eiθ) ∈
L(U) is injective for eiθ ∈ T \ E′. For the rest of this proof, fix an arbitrary
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eiθ ∈ T \ (E ∪ E′), where E is as in claim (i), and E ∪ E′ is a set of measure
zero. The operator κ(eiθ)K ∈ L(U) is compact because κ(eiθ) ∈ L(U) and K ∈
LC(U). Because the spectrum of a compact operator consists of eigenvalues and
possibly the point zero, then either −1 ∈ σp(κ(eiθ)K) or Θ(eiθ) = I + κ(eiθ)K
is boundedly invertible. But if −1 ∈ σp(κ(eiθ)K), then I + κ(eiθ)K is not
even injective, which is against the choice of eiθ. We conclude that Θ(eiθ) =
I+κ(eiθ)K is boundedly invertible, and because eiθ ∈ T\(E∪E′) was arbitrary,
the proof is complete.

Corollary 126. Let κ(z) ∈ H2(D;L(U)) and K ∈ LC(U) be arbitrary. Assume
that the function

Θ(z) = Θ0 + zκ(z)K, z ∈ D.

is inner from the left, and Θ0 ∈ L(U) is boundedly invertible. Then Θ(z) is
inner from both sides.

Proof. Write Θ−1
0 Θ(z) = I + zΘ−1

0 κ(z)K, and apply Lemma 125.

We remark that if dimU = ∞, the class of inner functions, considered in the
previous Corollary 126, is rather restricted. The values of the boundary trace
Θ(eiθ) are unitary operator of form Θ0 + zK(eiθ), where K(z) is compact a.e.
eiθ ∈ T. In this book, this restriction holds in all the instances where we must
conclude that an inner from the left function is inner from both sides. However,
even if we could deal with the more general inner functions, our results would not
be more general because we are compelled to make a compactness assumption for
other reasons (see Lemma 130), leading to this restricted type of inner factors.

Now that we have dealt with the matters concerning the boundary behavior
of the inner functions, we proceed to study the outer functions and general
transfer functions of certain DLSs. The basic properties of the outer I/O maps
have been considered in Proposition 46. Now we consider the corresponding
transfer functions and boundary traces.

Proposition 127. Let X : �2(Z; U) → �2(Z; U) be an I/O map of an I/O stable
DLS, which is outer with a bounded inverse. Then the following holds.

(i) X−1 : �2(Z; U) → �2(Z; U) exists boundedly, and it is an I/O map of an
I/O stable DLS.

(ii) X (z)−1 ∈ L(U) exists for all z ∈ D, and X (z)−1 = X−1(z). Furthermore,
supz∈D ||X (z)−1||L(U) < ∞ and thus X (z)−1 ∈ H∞(D;L(U)).

(iii) If, in addition, U is separable, then the nontangential boundary limit
X (eiθ) exists and is boundedly invertible for almost all eiθ ∈ T. We have
X (eiθ)−1 = X−1(eiθ) for almost all eiθ ∈ T. In particular, X (eiθ)−1 ∈
H∞(T;L(U)).
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Proof. Claim (i) is shown in claim (i) of Proposition 46. To prove claim (ii), we
show that X (z)−1 = X−1(z) for all z ∈ D. Let φ′ be a realization such that
X = Dφ′ . Then X−1 = D−1

φ′ = D(φ′)−1 , by Proposition 17, and I = D(φ′)−1Dφ′ .
By Corollary 54, I = D(φ′)−1(z)Dφ′(z) and I = Dφ′(z)D(φ′)−1(z) for all z ∈ D.
It follows that Dφ′(z) = X (z) : U → U is a bounded bijection and has a
bounded inverse X (z)−1, for all z ∈ D. Also X (z)−1 = D−1

φ′ (z) = X−1(z) ∈
H∞(D;L(U)), by claim (i). The last claim (iii) follows now from the theory of
boundary traces of H∞-functions, see the discussion following Definition 58 or
[77, p. 88].

As we have stated earlier, functions in the Nevanlinna class N(D; X) can be ad-
equately described by their nontangential boundary limit functions for X = U ,
X = L(U) or X = L(U ; Y ), when U and Y are separable Hilbert spaces. Un-
fortunately, a general sH2(D;L(U ; Y )) function need not be in N(D;L(U ; Y ))
if dimU = ∞. It is even more unfortunate that the strong H2 stability of the
transfer function is an important notion because it is implied by the output
stability of any of its realizations. From the state space representation of a
transfer function, output stability of the realization is often best we can achieve
by Liapunov type methods.

In order to work with the boundary traces Dφ(eiθ) of an output stable DLS
φ = ( A B

C D ), we have to make an extra assumption. The question is about a
compactness assumption of the input operator B which, in a sense, forbids the
DLS φ to be “too” infinite-dimensional. With this restriction, we can conclude
that Dφ(z) ∈ H2(D;L(U ; Y )) ⊂ N+(D;L(U ; Y )), by Lemma 130.

Definition 128. Let H1, H2 be separable Hilbert spaces, and T ∈ L(H1, H2).
Let {ej}j≥0 be an orthonormal basis for H1. We say that T is a Hilbert–Schmidt
operator if

||T ||2HS(H1;H2) :=
∑
j≥0

||Tej||2H2(H1;H2)

is finite. In this case we write T ∈ HS(H1; H2). The number ||T ||HS(H1;H2) is
the Hilbert–Schmidt norm of T .

Basic references about the Hilbert–Schmidt operators are [24, Chapter XI.6]
and [41]. Also [109, Chapter 1] is quite useful. It is customary to consider the
Hilbert–Schmidt operators on a single Hilbert space. Because Hilbert spaces
of same cardinality can be unitarily identified, this is only a technical prob-
lem. It can be shown that the class HS(H1; H2) is well defined, and the
norm || · ||HS(H1;H2) is independent of the choice of the basis {ej}j≥0. All
Hilbert–Schmidt operators are compact, and each finite rank operator is triv-
ially Hilbert–Schmidt. The adjoint of a Hilbert–Schmidt operator is Hilbert–
Schmidt. The set HS(H1; H2) is a vector space, and the norm || · ||HS(H1;H2)
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makes it a Banach space. In the matrix case, the HS(H1; H2)-norm is the fa-
miliar Frobenius matrix norm. The vector space HS(H1, H2) is a Hilbert space
under the inner product

[T1, T2]HS(H1,H2) :=
∑
j≥0

〈T1ej , T
∗
2 ej〉.

If H1 = H2, then HS(H1; H2) is a Banach algebra where the involution T �→ T ∗

satisfies ||T ||HS(H1) = ||T ∗||HS(H1). The Hilbert–Schmidt operators are exactly
those compact operators T whose singular values satisfy

∑
j≥0 σj(T )2 < ∞,

where the singular values are defined as the eigenvalues of the radial part |T | :=
(T ∗T )

1
2 . In fact, ||T ||2HS(H1;H2) =

∑
j≥0 σj(T )2. The singular values are know

as s-numbers in [41], and characteristic numbers in [24]. There is a number of
equivalent characterizations for the singular values of a compact operator. It is
a matter of taste, which one is chosen to be the definition. The following result
is important enough to stated formally, and can be found in [24, Corollary 5 in
Chapter XI, Section 6].

Proposition 129. Let T ∈ HS(H1; H2) and S ∈ L(H2; H3). Then ST ∈
HS(H1; H2) and ||ST ||HS(H2;H3) ≤ ||S||L(H2;H3) ||T ||HS(H1;H2).

Our first application of the Hilbert–Schmidt operators is the following lemma.

Lemma 130. Let Θ(z) ∈ sH2(D;L(U ; Y )), with U and Y separable. Assume
that the linear mapping

U 
 u �→ Θ(z)u ∈ H2(D; Y )(3.14)

is a Hilbert–Schmidt operator. Then Θ(z) ∈ H2(D;L(U ; Y )).

Proof. Let {ej}j≥0 be an countable orthonormal basis for the separable U . De-
fine the analytic functions Θj(z) := Θ(z)ej. Each Θj(z) belongs to H2(D; Y )
because Θ(z) ∈ sH2(D;L(U ; Y )). The Hilbert–Schmidt assumption means that∑

j≥0

||Θj(z)||2H2(D;Y ) < ∞,(3.15)

where

||Θj(z)||2H2(D;Y ) := sup
0<r<1

1
2π

2π∫
0

||Θj(reiθ)||2Y dθ.

For all z ∈ D, Θ(z) ∈ L(U ; Y ). Let u =
∑

j≥0 cjej ∈ U be arbitrary, such that
only a finite number of cj ’s are nonzero. Then for all z ∈ D we have

||Θ(z)u||2Y = ||
∑
j≥0

cj Θj(z)||2Y ≤
∑
j≥0

|cj |2
∑
j≥0

||Θj(z)||2Y = ||u||2U ·
∑
j≥0

||Θj(z)||2Y



3.4. FUNCTION THEORETIC DEFINITIONS AND TOOLS 147

Because above the set of u’s is dense in U , it follows

||Θ(z)||2L(U ;Y ) ≤
∑
j≥0

||Θj(z)||2Y(3.16)

for all z ∈ D.

Now, let 0 < r < 1 be arbitrary. Then each function eiθ �→ ||Θj(reiθ)||2Y is a
smooth (and thus a measurable) function, by the analyticity of Θj(z) in D. The
function eiθ �→

∑
j≥0 ||Θj(reiθ)||2Y is measurable because the partial sums are

increasing, and the supremum of a countable collection of measurable functions
is measurable, by [78, Theorem 1.14]. Similarly, because Θ(z) is analytic inside
D, the function eiθ �→ ||Θ(reiθ)||2Y is measurable, too. Now equation (3.16)
gives for all 0 < r < 1

1
2π

2π∫
0

||Θ(reiθ)||2L(U ;Y ) dθ ≤ 1
2π

2π∫
0

∑
j≥0

||Θj(reiθ)||2Y

 dθ(3.17)

=
∑
j≥0

 1
2π

2π∫
0

||Θj(reiθ)||2Y dθ

,

where the latter equality is by the Lebesgues Monotone Convergence theorem
[78, Theorem 1.26] implies (or its immediate corollary [78, Theorem 1.27]),
because the partial sums are nondecreasing. Taking supremum over r, gives

||Θ(z)||2H2(D;L(U ;Y )) ≤
∑
j≥0

 sup
0<r<1

1
2π

2π∫
0

||Θj(reiθ)||2Y dθ


=
∑
j≥0

||Θj(z)||2H2(D;Y ).

Using the Hilbert–Schmidt assumption in the form of equation (3.15) shows
that Θ(z) ∈ H2(D;L(U ; Y )). The proof is now complete.

Corollary 131. Let φ = ( A B
C D ) be an output stable DLS, such that the spaces

U and Y are separable. Assume that the input operator B ∈ L(U ; H) is Hilbert–
Schmidt. Then Dφ(z) ∈ H2(D;L(U ; Y )).

Proof. Because φ is output stable, Dφ(z)−D ∈ sH2(D;L(U ; Y )), by Proposition
57. We also have (Dφ(z)−D)u0 =

∑
j≥1 CAj−1Bu0z

j = z·(FzCφBu0)(z), where
Fz denotes the unitary z-transform from �2(Z+; Y ) onto H2(D; Y ). By output
stability, the composition FzCφ : H → H2(D; Y ) is well defined and bounded.
It follows from Proposition 129 that the mapping

U 
 u0 �→ (FzCφBu0)(z) ∈ H2(Y )
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is Hilbert–Schmidt because the input operator B is. Because the multiplication
of the variable z in H2(D; Y ) is isometric, the mapping

U 
 u0 �→ (Dφ(z) − D)u0 ∈ H2(Y )

is Hilbert–Schmidt. Lemma 130 implies now that Dφ(z)−D ∈ H2(D;L(U ; Y )).
This completes the proof.

The same conclusion can be made, if AjB is Hilbert–Schmidt, for some j ≥ 0.

We can always “steal” from the convergence of a singular values enough, to be
able to factorize any Hilbert–Schmidt operator as follows.

Proposition 132. Let U be a separable Hilbert space, and T ∈ HS(U). Then
T = T1T2, where T1 ∈ HS(U) and T2 ∈ LC(U).

Proof. We use the canonical decomposition (the Schmidt expansion) of a com-
pact operator, see [41, Chapter II, Section 2] and [109, Theorem 1.3.11 and
the associated remarks]. Let T = V |T | be the polar decomposition, where
|T | := (T ∗T )

1
2 is a nonnegative self-adjoint operator. By {ek}k≥1 denote an or-

thonormal system of eigenvectors of |T | whose linear span is dense in range (|T |),
see [1, Sections 55 and 61]. Then by the canonical decomposition

|T |u =
∑
k≥1

σk(T ) 〈u, ek〉U ek

for all u ∈ U , where the series converge in the norm of U . The sequence
{σk(T )}k≥1 is the sequence of the singular values of T , which are, by definition,
the eigenvalues of |T |. Because T is a Hilbert–Schmidt operator, the singular
values satisfy

∑
k≥1 σk(T )2 = ||T ||2HS(U) < ∞, see [41, Chapter III, Section 9]

and [109, Theorem 1.4.2].

We need now an auxiliary result. Let {ak}k≥1 be a sequence of nonnegative real
numbers, such that

∑
k≥1 ak < ∞. For each l ≥ 1, choose a positive integer ml

such that ∑
k≥ml

ak ≤ 1
l3

.

Clearly, such a sequence {ml}l≥1 exists, and we may assume that it is nonin-
creasing. Define the sequence {bk}k≥1 by setting

bk := lak for ml ≤ k < ml+1.

Then

∑
k≥1

bk =
∑
l≥1

ml−1∑
k=ml

bk =
∑
l≥1

(
l ·

ml−1∑
l=ml

ak

)
≤
∑
l≥1

l ·
∑

k≥ml

ak

 ≤
∑
l≥1

1
l2

< ∞.



3.4. FUNCTION THEORETIC DEFINITIONS AND TOOLS 149

We conclude that for any square summable sequence {σk(T )}k≥1 (of singular
values), there exists a nonincreasing sequence {τk}k≥1 such that τk → 0 as
k → ∞, but {σk(T )τ−1

k }k≥1 is still square summable. Define for all u ∈ U

T ′
1u :=

∑
k≥1

(
σk(T )τ−1

k

)
〈u, ek〉U ek

and

T2u :=
∑
k≥1

τk 〈u, ek〉U ek.

Then the mappings u �→ T ′
1u and u �→ T2u are compact operators in LC(U),

by [109, Theorem 1.4.2], and T ′
1 is, in addition, a Hilbert–Schmidt operator

because its singular values {σk(T )τ−1
k }k≥0 are square summable. We prove now

that |T | = T ′
1T2. Let u ∈ U be an arbitrary finite linear combination of the

basis vectors {ek}k≥1. Then

T ′
1T2u =

∑
k≥1

τk 〈u, ek〉U T ′
1ek =

∑
k≥1

τk 〈u, ek〉U
(
σk(T )τ−1

k

)
ek

=
∑
k≥1

σk(T ) 〈u, ek〉U ek = |T |u

where all the sums are finite, and we have used the immediate fact T ′
1ek =(

σk(T )τ−1
k

)
ek for all k ≥ 1. Because the set of such u’s is dense, and all the

operators |T |, T ′
1 and T2 are bounded, the equality |T | = T ′

1T2 follows. Define
T1 := V T ′

1. Then T = T1T2 and T1 is Hilbert–Schmidt, by Proposition 129.
This completes the proof.

Proposition 133. Let J ∈ L(Y ) be a cost operator, and Φ =
[

Aj Bτ∗j

C D
]

an I/O
stable and J-coercive DLS, whose input space U is separable. Then the values of
the Popov function D(eiθ)∗JD(eiθ) ∈ L(U) are boundedly invertible operators,
and the nontangential limit D(eiθ) ∈ L(U ; Y ) is coercive for almost all eiθ ∈ T.

Proof. The J-coercivity of Φ means that the Popov operator π̄+D∗JDπ̄+ has
a bounded inverse on �2(Z+; U), see Definition 68. By the shift-invariance,
we conclude that the bounded, shift-invariant operator D∗JD is coercive on
�2(Z; U), where D : �2(Z; U) → �2(Z; Y ) denotes the (extended topological)
I/O map of Φ. Because D∗JD is self-adjoint, it follows that it is boundedly
invertible on �2(Z; U). Because D∗JD is shift-invariant, a trivial argument
shows that (D∗JD)−1 is shift-invariant, too. Define

P := F∗
UD∗JDFU , Q := F∗

U (D∗JD)−1 FU ,

where FU : L2(T; U) → �2(Z; U) is the unitary Fourier transform, as introduced
in Section 1.10. By Proposition 62, the operatorsP and Q on L2(T; U) commute
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with the multiplication Mξ operator by the function ξ(eiθ) := eiθ on T. By
[27, Theorem 1.1(a) in Chapter IX], we conclude that P = MP(eiθ), which is
the multiplication operator by a function P(eiθ) ∈ L∞(T;L(U)). Similarly,
Q = MQ(eiθ). Because both Q(eiθ),P(eiθ) ∈ L∞(T;L(U)), the evaluations
satisfy Q(eiθ),P(eiθ) ∈ L(U) for all eiθ ∈ T \ E′, where the exceptional set E′

is of measure zero.

Because (D∗JD)−1 is the inverse of D∗JD and FU is unitary, we must have
PQ = QP = I, the identity operator on L2(T; U). Let {uj}j≥0 ⊂ U be a dense
countable subset which exists by the separability of the Hilbert space U . By
applying the identity PQ = I to each uj, regarded as constant a function in
L2(T; U), we conclude that there exists a sequence {Ej}j≥0 of exceptional sets
of measure zero, such that for all j ≥ 0

Q(eiθ)P(eiθ)uj = uj for all eiθ ∈ T \ (Ej ∪ E′).

Define E := (∪j≥0Ej) ∪ E′. Then, for all eiθ ∈ T \ E,

Q(eiθ)P(eiθ) = I,

the identity operator in L(U), because Q(eiθ)P(eiθ) is a bounded operator, and
{uj}j≥0 is a dense subset. Similarly, P(eiθ)Q(eiθ) = I a.e. eiθ ∈ T, and it
follows that P(eiθ) is boundedly invertible for almost all eiθ ∈ T.

It remains to recognize the function P(eiθ). By the identification of the I/O
stable I/O maps with H∞(T;L(U ; Y )) functions, and the Parseval identity, we
have for all ũ, w̃ ∈ �2(Z; U)

〈D∗JDũ, w̃〉�2(Z;U) =
1
2π

∫
T

〈
D(eiθ)∗JD(eiθ)ũ(eiθ), w̃(eiθ)

〉
U

dθ(3.18)

where ũ(eiθ), w̃(eiθ) ∈ L2(T; U) are the Fourier transforms of ũ and w̃, and
the Popov function eiθ �→ D(eiθ)∗JD(eiθ) is the Popov function, belonging to
L∞(T;L(U)). We conclude that P(eiθ) = D(eiθ)∗JD(eiθ) a.e. eiθ ∈ T. Thus
the values of the Popov function are bounded, boundedly invertible operators
almost everywhere on T.

It remains to conclude the coercivity of D(eiθ). Let eiθ ∈ T be such that
D(eiθ)∗JD(eiθ) is bounded and boundedly invertible. Assume for contradiction
that there is a sequence {uj} ⊂ U , ||uj||U = 1, such that D(eiθ)uj → 0 as j → 0.
Because D(eiθ) is bounded, so is D(eiθ)∗J . But then D(eiθ)∗JD(eiθ)uj → 0 as
j → 0. This is a contradiction against the choice of eiθ from a set of full measure.
The proof is complete.

Lemma 134. Let J ∈ L(Y ) be a cost operator. Let φ = ( A B
C D ) be an output sta-

ble, I/O stable and J-coercive DLS. Assume that the input operator B ∈ L(U ; H)
is Hilbert–Schmidt, and the feed-through operator D ∈ L(U ; Y ) is boundedly in-
vertible.
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(i) Then the values of the boundary trace Dφ(eiθ) are bounded, boundedly
invertible operators for almost all eiθ ∈ T.

(ii) Assume, in addition, that J is nonnegative and boundedly invertible, and
Dφ = NX is a (J, S)-inner-outer factorization. Then the outer factor X
is outer with a bounded inverse, the sensitivity operator S is boundedly
invertible, and the normalized inner factor J

1
2NS− 1

2 is inner from both
sides.

Proof. Because dim range (B) ≤ dimU , there is a partial isometry V : H → U
whose initial space is range (B). Because the input operator B is Hilbert–
Schmidt, so is the operator V B ∈ L(U), see Proposition 129. By Proposition
132, we have the factorization V B = B′

1K such that B1 ∈ HS(U) and K ∈
LC(U). But then B = B1K, where B1 := V ∗B′

1 ∈ L(U ; H) is a Hilbert–Schmidt
operator.

Define the DLS φ′ :=
(

A B1

D−1C 0

)
. Because φ is output stable, and Cφ′ = D−1Cφ,

the DLS φ′ is output stable, too. Because the input operator B1 is Hilbert–
Schmidt, Corollary 131 implies that Dφ′(z) ∈ H2(D;L(U)). Now for all z ∈ D,

Dφ(z) = D
(
I + zD−1C(I − zA)−1B1K

)
= D (I + Dφ′(z)K)

and

Θ(z) := D−1Dφ(z) = I + κ(z)K,(3.19)

where κ(z) := Dφ′(z) and K ∈ LC(U). By Proposition 133 and the J-coercivity
assumption, the nontangential limit Dφ(eiθ) ∈ L(U ; Y ) is coercive a.e. eiθ ∈ T.
In particular, ker

(
Θ(eiθ)

)
= ker

(
Dφ(eiθ)

)
= {0} a.e. eiθ ∈ T. By claim (ii)

of Lemma 125 and equation (3.19), the operator Θ(eiθ) ∈ L(U) is boundedly
invertible a.e. eiθ ∈ T. This completes the proof of claim (i).

We proceed to prove claim (ii). Because Dφ = NX is a (J, S)-inner-outer
factorization and Φ is assumed to be J-coercive, it follows that X is outer with
a bounded inverse and the sensitivity operator S is boundedly invertible, by
Corollary 85. Because all the I/O maps Dφ, N and X are I/O stable, we
obtain the factorization of the boundary traces Dφ(eiθ) = N (eiθ)X (eiθ) a.e.
eiθ ∈ T . By claim (iii) of Proposition 127, X (eiθ) is boundedly invertible a.e.
eiθ ∈ T. From claim (i) we conclude that Dφ(eiθ) is boundedly invertible a.e.
eiθ ∈ T. We conclude that N (eiθ) = Dφ(eiθ)X (eiθ)−1 is a boundedly invertible
operator a.e. eiθ ∈ T.

From the (J, S)-inner-outer factorization Dφ = NX we conclude the spectral
factorization D∗

φJDφ = X ∗SX . Because X has a bounded causal inverse X−1,
we have S = (X−1)∗D∗

φJDφX−1 where S is regarded as a static operator on
�2(Z; U). Because J is nonnegative, it follows that D∗

φJDφ ≥ 0 and S ≥ 0 as a
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static operator on �2(Z; U). But then, S ≥ 0 also as a self-adjoint element of
L(U). Thus the square root S− 1

2 is uniquely defined as a nonnegative operator.
We conclude that the normalized I/O map J

1
2NS− 1

2 is (I, I)-inner, and thus its
transfer function is inner from the left. Because both J

1
2 and S− 1

2 are boundedly
invertible, and N (eiθ) is boundedly invertible a.e. eiθ ∈ T, we conclude that
J

1
2N (eiθ)S− 1

2 is a boundedly invertible isometry, i.e. unitary a.e. eiθ ∈ T.
Thus J

1
2NS− 1

2 is inner from both sides. This completes the proof.

An an important application, we consider the noncausal shift-invariant inverse
of the I/O map. This result is used in Lemma 145.

Proposition 135. Let J ∈ L(Y ) be cost operator. Let φ = ( A B
C D ) be an output

stable, I/O stable and J-coercive DLS, with input space U and output space Y .
Then

(i) both the (extended topological) I/O map Dφ : �2(Z; U) → �2(Z; Y ) and the
Toeplitz operator Dφπ̄+ : �2(Z+; U) → �2(Z+; Y ) are coercive.

(ii) Assume, in addition, that U and Y are separable, the input operator B ∈
L(U ; H) is Hilbert–Schmidt, and the feed-through operator D ∈ L(U ; Y )
is boundedly invertible. Then range (Dφ) = range (Dφ) = �2(Z; Y ). In
this case, the inverse operator D−1

φ : �2(Z; Y ) → �2(Z; U) exists, and it is
bounded and shift-invariant. (D−1

φ is not causal, unless Dφ is outer with
a bounded inverse.)

Proof. The claim about the Toeplitz operator Dπ̄+ is Proposition 69. It follows
by a density argument from the shift-invariance, causality and boundedness of
the (extended topological) I/O map D : �2(Z; U) → �2(Z; Y ) that Dφπ̄+ and D
are simultaneously coercive in the indicated spaces.

Consider now claim (ii). Because of the separability of the spaces U and Y ,
we can study the problem in terms of multiplication operators by the bound-
ary traces. Because Dφπ̄+ is coercive, it follows that the Popov operator
π̄+D∗

φDφπ̄+ ≥ επ̄+ for some ε > 0. Now Corollary 118 implies that we have
the factorization Dφ = N ′X ′, where N ′ is (I, S)-inner, X ′ is outer with a
bounded inverse and S ∈ L(U) has a bounded inverse. By normalizing the
outer factor properly, we may assume that S = I, see Proposition 83. In terms
of the boundary traces, this means

Dφ(eiθ) = N ′(eiθ)X ′(eiθ)(3.20)

a.e. eiθ ∈ T. By Definition 120 and Proposition 121, the boundary trace of the
inner (from the left) factor N ′(eiθ) is L(U ; Y )-valued isometry a.e. eiθ ∈ T. By
Proposition 127, the boundary trace of the outer factor X ′(eiθ) has a bounded
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inverse a.e. eiθ ∈ T, and X ′(eiθ)−1 ∈ H∞(T;L(U)). By claim (i) of Lemma 134,
the boundary trace Dφ(eiθ) is bounded and boundedly invertible a.e. eiθ ∈ T.
Because N ′(eiθ) = Dφ(eiθ)X ′(eiθ)−1, we conclude that N ′(eiθ) is a boundedly
invertible isometry, and thus an unitary operator in L(U ; Y ) for almost all
eiθ ∈ T. It now follows that N (eiθ) is inner from both sides. This means
that N ′(eiθ)N ′(eiθ)∗ = I a.e. eiθ ∈ T. Also, N ′(eiθ)∗ ∈ L∞(T;L(Y ; U))
because it is trivially weakly measurable.

Now we can attack the claim about the density of range (Dφ). Let ỹ(eiθ) ∈
L2(T; Y ) be arbitrary. Define w̃(eiθ) := N ′(eiθ)∗ỹ(eiθ) away from a set of
measure zero. Because N ′(eiθ)∗ ∈ L∞(T;L(Y ; U)) and ỹ(eiθ) ∈ L2(T; Y ), [27,
part (a) of Theorem 1.1, Chapter IX] implies that w̃(eiθ) ∈ L2(T; U). Similarly,
ũ(eiθ) := X ′(eiθ)−1w̃(eiθ) ∈ L2(T; U). But now,

Dφ(eiθ)ũ(eiθ) = N ′(eiθ)X ′(eiθ)X ′(eiθ)−1N ′(eiθ)∗ỹ(eiθ) = ỹ(eiθ)

almost everywhere on T. Because ỹ(eiθ) is arbitrary, this means in the time
domain that range (Dφ) = �2(Z; Y ) because the Fourier transform is an isometric
isomorphism. We conclude that Dφ : �2(Z; U) → �2(Z; Y ) is a bounded coercive
operator with a full range, i.e. a bounded bijection. But then the bounded
inverse operator D−1

φ exists. It is a triviality that such an inverse is shift-
invariant.
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3.5 Factorization of the truncated

Popov operator

Our main interest is in the H∞DARE, associated to an output stable and I/O
stable DLS Φ. As we have seen, this stability requirement makes some solution
of DARE more interesting than others. In Section 3.2 we have sorted out the
more interesting solutions from the less interesting.

In this section, we consider additional conditions that make the spectral DLS φP

is either output stable, or I/O stable, or both, for a particular P ∈ Ric(Φ, J)).
More specifically, we introduce additional assumptions that allow us to conclude

P ∈ Ric(Φ, J) ⇒ P ∈ ric(Φ, J),

when Φ is known to be output stable and I/O stable. The basic tool to obtain
the most general of these results is the factorization of the truncated Popov
operator, as given in Lemma 138.

Let us first discuss the trivial cases. If Φ itself is power stable, then so are φP for
all P ∈ Ric(Φ, J) because they have a common semigroup generator A. More
generally, if the Wiener class type condition

∑
||AjB|| < ∞ holds, then DφP is

I/O stable for all P ∈ Ric(Φ, J). Now the common input structure (i.e. the
common operators A and B) determine the I/O stability of both the systems
Φ and φP . In the case when Φ is output stable and I/O stable, it is easy to see
that φP is I/O stable (output stable) if and only if φ′ =

(
A B

B∗P 0

)
is I/O stable

(output stable, respectively) but this is just a restatement that is impossible to
use in practice.

More general results are obtained by Liapunov type methods that require some
type of nonnegativity, either in the cost operator J , the Popov operator D∗JD,
or indicator ΛP of the solution P . We start with discussing the case of output
stability.

Proposition 136. Let Φ =
[

Aj Bτ∗j

C D
]

be an output stable DLS and J ∈ L(Y )
be a self-adjoint operator. Let P ∈ Ric(Φ, J) such that ΛP > 0. Then

(i) φP is output stable if and only if the strong limit LA,P :=
s − limj→∞ A∗jPAj exists as a bounded operator. When this equivalence
holds, we have

LA,P − P = C∗
φP

ΛPCφP − C∗JC.(3.21)

(ii) In particular, if A is strongly stable, then φP is output stable.
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(iii) If P ≥ 0 and LA,P = 0, we have

C∗JC ≥ C∗JC − P = C∗
φP

ΛPCφP

Proof. We prove one direction of claim (i). Assume that ΛP > 0 and LA,P =
s − limj→∞ A∗jPAj exists. We can iterate on the Riccati equation (3.3) and
obtain for all j ≥ 0

A∗(j+1)PAj+1 − A∗jPAj = A∗jK∗
P ΛP KP Aj − A∗jC∗JCAj .

Telescope summing this up to n ≥ 0 gives for all x0 ∈ H

〈x0, (A∗nPAn − P )x0〉(3.22)

=

〈
x0,

n−1∑
j=0

A∗jK∗
P ΛP KP Ajx0

〉
−
〈

x0,

n−1∑
j=0

A∗jC∗JCAjx0

〉

By assumption, the left hand side of the previous equation converges to a finite
limit 〈x0, (LA,P − P )x0〉. On the right hand side, we have〈

x0,
n−1∑
j=0

A∗jC∗JCAjx0

〉
=

n−1∑
j=0

〈
CAjx0, JCAjx0

〉
=
〈
π[0,n−1]Cx0, Jπ[0,n−1]Cx0

〉
�2(Z+;Y )

which converges absolutely to a bounded limit 〈x0, C∗JCx0〉 as n → ∞, by the
assumed output stability of Φ.

Because everything else in (3.22) converges to a finite limit and ΛP > 0, it
follows that remaining term〈

x0,
n−1∑
j=0

A∗jK∗
P ΛP KP Ajx0

〉
=

n−1∑
j=0

〈
KP Ajx0, ΛP KP Ajx0

〉
= ||Λ

1
2
P π[0,n−1]CφP x0}||2�2(Z+;U)

converges (increases) to a finite limit, equaling ||{Λ
1
2
P KP Ajx0}j≥0||2�2(Z+;U), as

n → ∞. Because Λ−1
P is bounded and x0 ∈ H arbitrary, this is equivalent to

the output stability of φP . This completes the proof of the first direction. The
converse part in contained in the proof of Proposition 110 where also equation
(3.21) is given. Claim (ii) follows trivially from the fact that strongly stable A
implies that the strong limit operator LA,P always exists and equals 0. Claim
(iii) is a trivial consequence of equation (3.21).

Corollary 137. Let J ∈ L(Y ) be self-adjoint. Assume that φ is a I/O stable
and output stable DLS, such that range (B) = H. Then ricuw(φ, J) = ric0(φ, J).
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Proof. Trivially ric0(φ, J) ⊂ ricuw(φ, J), and the converse inclusion is shown
below. Because P ∈ ricuw(φ, J), both φ and φP are output stable. We have for
all j ≥ 1

A∗jPAj − P = C∗
φP

ΛP π[0,j−1]CφP − C∗Jπ[0,j−1]C,

as in equation (3.6) of Proposition 110. By the output stabilities, both π[0,j−1]C →
C and π[0,j−1]CφP → CφP strongly. It follows that LA,P exists and P ∈ Ric00(φ, J).
Now claim (iv) of Proposition 109, together with the assumed approximate con-
trollability, shows that P ∈ Ric0(φ, J).

We proceed to study the I/O stability of the spectral DLS φP . For solutions
such that limj→∞

〈
PBτ∗jũ,Bτ∗jũ

〉
= 0 for all ũ ∈ �2(Z+; U), a necessary and

sufficient condition for φP to be I/O stable is the following speed estimate∑
j≥0

| 〈xj , Pxj〉 − 〈xj+1, Pxj+1〉 | < ∞

for all trajectories xj = Bτ∗jũ where ũ ∈ �2(Z+; U) is arbitrary, see Proposition
104. Unfortunately, this condition is not practical for our purposes.

We continue by giving an unsuccessful attempt that, however, reveals something
about the nature of the problem. Assume that Φ is input stable and I/O stable,
and J ≥ 0. Suppose we already know φP to be output stable. Claim (iii) of
Proposition 136 implies that

∞ > ||π−D∗JDπ−|| ≥ B∗C∗JCB ≥ B∗
φP

C∗
φP

ΛPCφP BφP ,

if P ≥ 0 and LA,P = 0, because BφP = B. So the Hankel operator CφP BφP =
π̄+DφP π− is bounded in �2(Z; U), but this does not allow us directly conclude
the I/O stability of DφP .

We are not far from having φP I/O stable, provided that we have the a priori
knowledge that DφP (z) ∈ N(D;L(U)) so that the nontangential limit func-
tion DφP (eiθ) makes sense. More precisely, denote by Γ the bounded Han-
kel operator CφP BφP , and assume, for simplicity that everything is complex-
valued, i.e. U = Y = C. By [27, Theorem 3.3, Chapter IX], Γ = Γ(Q), where
Q(eiθ) ∈ L∞(T; dθ) is a bounded symbol for Γ (we have omitted one unitary
flip operator in the definition of the Hankel operator but this is immaterial).
Write Q(eiθ) as the Fourier series Q(eiθ) ∼

∑
j∈Z qj eijθ . Now qj = −KP Aj−1B

for j ≥ 1 because DφP (eiθ) is also a (possibly unbounded) symbol for Γ. It is
well known that L∞(T; dθ) ⊂ Lp(T; dθ) for all 1 < p < ∞, and that the Szegö
projection Π : Lp → Hp (zeroing the negatively indexed Fourier coefficients) is
bounded for 1 < p < ∞. But now DφP (eiθ) = ΠQ(eiθ) ∈ ∩1<p<∞Hp(T;C).
Unfortunately, the inclusion H∞(T;C) ⊂ ∩1<p<∞Hp(T;C) is strict, and we
cannot conclude DφP (eiθ) ∈ H∞(T;C).
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After one impractical and another unsuccessful attempt, we approach the I/O
stability problem of φP from a third direction. We begin with factorization
lemma of the truncated Popov operator for strongly H2 stable DLSs. Recall that
impulse response operator Dπ0 : U → �2(Z+; Y ) of a strongly H2 stable DLS
is bounded, by definition. It then immediately follows, by the shift invariance,
that the truncated Toeplitz operators Dπ[0,m] are bounded, for all m ≥ 0.

Lemma 138. Let J ∈ L(Y ) be a self-adjoint cost operator, and Φ =
[

Aj Bτ∗j

C D
]

strongly H2 stable. Let P ∈ Ricuw(Φ, J); i.e.〈
PAjx0, A

jx0

〉
→ 0 for all x0 ∈ range (B)(3.23)

as j → ∞. Assume also that the spectral DLS φP is strongly H2 stable.

Then Dπ[0,m] : �2(Z; U) → �2(Z; Y ) and DφP π[0,m] : �2(Z; U) → �2(Z; U) are
bounded, and the truncated Popov operator has the factorization

(Dπ[0,m])∗JDπ[0,m] = (DφP π[0,m])∗ΛPDφP π[0,m](3.24)

for all m ≥ 0.

Proof. Let x0 ∈ H and {uj}j≥0 = ũ ∈ �2(Z+; U) be arbitrary. Denote xj =
xj(x0, ũ) = Ajx0 + Bτ∗j ũ the trajectory of Φ with this given initial state and
input. We have in claim (i) of Proposition 97 for all n > 0

〈Px0, x0〉 − 〈Pxn, xn〉

(3.25)

=
n−1∑
j=0

〈J(Cxj + Duj), Cxj + Duj〉 −
n−1∑
j=0

〈ΛP (−KP xj + uj),−KP xj + uj)〉.

Consider now the special case when the input is otherwise arbitrary, but of form
ũ = π[0,m]ũ, for m ≥ 0. Then, for n > m,

xn = xn(x0, π[0,m]ũ) = An−m−1 · xm+1(x0, π[0,m]ũ),

xm+1(x0, π[0,m]ũ) = Am+1x0 + Bτ∗(m+1)π[0,m]ũ.

Let x0 = 0. Because now xm+1(0, π[0,m]ũ) ∈ range (B), it follows from the
residual cost condition (3.23) that 〈Pxn, xn〉 → 0 as n → ∞. It follows that the
left hand side of (3.25) vanishes as n → ∞.

We must now consider the right hand side of (3.25). Because both the operators
Dπ[0,m] and DφP π[0,m] are bounded, by the H2 stability assumption of φP , it is
not difficult to see that the limit of the left hand side of (3.25) is actually〈

JDπ[0,m]ũ,Dπ[0,m]ũ
〉

�2(Z+;Y )
−
〈
ΛPDφP π[0,m]ũ,DφP π[0,m]ũ

〉
�2(Z+;Y )

,
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as n → ∞. Adjoining this gives〈
ũ,
(
(Dπ[0,m])∗JDπ[0,m] − (DφP π[0,m])∗ΛPDφP π[0,m]

)
ũ
〉

�2(Z+;Y )
= 0

for all ũ ∈ �2(Z; U). Now an application of [79, Theorem 12.7] completes the
proof.

The result of the previous lemma can be translated to the frequency plane by
Corollary 131, provided that the input operator is Hilbert–Schmidt. With this
additional structure, further conclusions can be drawn.

Proposition 139. Let J be a self-adjoint cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

output stable, such that the input operator B is Hilbert–Schmidt and the input
space U is separable. Let P ∈ Ricuw(Φ, J) be such that φP is output stable.

Then the adjoints of the boundary traces D(eiθ)∗ and DφP (eiθ)∗ exists a.e.
eiθ ∈ T, and belong to L2(T;L(U ; Y )), L2(T;L(U)), respectively. Both the
self-adjoint operator-valued functions

T 
 eiθ �→ D(eiθ)∗JD(eiθ) ∈ L(U), and

T 
 eiθ �→ DφP (eiθ)∗ΛPDφP (eiθ) ∈ L(U)

are in L1(T;L(U)). We have the factorization

D(eiθ)∗JD(eiθ) = DφP (eiθ)∗ΛPDφP (eiθ) a.e. eiθ ∈ T.

Proof. Recall that the output stability implies strong H2 stability. So we can
apply Lemma 138. Equation (3.24) implies for all ũ1, ũ2 ∈ �2(Z+; U)

〈
Dπ[0,m]ũ1, JDπ[0,m]ũ2

〉
�2(Z+;Y )

=
〈
DφP π[0,m]ũ1, ΛPDφP π[0,m]ũ2

〉
�2(Z+;Y )

.

Because both Φ and φP are output stable, the transfer functions D(z) and
DφP (z) are analytic in the whole of D, by Proposition 57. We have also
D(z)p̃(z) ∈ H2(D; Y ), DφP (z)p̃(z) ∈ H2(D; U) for all U -valued trigonomet-
ric polynomials p(z) ∈ H∞(D; U). Now we can put the factorization in form

〈D(z)p1(z), JD(z)p2(z)〉H2(D;Y ) = 〈DφP (z)p1(z), ΛPDφP (z)p2(z)〉H2(D;U)

where p1(z), p2(z) are polynomials as above. This is as far as we get without
assuming that B is Hilbert–Schmidt.

Because B is Hilbert–Schmidt, we can state the factorization in terms of the
boundary traces D(eiθ) ∈ H2(T;L(U ; Y )) and DφP (eiθ) ∈ H2(T;L(U)), by
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Corollary 131. By choosing the trigonometric polynomials p1(eiθ) = eip1θu1

and p2(eiθ) = eip2θu2, p1, p2 ∈ Z, u1, u2 ∈ U , we obtain

1
2π

2π∫
0

〈
u1,D(eiθ)∗JD(eiθ)eipθu2

〉
U

dθ

=
1
2π

2π∫
0

〈
D(eiθ)eip1θu1, JD(eiθ)eip2θu2

〉
Y

dθ

=
〈
D(eiθ)eip1θu1, JD(eiθ)eip2θu2

〉
H2(T;Y )

=
〈
DφP (eiθ)eip1θu1, ΛPDφP (eiθ)eip2θu2

〉
H2(T;U)

=
1
2π

2π∫
0

〈
D(eiθ)eip1θu1, JD(eiθ)eip2θu2

〉
Y

dθ

=
1
2π

2π∫
0

〈
u1,DφP (eiθ)∗ΛPDφP (eiθ)eipθu2

〉
U

dθ,

where p = p2 − p1. Let us stop for a moment to see that previous is true inte-
gration theoretically. The functions T 
 eiθ �→ D(eiθ)∗ ∈ L(Y ; U), T 
 eiθ �→
DφP (eiθ)∗ ∈ L(U) are weakly measurable and also in the respective L2-spaces,
by a trivial argument involving adjoining. Now the products D(eiθ)∗JD(eiθ) and
DφP (eiθ)∗ΛPDφP (eiθ) are weakly measurable, and they both are in L1(T; U),
by the Hölder inequality; some of this detail and further references have been
discussed immediately after Definition 59.

We can now calculate the weak Fourier coefficients of the difference of these two
functions (which lies in L1(T;L(U))) as follows:〈

u1,

 2π∫
0

[
D(eiθ)∗JD(eiθ) −DφP (eiθ)∗ΛPDφP (eiθ)

]
eipθ dθ

 u2

〉
U

=

2π∫
0

〈
u1,

[
D(eiθ)∗JD(eiθ) −DφP (eiθ)∗ΛPDφP (eiθ)

]
eipθu2

〉
U

dθ = 0

for all u1, u2 ∈ U and p ∈ Z. Proposition 63 implies that[
D(eiθ)∗JD(eiθ) −DφP (eiθ)∗ΛPDφP (eiθ)

]
u = 0,

for all u ∈ U and eiθ ∈ T \ Eu, where mEu = 0. Choose a countable dense
subsequence {uj} ∈ U , and define the exceptional set E := ∪jEuj of measure
zero. Because D(eiθ)∗JD(eiθ) − DφP (eiθ)∗ΛPDφP (eiθ) ∈ L(U) for all eiθ ∈
T \ E′, mE′ = 0, we conclude now that

D(eiθ)∗JD(eiθ) −DφP (eiθ)∗ΛPDφP (eiθ) = 0
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eiθ ∈ T \ (E′ ∪ E), by the density of the sequence {uj}. This completes the
proof.

Corollary 140. Let J be a self-adjoint cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an
output stable and I/O stable DLS. Furthermore, assume that the input operator
B is Hilbert–Schmidt and the input space U is separable. Let P ∈ Ricuw(Φ, J)
be such that φP is output stable.

If ΛP > 0 then φP is I/O stable, and we can write P ∈ ric(Φ, J). Furthermore,
we have the inclusion

{P ∈ Ric0(Φ, J) | ΛP > 0} ⊂ ric0(Φ, J)(3.26)

Proof. By Proposition 139, D(eiθ)∗JD(eiθ) = DφP (eiθ)∗ΛPDφP (eiθ) a.e. eiθ ∈
T. By the assumed I/O stability of Φ, ess supeiθ∈T ||D(eiθ)|| < ∞. We con-

clude that ess supeiθ∈T ||Λ
1
2
PDφP (eiθ)|| < ∞. The output stability of φP and the

Hilbert–Schmidt compactness of B imply that Λ
1
2
PDφP (eiθ) ∈ H2(T;L(U)), by

Corollary 131. Now [77, Theorem 4.7A], as used in Lemma 122, implies that
Λ

1
2
PDφP (eiθ) ∈ H∞(T;L(U)). Because ΛP has a bounded inverse, DφP (eiθ) ∈

H∞(T;L(U)).

To verify inclusion (3.26), note that Proposition 136 implies that φP is output
stable. Because LA,P = 0, then P ∈ Ricuw(Φ, J). Now the first part of this
Corollary implies that φP is I/O stable, and so P ∈ ric(Φ, J). The proof is now
complete.

A slight modification of the proof verifies also

{P ∈ Ric00(Φ, J) ∩ Ricuw(Φ, J) | ΛP > 0} ⊂ ric00(Φ, J) ∩ ricuw(Φ, J)(3.27)

under the assumptions of the previous corollary. If range (B) = H , then this
reduces to inclusion (3.26), by claim (iv) of Proposition 109. We also have:

Corollary 141. Let J ≥ 0 be a cost operator, and Φ =
[

Aj Bτ∗j

C D
]

be an output
stable and I/O stable DLS. Furthermore, assume that the input operator B ∈
L(U ; H) is Hilbert–Schmidt, and the input space U is separable.

(i) The set ric0(Φ, J) of regular H∞ solutions is downward complete in the
sense that if P̃ ∈ Ric0(Φ, J), P̃ ≥ 0, then

{P ∈ Ric(Φ, J) | 0 ≤ P ≤ P̃} ⊂ ric0(Φ, J).

(ii) In particular, if a regular critical solution P crit
0 ∈ ric0(φ, J) exists, then

{P ∈ Ric(Φ, J) | 0 ≤ P ≤ P crit
0 } ⊂ ric0(Φ, J).(3.28)
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Proof. To prove claim (i), let P̃ ∈ Ric0(Φ, J), P ≥ 0 be arbitrary. But then for
any P ∈ Ric(Φ, J) such that 0 ≤ P ≤ P̃ and x0 ∈ H we have

||P 1
2 Ajx0||2H =

〈
PAjx0, A

jx0

〉
≤
〈
A∗j P̃Ajx0, x0

〉
≤ ||A∗j P̃Ajx0||H · ||x0||H ,

which approaches zero as j → ∞, because LA,P̃ = 0 by assumption. Thus LA,P

exists and vanishes. Because J ≥ 0, it follows that ΛP > 0 for all nonnegative
P ∈ Ric(Φ, J). An application of Corollary 140 proves now claim (i). The other
claim (ii) is just a particular case.

In Theorem 188, we consider the converse inclusion of formula (3.28). This gives
us a full order-theoretic characterization of nonnegative regular H∞ solutions,
under the indicated technical assumptions. Another result in this direction is
Lemma 191, showing that the set ric0(φ, J) is, in a sense, an order-convex subset
of Ric(φ, J).
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3.6 Factorization of the Popov operator

Let Φ be an output stable and I/O stable DLS, and J a self-adjoint cost opera-
tor. In this section we show that there is a one-to-one correspondence between
certain factorizations of the Popov operator D∗JD and certain solutions of the
H∞DARE ric(Φ, J). It is worth noting that these factorizations do not depend
on the nonnegativity of the cost operator J .

The factorizations of the Popov operator have a number of useful consequences.
In Lemma 145 and its Corollary 146, we show that sometimes all interesting
solutions of DARE have a positive indicator. Proposition 147 gives results of
the (ΛP , ΛP crit)-inner-outer factorization for the I/O map of the spectral DLS
φP .

In Definition 68, the Popov operator was defined to be the Toeplitz opera-
tor π̄+D∗JDπ̄+. We call the bounded shift-invariant (but noncausal) operator
D∗JD (the symbol of the Toeplitz operator π̄+D∗JDπ̄+) Popov operator, too.

Theorem 142. Let Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D ) be an I/O stable and output stable

DLS. Let J ∈ L(Y ) be a self-adjoint operator

(i) To each solution P ∈ ricuw(Φ, J), we can associate the following factor-
ization of the Popov operator

D∗JD = D∗
φP

ΛPDφP ,(3.29)

where φP is the spectral DLS (of Φ and J), centered at P .

(ii) Assume, in addition that range (B) = H. Assume that the Popov operator
has a factorization of form

D∗JD = D∗
φ′ΛDφ′ ,(3.30)

where

φ′ :=
(

A B
−K I

)
, K ∈ L(H, U), Λ = Λ∗, Λ−1 ∈ L(U),

is an I/O stable and output stable DLS. Then φ′ = φP and Λ = ΛP for a
P ∈ ric0(Φ, J).

Proof. We prove claim (i). Let P ∈ ricuw(Φ, J). By Lemma 138, we have for
all m ≥ 0

π[0,m]D∗JDπ[0,m] = π[0,m]D∗
φP

ΛPDφP π[0,m],(3.31)
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where using the adjoints is legal because both D and DφP are assumed to be
bounded. Let ũ ∈ �2(Z+; U) be arbitrary. Then

||π[0,m]D∗JDπ[0,m]ũ − π̄+D∗JDπ̄+ũ||
≤ ||π[0,m]D∗JD(π[0,m]ũ − π̄+ũ)|| + ||(π[0,m] − π̄+)D∗JDπ[0,m]π̄+ũ||
≤ ||π[0,m]D∗JD|| · ||π[m+1,∞]ũ|| + ||π[m+1,∞] · π̄+D∗JDπ̄+ũ||

Because both ũ and π̄+D∗JDπ̄+ũ are in �2(Z+; U), it follows that
s − limm→∞ π[0,m]D∗JDπ[0,m] = π̄+D∗JDπ̄+. Similarly we obtain the limit
s − limm→∞ π[0,m]D∗

φP
JDφP π[0,m] = π̄+D∗

φP
JDφP π̄+. The uniqueness of the

strong limit, together with equation (3.31), gives now factorization (3.29).

To prove the other claim (ii), we show that there is a conjugate symmetric
sesquilinear form P ( , ) such that for all ũ ∈ �2(Z+; U), x0 ∈ H

J(x0, ũ) = P (x0, x0) + 〈Λ(Cφ′x0 + Dφ′ π̄+ũ), (−, ,−)〉 ,(3.32)

assuming that the factorization (3.30) exists. Here J(x0, ũ) :=
〈J(Cx0 + Dπ̄+ũ), (−, ,−)〉 is a cost functional, see Section 2.2. Suppose that
such a sesquilinear form P ( , ) exists and try to find an expression for it. By
expanding (3.32) we obtain

〈C∗JCx0, x0〉 +

(i)︷ ︸︸ ︷
2Re 〈π̄+D∗JCx0, ũ〉+

(ii)︷ ︸︸ ︷
〈π̄+D∗JDπ̄+ũ, ũ〉(3.33)

= P (x0, x0) +
〈
C∗

φ′ΛCφ′x0, x0

〉
+

(iii)︷ ︸︸ ︷
2Re

〈
π̄+D∗

φ′ΛCφ′x0, ũ
〉
+

(iv)︷ ︸︸ ︷〈
π̄+D∗

φ′ΛDφ′ π̄+ũ, ũ
〉

for all ũ ∈ �2(Z+; U) and x0 ∈ H because both Φ and φ′ are I/O stable and
output stable. By equation (3.30), parts (ii) and (iv) are equal. To compare
parts (i) and (iii), note that for x := Bw̃, w̃ ∈ dom (B), we have, because
B = Bφ′

π̄+D∗JCx − π̄+D∗
φ′ΛCφ′x = π̄+D∗Jπ̄+Dπ−w̃ − π̄+D∗

φ′Λπ̄+Dφ′π−w̃(3.34)

= π̄+(D∗JD −D∗
φ′ΛDφ′)π−w̃ = 0

by (3.30), and the anticausality of D∗ and D∗
φ′ . Because range (B) = H it follows

that π̄+D∗JCx − π̄+D∗
φ′ΛCφ′x = 0, for all x ∈ H , by I/O stability and output

stability of Φ and φ′.

So the parts (i), (ii), (iii) and (iv) cancel each other out in equation (3.33). What
remains allows us to conclude that the sesquilinear form of equation (3.32) exists
and equals

P (x0, x0) =
〈(
C∗JC − C∗

φ′ΛCφ′
)
x0, x0

〉
=: 〈Px0, x0〉 ,
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which gives us a unique self-adjoint operator P ∈ L(H). We note that for all
x0 ∈ H 〈

A∗jPAjx0, x0

〉
=
〈
JCAjx0, CAjx0

〉
−
〈
ΛCφ′Ajx0, Cφ′Ajx0

〉
=
〈
Jπ[j,∞]Cx0, π[j,∞]Cx0

〉
−
〈
Λπ[j,∞]Cφ′x0, π[j,∞]Cφ′x0

〉
.

By the output stabilities of Φ and φ′, both π[j,∞]Cx0 → 0 and π[j,∞]Cφ′x0 → 0
in �2(Z+; Y ), �2(Z+; U), respectively. Thus

〈
PAjx0, A

jx0

〉
→ 0 for all x0 ∈ H ,

by the boundedness of Λ−1.

We complete the proof by showing that P ∈ Ric(Φ, J), and that K = KP ,
Λ = ΛP . We have for ΛP

ΛP = D∗JD + B∗PB

= (D∗JD + (CB)∗J(CB)) − (I∗ΛI + (Cφ′B)∗Λ(Cφ′B)) + Λ
= (Dπ0 + τCB)∗J(Dπ0 + τCB) − (π0 + τCφ′B)∗Λ(π0 + τCφ′B) + Λ
= π̄+D∗JDπ0 − π̄+D∗

φ′ΛDφ′π0 + Λ = Λ,

where the second to the last equality has been written with the identification
of spaces U and range (π0), allowing us to write Dπ0 = Dπ0 + τCB. The last
identity follows directly from the factorization (3.30), and so ΛP = Λ.

For KP = Λ−1
P (−D∗JC − B∗PA) we calculate similarly

− D∗JC − B∗PA(3.35)
= − (D∗JC + (CB)∗JCA) + (−I∗ΛK + (Cφ′B)∗ΛCφ′A) + ΛK

Now D∗JC + (CB)∗JCA = (Dπ0 + τCB)∗JC = (Dπ0)∗JC = π0D∗JC. Quite
similarly −ΛK + (Cφ′B)∗Λπ̄+τ∗Cφ′ = (Dφ′π0)∗ΛCφ′ = π0D∗

φ′ΛCφ′ . Then we
obtain from (3.35)

−D∗JC − B∗PA = −π0(D∗JC − D∗
φ′ΛCφ′) + ΛK,(3.36)

with the identification of spaces U and range (π0).

For all x = Bw̃ = Bφ′w̃, w̃ ∈ dom (B) = dom (Bφ′), we have

π0(D∗JC − D∗
φ′ΛCφ′)x = π0(D∗JD −D∗

φ′ΛDφ′)π−w̃ = 0,

by the factorization (3.30). Because range (B) = H , and π0(D∗JC − D∗
φ′ΛCφ′)

is continuous in H , it follows that vanishes in the whole of H . From (3.36) it
now follows that K = Λ−1(−D∗JC − B∗PA) = Λ−1

P (−D∗JC − B∗PA) = KP

because Λ = ΛP has been shown earlier.

It is now straightforward to show that P ∈ Ric(Φ, J):

P (Ax0, Ax0) − P (x0, x0)
= 〈π+Cx0, Jπ+C〉 − 〈π+Cφ′x0, Λπ+Cφ′〉 − 〈Cx0, JC〉 + 〈Cφ′x0, ΛCφ′〉
= 〈−Kx0,−Λ Kx0〉 − 〈Cx0, JCx0〉 = 〈K∗

P ΛP KP x0, x0〉 − 〈C∗JCx0, x0〉 .
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Because φ′ is output stable and I/O stable, by assumption, and φP = φ′, it
follows that P is a H∞ solution: P ∈ ric(Φ, J).

It remains to prove the final claim about the residual cost operator. Because Φ
and φ′ are output stable by assumption, we have

A∗jPAj = A∗jC∗JCAj − A∗jC∗
φ′ΛCφ′Aj

= (π̄+τ∗jC)∗J(π̄+τ∗jC) − (π̄+τ∗jCφ′)∗Λ(π̄+τ∗jCφ′)
= C∗Jπ[j,∞]C − C∗

φ′Λπ[j,∞]Cφ′ .

Now s − limj→∞ π[j,∞]C = s − limj→∞ π[j,∞]Cφ′ = 0, and immediately
LA,P = s − limj→∞ A∗jPAj = 0. This completes the proof.

For analogous spectral factorization results, see [49, Chapter 19], [45, Theorem
4.6] and [36] together with its references. In claim (ii) of Theorem 142, a
requirement has been imposed on the spectral factor Dφ′ of the Popov operator:
it must be realizable by using the same input structure as the original DLS Φ and
all the spectral DLSs φP . It is necessary to make such an apriori requirement
explicitly. To see this, consider the trivial case when D = I, the identity
operator of �2(Z; U). Then the Popov operator satisfies D∗JD = I, if J = I,
the identity operator of U . Each inner from the left operator N ′ is, by definition,
a spectral factor of the Popov operator I. There is a multitude of such inner
operators; if U = C, then these are parameterized by sequences in D satisfying
the Blaschke condition and the singular positive measures on T. However, the
DLS Φ = φ can be very trivial, say φ = ( 0 0

0 I ). The DARE Ric(φ, I) is trivially
I = I, and all (self-adjoint) operators P ∈ L(H) are its solution. However,
each of the spectral DLSs equal φP = ( 0 0

0 I ), and only one spectral factor of the
Popov operator is covered by a solution of the DARE.

In the proof of Theorem 142, we never wrote down a state space realization for
the Popov function D(eiθ)∗JD(eiθ). Suppose D(z) ∈ H∞(D;L(U)) would be
analytic in an open set Ω ⊂ C, such that D ⊂ Ω and T\ (T ∩ Ω) is, say, a finite
set of points. Then the Popov function D(eiθ)∗JD(eiθ) would have an analytic
continuation to a neighborhood of each eiθ0 ∈ T∩Ω. This analytic continuation
is given by D̃(z−1)JD(z), and its realization φPopov can be formed by using the
formula for the product realization. Now, the connection between the DARE
and the spectral factorization of the Popov function can be studied by using
φPopov, even for certain classes of unstable transfer functions D(z). However, a
general D(z) ∈ H∞(D;L(U)) does not allow this approach; there is a function
in the complex-valued disk algebra f(z) ∈ A(D) that does not allow analytic
continuation to any set larger than D, and in fact the boundary trace f(eiθ)
can be smooth. Such a function is constructed in [78, Example 16.7]. Then f(z)
and f̃(z−1) are bounded analytic functions in open sets D and (D)c, with an
empty intersection.
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In a later result, Lemma 193, we shall need a different spectral factorization
result, associated to solutions P ∈ ric(Φ, J) that need not satisfy the strong
residual cost condition. The nonvanishing residual cost is included in the Popov
operator. To achieve this, we must first define analogues (in I/O form) to the
residual cost operator LA,P := s − limj→∞ A∗jPAj .

Definition 143. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D )

be a DLS, and P ∈ Ric(Φ, J). Let n, m ≥ 0 be arbitrary. Define the linear
operators in �2(Z+; U)

L(m,n)
Φ,P :=

(
Bτ∗nπ[0,m]

)∗
P
(
Bτ∗nπ[0,m]

)
,

and

L(m)
Φ,P := s − lim

n→∞
L(m,n)

Φ,P , LΦ,P := s − lim
m→∞

L(m)
Φ,P ,

provided that the strong limits exists. The operator LΦ,P is the residual cost
operator (in I/O form), and the operator L(n)

Φ,P is the truncated residual cost
operator (in I/O form).

The operator Bτ∗nπ[0,m] : �2(Z+; U) → H is a finite sum of products of the
bounded operators A, B, the orthogonal projections πj , and the unitary shift
τ∗ in �2(Z+; U). Thus it is bounded for all m, n ≥ 0, and it follows that L(m,n)

Φ,P

always exists as a bounded operator.

Lemma 144. Let J ∈ L(Y ) be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D ) be

an output stable and I/O stable DLS, and P ∈ ric(Φ, J). Then

(i) Both the residual cost operators LA,P ∈ L(H) and LΦ,P ∈ L(�2(Z+; U))
exist.

(ii) We have the spectral factorization identity

Lφ,P + π̄+D∗JDπ̄+ = π̄+D∗
φP

ΛPDφP π̄+.

The residual cost operator LΦ,P is a self-adjoint Toeplitz operator.

(iii) Assume, in addition, that range (B) = H. Then both B∗LA,P A = 0 and
B∗LA,P B = 0 if and only if LΦ,P = 0 if and only if LA,P = 0.

Proof. Because P ∈ ric(Φ, J), the residual cost operator LA,P exists by Propo-
sition 110. We prove the rest of claim (i) and claim (ii) simultaneously. Let
x0 ∈ H and {uj}j≥0 = ũ ∈ �2(Z+; U) be arbitrary. Denote xj = xj(x0, ũ) =
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Ajx0+Bτ∗jũ the trajectory of the DLS Φ with this given initial state and input.
We have in claim (i) of Proposition i for all n > 0

〈Px0, x0〉 − 〈Pxn, xn〉(3.37)

=
n−1∑
j=0

〈J(Cxj + Duj), Cxj + Duj〉

−
n−1∑
j=0

〈ΛP (−KP xj + uj),−KP xj + uj)〉.

We now set x0 = 0 and assume that the inputs are of form π[0,m]ũ for some fixed
m ≥ 0 and arbitrary ũ ∈ �2(Z+; U). In this case, 〈Px0, x0〉 = 0 and equation
(3.37) takes now the form〈

PBτ∗nπ[0,m]ũ,Bτ∗nπ[0,m]ũ
〉

+
〈
JDπ[0,m]ũ, π[0,n−1]Dπ[0,m]ũ

〉
�2(Z+;Y )

=
〈
ΛPDφP π[0,m]ũ, π[0,n−1]DφP π[0,m]ũ

〉
�2(Z+;Y )

,

because xn = Bτ∗nπ[0,m]ũ.

Both the operators Dπ[0,m] and DφP π[0,m] are bounded, because Φ and φP are
I/O stable DLSs by assumptions. Also the operators Bτ∗nπ[0,m] are bounded,
as has been discussed after Definition 143. So the adjoints

(
Bτ∗nπ[0,m]

)∗, D∗

and D∗
φP

make sense, and we can write〈
L(m,n)

Φ,P ũ, ũ
〉

+
〈
π[0,m]D∗Jπ[0,n−1]Dπ[0,m]ũ, ũ

〉
�2(Z+;Y )

=
〈
π[0,m]D∗

φP
ΛP π[0,n−1]DφP π[0,m]ũ, ũ

〉
�2(Z+;Y )

,

by Definition 143. Because ũ is arbitrary, and all the operators L(m,n)
Φ,P , D and

DφP are bounded, [79, Theorem 12.7] implies that

L(m,n)
Φ,P = −π[0,m]D∗J · π[0,n−1]Dπ[0,m] + π[0,m]D∗

φP
ΛP · π[0,n]DφP π[0,m](3.38)

for all m, n ≥ 0. Because D is bounded, s − limn→∞ π[0,n−1]Dπ[0,m] = Dπ[0,m]

and s − limn→∞ π[0,n−1]DφP π[0,m] = DφP π[0,m]. But then, the strong limit in
the right hand side of (3.38) exists, and we conclude that the residual cost
operator L(m)

Φ,P ∈ L(�2(Z+; U)) exists as a bounded operator. We obtain

L(m)
Φ,P = −π[0,m]D∗JDπ[0,m] + π[0,m]D∗

φP
ΛPDφP π[0,m](3.39)

for all m ≥ 0. We proceed to show that s − limm→∞ π[0,m]D∗JDπ[0,m] exists
and equals the Popov operator π̄+D∗JDπ̄+. For all m ≥ 0 and ũ ∈ �2(Z+; U),
we have

||π[0,m]D∗JDπ[0,m]ũ − π̄+D∗JDπ̄+ũ||�2(Z+;U)

≤ ||π[0,m]D∗JDπ[m+1,∞]ũ||�2(Z+;U) + ||π[m+1,∞]D∗JDπ̄+ũ||�2(Z+;U)

≤ ||J ||L(Y ) · ||D||�2(Z;U)→�2(Z;Y ) · ||π[m+1,∞]ũ||�2(Z+;U)

+ ||π[m+1,∞] · π̄+D∗JDπ̄+ũ||�2(Z+;U).
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Because both ũ and π̄+D∗JDπ̄+ũ belong to �2(Z+; U), the right hand
side of the previous equation converges to zero as m → ∞.
It follows that s − limm→∞ π[0,m]D∗JDπ[0,m] = π̄+D∗JDπ̄+ and similarly
s − limm→∞ π[0,m]D∗

φP
JDφP π[0,m] = π̄+D∗

φP
JDφP π̄+. Because the right hand

side of equation (3.39) converges strongly as m → ∞, we obtain the spectral
factorization

LΦ,P = −π̄+D∗JDπ̄+ + π̄+D∗
φP

ΛPDφP π̄+(3.40)

where LΦ,P is the residual cost operator in I/O form, as introduced in Definition
143. Clearly LΦ,P is a self-adjoint Toeplitz operator, because the right hand side
of equation (3.40) is such an operator. This proves claims (i) and (ii).

We proceed to prove claim (iii). We first calculate the block matrix elements
(LΦ,P )j1,j2

:= πj2LΦ,P πj1 of LΦ,P for j1, j2 ≥ 0. Let ũ, w̃ ∈ �2(Z+; U) be
arbitrary. Then〈

(LΦ,P )j1,j2
ũ, w̃

〉
�2(Z+;U)

=
〈(

s − lim
m→∞

L(m)
Φ,P

)
· πj1 ũ, πj2 w̃

〉
�2(Z+;U)

=
〈

lim
m→∞

(
L(m)

Φ,P πj1 ũ
)
, πj2w̃

〉
�2(Z+;U)

= lim
m→∞

〈
L(m)

Φ,P πj1 ũ, πj2w̃
〉

�2(Z+;U)
.

But if m ≥ j1, then L(m)
Φ,P πj1 ũ = L(j1)

Φ,P πj1 ũ. It follows that the sequence in the
right hand side of the previous equation stabilizes, and for m ≥ max (j1, j2) we
get〈

(LΦ,P )j1,j2
ũ, w̃

〉
�2(Z+;U)

=
〈
L(m)

Φ,P πj1 ũ, πj2w̃
〉

�2(Z+;U)
=
〈(

s − lim
n→∞

L(m,n)
Φ,P

)
· πj1 ũ, πj2 w̃

〉
�2(Z+;U)

=
〈

lim
n→∞

(
L(m,n)

Φ,P πj1 ũ
)
, πj2w̃

〉
�2(Z+;U)

= lim
n→∞

〈
L(m,n)

Φ,P πj1 ũ, πj2w̃
〉

�2(Z+;U)

= lim
n→∞

〈
PBτ∗(n−j1−1)π−1τ

∗(j1+1)ũ,Bτ∗(n−j2−1)π−1τ
∗(j2+1)w̃

〉
H

.

But now Bτ∗(n−j−1)π−1 = Bτ∗(n−j−1)π− ·π−1 = An−j−1Bπ−1 = An−j−1Bπ−1,
where be have used Bπ−1 = Bπ−1. Now, if j := max (j1, j2), then〈

(LΦ,P )j1,j2
ũ, w̃

〉
�2(Z+;U)

= lim
n→∞

〈
A∗(n−j−1)PAn−j−1 · Aj−j1Bπ−1τ

∗(j1+1)ũ, Aj−j2Bπ−1τ
∗(j2+1)w̃

〉
H

=
〈(

s − lim
n→∞

A∗(n−j−1)PAn−j−1

)
· Aj−j1Bπ−1τ

∗(j1+1)ũ, Aj−j2Bπ−1τ
∗(j2+1)w̃

〉
H

=
〈
LA,P · Aj−j1Bπ−1τ

∗(j1+1)ũ, Aj−j2Bπ−1τ
∗(j2+1)w̃

〉
H

.
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This gives for the block matrix elements of LΦ,P the expression〈
(LΦ,P )j1,j2

ũ, w̃
〉

�2(Z+;U)
(3.41)

=
〈
πj2B

∗A∗(j−j2)LA,P Aj−j1Bπj1 · ũ, w̃
〉

�2(Z+;U)
,(3.42)

where j = max (j1, j2) and ũ, w̃ ∈ �2(Z+; U) are arbitrary.

If both B∗LA,P A = 0 and B∗LA,P B = 0, then all the block matrix elements
(LΦ,P )j1,j2

vanish, by equation (3.41). By a straightforward density argument,
the bounded operator LΦ,P is seen to vanish.

Assume that LΦ,P = 0. Then all the block matrix elements (LΦ,P )j1,j2
for

j1, j2 ≥ 0 vanish by their definition, and equation (3.40) implies that
B∗LA,P AkB = 0 for all k ≥ 0. It follows that B∗LA,PBũ = 0 for all ũ ∈
dom(B), and thus B∗LA,P x = 0 for all x ∈ range (B). Because B and LA,P are
bounded, and range (B) = H , it follows that B∗LA,P = 0, and also LA,P B = 0
because LA,P is self-adjoint.

It is easy to see that A∗jLA,P Aj = LA,P for all j ≥ 0. Thus A∗jLA,P AjB =
LA,P B = 0 and immediately B∗A∗kLA,P AjB = B∗A∗(k−j) · A∗jLA,P AjB = 0
for all k ≥ j. By adjoining, we see that B∗A∗kLA,P AjB = 0 for arbitrary
j, k ≥ 0. But this implies that 〈LA,BBũ,Bũ〉H = 0, for all ũ ∈ dom (B). By the
assumed approximate controllability range (B) = H , boundedness of LA,B, and
[79, Theorem 12.7], it follows that LA,B = 0.

Trivially, if LA,B = 0 then both B∗LA,P A = 0 and B∗LA,P B = 0. This
completes the proof.

Recall that in Propositions 111 and 112 we asked whether the indicator ΛP and
the DLS φP uniquely determine the solution P ∈ Ric(φ, J). Under the indicated
additional assumptions, claim (iii) of Lemma 144 provides an answer to this.
Under the approximate controllability range (B) = H , it is exactly the solutions
P ∈ ric0(φ, J) (in the set ric(φ, J)) that give us a spectral factorization of the
Popov operator π̄+D∗JDπ̄+.

We proceed to consider the inertia of the indicator operator.

Lemma 145. Let J be a self-adjoint cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an
I/O stable, output stable and J-coercive DLS, such that the input operator B ∈
L(U ; H) is Hilbert–Schmidt, and the input space U is separable.

Then there is a decomposition of U as an orthogonal direct sum U = U+ ⊕ U−,
such that for each P ∈ ricuw(Φ, J), there is a boundedly invertible operator
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VP ∈ L(U) satisfying

ΛP = V ∗
P

[
I+ 0
0 −I−

]
VP ,

where I+, (I−) is the identity of U+, (U−, respectively). In particular, if ΛP0 > 0
for some P0 ∈ ricuw(Φ, J), then ΛP > 0 for all P ∈ ricuw(Φ, J).

Proof. Let P0 ∈ ricuw(Φ, J) be fixed, and P ∈ ricuw(Φ, J) be arbitrary. Now,
φP0 is output stable and I/O stable, because P0 ∈ ricuw(Φ, J), by assumption.
The input operator of φP0 equals the Hilbert–Schmidt operator B. Because the
feed-through operator of any spectral DLS is identity, it is definitely boundedly
invertible. We proceed to conclude that the spectral DLS φP0 is ΛP0 -coercive.
By Proposition 139, we have the factorization of the Popov function

D(eiθ)∗JD(eiθ) = DφP0
(eiθ)∗ΛPDφP0

(eiθ) a.e. eiθ ∈ T.

Because both Φ and φP0 are I/O stable, we conclude by using the unitary Fourier
transform that

〈π̄+D∗JDπ̄+ũ, ũ〉�2(Z+;U) =
〈
π̄+D∗

φP0
ΛP0DφP0

π̄+ũ, ũ
〉

�2(Z+;U)

for any ũ ∈ �2(Z+; U). Thus there is equality of the bounded self-adjoint oper-
ators π̄+D∗JDπ̄+ = π̄+D∗

φP0
ΛP0DφP0

π̄+, and the assumed J-coercivity of Φ is
equivalent to the ΛP0-coercivity of φP0 . By claim (i) of Lemma 134, we conclude
that DφP0

(eiθ)−1 exists a.e. eiθ ∈ T, and in fact the boundary trace function
satisfies DφP0

(eiθ)−1 ∈ L∞(T;L(U)). Similarly, DφP (eiθ) has a bounded inverse
for almost all eiθ ∈ T, too.

Because ΛP0 is self-adjoint and boundedly invertible, we can work with the
spectral projections of ΛP0 on the disjoint spectral sets in negative and positive
real axes. This gives ΛP0 = Λ+ − Λ−, where Λ+ ∈ L(U+), Λ− ∈ L(U−), and
both are positive invertible operators in their respective spectral subspaces that
are reducing. Now

ΛP0 = V ∗
[
I+ 0
0 −I−

]
V,

where V ∗ :=
[
Λ

1
2
+ Λ

1
2−
]

: U+ ⊕ U− → U has a bounded inverse. By Proposition

139, we can choose eiθ0 ∈ T from a set of full Lebesgue measure, such that

DφP0
(eiθ0)∗ΛP0DφP0

(eiθ0) = DφP (eiθ0)∗ΛPDφP (eiθ0).

As discussed above, eiθ0 ∈ T can be chosen from a set of full Lebesgue measure
so that both DφP0

(eiθ0) and DφP (eiθ0) are boundedly invertible. We now have

(
V DφP0

(eiθ0)DφP (eiθ0)−1
)∗ [I+ 0

0 −I−

] (
V DφP0

(eiθ0)DφP (eiθ0)−1
)

= ΛP .
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This proves the claim because VP := V DφP0
(eiθ0)(DφP (eiθ0)−1 is boundedly

invertible. The claim involving the positivity of the indicators is now a triviality.

By dimension counting, we immediately see that if either of the spaces U+, U−
is finite dimensional, then the dimension will be an invariant of all the solutions
P ∈ ricuw(Φ, J). For an analogous matrix result, see [49, Corollary 12.2.4].

Corollary 146. Let J ∈ L(Y ) be a self-adjoint operator. Let Φ =
[

Aj Bτ∗j

C D
]

be
an output stable, I/O stable and J-coercive DLS. Assume that the input operator
B ∈ L(U ; H) of Φ is Hilbert–Schmidt, and the input space U is separable. Then
the following are equivalent

(i) π̄+D∗JDπ̄+ ≥ επ̄+ for some ε > 0,

(ii) the regular critical solution P crit
0 :=

(
Ccrit

)∗
JCcrit ∈ ric0(Φ, J) exists, and

its indicator ΛP crit
0

is positive, and

(iii) the solution set ricuw(Φ, J) is not empty, and all P ∈ ricuw(Φ, J) satisfy
ΛP > 0.

Proof. We first show that (i) implies (ii). Assume (i). Corollary 118 implies
that the equivalent conditions of Theorem 114 hold, and in particular a critical
P crit ∈ Ricuw(Φ, J) exists. Proposition 115 implies that we have the regular
critical solution P crit

0 :=
(
Ccrit

)∗
JCcrit ∈ ric0(Φ, J). Thus the solution set

ricuw(Φ, J) is not empty. By Theorem 142, π̄+X ∗ΛP crit
0

X π̄+ = π̄+D∗JDπ̄+ ≥
επ̄+ where X := Dφ

P crit
0

is outer with a bounded inverse. By the boundedness

and shift-invariance, also X ∗ΛP crit
0

X ≥ εI, and then ΛP crit
0

≥ εX−∗X−1 =
ε (XX ∗)−1

> 0, where ΛP crit
0

is regarded as a static multiplication operator on
�2(Z; U). Immediately, ΛP crit

0
> 0 as an element of L(U), too. Thus claim (ii)

follows.

Assume claim (ii). Then P crit
0 ∈ ric0(Φ, J) ⊂ ricuw(Φ, J) exists, and the latter

set is not empty. Because the input operator B is Hilbert–Schmidt, an appli-
cation of Lemma 145 proves now claim (iii). Assume claim (iii). Then there is
a P0 ∈ ricuw(Φ, J) with a positive indicator. By Theorem 142, π̄+D∗JDπ̄+ =
π̄+D∗

φP0
ΛP0DφP0

π̄+ ≥ 0. But by the assumed J-coercivity of Φ, claim (i) fol-
lows.

We remark that claims (i) and (ii) of Corollary 146 are equivalent even if the
input operator B is not Hilbert–Schmidt and U is not separable.

There is a one-to-one correspondence between (J, S)-inner-outer factorizations
of D = NX (with the outer part having a bounded inverse X−1) and S-spectral
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factorizations of the Popov operator D∗JD, see Proposition 82. Applying this
to the spectral DLSs gives the proposition:

Proposition 147. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable and output stable DLS.
Let J be a self-adjoint operator. Assume that the equivalent conditions of The-
orem 114 hold, and by P crit

0 := (Ccrit)∗JCcrit ∈ ric0(Φ, J) denote the regular
critical solution. Let P ∈ ricuw(Φ, J) be arbitrary. Then

(i) DφP has an (ΛP , ΛP crit
0

)-inner-outer factorization given by

DφP = NPX ,

where X = Dφ
P crit
0

is I/O stable, and NP := DφP D−1
φ

P crit
0

. The equivalent

conditions of Theorem 114 hold for the DLS φP and the cost operator
ΛP . The outer factor of DφP does not depend upon the solution P . Both
range (DφP π̄+) and range (DφP ) are closed.

(ii) If, in addition, the input operator B is Hilbert–Schmidt and the space U
is separable, then range (DφP ) = �2(Z; U), and DφP has a bounded shift-
invariant inverse on �2(Z; U). If J ≥ 0, then normalized inner factor
Λ

1
2
PNP Λ− 1

2
P crit

0
is inner from both sides.

(iii) X (X−1) is the I/O map of the spectral DLS φP crit
0

(φ−1
P crit

0
, respectively),

with the realizations

φP crit
0

=
(

A B
−KP crit

0
I

)
, φ−1

P crit
0

=
(

AP crit
0

B

KP crit
0

I

)
,

and NP is the I/O map of the DLS

φP φ−1
P crit

0
=
(

AP crit
0

B

KP crit
0

− KP I

)
,

where AP crit
0

:= A + BKP crit
0

.

Proof. To prove claim (i), we note that we have the factorization of the Popov
operator, for all P ∈ ricuw(Φ, J)

D∗JD = D∗
φP

ΛPDφP = D∗
φ

Pcrit
0

ΛP crit
0

Dφ
P crit
0

,

by claim (i) of Theorem 142. But then, X := Dφ
P crit
0

is a ΛP crit
0

-spectral factor of

D∗
φP

ΛPDφP , and then, by Proposition 82, DφP = NPX where NP := DφP X−1

is a (ΛP , ΛP crit
0

)-inner-outer factorization, and the outer part has a bounded
inverse. Both range (DφP ) π̄+ and range (DφP ) are closed because φP is ΛP -
coercive, by Proposition 69.
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In order to prove claim (ii), note that claim (ii) of Proposition 135 implies that
range (DφP ) = �2(Z; U), because φP is ΛP -coercive, the feed-through operator
DφP (0) = I has a bounded inverse and the input operator B of φP is Hilbert–
Schmidt. If J ≥ 0, then both the indicators ΛP and ΛP crit

0
are positive, by

Corollary 146. It follows that Λ
1
2
PNP Λ− 1

2
P crit

0
is inner from both sides, by claim

(ii) of Lemma 134.

To prove claim (iii), Proposition 17 is used. Only the claim concerning NP is
somewhat nontrivial, and the outlines are given below. For a more complete
presentation using the same technique, see the proof of (ii) of Proposition 148.
First, the product DLS φP φ−1

P crit
0

is written

φP φ−1
P crit

0
=

 [
A BKP crit

0

0 AP crit
0

] [
B
B

]
[
−KP KP crit

0

]
I

 .

Its the semigroup generator is seen to satisfy[
A BKP crit

0

0 AP crit
0

]j

=

[
Aj Aj

P crit
0

− Aj

0 Aj

P crit
0

]
.

Finally, looking at the Taylor coefficients of the I/O map, we see

[
−KP KP crit

0

] [Aj Aj

P crit
0

− Aj

0 Aj

P crit
0

][
B
B

]
= (KP crit

0
− KP )Aj

P crit
0

B.

We consider this claim to be proved.

Let P ∈ ricuw(Φ, J) be arbitrary. To the spectral DLS φP , we can associate a
critical control problem with the cost operator ΛP , see Section 2.2. It follows
from Proposition 147 and Theorem 114 that if one of these problems is solvable
(in the sense of Theorem 114), then they all are, together with the original
critical control problem associated to Φ and J . This is true just because all the
I/O maps have the same outer factor X , if they have such factorization at all.

In Proposition 147, a particular fixed regular critical solution P crit
0 ∈ ric0(Φ, J)

was picked and the proposition was formulated relative to this solution. One
should ask whether we would have obtained another factorization DφP = N ′

PX ′

for another critical solution, say P crit
2 ∈ Ricuw(φ, J). The answer in negative.

In the proof of Corollary 116, we have seen that the indicators of the critical
solutions are all the same: ΛP crit = ΛP crit

2
. Then we might have two different

(ΛP , ΛP crit) -inner-outer factorizations DφP = NPX = N ′
PX ′. However, the

feed-through parts of both X and X ′ are normalized to identity operator I, and
this implies by Proposition 83 that X = X ′ as I/O maps. It now follows that
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the factor NP does not depend on the choice of the critical solution. However,
the realizations φP crit , φP crit

2
for X , X ′ might be different, because the feedback

operators KP crit
0

, KP crit
2

might differ. However, this can happen only in the or-
thogonal complement of range (B). So, if range (B) = H , then KP crit

0
= KP crit

2
as in the proof of Proposition 116, and the possible nonuniqueness of the real-
izations disappears.

The following proposition gives us realizations for chains of certain I/O maps.
It is instructive to compare the DLS φP1,P2 to the realization of NP , given in
claim (iii) of Proposition 147. We remark that the following tedious calculations
depend on the properties of the Riccati equation only in a very implicit manner,
if at all.

Proposition 148. Let Φ be an DLS, and J self-adjoint. Let P1, P2, P3 ∈
ric(Φ, J) be arbitrary. Define the DLS

φP1,P2 =
(

AP2 B
KP2 − KP1 I

)
and we denote NP1,P2 := DφP1,P2

. Then

(i) N−1
P1,P2

= NP2,P1 ,

(ii) NP1,P2NP2,P3 = NP1,P3 ,

(iii) Assume, in addition, that the conditions of Theorem 114 hold. Then
NP1,P crit

0
= NP1 is the (ΛP1 , ΛP crit

0
)-inner factor of DφP . Also NP1N−1

P2
=

NP1,P2 .

Proof. To prove claim (i), use claim (i) of Proposition 17. A direct calculation
gives

φ−1
P1,P2

=
(

AP2 − B(KP2 − KP1) B
−(KP2 − KP1) I

)
=
(

AP1 B
KP1 − KP2 I

)
= φP2,P1 ,

proving claim (i). To verify claim (ii), claim (ii) of Proposition 17 is now used.
We obtain

φP1,P2φP2,P3 =
(

AP2 B
KP2 − KP1 I

)(
AP3 B

KP3 − KP2 I

)
(3.43)

=

 [
AP2 B(KP3 − KP2)
0 AP3

] [
B
B

]
[
(KP2 − KP1) (KP3 − KP2)

]
I

 .

Now we have to consider the I/O map of the product DLS φP1,P2φP2,P3 . We
first see that its feed-through operator I is that of DφP1,P3

. The rest is studied
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by applying the Taylor series formula (1.7) for the I/O map of a DLS on the
right hand side of (3.43). The whole trick lies in noting that the semigroup
generator satisfies

[
AP2 B(KP3−KP2 )

0 AP3

]
=
[

AP2 AP3−AP2
0 AP3

]
, and we have for the

block matrices of this kind

Aj
(φP1,P2φP2,P3 ) =

[
AP2 AP3 − AP2

0 AP3

]j

=

[
Aj

P2
Aj

P3
− Aj

P2

0 Aj
P3

]

for all j ≥ 0, as can easily be shown by induction. We now obtain for all j ≥ 0

C(φP1,P2φP2,P3 )A
j
(φP1,P2φP2,P3 )B(φP1,P2φP2,P3 )

=
[
(KP2 − KP1) (KP3 − KP2)

] [Aj
P2

Aj
P3

− Aj
P2

0 Aj
P3

] [
B
B

]
= (KP2 − KP1)A

j
P2

B + (KP2 − KP1)(A
j
P3

− Aj
P2

)B

+ (KP3 − KP2)A
j
P3

B

= (KP2 − KP1)A
j
P3

B + (KP3 − KP2)A
j
P3

B

= (KP3 − KP1)A
j
P3

B.

But these equal the corresponding coefficients of φP1,P3 , and claim (ii) is proved.
Claim (iii) follows immediately from claim (iii) of Proposition 147. The last
claim follows from the previous claims: NP1N−1

P2
= NP1,P crit

0
N−1

P2,P crit
0

=
NP1,P crit

0
NP crit

0 ,P2 = NP1,P2.

The I/O maps of the DLSs φP1,P2 will play a crucial role in Chapter 5.



176 CHAPTER 3. SPECTRAL FACTORIZATION

3.7 Notes and references

Spectral factorization and DARE

Let φ = ( A B
C D ) be an output stable and I/O stable DLS, and J ∈ L(Y ) a cost

operator. In the present chapter, we have developed a spectral factorization
theory for the Popov operatorD∗

φJDφ of DLS φ on infinite dimensional separable
Hilbert spaces. We have seen that a subset ric0(φ, J) ⊂ Ric(φ, J) of the regular
H∞ solutions of the H∞DARE

A∗PA − P + C∗JC = K∗
P ΛP KP ,

ΛP = D∗JD + B∗PB,

ΛP KP = −D∗JC − B∗PA,

(3.44)

can be used to parameterize (at least a nontrivial subset of) the stable spectral
factors. Under nonnegativity assumptions, we have given characterizations of
the subset ric0(φ, J) in the full solution set Ric(φ, J).

We now briefly discuss the literature relating to spectral factorization and al-
gebraic Riccati equations. The general idea of using the (matrix) Riccati equa-
tions for the canonical and spectral factorization of rational transfer functions
is quite old. Both the continuous and discrete time finite dimensional case is
considered in [49, Chapters 10 and 19] (Lancaster and Rodman, 1995) and the
references therein. At the end of both chapters, a short account for the history
of such factorizations is given. For the classical existence results and applica-
tions of canonical factorizations of matrix-valued meromorphic functions, see
[16] (Clancey and Gohberg, 1981). Some computational aspects of the spectral
factorization are considered in [101] (M. Weiss, 1994). The discrete time infi-
nite dimensional result [45, Theorem 4.6] (Helton, 1976) is closely related to our
Theorem 142 on the spectral factorization, but the information structure of the
system and DARE is that of a LQDARE{

A∗PA − P + C∗JC = A∗PB · Λ−1
P · B∗PA,

ΛP = D∗JD + B∗PB,
(3.45)

where the input is penalized by direct cost. The reasons why we discuss the more
general DARE (3.44) instead of LQDARE (3.45) will be discussed in Section 4.9.
In [45, Theorem 4.6], a “nonvanishing residual cost” has been included in the
Popov function, whose spectral factor is to be calculated. A similar modification
can be done to Theorem 142, see Definition 143 and Lemma 144.

The related results in [36] (Fuhrmann, 1995) and [39] (Fuhrmann and Hoffman,
1997) seem to be most complete. A reference to an earlier spectral factorization
paper [26] (Finesso and Picci, 1982) is also given there. Spectral factorization
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of continuous time infinite-dimensional transfer functions are considered in [36]
by using an algebraic Riccati equation. The paper [39] deals with the discrete
time state space state space factorization of rational inner functions. There is
a considerable overlap between our results in [61], [62] and those given in [36],
[39]. We learned about this at MTNS98 conference (Padova, July 1998) in a
discussion with Fuhrmann, after the papers [61] and [62] (Malinen, 1998) were
completed in their original form and the related conference article [59] (Malinen,
1998) had been presented. In technical style and basic assumptions these works
are quite different from ours, which makes is a hard but a rewarding task to
compare the continuous time results of [36] to our discrete time results. It
appears that the results are in harmony to each other in a beautiful way.

Fuhrmann approaches the general structure from the minimal spectral factor-
ization point of view, rather that from the Riccati equation point of view that
we have adopted. In [36], unstable systems and spectral factors are parameter-
ized by solutions of an algebraic Riccati equation of a quite special kind. We
can roughly say that our work is more complete with respect to the Riccati
equations and classes of stable systems, whereas more general spectral factors
and unstable systems are considered in [36]. The work [36] is written under
the standing hypothesis of strict noncyclicity of the spectral function, known
as the Popov function in our work. This implies that the spectral function
has a meromorphic extension from the imaginary axis to the rest of the com-
plex plane. In [36, Theorem 2.1], this assumption is associated to the existence
of Douglas–Shapiro–Shields factorization of the spectral function, see [27], [35]
and [22] (Douglas, Shapiro and Shields, 1970). We remark that many results
such as [36, Theorem 6.1] are genuinely two-directional where our analogous
results Lemma 138, Proposition 139 and Theorem 142 are not. For example,
in Theorem 142 we do not prove that all spectral factors of D∗

φJDφ can be as-
sociated to a solution of DARE. Only those spectral factors are parameterized
by the solutions in ric0(φ, J) that can be realized in a particular way, with the
original semigroup generator A and the input operator B of DLS φ = ( A B

C D ).
The full parameterization of the minimal spectral factors in [36] comes from
the additional minimality assumption of the used realization, and the use of a
state space isomorphism result that does not hold in the full generality in our
setting. The lack of a general state space isomorphism is quite disappointing,
and it makes the state space idea somewhat “too good to be true” for general
infinite-dimensional systems, see the discussion in [35, Chapter 3].

Further application of algebraic Riccati equations

A traditional application of the algebraic Riccati equation, associated to an
unstable system, is to find a (nonnegative) solution, such that the (semigroup
of the) closed loop system is (at least partially) (exponentially) stabilized; see
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e.g. [9] (Callier, Dumortier and Winkin, 1995), [23] (Dumortier, 1998), and
[107] (Wimmer, 1996), to mention a few possible references.

In this book, we mainly consider DAREs associated to an output stable and I/O
stable DLS φ. The impetus to look into DAREs associated to stable systems
came to us from the works [83], [85] and [103] (Staffans and G. Weiss). The
feedback stabilization of (the semigroup or the I/O map of) an unstable DLS is
seen as a separate problem, to be discussed elsewhere. We assume that the DLS
φ “already output and I/O stabilized” by some means — not necessarily by a
static state feedback law, induced by some (nonnegative, stabilizing, maximal
nonnegative) solution of the DARE. In this case, the stabilized system could
possess a nontrivial outer factor, and we conclude that a DARE theory dealing
with only inner I/O maps is not sufficient. We also remark that there exists
genuinely I/O stable (discrete time) processes that need not be stabilized; con-
sider, for example, a (discrete time) Lax–Phillips scattering where the scattering
process is usually described by (a DLS that has an inner) H∞ transfer function.
Similar examples can be produced from realizations of the characteristic func-
tions of C00 contractions. Because of the standing I/O stability assumption of
the DLS φ, the connections to the operator-valued function theory become very
important, as will be seen in Chapter 4. We conclude that it would be quite
desirable to have a sufficiently general DARE theory of stable systems to deal
with these situations.

The application of and references to the algebraic Riccati equations in linear
quadratic control problems has already been discussed in Section 2.8. The alge-
braic Riccati equation appears (in an adjoint form) in the theory of the Kalman
filter for the stochastic state estimation, see [48, Section 2.6] (Kalman, Falb
and Arbib, 1969), [5, Chapter 10] (Bitmead and Gevers, 1991) and the refer-
ences therein. The latter reference contains a nice overview of the various types
and applications of the (matrix) algebraic, difference and differential Riccati
equations, both in continuous and discrete time.



Chapter 4

Inner-Outer Factorization

4.1 Introduction

Let φ := ( A B
C D ) be an output stable and I/O stable DLS and J ∈ L(Y ) a

cost operator. In Chapter 3 we defined an algebraic Riccati equation, called
H∞DARE and denoted by ric(φ, J). It appeared that some solutions of an
H∞DARE are more interesting than others; these are the H∞ solutions P ∈
ric(φ, J) ⊂ Ric(φ, J) and the regular H∞ solutions P ∈ ric0(φ, J) ⊂ ric(φ, J).
Then the solutions P ∈ ric0(φ, J) are associated to the stable spectral factor-
izations of the Popov operator D∗

φJDφ. The main theme of this chapter is to
connect a subset

{P ∈ ric0(φ, J) | P ≥ 0} ⊂ ric0(φ, J)

to the factorizations of the I/O map Dφ into causal, shift-invariant and I/O
stable factors. As a result, we obtain a theory of the regular H∞ solutions of
a H∞DARE and simultaneously, an inner-outer type state space factorization
theory for operator-valued bounded analytic functions.

In Chapter 3, many of the results did not require that the self-adjoint cost opera-
tor J ∈ L(Y ) is nonnegative. However, in this chapter it is almost a standing hy-
pothesis that J is nonnegative, and the Popov operator π̄+D∗

φJDφπ̄+ is bound-
edly invertible on �2(Z+; U). This is a sufficient condition for the existence of the

regular critical solution P crit
0 :=

(
Ccrit

φ

)∗
JCcrit

φ ∈ ric0(φ, J), by Proposition 117.
As in Chapter 3, the input space U can be allowed to be infinite-dimensional,
provided that the input operator B of φ is Hilbert–Schmidt.

We give a short outline of the contents of this chapter. To each solution P ∈
Ric(φ, J), two families of algebraic Riccati equations are introduced in Section

179
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4.2. These are associated to the spectral DLS φP and the inner DLS φP , centered
at the solution P ∈ Ric(φ, J). For the definitions of φP and φP , see Definition
95. The spectral DARE Ric(φP , ΛP ) is the DARE associated to the ordered pair
(φP , ΛP ), where the cost operator ΛP := D∗JD + B∗PB is the indicator of the
solution P . Analogously, the inner Ric(φP , J) is associated to the ordered pair
(φP , J). The solution sets of spectral and inner DAREs have natural relations to
the solution set P ∈ Ric(φ, J) of the original DARE, see Lemmas 156 and 157.
The transitions from the original DLS φ to the inner DLS φP and the spectral
DLS φP are basic operations that we use in Section 4.6 to obtain order-theoretic
descriptions of the solution (sub)set ric0(φ, J) ⊂ Ric(φ, J). The results of
Section 4.2 are proved by algebraic manipulations, and do not require DARE
Ric(φ, J) to be a H∞DARE.

We remark that if the spectral DLS φP , (the inner DLS φP ) is I/O stable and
output stable, then the DARE Ric(φP , J), (Ric(φP , J)) is a H∞DARE, and it
is associated to the critical control problem of DLS φP with cost operator ΛP ,
(DLS φP with cost operator J , respectively). Recall that for P ∈ Ric(φ, J),
φP is I/O stable and output stable if and only if P is a H∞ solution, by Def-
inition 107. For this reason it is important that, under technical assumptions,
all “reasonable” solutions P ∈ Ric(φ, J) are shown to be (even regular) H∞

solutions, see Corollary 140 and Equation 3.27. We conclude that the question
whether the spectral DARE Ric(φP , ΛP ) is an H∞DARE has already been set-
tled in Chapter 3. It requires further study to give analogous conditions for the
inner DARE Ric(φP , J) to be a H∞DARE, and this study is carried out in the
present chapter. When this is done, we will have shown that the general class
of H∞DAREs is closed under the transitions to spectral and inner DAREs at
regular H∞ solutions P ∈ ric0(φ, J).

A fair amount of stability theory for DLSs is needed for the further results.
This is provided by the scratch of an infinite-dimensional Liapunov equation
theory of Section 4.3. An essential part of the Liapunov theory is based on
monotonicity techniques, requiring the nonnegativity of the cost operator J ,
or some closely related assumption. By Corollary 167, we conclude that φP is
output stable if P ∈ Ric(Φ, J) is nonnegative and the cost operator J > 0 has
a bounded inverse, under quite general assumptions. It requires more work and
stronger assumptions to make the inner DLS φP I/O stable and Ric(φP , J) an
H∞DARE.

The first main results of this paper are given in Section 4.4. We conclude that
each nonnegative P ∈ ric0(φ, J) gives a factorization of the I/O map

J
1
2Dφ = J

1
2DφP · DφP .(4.1)

The causal, shift-invariant factor J
1
2DφP : �2(Z; U) → �2(Z; Y ) is densely de-

fined, not necessarily I/O stable, but always strongly H2 stable. This means
that the I/O map J

1
2DφP has a bounded impulse response, and the mapping
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J
1
2DφP : �1(Z; U) → �2(Z; Y ) is bounded. If the input operator B of the DLS

φ = ( A B
C D ) is a compact Hilbert–Schmidt operator, then this factorization be-

comes a partial inner-outer factorization where all factors are I/O stable, see
Lemma 171 and Theorem 173. In particular, the (properly normalized) in-
ner DARE Ric(J

1
2 φP , I) (which is equivalent to the inner DARE Ric(φP , J))

becomes now a H∞DARE, provided P ∈ ric0(φ, J). A generalized H2 factor-
ization is considered in Lemma 174. Furthermore, finite increasing chains of
solution in ric0(φ, J) give factorizations of the I/O map of Blaschke–Potapov
product type, as stated in Theorem 175. However, neither the zeroes nor the
singular inner factor of the transfer function Dφ(z) (whatever these would mean
in the present generality) play any explicit role in this construction.

In Section 4.5, we consider converse results to those given in the previous Sec-
tion 4.4. In Lemma 181 we show that for P ∈ ric0(φ, J), the I/O stability of
J

1
2 φP implies that P ≥ 0. Here, an approximate controllability assumption

range (Bφ) = H is made. Theorem 182 is a combination of results given in
Sections 4.4 and 4.5. It states, under restrictive technical assumptions, that
among the state feedbacks associated to solutions P ∈ ric0(φ, J), it is exactly
the nonnegative solutions which output stabilize and I/O stabilize the (normal-
ized closed loop) inner DLS J

1
2 φP . In other words, among the H∞ solutions of

the DARE ric(φ, J), it is exactly the nonnegative P ∈ ric0(φ, J) which give the
factorization (4.1) of the I/O map Dφ so that all the factors are I/O stable.

In Section 4.6, we study the partial ordering of the elements of ric0(φ, J), as
self-adjoint operators. The maximal nonnegative solution in the set ric0(φ, J) is
considered in Corollary 186, and seen to be the unique regular critical solution
P crit

0 := (Ccrit
φ )∗JCcrit

φ , if the approximate controllability range (Bφ) = H is
assumed. An order-preserving correspondence between the set ric0(φ, J) and a
set of certain closed shift-invariant subspaces of �2(Z+; U) is given in Theorem
187, in the spirit of the classical Beurling–Lax–Halmos Theorem. An order-
theoretic characterization of the nonnegative elements of ric0(φ, J) is given in
Theorem 188.

In Section 4.7 we consider the conditions when the spectral DARE
Ric(φP , ΛP ) and the inner DARE Ric(φP , J) are H∞DAREs. Furthermore,
the regular H∞ solutions and the regular critical solutions of both the spectral
and inner DAREs are described. Our technical assumptions include approxi-
mate controllability range (Bφ) = H and the Hilbert–Schmidt compactness of
the input operator B of the DLS φ which is common to all inner and spectral
DLSs φP and φP . The case of the spectral DARE is dealt in Lemma 189 and
Corollary 190. As a byproduct, we see that the set ric0(φ, J) is an order-convex
subset of Ric(φ, J) in the following sense: if P1, P2 ∈ ric0(φ, J) with P2 ≤ P1,
then all P ∈ Ric(φ, J) such that P2 ≤ P ≤ P1 satisfy P ∈ ric0(φ, J). In
Lemma 192 it is shown that the inner DARE Ric(φP , J) is an H∞DARE if
P ∈ ric0(φ, J) is nonnegative and the cost operator J > 0 has a bounded in-
verse — in this case the same P is also the regular critical solution of DARE
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ric(φP , J). The full description of the regular H∞ solutions ric0(φP , J) of the
inner DARE is given in Lemma 193.

In the final section, it is shown that the structure of the H∞DARE ric(φ, J) and
its inner DARE ric(φP crit

0 , J) is similar, where P crit
0 := (Ccrit

φ )∗JCcrit
φ ∈ ric0(φ, J)

is the regular critical solution. This means that the outer factor of the I/O map
Dφ is nonessential, from the H∞DARE point of view. The treatment is similar
to that given in Lemmas 192 and 193 for general nonnegative P ∈ ric0(φ, J)
but now the cost operator J ≥ 0 is not required to be boundedly invertible.
This result has an application in Section 5.7.

A preliminary version of the contents of this chapter is [62] (Malinen, 1999).
The conference article [59], containing many of the results of Chapter 3 and this
chapter, has been presented in MTNS98 conference (Padova, July, 1998).
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4.2 Chains of DAREs

In this section, we write down a number of algebraic properties associated to
iterated transitions to inner and spectral minimax nodes, DLSs and DLSs. The
algebraic Riccati equation, together with the spectral DLS φP and the inner
DLS φP , has already been introduced in Section 3.2. The spectral DLS φP has
been extensively used in Chapter 3 because its I/O map gives spectral factors
for the Popov operator π̄+D∗

φJDφπ̄+. For the inner DLS φP we have not had
much application until now. The results of this section are proved by purely
algebraic manipulations, and do not require input, output or I/O stability of
any of the DLSs considered. The definiteness of the cost operator J does not
play any role, either. Later, in Sections 4.7 and 4.8, the analogous structure of
the H∞DARE is considered, for J ≥ 0.

We associate two chains of DAREs to a given DARE Ric(φ, J). The elements
of these chains are called the spectral and inner DAREs. Both the chains are
indexed by the solutions P ∈ Ric(φ, J). These new DAREs make it easy to
“move” in the solution set Ric(φ, J) of the original DARE, provided we can solve
these Riccati equations. The presented structure (in some form) are well known
to specialists in Riccati equations, but they are hard to locate in the literature.
For us, the presented chains of DAREs are invaluable tools in sections 4.4 and
4.6.

Because DARE Ric(φ, J) does not solely depend on the DLS but also on the
cost operator J , it is not sufficient to consider the DLS φ alone in this section.
Instead, we have to consider the pairs (φ, J) that we call minimax nodes. Each
minimax node defines a cost optimization problem, as defined in Chapter 2
for I/O stable DLSs. To this cost optimization problem, a Riccati equation is
associated in a natural way. We first define two operations on the minimax
nodes, and give their basic properties. The DARE is introduced in the familiar
form in Definition 153.

Definition 149. Let φ = ( A B
C D ) be a DLS with input space U , the state space H

and output space Y . Let J = J∗ ∈ L(Y ) be a cost operator. Let P = P ∗ ∈ L(H)
be arbitrary, such that the operator ΛP := D∗JD+B∗PB has a bounded inverse.

(i) The ordered pair (φ, J) is called the minimax node, associated to the DLS
φ and cost operator J .

(ii) The spectral minimax node of (φ, J) at P is defined by

(φ, J)P :=
((

A B
−KP I

)
, ΛP

)
,

where ΛP := D∗JD +B∗PB and ΛP KP := −D∗JC −B∗PA. The opera-
tor ΛP is called the indicator of P , and KP is called the feedback operator
of P .
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(iii) The inner minimax node of (φ, J) at P is defined by

(φ, J)P :=
((

AP B
CP D

)
, J

)
,

where AP := A + BKP , CP = C + DKP , and KP is as above. The operator
AP is called the (closed loop) semigroup generator of P , and CP is called the
(closed loop) output operator of P .

We call two DLSs equal, if their defining ordered operator quadruples (in differ-
ence equation form) are equal. Two minimax nodes are equal, if their DLSs are
equal, and the cost operators are equal. In this case we write (φ1, J1) ≡ (φ2, J2).

To each self-adjoint operator P ∈ L(H), two additional DLSs are associated:

Definition 150. Let (φ, J), KP , AP and CP be as in Definition 149. Let
P = P ∗ ∈ L(H) be arbitrary, such that D∗JD + B∗PB has a bounded inverse.

(i) The DLS

φP :=
(

A B
−KP I

)
is the spectral DLS, associated to the minimax node (φ, J), and centered
at P .

(ii) The DLS

φP :=
(

AP B
CP D

)
is called the inner DLS, associated to the minimax node (φ, J), and cen-
tered at P .

So, we can write (by definitions)

(φ, J)P = (φP , ΛP ), (φ, J)P = (φP , J),

instead of formulae appearing in parts (ii) and (iii) of Definition 149. The
iterated transitions to inner and spectral minimax nodes behave as follows.

Proposition 151. Let (φ, J) be a minimax node. Then the following holds for
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P1 = P ∗
1 ∈ L(H), P2 = P ∗

2 ∈ L(H) and ∆P := P2 − P1.(
(φ, J)P1

)
P2

≡
(
φP1 , J

)
P2

≡
((

AP1 B
KP1 − KP2 I

)
, ΛP2

)
,(4.2) (

(φ, J)P1
)P2

≡
(
φP1 , J

)P2 ≡
(
φP2 , J

)
,(4.3) (

(φ, J)P1

)
∆P

≡ (φP1 , ΛP1)∆P ≡ (φP2 , ΛP2) ,(4.4) (
(φ, J)P1

)∆P ≡ (φP1 , ΛP1)
∆P ≡

((
AP2 B

KP2 − KP1 I

)
, ΛP2

)
.(4.5)

Proof. As before, denote by ΛP , KP the indicator and feedback operator, as-
sociated to the minimax node (φ, J) and P ∈ L(H). We start with proving
equation (4.2). By Λ̃P2 and K̃P2 denote the indicator and feedback operator,
associated to the minimax node (φP1 , J) and P2 ∈ L(H). It is easy to see
that Λ̃P2 = ΛP2 . The feedback operator of the inner DLS φP1 at P2 satisfies
K̃P2 = KP2 − KP1 because

K̃P2 = Λ−1
P2

(−D∗JCP1 − B∗P2AP1)(4.6)

= Λ−1
P2

((−D∗JC − B∗P2A) − (D∗JD + B∗P2B)KP1)

= Λ−1
P2

(ΛP2KP2 − ΛP2KP1) = KP2 − KP1 ,

where AP1 = A + BKP1 and CP1 = C + DKP1 , by part (ii) of Definition 149.
Now (4.2) follows.

We proceed to prove equality (4.3). By part (iii) of Definition 149, we have(
φP1 , J

)P2 ≡
((

ÃP2 B

C̃P2 I

)
, J

)
,

where the semigroup generator satisfies

ÃP2 = AP1 + BK̃P2 = (A + BKP1) + B(KP2 − KP1) = A + BKP2 = AP2 ,

and for the output operator we have

C̃P2 = CP1 + DK̃P2 = (C + DKP1) + D(KP2 − KP1) = C + DKP2 = CP2

because K̃P2 = KP2 − KP1 , as already shown in the proof of claim (4.2). This
proves claim (4.3).

From now on, let Λ̃∆P and K̃∆P denote the indicator and feedback operator,
associated to the spectral minimax node (φP1 , J). Denote also ∆P := P2 − P1.
Then

Λ̃∆P = I∗ · ΛP1 · I + B∗∆PB(4.7)
= D∗JD + B∗P1B + B∗(P2 − P1)B = ΛP2 ,
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and

ΛP2K̃∆P = Λ̃∆P K̃∆P = −I∗ · ΛP1 · (−KP1) − B∗∆PA(4.8)
= −D∗JC − B∗P1A − B∗(P2 − P1)A = ΛP2KP2 ,

or K̃∆P = KP2 . But this gives for the spectral minimax node

(φP1 , ΛP1)∆P ≡
((

A B

−K̃∆P I

)
, Λ̃∆P

)
≡
((

A B
−KP2 I

)
, ΛP2

)
,

and equality (4.4) follows. It remains to consider the minimax node (φP1 , ΛP1)
∆P .

By part (iii) of Definition 149, we have

(φP1 , J)P2 ≡
((

Ã∆P B

C̃∆P I

)
, Λ̃∆P

)
where Λ̃∆P = ΛP2 as above,

Ã∆P = A + BK̃∆P = A + BKP2 = A + BKP2 = AP2 ,

and

C̃∆P = −KP1 + K̃∆P = −KP1 + KP2 .

This proves the final claim (4.5).

The following “commutation” result will be important in applications:

Corollary 152. Let (φ, J) be a minimax node, and P1, P2 ∈ L(H) self-adjoint.
Then (

(φP1)
P2−P1 , ΛP1

)
≡
((

φP2
)
P1

, ΛP1

)
.

Proof. This is an immediate consequence of formulae (4.2) and (4.5) of Propo-
sition 151.

Now we have introduced the notion of a minimax node, and defined two algebraic
operations on such nodes: transition to inner and spectral minimax nodes. In
the following definition, a discrete time algebraic Riccati equation (DARE) is
associated to each minimax node in the familiar form, see Definition 105.

Definition 153. Let (φ, J) ≡ (( A B
C D ) , J) be a minimax node. Then the follow-

ing system of operator equations
A∗PA − P + C∗JC = K∗

P ΛP KP

ΛP = D∗JD + B∗PB

ΛP KP = −D∗JC − B∗PA

(4.9)
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is called the discrete time algebraic Riccati equation (DARE) and denoted by
Ric(φ, J). The linear operators are required to satisfy ΛP , Λ−1

P ∈ L(U) and
KP ∈ L(H ; U). Here P is a unknown self-adjoint operator to be solved. If
P ∈ L(H) satisfies (4.9), we write P ∈ Ric(φ, J).

As before, we use the same symbol Ric(φ, J) both for the solution set of a
DARE, and the DARE itself. This should not cause confusion. When we write
expressions such as

P ∈ Ric(φ, J), Ric(φ, J) = Ric(φ, J), Ric(φ, J) ⊂ Ric(φ, J),

the symbol Ric(φ, J) denotes the solution set. Clearly, different minimax nodes
can give the same DARE because the DARE depends on the operators C∗JC,
D∗JC, and D∗JD, but not directly on C, D, or J . When two DAREs Ric(φ1, J1)
and Ric(φ2, J2) equal in this way, we write Ric(φ1, J1)

.= Ric(φ2, J2). We have

(φ1, J1) ≡ (φ2, J2) ⇒ Ric(φ1, J1)
.= Ric(φ2, J2) ⇒ Ric(φ1, J1) = Ric(φ2, J2),

and none of the implications is an equivalence. In particular, the equality
Ric(φ, J) = Ric(φ, J) does not imply that the two Riccati equations were same,
and even less that the two minimax nodes were the same. If (φ1, J1) ≡ (φ2, J2),
then we write Ric(φ1, J1) ≡ Ric(φ2, J2).

The inner and spectral minimax nodes of an original minimax node (φ, J) give
rise to new DAREs: namely the inner and spectral DAREs, centered at the
self-adjoint operator P ∈ L(U). In order to obtain something interesting, we
must now require that in fact P ∈ Ric(φ, J).

Definition 154. Let (φ, J) ≡ (( A B
C D ) , J) be a minimax node. Let P ∈ Ric(φ, J)

be arbitrary. Let φP and φP as given in Definition 150, and by ΛP , KP denote
the indicator and feedback operators of P , respectively.

(i) The DARE Ric(φ, J)P :≡ Ric(φP , ΛP )
A∗P̃A − P̃ + K∗

P ΛP KP = K̃∗
P̃
Λ̃P̃ K̃P̃

Λ̃P̃ = ΛP + B∗P̃B

Λ̃P̃ K̃P̃ = ΛP KP − B∗P̃A

(4.10)

is the spectral (φ, J)-DARE, centered at P ∈ Ric(φ, J). Here P̃ is an
unknown self-adjoint operator to be solved.

(ii) The DARE Ric(φ, J)P :≡ Ric(φP , J)
A∗

P P̃AP − P̃ + C∗
P JCP = K̃∗

P̃
ΛP̃ K̃P̃

ΛP̃ = D∗JD + B∗P̃B

ΛP̃ K̃P̃ = −D∗JCP − B∗P̃AP ,

(4.11)
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is the inner (φ, J)-DARE, centered at P ∈ Ric(φ, J). Here P̃ is an un-
known self-adjoint operator to be solved, and AP := A + BKP , CP :=
C + DKP .

We start with discussing the spectral Riccati equation Ric(φ, J)P . The following
proposition is basic, and serves as a prerequisite for Lemma 156.

Proposition 155. Let (φ, J) be a minimax node. Let P ∈ Ric(φ, J). Then
Ric(φ, J)P can be written in the equivalent form

A∗P̃A − P̃ + K∗
P ΛP KP = K∗

P+P̃
ΛP+P KP+P̃

ΛP+P̃ = D∗JD + B∗(P + P̃ )B
ΛP+P̃ KP+P̃ = −D∗JC − B∗(P + P̃ )A.

Proof. By equation (4.7), Λ̃P̃ = ΛP+P̃ , and by equation (4.8), K̃P̃ = KP+P̃ .

Lemma 156. Let (φ, J) be a minimax node. Let P ∈ Ric(φ, J) and P̃ be a
bounded self-adjoint operator. Then the following are equivalent

(i) P + P̃ ∈ Ric(φ, J),

(ii) P̃ ∈ Ric(φ, J)P .

Proof. Assume claim (i). Because both P, (P + P̃ ) ∈ Ric(φ, J), we have by
Proposition 155

A∗(P + P̃ )A − (P + P̃ ) + C∗JC = K∗
P+P̃

ΛP+P̃ KP+P̃ ,

A∗PA − P + C∗JC = K∗
P ΛP KP .

Here ΛQ and KQ denote the indicator and the feedback operator of the self-
adjoint operator Q, relative to the original minimax node (φ, J). Subtracting
these two Riccati equations we obtain

A∗P̃A − P̃ + K∗
P ΛP KP = K∗

P+P̃
ΛP+P̃ KP+P̃ .

But now, by Proposition 155, P̃ ∈ Ric(φ, J)P , and claim (ii) follows.

For the converse direction, assume claim (ii). Let P ∈ Ric(φ, J), P ∈ Ric(φP , ΛP )
= Ric(φ, J)P be arbitrary. By adding the DAREs Ric(φ, J) and Ric(φ, J)P we
obtain

A∗(P + P̃ )A − (P + P̃ ) + C∗JC = K∗
P+P̃

ΛP+P KP+P̃

where Proposition 155 has been used again. Thus claim (i) immediately follows.
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The remaining part of this section is devoted to the study of the inner Riccati
equation Ric(φ, J)P . Given any P ∈ Ric(φ, J), the relation between the solution
sets of Ric(φ, J)P and Ric(φ, J) appears to be very simple.

Lemma 157. Let (φ, J) be a minimax node. Let P ∈ Ric(φ, J) be arbitrary.
Then the following are equivalent:

(i) P̃ ∈ Ric(φ, J)P ,

(ii) P̃ ∈ Ric(φ, J).

Proof. We prove the direction (i) ⇒ (ii); the proof of the other direction is
obtained by reading this proof in the reverse direction. Let P̃ ∈ Ric(φ, J)P .
Then the left hand side of the first equation in (4.11) takes the form

A∗
P P̃AP − P̃ + C∗

P JCP(4.12)

= A∗P̃A − P̃ + C∗JC − K∗
P ΛP̃ KP̃ − K∗

P̃
ΛP̃ KP + K∗

P ΛP̃ KP .

Here ΛQ and KQ denote the indicator and the feedback operator of the self-
adjoint operator Q, relative to the original minimax node (φ, J). By equation
(4.6), K̃P̃ = KP̃ − KP and the right hand side of the first equation in (4.11)
becomes

K̃∗
P̃
ΛP̃ K̃P̃ = K∗

P̃
ΛP̃ KP̃ − K∗

P ΛP̃ KP̃ − K∗
P̃
ΛP̃ KP + K∗

P ΛP̃ KP .

This, together with equation (4.12) gives

A∗P̃A − P̃ + C∗JC = K∗
P̃
ΛP̃ KP̃ .

Thus P̃ ∈ Ric(φ, J). This completes the proof.

As an immediate corollary, we can put Ric(φ, J)P in a different form

Proposition 158. Let (φ, J) be a minimax node. Let P ∈ Ric(φ, J). Then
Ric(φ, J)P can be written in the equivalent form

A∗
P P̃AP − P̃ + C∗

P JCP = (KP̃ − KP )∗ΛP̃ (KP̃ − KP )
ΛP̃ = D∗JD + B∗P̃B

ΛP̃ KP̃ = −D∗JC − B∗P̃A, ΛP KP = −D∗JC − B∗PA.

Proof. This is because K̃P̃ = KP̃ − KP , by equation (4.6).
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The results of Lemmas 156 and 157 can be given in a short form

Ric(φ, J) = P + Ric(φ, J)P = P + Ric(φP , ΛP ),(4.13)

Ric(φ, J) = Ric(φ, J)P = Ric(φP , J)

for all P ∈ Ric(φ, J). It now follows that the iterated transitions to inner and
spectral DAREs satisfy the following rules of calculation.

Corollary 159. Let (φ, J) ≡ (( A B
C D ) , J) be a minimax node. Let P1, P2 ∈

Ric(φ, J), and ∆P := P2 − P1 ∈ Ric(φ, J)P1 . Then

Ric(φP1 , J)P2 ≡ Ric(
(

AP1 B
KP1 − KP2 I

)
, ΛP2) = Ric(φ, J) − P2,(4.14)

Ric(φP1 , J)P2 = Ric(φ, J),(4.15)
Ric(φP1 , ΛP1)∆P = Ric(φ, J) − P2,(4.16)

Ric(φP1 , ΛP1)
∆P ≡ Ric(

(
A B

KP2 − KP1 I

)
, ΛP2) = Ric(φ, J) − P1.(4.17)

We remark that the DLS φP2,P1 :=
(

AP1 B

KP1−KP2 I

)
is familiar from Proposition

148.
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4.3 Liapunov equation theory

The operator equation

A∗PA − P + C∗JC = 0,(4.18)

is called the discrete time Liapunov equation or the (symmetric) Stein equation.
As with the Riccati equation, the operators are as follows: the operator A ∈
L(H) is the semigroup generator, C ∈ L(H, Y ) is the output operator, and the
self-adjoint operator J ∈ L(Y ) is the cost operator. The solution P is required
to be self-adjoint. It is clear that the observability and controllability Gramians
C∗C and BB∗ of a DLS are solutions of Liapunov equations, see e.g. [108, p.
71].

A fairly complete Liapunov equation theory is given e.g. in [49] and [108] for the
case when A, C and J are matrices, and J > 0. It is well known that the matrix
Liapunov equation has a unique solution for any self-adjoint matrix C∗JC if

and only if σ(A) ∩
(
σ(A)

)−1

= ∅, see [49, Theorem 5.2.3]. When this spectral
separation holds, the solution P can be expressed as a Cauchy integral, see
[49, Theorem 5.2.4]. When we do not have the spectral separation, the Cauchy
integral cannot be defined because an integration contour cannot be drawn such

that σ(A) and
(
σ(A)

)−1

lie on the “opposite sides” of the contour. The Cauchy
integral solution makes perfect sense even for some operator Liapunov equations,
provided that the required spectral separation exists. Even if we produced the
dimension free variants of these results, the spectral separation would be too
restrictive a condition to be useful for non-power stable but nevertheless strongly
stable semigroup generators A. If σ(A) ⊂ D, then the spectral separation forces
σ(A) ⊂ D, and so A is power stable.

In the present work, our main interest is not in finding solutions for Liapunov
equations. Quite conversely, we are given a nonnegative solution P of the Lia-
punov equation (4.18), with J ≥ 0. Our task is to show that the output stability
of an associated observability map Cφ′ := {J 1

2 CAj}j≥0 follows, see Lemma 166.
Then, an expression can be found for the minimal nonnegative solution P0 of
(4.18), and the other solutions are parameterized by their residual cost operators
LA,P := s − limj→∞ A∗jPAj , see Corollary 163. Recall that the residual cost
operator is defined as a strong limit LA,P := s − limj→∞ A∗jPAj , see Definition
108.

We now briefly discuss the connection of the Liapunov equation to stability
questions. The Liapunov equation is connected to the Liapunov stability theory
of DLSs, see [51] for an exposition of the matrix case. For another view into
this, suppose Q ≥ 0 and P > 0 satisfies A∗PA − P + Q = 0. Then by writing
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for x = 0,

||Ax||2P − ||x||2P :=
〈
P

1
2 Ax, P

1
2 Ax

〉
−
〈
P

1
2 x, P

1
2 x
〉

= −〈Qx, x〉 ≤ 0,(4.19)

we see that such solution P defines an inner product topology such that the
operator A becomes a contraction. Because P is bounded, we have ||x||P ≤
||P || · ||x||, which implies that the ||.||P -topology is generally weaker that the
original. Clearly the topologies coincide if P has a bounded inverse. This gives
some functional analytic meaning for the Liapunov stability theory of linear
systems.

Another instance where a Liapunov equation arises is connected to DARE and
given in the following proposition. Its proof is a straightforward calculation,
and clearly connected to the inner Riccati equation Ric(φ, J)P of Definition 154
and Lemma 157.

Proposition 160. Let φ = ( A B
C D ) be a DLS, and J ∈ L(Y ) a self-adjoint cost

operator. Then P ∈ Ric(φ, J) if and only if

A∗
P PAP − P + C∗

P JCP = 0,(4.20)

where AP := A+BKP and CP := C+DKP . Furthermore, D∗JCP +B∗PAP =
0.

By solving the Liapunov equation (4.20), the operator P ∈ Ric(φ, J) can be
recovered from the operators ΛP and KP , provided that the solution of the
Liapunov equation is unique or we know the residual cost operator LAP ,P apri-
ori. Unfortunately, it is difficult to check (for uniqueness of P ) the spectral

separation σ(AP ) ∩
(
σ(AP )

)−1

= ∅ for solutions P ∈ Ric(φ, J) of interest. By
iteration, the following algebraic triviality is shown.

Proposition 161. Assume that A ∈ L(H), C ∈ L(H, Y ) and J ∈ L(Y ). As-
sume that a possibly unbounded linear map P : H ⊃ dom(P ) → H, Adom (P ) ⊂
dom (P ), satisfies the Liapunov equation A∗PA − P + C∗JC = 0. Then

Px =
n−1∑
j=0

A∗jC∗JCAjx + A∗nPAnx, for all x ∈ dom (P ) , n ≥ 1.

We start to study solutions P of the Liapunov equation (4.18) for which the
residual cost operator LA,P exists. The fact that the mapping P �→ A∗PA − P
is bounded and linear, gives the background for the following proposition:

Proposition 162. Assume that the linear mappings A ∈ L(H), C ∈ L(H, Y )
and J ∈ L(Y ) self-adjoint. Then the following are equivalent:
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(i) There is a solution P0 of the Liapunov equation such that the residual cost
operator vanishes: LA,P0 = 0.

(ii) There is at least one solution P̃ of the Liapunov equation such that the
residual cost operator LA,P̃ ∈ L(H) exists.

(iii) The Liapunov equation has at least one solution, and for all solutions P ,
the residual cost operator LA,P ∈ L(H) exists.

If, in addition, J ≥ 0, then we have a third equivalent condition

(iv) The DLS φ′ :=
(

A ∗
J

1
2 C ∗

)
is output stable.

Proof. The implication (i) ⇒ (ii) is trivial. To prove the implication (ii) ⇒
(iii), note that by Proposition 161

∑n−1
j=0 A∗jC∗JCAjx = P̃ x − A∗nP̃Anx for

all x ∈ H . Thus s − limn→∞
∑n−1

j=0 A∗jC∗JCAj = P̃ −LA,P̃ exists if (ii) holds.
Now, for all solutions P of the Liapunov equation the strong limit LA,P =
s − limn→∞ A∗nPAn exists, because the limit on the right hand side for the
following equation exists

A∗nPAnx = Px −
n−1∑
j=0

A∗jC∗JCAjx

for all x ∈ H .

To prove the implication (iii) ⇒ (i), assume P̃ is a solution such that LA,P̃ ∈
L(H) exists. It follows that the strong limit operator

P0 := s − lim
n→∞

n−1∑
j=0

A∗jC∗JCAj

exists and equals P̃ − LA,P̃ ∈ L(H). We show that P0 is a solution of the
Liapunov equation such that LA,P0 = 0. Let x1, x2 ∈ H be arbitrary. Then

〈x1, (A∗P0A − P0)x2〉H =

〈
Ax1, (s − lim

n→∞

n−1∑
j=0

A∗jC∗JCAj)Ax2

〉
H

(4.21)

−
〈

x1, (s − lim
n→∞

n−1∑
j=0

A∗jC∗JCAj)x2

〉
H

.
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Now the latter part on the right hand side of equation (4.21) takes the form〈
x1, (s − lim

n→∞

n−1∑
j=0

A∗jC∗JCAj)x2

〉
H

=

〈
x1, lim

n→∞ (
n−1∑
j=0

A∗jC∗JCAjx2)

〉
H

= lim
n→∞

〈
x1, (

n−1∑
j=0

A∗jC∗JCAjx2)

〉
H

= lim
n→∞

n−1∑
j=0

〈
x1, A

∗jC∗JCAjx2

〉
H

=
∞∑

j=0

〈
x1, A

∗jC∗JCAjx2

〉
H

,

where the second equality holds because 〈x1, ·〉H is a continuous linear functional
for each x1 ∈ H . Similarly,

〈
Ax1, (s − lim

n→∞

n−1∑
j=0

A∗jC∗JCAj)Ax2

〉
H

=

〈
x1,

∞∑
j=0

A∗(j+1)C∗JCA(j+1)x2

〉
H

.

Subtracting these two limits, together with equation (4.21), gives

〈x1, (A∗P0A − P0)x2〉H = −〈x1, C
∗JCx2〉H .

Because x1 and x2 are arbitrary, P0 solves the Liapunov equation. To show that
LA,P0 = s − limn→∞ A∗nP0A

n = 0, we note that for each x1 ∈ H , n ∈ N

||A∗nP0A
nx1|| = ||P0x1 −

n−1∑
j=0

A∗jC∗JCAjx1||

= || lim
m→∞

m∑
j=0

A∗jC∗JCAjx1 −
n−1∑
j=0

A∗jC∗JCAjx1||

= ||
∞∑

j=n

A∗jC∗JCAjx2|| → 0,

as a tail of a convergent series. We complete the proof by studying the additional
part (iv). Assume that both (ii) and (iii) hold, P is a solution of the Liapunov
equation such that LA,P exists, and J ≥ 0. Then both the bounded operators
J

1
2 and s − limn→∞

∑n−1
j=0 A∗jC∗JCAj = P − LA,P exist.
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We calculate for any x ∈ H

||P − LP || · ||x||2 ≥ |〈x, (P − LP )x〉H |

=

∣∣∣∣∣∣
〈

x,

s − lim
n→∞

n−1∑
j=0

A∗jC∗JCAj

 x

〉
H

∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈

x, limn→∞
n−1∑
j=0

A∗jC∗JCAjx

〉
H

∣∣∣∣∣∣
=

∣∣∣∣∣∣ lim
n→∞

〈
x,

n−1∑
j=0

(A∗jC∗JCAjx)

〉
H

∣∣∣∣∣∣ = lim
n→∞

n−1∑
j=0

〈
J

1
2 CAjx, J

1
2 CAjx

〉
H

= ||{J 1
2 CAjx}j≥0||2�2(Z+;Y ) = ||Cφ′x||2�2(Z+;Y ),

where the third equality holds because 〈x, ·〉H is a continuous linear functional
for each x ∈ H .

It follows that the observability map Cφ′ of the DLS φ′ maps all of a (complete)
Hilbert space H into �2(Z+; Y ). However, the observability map of a DLS
is a closed operator by Lemma 31, and now the domain dom (Cφ′) = H is
complete. The Closed Graph Theorem implies the boundedness of Cφ′ ; i.e. the
output stability of φ′. So claim (iv) follows. The implication (iv) ⇒ (i) follows
because the output stability of φ′ implies the strong convergence of the sum
s − limn→∞

∑n−1
j=0 A∗jC∗JCAj , thus defining the solution P0 of the Liapunov

equation. This completes the proof.

Compare the above proof to the proof of Proposition 136. An immediate con-
sequence is the following:

Proposition 163. If there is a solution P of the Liapunov equation (4.18)
such that the residual cost operator LA,P ∈ L(H) exists, then there is a so-
lution P0 such that LA,P0 = 0. Such P0 is unique, and given by P0x0 =∑∞

j=0 (A∗jC∗JCAjx0) for all x0 ∈ H. All other bounded solutions P of the
Liapunov equation satisfy

P = P0 + LA,P , LA,P = s − lim
j→∞

A∗jPAj .

If A is strongly stable, then P0 is the unique solution of the Liapunov equation.

Proof. The existence of P0 is the matter of the implication (ii) ⇒ (i) of Propo-
sition 162. The formula for P0 is found in the proof of implication (iii) ⇒ (i)
of Proposition 162. The parameterization of all the solutions is a direct con-
sequence of Proposition 161. Claim about the uniqueness of P0 is proved by
noting that for two solutions P1, P2 ∈ L(H) we have

A∗j(P1 − P2)Aj = P1 − P2
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for all j > 0. If both s − limj→∞ A∗jP1A
j = 0 and s − limj→∞ A∗jP2A

j = 0,
then the left hand side converges to zero pointwise in H , as j grows. The right
hand side does not even depend on j. Thus P1 = P2. The claim involving the
strongly stable semigroup is trivial.

As discussed in the beginning of this section, a fair amount of stability results for
DLSs can be given with the aid of the Liapunov equation. The following result
is [108, Lemma 21.6], stating that an unstable eigenvector of the semigroup is
undetectable.

Proposition 164. Let φ = ( A B
C D ) be a DLS, and J ≥ 0 a cost operator. Let

P ∈ Ric(φ, J), P ≥ 0 be arbitrary. Assume that Ax = λx for |λ| ≥ 1. Then
J

1
2 Cx = 0.

Proof. If Ax = λx, the Liapunov equation takes the form

(|λ|2 − 1) 〈Px, x〉 +
〈
J

1
2 Cx, J

1
2 Cx

〉
= 0.(4.22)

Now, if |λ|2 − 1 ≥ 0, then (|λ|2 − 1) 〈Px, x〉 ≥ 0 because P ≥ 0. Because J ≥ 0,
equation (4.22) implies that J

1
2 Cx = 0, and the claim is proved.

Unfortunately this is too weak to be useful for our purposes. Clearly, this
approach is restricted to the cases when the eigenvectors of the semigroup gen-
erator A span (the interesting part of) the state space. However, the case when
A is a diagonalizable matrix or a Riesz spectral operator is covered, see [18, p.
37]. In order to obtain a more general theory for the operator Riccati equation,
a stronger infinite-dimensional Liapunov equation theory is required. In Lemma
166, an essential analogue of Proposition 164 is proved for DLSs with much more
complicated semigroups. We start with a result known as the Vigier’s theorem
in [68, Theorem 4.1.1].

Proposition 165. Let {Tj}j≥0 ⊂ L(H) be a sequence of nonnegative self-
adjoint operators such that

0 ≤ 〈x, Tjx〉 ≤ 〈x, Tj−1x〉 , j > 0.

Then there is a nonnegative self-adjoint operator T ∈ L(H) such that 0 ≤ T ≤
Tj for all j ≥ 0, and

〈x, Tx〉 = lim
j→∞

〈x, Tjx〉.

Proof. Define aj(x, y) := 〈x, Tjy〉H , for all j ≥ 0. It is easy to see that aj(x, y)
is a bounded conjugate symmetric sesquilinear form on H × H . Now, because
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{〈x, Tjx〉}j≥0 is a nonincreasing sequence of nonnegative real numbers, the limit
exists for all x ∈ H . The polarization identity

4aj(x, y) = 4 · 〈x, Tjy〉
= 〈x + y, Tj(x + y)〉 − 〈x − y, Tj(x − y)〉 +
i 〈x + iy, Tj(x + iy)〉 − i 〈x − iy, Tj(x − iy)〉 .

implies that the limit a(x, y) := limj→∞ aj(x, y) exists, for all x, y ∈ H . It
remains to show that a(x, y) is a bounded conjugate symmetric sesquilinear
form on H × H .

The linearity in the first argument x and the conjugate linearity in the second
argument y is a trivial consequence of the limit process, because this is true for
each aj(x, y) by the properties of the inner product. The same is true about
the conjugate symmetricity of a(x, y). To show the boundedness, we see that

|a(x, y)| = lim
j→∞

|aj(x, y)| = lim
j→∞

| 〈x, Tjy〉 | ≤ lim
j→∞

||Tj || ||x|| ||y||.

Now, the family {Tj}j≥0 is uniformly bounded by ||T0||, because the norms ||Tj ||
are in fact a nonincreasing sequence

||Tj || = sup
||x||=1

〈x, Tjx〉 ≤ sup
||x||=1

〈x, Tj−1x〉 = ||Tj−1||,

where we have used the assumption that 0 ≤ 〈x, Tjx〉 ≤ 〈x, Tj−1x〉, for all x ∈ H .
As a bounded sesquilinear form, a(x, y) can be written in form a(x, y) = 〈x, T y〉,
for a unique operator T ∈ L(H) (see [79, Theorem 12.8]). T is self-adjoint
because 〈x, T y〉 = a(x, y) = a(y, x) = 〈y, Tx〉 = 〈T ∗y, x〉 = 〈x, T ∗y〉. Because
the nonnegativity of T is trivial, T satisfies the claims of this proposition.

By claim (ii) of Proposition 162, we saw that if the Liapunov equation has one
solution P̃ such that the residual cost operator LA,P exists, then a number of
nice results followed. Now we use Proposition 165 to give an existence of such
LA,P for a given nonnegative solution P .

Lemma 166. Let φ = ( A B
C D ) be DLS, and J ≥ 0 a self-adjoint cost operator.

Assume that the Liapunov equation

A∗PA − P + C∗JC = 0,

has a nonnegative solution P ∈ L(H). Then

(i) The DLS φ′ :=
(

A ∗
J

1
2 C ∗

)
is output stable, and the residual cost operator

LA,P := s − limj→∞ A∗jPAj exists.
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(ii) The operator P0 is the minimal nonnegative solution of the Liapunov equa-
tion (4.18), where P0 := C∗

φ′Cφ′ , and LA,P0 = 0.

The assumption J ≥ 0 can be replaced by the assumption C∗JC ≥ 0, if φ′ is
replaced by

(
A ∗

(C∗JC)
1
2 ∗

)
.

Proof. Let P ≥ 0 be the nonnegative solution whose existence is assumed. By
Proposition 161, we have for all x ∈ H and n ≥ 1

〈x, Px〉 −
n−1∑
j=0

||J 1
2 CAjx||2 = 〈x, A∗nPAnx〉 ,

because J ≥ 0 by assumption. Define Tn := A∗nPAn. It immediately fol-
lows that 〈x, Tnx〉 is a nonincreasing sequence of nonnegative real numbers,
because P ≥ 0. We can apply Proposition 165, and obtain the largest lower
bound operator T , such that 0 ≤ T ≤ A∗nPAn for all n ≥ 0. We proceed
show that T = s − limn→∞ A∗nPAn =: LA,P . We have, because 〈x, Tx〉 =
limn→∞ 〈x, A∗nPAnx〉 for all x ∈ H :

0 = lim
n→∞ 〈x, (A∗nPAn − T )x〉 = lim

n→∞ ||(A∗nPAn − T )
1
2 x||2.

So (A∗nPAn − T )
1
2 → 0 in the strong operator topology, and {(A∗nPAn −

T )
1
2 }n≥0 is thus a uniformly bounded family, by the Banach–Steinhaus theorem.

It follows that (A∗nPAn − T )x → 0 for all x ∈ H , and so we have T = LA,P

which, in particular, exists. We conclude that the equivalent conditions of
Proposition 162 hold. Furthermore, because J ≥ 0, φ′ is output stable.

The proof of the second claim (ii) goes as follows. Because φ′ is output stable,
it follows from Proposition 163 that P0 = C∗

φ′Cφ′ is a bounded solution of the
Liapunov equation, satisfying LA,P0 = 0. It is nonnegative because J ≥ 0.
To show that P0 is minimal nonnegative, let P1 ∈ L(H) is another nonnega-
tive solution of the Liapunov equation. Then the strong limit LA,P1 exists, by
Proposition 162, and because P1 ≥ 0, it follows that LP1 ≥ 0. By Proposition
163, P1 = P0 + LA,P1 ≥ P0. So P0 is a minimal nonnegative solution of the
Liapunov equation. The final comment follows by replacing C by (C∗JC)

1
2 ,

and J by I. The proof is now complete.

We now consider the special case when the Liapunov equation is connected to
DARE Ric(φ, J) for J ≥ 0, and its nonnegative solution P ∈ Ric(φ, J), as in
Proposition 160. By applying Lemma 166 with AP in place for A and CP in
place for C, we get an important results that is used several times in Section
4.4.
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Corollary 167. Let φ = ( A B
C D ) be a DLS, and J ≥ 0 a cost operator. Let

P ∈ Ric(φ, J) such that P ≥ 0. Then the DLS φ′ :=
(

AP ∗
J

1
2 CP ∗

)
is output

stable, and the (closed loop) residual cost operator LAP ,P exists. Furthermore,
P0 := C∗

φ′Cφ′ is a minimal nonnegative solution of the Liapunov equation

A∗
P P̃AP − P̃ + C∗

P JCP = 0,

where AP := A + BKP , CP := C + DKP , and P̃ is the operator to be solved.
Also LAP ,P0 = 0.

We conclude that not bad instabilities of AP are seen through the operator CP ,
as a dimension independent analogy to Proposition 164. We remark that P0

does not necessarily solve the DARE Ric(φ, J). Under stronger conditions, it is
shown in Lemma 192 that LAP ,P = 0 and then P = P0, by Proposition 163.

We complete this section by considering a case when the Liapunov equation
technique is applicable to a nonnegative solution of DARE Ric(φ, J), even if the
cost operator J could be indefinite. In Corollary 167, the closed loop residual
condition of P was considered. A conclusion about the open loop residual cost
operator LA,P is considered in the following.

Corollary 168. Let φ = ( A B
C D ) be a DLS, and J ∈ L(Y ) a self-adjoint cost

operator. Let P ∈ Ric(φ, J) such that P ≥ A∗PA ≥ 0. Then P ∈ Ric00(φ, J).

Proof. Because P ∈ Ric(φ, J), we have the Liapunov equation

A∗PA − P +
[
C∗ K∗

P

][J 0
0 −ΛP

][
C

KP

]
= 0.

Now P ≥ A∗PA if and only if [ C∗ K∗
P ]
[

J 0
0 −ΛP

][
C

KP

]
≥ 0. Now claim (i) of

Lemma 166 (in its modified form for the indefinite cost operator) shows that
the residual cost operator LA,P exists.

Note that the condition P ≥ A∗PA ≥ 0 implies that ker (P ) is A-invariant,
and the orthogonal complement ker (P )⊥ is A∗-invariant but not necessarily
A-invariant. For this reason, we have to introduce the compression of the semi-
group generator.

Definition 169. Let φ = ( A B
C D ) be a DLS and J self-adjoint. Let P ∈ Ric(φ, J).

Define the closed subspace HP := ker (P )⊥ ⊂ H, the orthogonal projection ΠP

onto HP , and the compression of the semigroup AP := ΠP A|HP ∈ L(HP ).

A nonnegative solution P ∈ Ric(φ, J) induces an inner product space structure
into HP := ker (P )⊥. Everything goes in the same way as discussed in connec-
tion with equation (4.19) for the Liapunov equations, with the exception that
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now the (generally nontrivial) null space of P must be divided away. It is easy
to see that P ≥ A∗PA ≥ 0 is equivalent to

||AP x||P := ||P 1
2 Ax|| ≤ ||P 1

2 x|| =: ||x||P for all x ∈ HP .(4.23)

In this case, we say that the compression AP is a || · ||P -contraction. If Pmax ∈
Ric(φ, J) was nonnegative and injective, then HPmax

= H but the norm ||·||Pmax

could give weaker topology that the original norm of H . More generally, HP

need not be complete, when equipped with the norm || · ||P .

Proposition 170. Let φ = ( A B
C D ) be a DLS and J self-adjoint. Let P ∈

Ric(φ, J), P ≥ 0 such that the compression AP = ΠP A|HP is a || · ||P -
contraction, where the objects are given in Definition 169. Then the following
holds

(i) P ∈ Ric00(φ, J). If, in addition, φ is output stable and ΛP > 0, then φP

is output stable.

(ii) Assume, in addition, that φ is output stable and I/O stable, the input
operator B is Hilbert–Schmidt, and the input space U is separable.

If P ∈ Ricuw(φ, J) and ΛP > 0, then P ∈ ric00(φ, J) ∩ ricuw(φ, J). If
range (Bφ) = H, then

{P ∈ Ricuw(φ, J) | P ≥ 0, ΛP > 0} ⊂ ric0(φ, J).(4.24)

Proof. The first part of claim (i) is Corollary 168. The rest follows from claim
(i) of Proposition 136. Claim (ii) follows from Corollary 140 and equation
(3.27).

The reader is instructed to compare equations (3.26) and (3.27), and equation
(4.24). They all characterize subsets ric0(φ, J), where J can be indefinite but
the indicators ΛP must be positive.

The P -contractivity condition P ≥ A∗PA ≥ 0 can be given a game theo-
retic interpretation. Let φ = ( A B

C D ) be output stable and I/O stable, and let
P crit

0 ∈ ric0(φ, J) be a regular critical solution which is assumed nonnegative.
If the cost operator J is indefinite, the special case of the minimax cost opti-
mization problem, associated to (φ, J), can be seen as a (full information, state
feedback) minimax game, where the minimizing and maximizing players are
given an initial state x0 and their task to do the best they can. Some additional
information structure of the game itself must be imposed; e.g. the input space
U must be divided into two parts, and one player must not have access to the
other players input space, but we now disregard all the details. Now, each non-
critical solution P ∈ ric0(φ, J) is associated to a strategy where both players
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have, in a rough sense, made an agreement that the game is played (i.e. the
cost is measured by P ) only inside the restricted state space HP .

Let now P ∈ ric0(φ, J) be such that P ≥ A∗PA ≥ 0. Now the open loop
trajectories xj = Ajx0 (with zero input from both players) are nonnegative
and nonincreasing, in the sense of the cost functional 〈xj , Pxj〉. Thus, the
maximizing player “loses money” if he does not do anything, but the future
game always has a nonnegative cost if the feedback loop is closed (by the
maximizing player) at some later moment. In fact, the maximizing player
wins the game also in the open loop, and the final cost at infinite future is
limj→∞

〈
A∗jPAjx0, x0

〉
= 〈LA,P x0, x0〉 ≥ 0, because P ≥ 0 is assumed.
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4.4 Factorization of the I/O map

In this section we study the natural partial ordering of the solution set of the
H∞DARE, induced by the cone of nonnegative self-adjoint operators. We work
under the assumption that the cost operator J ≥ 0, and the equivalent condi-
tions of Theorem 114 hold. In this case, we have a nonnegative regular critical
solution P crit

0 = (Ccrit)∗JCcrit ∈ ric0(Φ, J).

In Theorem 114, we have indicated that the critical solution P crit
0 ∈ ric0(Φ, J)

gives a (J, ΛP crit
0

)-inner-outer factorization of the I/O map. The (generally non-
critical) solutions P ∈ ricuw(Φ, J) induce other factorizations of the Popov
operator D∗JD = D∗

φP
ΛPDφP with I/O stable DφP , see Theorem 142. How-

ever, these do not necessarily lead to a factorization of the I/O map D as a
composition of two I/O stable operators, in the same way as the spectral factor-
ization leads to the (J, ΛP crit

0
) inner-outer factorization of D. The task of this

section is to describe which solutions P actually do give a factorization of the
I/O map D into compositions of I/O stable I/O maps.

Consider the following. Let P ∈ ric(Φ, J), where Φ is output stable and I/O
stable. The operator pair (KP , 0) is a perfectly valid state feedback pair for Φ in
the sense of Definition 18. However, if P is not a critical solution, this feedback
pair is not I/O stable in the sense of Definition 44. This means that even if the
open loop DLS, extended with the feedback pair (KP , 0) = [−CφP , I − DφP ]

(Φ, (KP , 0)) =

 A B[
C

KP

] [
D
0

] =

 Aj Bτ∗j[
C

−CφP

] [
D

I −DφP

]  ,

is output stable and I/O stable, the closed loop extended system

(Φ, (KP , 0))�(4.25)

=

 AP B[
CP

KP

] [
D
0

] =

 Aj − BD−1
φP

τ∗jCφP BD−1
φP

τ∗j[
C − DD−1

φP
CφP

−D−1
φP

CφP

] [
DD−1

φP

D−1
φP

− I

] 
need not be, where AP = A + BKP and CP = C + DKP . This is the bad
news. However, if P ≥ 0, together with proper technical assumptions, it follows
that the upper two rows of the closed loops DLS (4.25) give an I/O stable DLS.
Furthermore, this partial DLS is exactly φP =

(
AP B
CP D

)
; the inner DLS (of Φ

and J) of Definition 150, centered at P . Note that DφP := DD−1
φP

for the I/O
map of φP , and this algebraic fact does not depend on the stability properties
of the systems, apart from the boundedness of the static operators A, B, C, D,
and KP .

Let us review some analogous results of the matrix theory when all the spaces U ,
H and Y of the DLS φ = ( A B

C D ) are finite dimensional. If the pair (A, B) is sta-
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bilizable, J ≥ 0 and D∗JD coercive, there is a unique maximal positive solution
Pmax of the Riccati equation such that the closed loop spectrum σ(APmax) ⊂ D,
see [49, Corollary 12.1.2]. If J = I, D∗D = I, D∗C = 0 and (C, A) detectable,
then the power stability σ(APmax) ⊂ D follows, see [49, Corollary 13.5.3]. Such
Pmax is called the (power) stabilizing solution of Ric(Φ, J). If the open loop
semigroup generator A is power stable and (A, B) is controllable, then Pmax

clearly equals the unique critical solution (which is defined only for DAREs
associated to I/O stable DLSs) in the sense of Theorem 114. Indeed, the semi-
group generators of both φPmax and φ−1

Pmax are power stable, by the formulae
given in claim (iii) of Proposition 147.

To obtain a matrix H∞DARE example, let φ = ( A B
C D ) be a DLS whose spaces

U , H and Y are finite dimensional, and the semigroup generator A is power
stable; σ(A) ⊂ D. We take J = I to be the cost operator, and assume that the
transfer function Dφ(z) has no zeroes on the unit circle T. By the assumed finite
dimensionality of all the spaces, the last condition can always be achieved, if
necessary, by a small perturbation of the DLS φ. Then the Popov operator D∗D
is coercive, and the nonnegative regular critical solution P crit

0 =
(
Ccrit

φ

)∗
Ccrit

φ ∈
ric0(φ, J) exists, by Corollary 118. It follows that AP crit

0
is power stable, by

claim (i) of Theorem 50 and the finite dimensionality of the state space H . If
there was another power stabilizing solution P stab, it would also be a critical
solution in ric0(φ, J). Thus, if φ, in addition, is controllable range (Bφ) = H ,
then P crit

0 is the unique power stabilizing solution of H∞DARE ric(φ, J), see
claim (i) of Corollary 116. In fact, P crit

0 is the maximal nonnegative solution in
Ric(φ, J), by Corollary 186 and the fact that the power stability of A implies the
equality of solution sets Ric(φ, J) = ric0(φ, J). It is easy to see by a numerical
example, using the matrix DARE theory given in [49, Corollary 12.1.2], that it
is possible (and even a generic case) that DARE Ric(φ, J) has long increasing
chains of self-adjoint solutions. By using Lemma 156, we can, if necessary,
replace Ric(φ, J) by its spectral DARE Ric(φP̃ , ΛP̃ ) for P̃ “small”. So there
exists a H∞DARE ric(φ, J) (with a power stable semigroup generator) that
has an arbitrarily long increasing chain of nonnegative solutions, if dim H is
increased sufficiently. We conclude that the power stabilizing solution P crit

0

need not be the only nonnegative H∞ solution of a (matrix) H∞DARE. For
the other nonmaximal P ∈ Ric(φ, J), P crit

0 ≥ P ≥ 0, the inner DLS

φP :=
(

AP B
CP D

)
=
[

Aj − BD−1
φP

τ∗jCφP BD−1
φP

τ∗j

C − DφP CφP DφP

]
,(4.26)

is nevertheless I/O stable by the following Lemma 171 and the assumption that
J = I has a bounded inverse. However, the closed loop semigroup generators
AP are not power stable. In this sense, all the nonnegative solutions of the
Riccati equation are I/O-stabilizing, but only the maximal nonnegative P crit

0

gives a power stable semigroup generator in the closed loop, under the indicated
additional assumptions.
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This phenomenon can be viewed from two directions. The first “state space”
view is that the DLS φP is I/O stable because the unstable part of AP is
not “seen” through the output operator CP of φP . The second view is the
input/output view; that a kind of zero-pole-cancellation process is involved when
the feedback loop is closed. In the language of the transfer functions DφP (z) =
D(z)DφP (z)−1, some of the zeroes of D(z) get canceled by the poles of DφP (z)−1,
at least in the cases when the transfer functions are complex-valued (U = Y =
C). We remark that the condition dimH < ∞ amounts to the fact that the
inner factors of both D(z) and DφP (z) are finite Blaschke products, and the zero–
pole cancellation idea makes perfect sense. We remark that using a nonnegative
but nonmaximal solution P ∈ Ric(Φ, J) for feedback control leads to a partial
stabilization of the (unstable) open loop DLS, see [23] and the references therein.

In the following lemma we show that if P ≥ 0, then J
1
2DφP is an I/O map from

�1(Z+; U) into �2(Z+; Y ); i.e. the transfer function DφP (z) ∈ sH2(D;L(U ; Y )).
Step by step, we finally conclude that J

1
2DφP is I/O stable under stronger

assumptions. If J has a bounded inverse, the same conclusions clearly hold for
the I/O map DφP , too.

Lemma 171. Let J ≥ 0 be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable and output stable DLS. Assume that the regular critical solution P crit

0 :=(
Ccrit

)∗
JCcrit ∈ ric0(Φ, J) exists. Let P ∈ ric(Φ, J), such that P ≥ 0. By φP

and φP denote the spectral and inner DLS of Definition 150, both centered at
P .

Then the following holds:

(i) We have

D = DφP DφP ,(4.27)

where φP is I/O stable and output stable. The DLS J
1
2 φP is output stable,

and the impulse response operator J
1
2DφP π̄0 is bounded. The Toeplitz

operator J
1
2DφP π̄+ : �1(Z+; U) → �2(Z+; U) is bounded, and J

1
2DφP π̄+ :

�2(Z+; U) → �2(Z+; U) is a densely defined closed operator.

(ii) The transfer function J
1
2DφP (z) is analytic in the whole unit disk D. For

each u0 ∈ U , the analytic function J
1
2DφP (z)u0 ∈ H2(D; Y ). We can

write

J
1
2D(z) = J

1
2DφP (z)DφP (z) for all z ∈ D.(4.28)

If, in addition, P ∈ ricuw(Φ, J), then

J
1
2N (z) = J

1
2DφP (z)NP (z) for all z ∈ D,(4.29)

where N , (NP ) are the (J, ΛP crit
0

)- inner, ((ΛP , ΛP crit
0

)-inner) factors of
D, (DφP , respectively).
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Assume, in addition, that the input operator B of Φ is Hilbert–Schmidt, and
both the spaces U and Y are separable. Then:

(iii) Then J
1
2DφP (z) ∈ H2(D;L(U ; Y )). The boundary trace function

J
1
2DφP (eiθ) := s − lim

z→eiθ
J

1
2DφP (z)

exists as a nontangential strong limit, a.e. (modulo Lebesque measure of
T) on eiθ ∈ T.

(iv) For P ∈ ricuw(Φ, J), the boundary trace Λ
1
2
PNP (eiθ)Λ− 1

2
P crit

0
is unitary a.e.

eiθ ∈ T. In particular, NP (eiθ) has a bounded inverse a.e. eiθ ∈ T, and
the nontangential strong limit J

1
2DφP (eiθ) satisfies

J
1
2DφP (eiθ) = J

1
2N (eiθ)NP (eiθ)−1 a.e. on eiθ ∈ T,(4.30)

Furthermore, J
1
2DφP (z)Λ− 1

2
P ∈ H∞(D;L(U ; Y )), and it is inner from the

left. The I/O map J
1
2DφP is (I, ΛP )-inner (but DφP need not be I/O

stable if J is not coercive).

We remark that the function J
1
2DφP (eiθ) means the boundary trace of (J

1
2DφP )(z).

As an analytic transfer function DφP (z), P ≥ 0 makes perfect sense for z ∈ D,
but it need not be of bounded type.

Proof. Claim (i) is proved as follows. The equality (4.27) of the I/O maps is
given by formula (4.25), in form DφP = DD−1

φP
. We see that the J

1
2DφP is the

I/O map of DLS

φ′′ =
(

AP B

J
1
2 CP J

1
2 D

)
,

which is output stable, by Corollary 167 and the assumption P ≥ 0. Also
the (closed loop) residual cost operator LAP ,P exists, but this is not needed
here. But then, if H 
 x = Bu0, with u0 ∈ U , we have J

1
2DφP π0u0 =

J
1
2 Dπ0u0 + τCφ′′Bu0 = Dπ0u0 + τCφ′′x ∈ �2(Z+; Y ) because dom(Cφ′′) = H ,

by the output stability of φ′′. Thus DφP π0 : U = range (π0) → �2(Z+; U), i.e.
dom

(
DφP π0

)
= U is complete, see Definition 29.

Because the impulse response operator DφP π0 is closed by Lemma 31, it follows
from the Closed Graph Theorem that DφP π0 is bounded. It immediately follows
that J

1
2DφP ∈ L(�1(Z+; U), �2(Z+; U)) by the triangle inequality, and the shift

invariance of DφP . The Toeplitz operator DφP π̄+ is thus densely defined on
�2(Z+; U) and closed, by Lemma 31. This completes the proof of claim (i).
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Consider now claim (ii). J
1
2DφP (z) is analytic in the whole of D by Proposi-

tion 57 because it is a transfer function of an output stable system φ′′. Also
J

1
2DφP (z) ∈ sH2(D; Y ), by Definition 56 and Proposition 57.

Because DφP = DD−1
φP

, then also DφP DφP = D on Seq(U). For the transfer
functions, we have DφP (z)DφP (z) = (DφP DφP )(z) = D(z) for all z ∈ N0, by
Corollary 54. Here N0 is a nonempty open neighborhood of the origin. In
fact, D(z),DφP (z) ∈ H∞(D;L(U ; Y )), by Proposition 55 and the assumed I/O
stability of Φ and φP . As indicated above, also J

1
2DφP (z) is analytic in D. By

using a basic analytic continuation technique we conclude that DφP (z)DφP (z) =
D(z) for all z ∈ D, which is equation (4.28).

To prove equation (4.29), proceed as follows. Because the existence of the reg-
ular critical solution P crit

0 ∈ ric0(Φ, J) is assumed, the equivalent conditions of
Theorem 114 hold, we can write D = NX , where X is outer with a bounded
inverse, and N is (J, ΛP crit

0
)-inner. Furthermore, because P ∈ ricuw(Φ, J) we

can also write (ΛP , ΛP crit
0

)-inner-outer factorization DφP = NPX , by Proposi-
tion 147. By Corollary 54, D(z) = N (z)X (z) and DφP (z) = NP (z)X (z), for all
z ∈ D. Because X is outer with a bounded inverse, i.e. X−1 ∈ L(�2(Z; U)),
both X and X−1 are I/O maps of I/O stable systems. It follows from Corollary
54 that the transfer function X (z) ∈ L(U) has a bounded inverse for all z ∈ D.
Now equation (4.29) follows.

We proceed to prove claim (iii). The Hilbert–Schmidt property of the input op-
erator B admits us to apply Corollary 131 to the output stable DLS φ′′, defined
above. It follows that J

1
2DφP (z) ∈ H2(D;L(U ; Y )), and this is a function of

bounded type. The existence of the nontangential strong limit J
1
2DφP (eiθ) is

from [77, Theorem 4.6A], as discussed in Section 1.10.

It remains to prove the final claim (iv). We first note that because J ≥ 0, then
ΛP > 0 for all P ≥ 0. This makes is possible to define the normalized operators
N ◦ := J

1
2NΛ− 1

2
P crit

0
and N ◦

P := Λ
1
2
PNP Λ− 1

2
P crit

0
. Then both N ◦ and N ◦

P are inner
from the left (i.e. (I, I)-inner). We have

N ◦ = J
1
2DφP NP Λ− 1

2
P crit

0
= J

1
2DφP Λ− 1

2
P · Λ

1
2
PNP Λ− 1

2
P crit

0
= M◦

PN ◦
P ,

where M◦
P := J

1
2DφP Λ− 1

2
P . For the corresponding transfer functions and their

nontangential limits, we can write

N ◦(eiθ) = M◦
P (eiθ)N ◦

P (eiθ),(4.31)

a.e. eiθ ∈ T. This is legal because all the transfer functions are of bounded type
in the sense of Definition 58 and the discussion associated to it. By claim (ii)

of Proposition 147, the normalized I/O map N ◦
P = Λ

1
2
PNP Λ− 1

2
P crit

0
is inner from
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both sides in the sense of Definition 120. So the values of the boundary trace
N ◦

P (eiθ) ∈ L(U) are a unitary operators for a.e. eiθ ∈ T. Applying this on
equation (4.31) gives

N ◦(eiθ)N ◦
P (eiθ)∗ = M◦

P (eiθ)

a.e. eiθ ∈ T. Because N ◦
P (eiθ)∗ is unitary and N ◦(eiθ) is an isometry, it

follows that M◦
P (eiθ) is an isometry a.e. eiθ ∈ T. But now M◦

P (eiθ) ∈
L∞(T;L(U ; Y )) ∩ H2(T;L(U ; Y )), and by Lemma 122, M◦

P (eiθ) ∈
H∞(T;L(U ; Y )) is inner from the left. This completes the proof.

The following normalization, presented in the proof of Lemma 171, will be used
throughout the rest of this paper. By Corollary 146, it makes sense even for
indefinite solutions P ∈ ricuw(φ, J), as far as π̄+D∗

φJDφ ≥ επ̄+ for some ε > 0.

Corollary 172. Make the same assumptions as in claim (iii) of Lemma 171.
By P crit

0 ∈ ric0(Φ, J) denote the regular critical solution. Let P ∈ ricuw(Φ, J),
P ≥ 0 be arbitrary. Denote

D◦ := J
1
2D, D◦

P := Λ
1
2
PDφP ,

M◦
P := J

1
2DφP Λ− 1

2
P , N ◦

P := Λ
1
2
PNP Λ− 1

2
P crit

0
, X ◦ = Λ

1
2
P crit

0
X .

Then

D◦ = M◦
PD◦

P = M◦
PN ◦

PX ◦
P ,(4.32)

where M◦
P : �2(Z; U) → �2(Z; Y ) is inner from the left, N ◦

P : �2(Z; U) →
�2(Z; U) is two-sided inner, and X ◦ : �2(Z; U) → �2(Z; U) is outer with a
bounded inverse.

The following Theorem is a variation of Lemma 171. Now, a solution P ∈
Ric(Φ, J), P ≥ 0 gives a factorization of a H∞-transfer function, such that
both the factors are in H∞. However, the solution is not in ricuw(φ, J) by an
explicit assumption, and φP is not a priori required to be output stable or I/O
stable as has been required in Lemma 171.

Theorem 173. Let J ≥ 0 be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O
stable and output stable DLS, such that both the spaces U and Y are separable.
Assume that the input operator B ∈ L(U ; H) of Φ is Hilbert–Schmidt. Assume
that the regular critical solution P crit

0 := (Ccrit)∗JCcrit ∈ ric0(Φ, J) exists. Let
P ∈ Ric00(Φ, J) ∩ Ricuw(Φ, J), P ≥ 0.

Then both the DLSs φP and J
1
2 φP are output stable and I/O stable. Further-

more, we have the factorization J
1
2D = J

1
2DφP ·DφP = J

1
2DφP ·NP ·X where all

factors are I/O stable. Here J
1
2DφP is (I, ΛP )-inner, NP is (ΛP , ΛP crit

0
)-inner,

and X is outer with a bounded inverse.
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Proof. Because J ≥ 0 and P ≥ 0, it follows that D∗JD + B∗PB = ΛP ≥ 0,
and then ΛP > 0 because the indicator has a bounded inverse, by definition.
Because P ∈ Ric00(Φ, J), the residual cost operator LA,P exists and Proposition
136 implies that φP is output stable. Because P ∈ Ricuw(Φ, J), Corollary 140
implies that φP is I/O stable. Now P ∈ ricuw(Φ, J) as in equation (3.27), and
we can apply all claims of Lemma 171. In particular, this gives the output
stability and I/O stability of the normalized inner DLS J

1
2 φP . The proof is

now complete.

If A is strongly stable, then Ric(Φ, J) = Ric0(Φ, J) = Ric00(Φ, J) = Ricuw(Φ, J).
But now Ric(Φ, J) = Ric00(Φ, J) ∩ Ricuw(Φ, J), and all nonnegative solutions
P ∈ Ric(Φ, J) give a factorization of Theorem 173. The following lemma is
more general than Lemma 171, and it refers to something we might call “gen-
eralized factorizations” of an unstable D. Now the spectral DLS φP need not
be I/O stable.

Lemma 174. Let Φ =
[

Aj Bτ∗j

C D
]
be output stable and J ≥ 0. Let P ∈ Ric00(Φ, J),

P ≥ 0. Then the following holds:

(i) The I/O maps satisfy D = DφP DφP on Seq(U), and both φP and J
1
2 φP

are output stable.

(ii) Assume, in addition, that the input operator B is Hilbert–Schmidt, and
both U and Y are separable. Then we have the factorization

J
1
2D = J

1
2DφP DφP ,(4.33)

where J
1
2D(z), J

1
2DφP (z) ∈ H2(D;L(U ; Y )) and DφP (z) ∈ H2(D;L(U)).

Proof. As before, ΛP > 0 for any nonnegative solution. Proposition 136 implies
that φP is output stable. Corollary 167 implies that J

1
2 φP is output stable.

This proves claim (i) because the (algebraic) factorization of the well-posed I/O
maps of DLSs does not require any kind of stability. Claim (ii) is a consequence
of Corollary 131.

In particular, Lemma 174 gives H2 factorizations to H∞ transfer functions.
Note that the existence of a critical regular solution P crit

0 ∈ ric0(φ, J) is not
required. Under stronger assumptions, such generalized factorizations easily
become ordinary H∞ factorizations, by Theorem 173. We complete this section
by showing that the finite increasing chains of solutions Pi ∈ ricuw(Φ, J) behave
expectedly.

Theorem 175. Let J ∈ L(Y ) be a self-adjoint cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable and output stable DLS. Assume that the input operator B ∈
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L(U ; H) is Hilbert–Schmidt, and both the spaces U and Y are separable. Assume
that the regular critical solution P crit

0 =
(
Ccrit

)∗
JCcrit ∈ ric0(Φ, J) exists.

Let Pi ∈ ricuw(Φ, J), i = 1, . . . , n + 1 be a sequence of solutions such that Pi ≤
Pi+1 and ΛPi > 0 for all i = 1, . . . , n. Denote by DφPi

= NPiX the (ΛP , ΛP crit
0

)
-inner-outer factorization of DφPi

where X = DP crit
0

and NPi := DφPi
X−1.

Then the following holds:

(i) Then there is a sequence of causal shift-invariant operators NPi,Pi+1 :=
DφPi

D−1
φPi+1

on Seq(U) such that

NPi = NPi,Pi+1NPi+1 for all i = 1, . . . , n.(4.34)

The operator NPi,Pi+1 is the I/O map of the I/O stable DLS

φPi,Pi+1 =
(

APi+1 B
KPi+1 − KPi I

)
.(4.35)

Furthermore, each NPi,Pi+1 is (ΛPi , ΛPi+1)-inner.

(ii) We have the factorization

NP1 =

(
n∏

i=1

NPi,Pi+1

)
NPn+1 ,(4.36)

where the elements with increasing i enter the product from the left. If, in
addition, J ≥ 0 and Pn+1 = P crit

0 , then

J
1
2D = J

1
2DφP1

(
n∏

i=1

NPi,Pi+1

)
X ,(4.37)

where J
1
2DφP1 is I/O stable and (I, ΛP1) -inner, and X = Dφ

Pcrit
0

is outer
with a bounded inverse.

Proof. In order to prove claim (i), note that (ΛP , ΛP crit
0

)-inner-outer factoriza-
tion DφPi

= NPiX exists for all i, by Proposition 147. Because the feed-through
operator of all spectral DLSs is identity, we can speak about the inverse D−1

φPi

as a causal shift-invariant operator on Seq(U), see Proposition 17. Because
the outer factor (with a bounded inverse) is common for all DφPi

, we see that
equation (4.34) holds.

Fix the arbitrary two consecutive elements Pi ≤ Pi+1 in the sequence {Pi},
define ∆Pi := Pi+1 − Pi ≥ 0. Then ∆Pi ∈ Ric(φPi , ΛPi), by Lemma 156. Now,
Ric(φPi , ΛPi) is a H∞DARE with a nonnegative cost operator ΛPi , but we do
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not know whether ∆Pi is its H∞ solution. To see that this is the case, we must
consider the spectral DLS (φPi )∆Pi , centered at the solution ∆Pi and relative
to the cost operator ΛPi > 0 of the spectral DARE. We have for the minimax
nodes

(φPi , ΛPi)∆Pi
≡ (φPi+∆Pi , ΛPi+∆Pi) ≡

(
φPi+1 , ΛPi+1

)
,(4.38)

see equation (4.4) of Proposition 151. So, the spectral DLS (φPi )∆Pi of ∆Pi

equals φPi+1 which is an I/O stable and output stable DLS because Pi+1 ∈
ric(Φ, J), by assumption. We conclude that ∆P ∈ ric(φPi , ΛPi). The indicator
Λ̃∆P of ∆P ∈ ric(φPi , ΛPi) equals ΛPi+1 , by equation (4.38).

Trivially range (B) = range
(
BφPi

)
because B = BφPi

. Because both Pi and
Pi+1 satisfy the ultra weak residual cost condition with the same semigroup
generator A, so does ∆Pi = Pi+1 − Pi, and we have ∆Pi ∈ ricuw(φPi , ΛPi).

Now we have reached the situation described in Lemma 171. We see that the
operator NPi,Pi+1 := DφPi

D−1
φPi+1

= DφPi
D−1

(φPi
)∆Pi

actually plays the part of
the operator DφP in Lemma 171, when the DLS Φ is replaced by φPi , the cost
operator J is replaced by ΛPi , the solution P is replaced by ∆Pi, the spectral
DLS φP is replaced by (φPi)∆Pi = φPi+1 and the indicator ΛP is replaced by
ΛPi+1 .

Because the input operator B of φPi is Hilbert–Schmidt, we conclude that
NPi,Pi+1 is I/O stable and (ΛPi , ΛPi+1)-inner, by claim (iv) of Lemma 171, and
the fact that ΛPi (used as the cost operator) has a bounded inverse. Realization
(4.35) is valid because NPi,Pi+1 = NPiN−1

Pi+1
, by equation (4.35) and claim (iii)

of Proposition 148. This completes the proof of claim (i).

The factorization in (4.36) is clearly obtained by applying the first part of this
theorem n times. The second factorization (4.37) is obtained by first factorizing
J

1
2D = J

1
2DφP1DφP1

, where J
1
2DφP1 is I/O stable and (I, ΛP1) -inner, by claim

(iv) of Lemma 171. This is the only place where we have used the nonnegativity
of J . Then the (ΛP1 , ΛP crit

0
)-inner factor NP1 of DφP1

is factorized as in (4.36),
noting that the last factor NPn+1 = I because Pn+1 = P crit

0 , by claim (iii) of
Proposition 147. After multiplying from the right by the common outer factor
X of D and DφP1

, the claim follows.

By Lemma 145, it is sufficient to require ΛP > 0 only for one solution P ∈
ricuw(Φ, J) that need not be an element of the chain {Pi}. Clearly, the order
of the operator products in claim (ii) is significant, if dimU > 1. The transfer
function NPi,Pi+1(z) can be normalized to N ◦

Pi,Pi+1
(z) := Λ

1
2
Pi
NPi,Pi+1(z)Λ− 1

2
Pi+1

which is inner from both sides. The zero evaluation N ◦
Pi,Pi+1

(0) = Λ
1
2
Pi

Λ− 1
2

Pi+1
sat-

isfies the spectral condition σ(Λ
1
2
Pi

Λ− 1
2

Pi+1
) ⊂ (0, 1), as an immediate consequence
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of the fact that ΛPi+1 ≥ ΛPi . However, Λ
1
2
Pi

Λ− 1
2

Pi+1
is generally not normal and,

in particular, self-adjoint. In Theorem 175, we have considered only finite in-
creasing chains of solutions. To cover the case of the (countably) infinite chains,
one would be lead to consider a limit process, not totally different from the one
involved in the study of the Blaschke–Potapov representations for the (matrix-
valued) bounded analytic functions. Several applications, references and his-
torical remarks about the Blaschke–Potapov factorizations can be found in the
survey article [40].
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4.5 I/O stability of inner DLS

In this section, we consider converse results to those given in Section 4.4.
Roughly, we show that for P ∈ ricuw(φ, J), the I/O stability of φP implies
P ≥ 0. The nonnegativity of the cost operator J ≥ 0 is assumed in the main
results.

We start by considering solutions P ∈ ric(φ, J) such that φP is I/O stable. Out
of such solutions, those that have (J, ΛP )-inner I/O maps satisfy the minimax
condition of Definition 176, by Proposition 178. In particular, all solutions in
ricuw(φ, J) with an I/O stable inner DLS φP are of this kind, by Proposition
177. In Propositions 179 and 180, the minimax condition of P is connected to an
associated Liapunov equation and the DARE ric(Φ, J). The main result of this
section is Lemma 181, which is a partial converse Lemma 171. An equivalence
result is finally given in Theorem 182, under stronger assumptions.

Definition 176. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable and output stable DLS,
and J ∈ L(Y ) a cost operator. Let P ∈ ric(Φ, J) such that the inner DLS φP

is I/O stable. We say that P satisfies the minimax condition if

π̄+D∗
φP JCφP = 0,(4.39)

where CφP = C − DφP CφP it the observability map of inner DLS φP .

The regular critical solution P crit
0 := (Ccrit)∗JCcrit (as discussed in connection

with Theorem 114) always satisfies the minimax condition. This is because in
this case D = NX (where N = D

φPcrit
0

and X = Dφ
Pcrit
0

) is the (J, ΛP crit
0

)-inner-

outer factorization, and C
φPcrit

0
= Ccrit is the critical (closed loop) observability

map. By Lemma 67, π̄+D∗JCcrit = π̄+X ∗π̄+N ∗JCcrit = 0, and the minimax
condition holds.

In fact, the orthogonality of range (Dπ̄+) = range (N π̄+) and the range of the
desired closed loop observability map C

φP crit
0

= Ccrit can be used to find the criti-

cal P crit
0 without explicitly solving the DARE, see Section 2.2. For a noncritical

P , however, one should a priori know the (range of the) partial inner factor
DφP π̄+ of Dπ̄+ associated to the yet unknown P , before the correct minimax
formulation could be written in the first place.

We proceed to show that quite many interesting solutions P ∈ ric(Φ, J) (such
that DφP is I/O stable) satisfy the minimax condition. This will be used as a
technical tool to obtain Lemma 181, a rough converse of Lemma 171.

Proposition 177. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable and output stable DLS.
Assume that the input operator B ∈ L(U ; H) of Φ is Hilbert–Schmidt, and the
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spaces U and Y are separable. Let J ≥ 0 be a cost operator. Assume that
the regular critical solution P crit

0 =
(
Ccrit

)∗
JCcrit ∈ ric0(Φ, J) exists. Let P ∈

ricuw(Φ, J) such that the inner DLS φP is I/O stable. Then D∗
φP JDφP = ΛP ;

i.e. the I/O map DφP is (J, ΛP )-inner.

Proof. We have the familiar factorization of the I/O maps D = DφP DφP . Be-
cause P crit

0 exists, the conditions of Theorem 114 hold, and we can factorize
D = NX , DφP = NPX , where N , (NP ) is (J, ΛP crit

0
)-inner, ((ΛP , ΛP crit

0
)-inner,

respectively). Here we have used the residual cost assumption P ∈ ricuw(Φ, J)
and claim (i) of Theorem 142. The operator X is a common outer factor with a
bounded inverse; for details, see Proposition 147. This gives us the factorization

N = DφP NP(4.40)

where all the factors I/O stable, the I/O map DφP by our explicit assumption.
Let us consider the factor NP more carefully. By Corollary 146, ΛP > 0 for
all P ∈ ricuw(Φ, J), because the conditions of Theorem 114 hold, and J ≥ 0

implies that P crit
0 ≥ 0 and ΛP crit

0
> 0. So we can normalize N ◦

P := Λ
1
2
PNP Λ− 1

2
P crit

0

which is (I, I)-inner. By claim (ii) of Proposition 147, N ◦
P is in fact inner from

both sides, and its boundary trace N ◦
P (eiθ) takes unitary values a.e. eiθ ∈ T.

We remark that here the Hilbert-Schmidt compactness of the input operator B
and the separability of U is used.

Because also Y is separable, equation (4.40) implies for the boundary traces

DφP (eiθ) = N (eiθ)NP (eiθ)−1

a.e. eiθ ∈ T, as in the proof of claim (iv) of Lemma 171. But now for almost
all eiθ ∈ T

J
1
2DφP (eiθ)Λ− 1

2
P = N ◦(eiθ)N ◦

P (eiθ)∗,

where N ◦(eiθ) := J
1
2N (eiθ)Λ− 1

2
P crit

0
is isometric a.e. eiθ ∈ T. It follows that

J
1
2DφP (eiθ)Λ− 1

2
P is isometric a.e. eiθ ∈ T, and thus DφP is (J, ΛP )-inner. This

completes the proof of the proposition.

Proposition 178. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable and output stable DLS.
Assume that the regular critical solution P crit

0 =
(
Ccrit

)∗
JCcrit ∈ ric0(Φ, J)

exists. Let P ∈ ric(Φ, J) such that the inner DLS φP is I/O stable and its I/O
map is (J, ΛP )-inner. If range (B) = H, then P satisfies the minimax condition;
i.e. π̄+D∗

φP JCφP = 0.

Proof. Let ũ ∈ Seq−(U) be arbitrary. BecauseD∗
φP JDφP = ΛP and π̄+D∗

φP π− =
0, we have

π̄+D∗
φP J(π̄+DφP π−ũ) = π̄+D∗

φP JDφP π−ũ = π̄+ΛP π−ũ = 0.
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because DφP is (J, ΛP )-inner. Define x = BφP π−ũ. Now CφP x = CφP BφP π−ũ =
π̄+DφP π−ũ, it follows that π̄+D∗

φP JCφP x = 0. Because ũ ∈ Seq−(U) is arbi-
trary, we have π̄+D∗

φP JCφP x = 0 for all x ∈ range
(
BφP

)
.

It remains to show that range
(
BφP

)
= H . Because BφP = BD−1

φP
, we show

that range
(
BD−1

φP

)
= range (B). To see this, let x ∈ range (B) be arbitrary.

Then x = Bπ−ũ for some ũ ∈ Seq−(U). Define w̃ = DφP ũ ∈ Seq(U). Then
π−w̃ ∈ Seq−(U) has only finitely many nonzero components, and BD−1

φP
π−w̃ =

Bπ−D−1
φP

π−w̃ = Bπ−D−1
φP

w̃ = Bπ−D−1
φP

DφP π−ũ = Bπ−ũ, where we have used

the causality of D−1
φP

. This proves the inclusion range (B) ⊂ range
(
BD−1

φP

)
.

The other inclusion follows similarly by interchanging the causal shift-invariant
operators D−1

φP
, DφP on Seq(U), and noting that nothing in the proof depends

upon the boundedness of neither of these operators. We have now proved that
a feedback does not change the reachable subspace.

Because range
(
BφP

)
= range (B) and range (B) = H , it follows that

π̄+D∗
φP JCP = 0, provided π̄+D∗

φP JCP is bounded. Now D∗
φP is bounded be-

cause DφP is assumed to be. Also CφP = C − DφP CφP is bounded because both
Φ and φP are assumed to be output stable. The proof is now complete.

Proposition 179. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable and output stable DLS,
and J be a cost operator. Let P ∈ ric(Φ, J) such that the inner DLS φP is I/O
stable, and its I/O map is (J, ΛP )-inner. Then the following are equivalent:

(i) P satisfies the minimax condition; i.e. π̄+D∗
φP JCφP = 0.

(ii) CφP = Λ−1
P · π̄+D∗

φP JC

(iii) −KP = Λ−1
P · π0D∗

φP JC, with the identification of spaces range (π0) and
U .

Proof. Proof of the equivalence (i) ⇔ (ii) is the following equivalence:

π̄+D∗
φP JCφP = π̄+D∗

φP J(C − DφP CφP ) = 0

⇔ π̄+D∗
φP JC = (π̄+D∗

φP JDφP π̄+)CφP = ΛP · CφP .

Because CφP = {−KP Aj}j≥0 by Definition 150, the implication (ii) ⇒ (iii) is
immediate. For the converse direction, we have to show that Λ−1

P · π̄+D∗
φP JC is

an observability map of a DLS whose semigroup generator is A — we already
know that the first component −KP is correct if (iii) holds. It remains to prove(

Λ−1
P · π̄+D∗

φP JC
)

A = π̄+τ∗
(
ΛP · π̄+D∗

φP JC
)

.
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But this is the case:(
Λ−1

P · π̄+D∗
φP JC

)
A = Λ−1

P · π̄+D∗
φP π̄+τ∗JC

= π̄+τ∗
(
Λ−1

P · D∗
φP π+JC

)
= π̄+τ∗

(
ΛP · D∗

φP π̄+JC
)

,

where the last equality follows because π+D∗
φP π0 = 0, by the anti-causality of

D∗
φP . This completes the proof.

In claim (ii) of the following proposition, the minimax condition is connected
to a Liapunov equation that is almost the Riccati equation.

Proposition 180. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable and output stable DLS,
and J be a cost operator. Let P ∈ ric(Φ, J) such that DφP is I/O stable and
(J, ΛP )-inner. Define P0 := C∗

φP JCφP ∈ L(H). Then

(i) P0 satisfies the Liapunov equation

A∗P0A − P0 + C∗JC(4.41)

= −K∗
P ΛP KP + K∗

P ΛP

(
−Λ−1

P · π0D∗
φP JC

)
+
(
−Λ−1

P · π0D∗
φP JC

)∗
ΛP KP ,

and the residual cost operator satisfies LA,P0 = 0.

(ii) Assume, in addition, P satisfies the minimax condition π̄+D∗
φP JCφP = 0.

Then P0 satisfies the Liapunov equation

A∗P0A − P0 + C∗JC = K∗
P ΛP KP .(4.42)

Furthermore, A∗(P−P0)A = P−P0, and if P ∈ ric00(Φ, J), then P−P0 =
LA,P . If P ∈ ric0(Φ, J) then P = P0.

Proof. We first remark that is φP is output stable because CφP = C −DφP CφP ,
and all the operators C, DφP , CφP are assumed to be bounded. So C∗

φP makes
sense, and P0 is well defined. The proof of claim (i) is the following technical
calculation. Because CφP = C − DφP CφP , we obtain

P0 := C∗JC − C∗JDφP CφP − C∗
φP

D∗
φP JC + C∗

φP
D∗

φP JDφP CφP

= C∗JC − C∗JDφP CφP − C∗
φP

D∗
φP JC + CφP ΛPCφP ,
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where the latter equality is because DφP is assumed to be (J, ΛP )-inner. But
then

A∗P0A − P0 + C∗JC

=

(i)︷ ︸︸ ︷
(A∗C∗JCA − C∗JC + C∗JC) +

(ii)︷ ︸︸ ︷(
−A∗C∗JDφP CφP A + C∗JDφP CφP

)
+

(iii)︷ ︸︸ ︷(
−A∗C∗

φP
D∗

φP JCA + C∗
φP

D∗
φP JC

)
+

(iv)︷ ︸︸ ︷
(A∗CφP ΛPCφP A − CφP ΛPCφP ) .

Part (i) vanishes trivially. Parts (ii) and (iii) are adjoints of each other, and
because A is the semigroup generator of both φ and φP , we have

− A∗C∗JDφP CφP A + C∗JDφP CφP = −C∗Jπ+(τDφP τ∗)π+CφP + C∗JDφP CφP

= −C∗Jπ+DφP π+CφP + C∗JDφP CφP = C∗J(π̄+DφP π̄+ − π+DφP π+)CφP

= C∗JDφP π0 · π0CφP ,

where the last equality is by the causality of DφP . But π0CφP = −KP with
the natural identification of the spaces U and range (π0). So part (ii) equals
−C∗JDφP π0 ·KP , and part (iii) equals −KP ·∗ π0D∗

φP JC. A similar calculation
as required for part (i) shows that part (iv) equals −K∗

P ΛP KP . Collecting out
results together, we have (4.41).

Because both C and CφP are bounded by assumptions, and A is the semi-
group generator of both Φ and φP , trivially CAj = π̄+τ jC → 0 and CφP Aj =
π̄+τ jCφP → 0 in the strong operator topology. Because CφP = C − DφP CφP

where DφP is bounded, it follows that CφP Aj → 0 in the strong operator topol-
ogy. By the Banach–Steinhaus Theorem, the family of operators {CφP Aj}j≥0 is
uniformly bounded, and so is the family of their adjoints. It now follows that
for all x ∈ H

||A∗jP0A
jx|| ≤ sup

j≥0
||A∗jC∗

φP J || · ||CφP Ajx|| → 0

as j → ∞. This completes the proof of claim (i).

In order to prove claim (ii), we use the equivalence of (i) and (iii) in Proposition
179; now P is, in addition, assumed to satisfy the minimax condition. Replacing
−Λ−1

P · π0D∗
φP JC by KP in (4.41) gives (4.42). Note that the Riccati equation

solution P , by definition, satisfies the Liapunov equation (4.42) with P in place
of P0, and then A∗(P − P0)A = P − P0. This completes the proof.

In the following Lemma, the main result of this section, we give a partial converse
result to Lemma 171.
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Lemma 181. Let Φ =
[

Aj Bτ∗j

C D
]

be an I/O stable and output stable DLS. As-
sume that the input operator B ∈ L(U ; H) is Hilbert–Schmidt, and the spaces
U and Y are separable. Assume that range (B) = H. Let J ∈ L(Y ) be a
self-adjoint cost operator, J ≥ 0. Assume that the regular critical solution
P crit

0 =
(
Ccrit

)∗
JCcrit ∈ ric0(Φ, J) exists.

If P ∈ ric0(Φ, J) such that the inner DLS φP is I/O stable, then P ≥ 0.

Proof. Let P ∈ ric0(Φ, J) such that the inner DLS φP is I/O stable. By Propo-
sition 177, DφP is (J, ΛP )-inner because P ∈ ric0(Φ, J) ⊂ ricuw(Φ, J). By
Proposition 178, P satisfies the minimax condition π̄+D∗

φP JCφP = 0. Define
P0 := C∗

φP JCφP as in Proposition 180. Because J ≥ 0, then P0 ≥ 0. Because
P ∈ ric0(Φ, J), it follows that P = P0 by claim (ii) of Proposition 180. Thus
P ≥ 0, and the proof is complete.

The following theorem states that the exactly those state feedback laws that
associated to nonnegative solutions of DARE, are I/O-stabilizing. We could
also say that such solutions partially stabilize the closed loop semigroup gener-
ator AP , and hide the unstable part of AP to the unobservable (undetectable)
subspace.

Theorem 182. Let Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D ) be an I/O stable and output stable

DLS, such that range (B) = H. Assume that the input operator B ∈ L(U ; H)
is Hilbert–Schmidt, and the spaces U and Y are separable. Let J ∈ L(Y ) be
a self-adjoint cost operator, J ≥ 0. Assume that the regular critical solution
P crit

0 =
(
Ccrit

)∗
JCcrit ∈ ric0(Φ, J) exists. Let P ∈ ric0(Φ, J) be arbitrary.

Then J
1
2DφP is I/O stable if and only if P ≥ 0.

Proof. If P ≥ 0, then claim (iv) of Lemma 171 implies that J
1
2DφP is I/O stable.

The converse direction is an application of Lemma 181. However, we first have
to “absorb” the cost operator J into the DLS Φ by replacing the feed-through
operator D by J

1
2 D, and the output operator C by J

1
2 C. Call this modified

DLS φ′. Finally replace the cost operator J by I. Clearly the assumptions of
Φ and φ′ correspond to each other one-to-one, the DARE remains unchanged,
and Lemma 181 implies that P ≥ 0.
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4.6 Partial ordering and factorization

Assume that Φ is an output stable and I/O stable DLS, and the cost operator
J is nonnegative. Furthermore, assume that the regular critical solution P crit

0 ∈
ric0(Φ, J) exists. In this section, we consider the partial ordering of the solution
set ric0(Φ, J) as self-adjoint operators. Recall that for P ∈ ric0(Φ, J), the
closed ranges range

(
D̃φP π̄+

)
⊂ �2(Z+; U) of the Toeplitz operators D̃φP π̄+

are shift-invariant, see Lemma 183 and Corollary 184. Here D̃φP denotes the
adjoint of the I/O map DφP of the spectral DLS φP . Inclusions of the subspaces

range
(
D̃φP π̄+

)
are considered in Lemma 185. In Corollary 186, the maximality

property of the regular critical solution P crit
0 =

(
Ccrit

)∗
JCcrit ∈ ric0(Φ, J) is

proved. The order-preserving equivalence

ric0(Φ, J) 
 P �→ range
(
ÑP π̄+

)
⊂ �2(Z+; U)

is considered in Theorem 187. Here ÑP denotes the adjoint I/O map of NP ,
the (ΛP , ΛP crit

0
)-inner factor of DφP = NPX .

We start with reminding some classical results. The Beurling–Lax–Halmos The-
orem on the shift-invariant subspaces is the following:

Lemma 183. Let U be a separable Hilbert space. The following are equivalent

(i) H1 be a shift-invariant subspace of �2(Z+; U),

(ii) H1 = range (Θπ̄+) = Θ�2(Z+; U ′), where U ′ ⊂ U is a Hilbert subspace,
and Θ : �2(Z; U ′) → �2(Z; U) is a causal, shift-invariant and bounded
operator, which is inner from the left.

Furthermore, if range (Θ1π̄+) = range (Θ2π̄+) then there is a unitary (static)
operator V ∈ L(U) such that Θ1 = Θ2V .

For proofs, see e.g. [70, Lecture 9, Corollary 9] or [27, Chapter IX, Theorem
2.1]. We can get rid of indexing over the subspaces U ′ ⊂ U if we modify the
definition of the inner (from the left) operator. This convention is taken in
[77], where the inner operators are defined to be such that Θ(eiθ) is a partial
isometry, a.e. eiθ ∈ T. Actually this indexing is only over all the cardinalities of
the subspaces U , because two Hilbert subspaces of the same dimension can be
unitarily identified. For the following corollary, see e.g. [70, Lecture I, Corollary
8]:

Corollary 184. Let Θ1, Θ2 be inner from both sides. Then range (Θ2π̄+) ⊂
range (Θ1π̄+) if and only if there is an inner operator Θ3 such that Θ2 = Θ1Θ3.
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We now consider the inclusions of the shift-invariant subspaces range
(
D̃φP π̄+

)
.

Under the J-coercivity assumption π̄+D∗JDπ̄+ ≥ επ̄+ for some ε > 0, these
subspaces are closed, see Proposition 135.

Lemma 185. Let J ∈ L(Y ) be a cost operator, and Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D ) be

an I/O stable and output stable DLS. Assume that the input space U and the
output space Y are separable, and the input operator B ∈ L(U ; H) is Hilbert–
Schmidt. Assume that π̄+D∗JDπ̄+ ≥ επ̄+ for some ε > 0.

Let P1, P2 ∈ ricuw(Φ, J) such that P1 ≤ P2. Then

range
(
D̃φP1

π̄+

)
⊂ range

(
D̃φP2

π̄+

)
.

Proof. We begin the proof by centering the problem at the smaller of the so-
lutions P1. Define ∆P := P2 − P1 ≥ 0. Then we have P2 = P1 + ∆P where
∆P ∈ Ric(φP1 , ΛP1), by Lemma 156. The spectral DARE Ric(φP1 , ΛP1) is a
H∞DARE because P1 ∈ ric(Φ, J), by assumption. Also 0 ∈ ric0(φP1 , ΛP1) is
a trivial solution, corresponding to the solution of the original DARE P1 itself.
By Corollary 146, both the indicators satisfy ΛP1 > 0 and ΛP2 > 0.

Note that we have not written ∆P ∈ ric(φP1 , ΛP1) because we do not know
a priori the output stability and I/O stability of the spectral DLS (φP1 )∆P .
However, a computation with the minimax nodes reveals that the spectral DLS
(φP1)∆P is a spectral DLS associated to the original Φ and J(

(φP1)∆P , Λ̃∆P

)
≡ (φP1 , ΛP1)∆P ≡ (φP1+∆P , ΛP1+∆P ) ≡ (φP2 , ΛP2) ,(4.43)

see equation (4.4) of Proposition 151. Because P2 ∈ ric(Φ, J) by assumption,
it follows that the spectral DLS (φP1 )∆P is output stable and I/O stable. Thus
∆P ∈ ric(φP1 , ΛP1). For all x0 ∈ range (B), we have〈

∆PAjx0, A
jx0

〉
=
〈
P2A

jx0, A
jx0

〉
−
〈
P1A

jx0, A
jx0

〉
→ 0(4.44)

as j → ∞, because both P1 and P2 are assumed to satisfy the ultra weak
residual cost condition of Definition 108. Because the DLSs Φ and φP1 have
the common controllability map, we have range (B) = range (BφP ), and then
equation (4.44) implies that ∆P ∈ ricuw(φP1 , ΛP1). From equation (4.43) we
also see that ∆P ∈ ricuw(φP1 , ΛP1) has a positive indicator Λ̃∆P = ΛP2 > 0.

Now we want to apply claim (iii) of Lemma 171 with (φP1 , ΛP1) in place for
(Φ, J), and ∆P ∈ ricuw(φP1 , ΛP1) in place of P ∈ ricuw(Φ, J). We have to
check that the DLS φP1 , cost operator ΛP1 and solution ∆P satisfy the addi-
tional conditions. Firstly, the equivalent conditions of Theorem 114 hold for
the pair (φP1 , ΛP1) because they hold for (Φ, J), by the coercivity assumption
π̄+D∗JDπ̄+ ≥ επ̄+ and Corollary 146. For details see Proposition 147 and the
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discussion following it. We conclude that there is a regular critical solution
P̃ crit

0 ∈ ric0(φP1 , ΛP1).

The input operator B is common for both Φ and φP1 , and so the Hilbert–
Schmidt assumption holds for φP1 . The same is true for the separability of the
Hilbert space U , which is the input and the output space of φP1 . Now claim
(iii) of Lemma 171 gives

DφP1
= D(φP1 )∆P D(φP1 )∆P

,(4.45)

where (φP1 )∆P is the inner DLS, and (φP1)∆P is the spectral DLS of φP1 , cen-
tered at ∆P . Both (φP1)∆P and (φP1 )∆P are output stable and I/O stable; the
former by claim (iii) of Lemma 171, and the latter because ∆P ∈ ricuw(φP , ΛP ).
It also follows from Lemma 171 that the I/O map D(φP1 )∆P is in fact (ΛP1 , ΛP2)-
inner, because Λ̃∆P = ΛP2 is the indicator of ∆P ∈ ric(φP1 , ΛP1), as discussed
above. Note that because the nonnegative cost operator ΛP1 has a bounded
inverse, we do not need to include the square root of it into equation (4.45), as
has been done in Lemma 171 for possibly noncoercive cost operator J .

It follows from equation (4.43) that D(φP1 )∆P
= DφP2

. By Corollary 118,
the regular critical solution P crit

0 :=
(
Ccrit

)∗
JCcrit ∈ ric0(Φ, J) exists because

π̄+D∗JDπ̄+ ≥ επ̄+ is assumed for some ε > 0. We now obtain from equation
(4.45)

NP1X = DφP1
= D(φP1 )∆P DφP2

= D(φP1)∆P NP2X ,(4.46)

where DφP1
= NP1X (DφP2

= NP2X ) are (ΛP1 , ΛP crit
0

) ((ΛP2 , ΛP crit
0

) )-inner-
outer factorizations, respectively. The outer factor X has a bounded inverse,
and it is common for both the I/O maps DφP1

and DφP2
, see Proposition 147.

As noted earlier, D(φP1)∆P is bounded and (ΛP1 , ΛP2)-inner. We proceed to
prove that it can be normalized to an I/O map that is inner from both sides.

Divide the outer factor away from (4.46), to obtain NP1 = D(φP1)∆P · NP2 .
Normalize, as in Corollary 172, to obtain N ◦

P1
= M◦

P1,∆PN ◦
P2

, where N ◦
P1

:=

Λ
1
2
P1
NP1Λ

− 1
2

P crit
0

, N ◦
P2

:= Λ
1
2
P2
NP2Λ

− 1
2

P crit
0

, and

M◦
P1,∆P := Λ

1
2
P1
D(φP1 )∆P Λ− 1

2
P2

: �2(Z; U) → �2(Z; U).

By claim (ii) of Proposition 147, both the I/O maps N ◦
P1

and N ◦
P2

are inner from
both sides, and their boundary traces are unitary-valued functions. Because
D(φP1 )∆P is (ΛP1 , ΛP2)-inner, it follows that normalized I/O map M◦

P1,∆P is
inner from the left. Now the boundary traces satisfy

M◦
P1,∆P (eiθ) = N ◦

P1
(eiθ)N ◦

P2
(eiθ)∗,

and it follows that the boundary trace evaluation M◦
P1,∆P (eiθ) is unitary for

almost all eiθ ∈ T. Thus M◦
P1,∆P is, in fact, inner from both sides.
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By using the adjoint I/O maps, we change the order of factors

Ñ ◦
P1

= Ñ ◦
P2
M̃◦

P1,∆P ,

where all the factors are inner from the both sides. Now Corollary 184 implies
that

range
(
Λ− 1

2
P crit

0
ÑP1 π̄+

)
= range

(
Ñ ◦

P1
π̄+

)
(4.47)

⊂ range
(
Ñ ◦

P2
π̄+

)
= range

(
Λ− 1

2
P crit

0
ÑP2 π̄+

)
.

By considering the outer transfer functions as in claim (ii) of Proposition 127,
it is easy to see that X̃ is outer with a bounded inverse if and only if X is outer
with a bounded inverse. In particular, X̃Λ

1
2
P crit

0
is outer with a bounded inverse,

and the Toeplitz operator X̃Λ
1
2
P crit

0
π̄+ is a bounded bijection on �2(Z+; U). Thus

the inclusion of ranges in (4.47) remains valid if we multiply the operators from

the left by X̃Λ
1
2
P crit

0
π̄+. Now the claim follows.

The following corollary is somewhat analogous to [49, Theorem 13.5.2].

Corollary 186. Let J ≥ 0 be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]
be an I/O sta-

ble and output stable DLS. Assume that the input space U and the output space Y
are separable Hilbert spaces, and the input operator B ∈ L(U ; H) of Φ is Hilbert–
Schmidt. Assume that the regular critical solution P crit

0 :=
(
Ccrit

)∗
JCcrit ∈

ric0(Φ, J) exists.

(i) Let P0 ∈ ric0(Φ, J) be such that P crit
1 ≤ P0 where P crit

1 ∈ ric0(Φ, J) is any
regular critical solution. Then P0 is a regular critical solution.

(ii) If, in addition, range (B) = H, then the unique critical solution P crit
0 :=

(Ccrit)∗JCcrit is maximal in the set ric0(Φ, J).

Proof. By Lemma 185, equation (4.47) gives for the ranges of the adjoined
operators, because P0 ≥ P crit

1

�2(Z+; U) = range
(
D̃φ

Pcrit
1

π̄+

)
⊂ range

(
D̃φP0

π̄+

)
⊂ �2(Z+; U),

and immediately range
(
D̃φP0

π̄+

)
= �2(Z+; U). By DφP0

= NP0X denote the
(ΛP0 , ΛP crit

0
)-inner-outer factorization, and normalize the inner part as before:

Ñ ◦
P0

= Λ
1
2
P0
ÑP0Λ

− 1
2

P crit
0

. Then range
(
ÑP0 π̄+

)
= �2(Z+; U), as in the last part of

the proof of Lemma 185. Now the uniqueness part of Lemma 183 shows that Ñ ◦
P0

is a static unitary constant operator V ∈ L(U). By canceling the normalization,
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we obtain DφP0
= Λ− 1

2
P0

V ∗Λ
1
2
P crit

0
X . Because the static part of both DφP0

and X

is the identity operator I ∈ L(U), it follows that Λ− 1
2

P0
V ∗Λ

1
2
P crit

0
= I and hence

DφP0
= X . Because P0 ∈ ric0(φ, J), it is a regular critical solution, and the

first claim (i) is verified. Under the approximate controllability range (B) = H ,
an application of claim (i) of Corollary 116 proves the remaining claim.

We remark that the solution P crit
0 := (Ccrit)∗JCcrit is not generally maximal in

the full solution set Ric(Φ, J). A plenty of examples about this are provided
by Lemma 193 in Section 4.7. Even if range (B) = H is assumed, we do not
yet know whether P crit

0 is the largest element of ric0(Φ, J) — there could be a
solution P ∈ ric0(Φ, J) that is not comparable to P crit

0 . However, this is not the
case, as shown in Theorem 188. This result is based on the following equivalence
of the two order relations.

Theorem 187. Let J ≥ 0 be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D )

be an I/O stable and output stable DLS, such that range (B) = H. Assume
that the input space U and the output space Y are separable, and the input
operator B ∈ L(U ; H) is Hilbert–Schmidt. Assume that the regular critical
solution P crit

0 :=
(
Ccrit

)∗
JCcrit ∈ ric0(Φ, J) exists.

For P1, P2 ∈ ric0(Φ, J), the following are equivalent

(i) P1 ≤ P2.

(ii) range
(
ÑP1 π̄+

)
⊂ range

(
ÑP2 π̄+

)
, where NP is the (ΛP , ΛP crit

0
)-inner

factor of DφP .

In other words, the mapping

ric0(Φ, J) 
 P �→ range
(
ÑP π̄+

)
⊂ �2(Z+; U)

is order-preserving from the POSET ric0(Φ, J) (ordered by the natural partial
ordering of self-adjoint operators) into the sub-POSET {range

(
ÑP π̄+

)
}P∈ric0(Φ,J)

of the shift-invariant subspaces of �2(Z+; U) (ordered by the inclusion of sub-
spaces).

Proof. The implication (i) ⇒ (ii) is Lemma 185. We just remark that if J ≥ 0,
the existence of the regular critical solution P crit

0 is equivalent to π̄+D∗JDπ̄+ ≥
επ̄+ for ε > 0, see Theorem 114 and Corollary 117. For the converse direc-
tion (ii) ⇒ (i), note that range

(
ÑP1 π̄+

)
⊂ range

(
ÑP2 π̄+

)
is equivalent to
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range
(
Ñ ◦

P1
π̄+

)
⊂ range

(
Ñ ◦

P2
π̄+

)
, where the normalization is as in Corollary

172. This normalization is possible because both the indicators ΛP1 , ΛP2 and
ΛP crit

0
are positive, by Corollary 146. By Corollary 184, there is an inner (from

both sides) operator Θ such that Ñ ◦
P2

Θ = Ñ ◦
P1

, or equivalently

DφP1
= Λ− 1

2
P1

Θ̃Λ
1
2
P2

· DφP2
,(4.48)

because we can factorize DφP = NPX for P ∈ ricuw(φ, J), by Proposition 147.

Now we continue as in proof of Lemma 185, and center the problem around
the smaller solution P1. As in the proof of Lemma 185, we have the solution
∆P := P2 − P1 ∈ ric(φP1 , ΛP1) whose nonnegativity is to be shown. We have
(φP1)∆P = φP2 and

DφP1
= D(φP1 )∆P D(φP1 )∆P

= D(φP1 )∆P DφP2
,(4.49)

as in the proof of Lemma 185.

We have to check that φP1 , ΛP1 and ∆P satisfy the assumptions of Lemma 181.
Firstly, the separable U is the input space and the output space of the output
stable and I/O stable DLS φP1 . Also range

(
BφP1

)
= H , because BφP1

= B.
The indicator ΛP1 , serving as the cost operator, is nonnegative as already has
been discussed. The H∞DARE ric(φP1 , ΛP1) has a regular critical solution
because the original H∞DARE ric(Φ, J) has, see Theorem 114 and claim (i) of
Proposition 147. Because ∆P = P2−P1 and P1, P2 ∈ ric0(Φ, J) by assumption,
the residual cost operator LA,∆P exists. Furthermore, LA,∆P = LA,P2−LA,P1 =
0, and it follows that ∆P ∈ ric0(φP1 , ΛP1) because A is the common semigroup
generator of all the DLSs Φ, φP1 and (φP1 )∆P . Now we see that the assumptions
of Lemma 181 are satisfied.

By comparing (4.48) and (4.49), we see that the inner DLS (φP1)∆P is I/O
stable. Compare, for example, the transfer functions in a small neighborhood
of the origin, to convince yourself that Λ− 1

2
P1

Θ̃Λ
1
2
P2

= D(φP1 )∆P . Also claim (ii) of
Proposition 135 can be used, to see that the I/O map DφP2

has a bounded, shift-
invariant but generally noncausal inverse in �2(Z; U). By Lemma 181, ∆P ≥ 0
and the proof is completed.

We proceed to give an order-theoretic characterization of the set of nonnegative
regular H∞ solutions of the H∞DARE ric(φ, J). Under approximate control-
lability, these are exactly those that give H∞ factorizations in Lemma 171, see
Corollary 137.

Theorem 188. Let J ≥ 0 be a cost operator. Let Φ =
[

Aj Bτ∗j

C D
]

= ( A B
C D ) be

an I/O stable and output stable DLS, such that range (B) = H. Assume that
the input space U and the output space Y are separable, and the input operator
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B ∈ L(U ; H) is Hilbert–Schmidt. Assume that there is a (unique) regular critical
solution P crit

0 := (Ccrit)∗JCcrit ∈ ric0(Φ, J). Then

{P ∈ ric0(Φ, J) | P ≥ 0} = {P ∈ Ric(Φ, J) | 0 ≤ P ≤ P crit
0 }.

Proof. The inclusion ⊃ has already been established in claim (ii) of Corollary
141. For the converse inclusion, let a nonnegative P ∈ ric0(Φ, J) be arbitrary.
Because ÑP crit

0
= I, it follows that the range of the Toeplitz operator ÑP crit

0
π̄+

is all of �2(Z+; U). In particular, range
(
ÑP π̄+

)
⊂ range

(
ÑP crit

0
π̄+

)
, and it

follows that P ≤ P crit
0 , by Theorem 187. The proof is complete.
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4.7 H∞ solutions of the inner and spectral DAREs

We start with a motivation of the contents of this section. For simplicity, assume
for a while that the nonnegative cost operator J is boundedly invertible. In claim
(iv) Lemma 171, we introduce the factorization of the I/O map as a composition
of two I/O stable I/O maps

Dφ = DφP̃ · DφP̃
,(4.50)

for any nonnegative P̃ ∈ ric0(φ, J). As a conclusion of the same lemma, it
follows that the inner DLS φP̃ is output stable and I/O stable. The technical
assumptions of Lemma 171, such as the separability of the Hilbert spaces and the
Hilbert–Schmidt compactness of the common input operator B ∈ L(U ; H), are
inherited from φ by φP̃ . This makes it possible to apply claim (iv) of Lemma 171
to inner DLS φP and the associated inner H∞DARE ric(φP , J). In this way, the
(J, ΛP̃ )-inner factor DφP̃ can be further factorized by the nonnegative solutions

P ∈ ric0(φP̃ , J). A similar consideration can be given for the right factor DφP̃
,

which is the I/O map of the spectral DLS φP , and a stable spectral factor of
the Popov operator D∗

φJDφ, too. The nonnegative solutions P ∈ ric0(φP̃ , ΛP̃ )
of the spectral DARE factorize DφP̃

into I/O stable factors.

Because of the possibility of a recursive factorization of factors in equation
(4.50), we conclude that both the solutions sets

ric0(φP̃ , ΛP̃ ), for all P̃ ∈ ric0(φ, J),{
P ∈ ric0(φP̃ , J) | P ≥ 0

}
, for all P̃ ∈ ric0(φ, J), P̃ ≥ 0

are quite interesting. So it is desirable to characterize them in terms of the
original data, namely the DLS φ = ( A B

C D ), the cost operator J , and the solution
sets Ric(φ, J) and ric0(φ, J) of the original DARE. This is the subject of the
present section.

We start with considering the spectral DARE, as it is quite easy. In fact, the
result on the spectral DLSs has already been used in the proof of Theorem 187.

Lemma 189. Let J ≥ 0 a cost operator. Let φ = ( A B
C D ) be an output stable

and I/O stable DLS. Assume that the input operator B ∈ L(U ; H) is Hilbert–
Schmidt and the input space U is separable. Let P̃ ∈ ric0(φ, J) be arbitrary.

Then the following are equivalent:

(i) ∆P ∈ ric0(φP̃ , ΛP̃ ),

(ii) P̃ + ∆P ∈ ric0(φ, J).
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Proof. To prove the implication (i) ⇒ (ii), let ∆P ∈ ric0(φP̃ , ΛP̃ ) be arbitrary.
Then, because A is the semigroup generator of both φ and φP̃ , it follows that the
residual cost operator LA,P̃+∆P exists and satisfies LA,P̃+∆P = LA,P̃ +LA,,∆P =
0. By Lemma 156, P̃ + ∆P ∈ Ric0(φ, J).

Because J ≥ 0, it follows that P crit
0 =

(
Ccrit

φ

)∗
JCcrit

φ ≥ 0 and also ΛP crit
0

> 0.

By Theorem 114 and Lemma 145, it follows that ΛP̃ > 0 because P̃ ∈ ric0(φ, J).
The spectral H∞DARE ric(φP̃ , ΛP̃ ) has a regular critical solution P̃ crit

0 ∈
ric0(φP̃ , ΛP̃ ) because P crit

0 ∈ ric0(φ, J) is assumed to exist, see Proposition
147. Because the cost operator of DARE ric(φP̃ , ΛP̃ ) is nonnegative, the in-
dicator Λ̃P̃ crit

0
is nonnegative and the same is true for the indicator Λ̃∆P , by

Lemma 145 and the assumption ∆P ∈ ric0(φP̃ , ΛP̃ ). Now, by equation (4.4) of
Proposition 151, ΛP̃+∆P = Λ̃∆P > 0.

Now we have concluded that P̃ +∆P ∈ Ric0(φ, J), and its indicator is positive.
It follows that P̃ +∆P ∈ ric0(φ, J), by Corollary 140. This completes the proof
of the first implication.

To prove the other direction (ii) ⇒ (i), assume that P2 := P̃ +∆P ∈ ric0(φ, J).
Then ∆P = P2 − P̃ ∈ Ric(φP̃ , ΛP̃ ) by Lemma 156, and also LA,∆P = 0.
Thus ∆P ∈ Ric0(φP̃ , ΛP̃ ) because the same A is the semigroup generator of
all spectral DLSs. The indicator Λ̃∆ of ∆P ∈ Ric(φP̃ , ΛP̃ ) satisfies Λ̃∆ = ΛP2 ,
by equation (4.4) of Proposition 151. But the latter is positive because P2 ∈
ric0(φ, J), by the same argument that is presented in the first part of the proof
for ΛP̃ .

We have proved that ∆P ∈ Ric0(φP̃ , ΛP̃ ), and its indicator Λ̃∆P is positive.
Now, because the Hilbert–Schmidt class input operator B and the separable
input space U is common for all spectral DLSs, an application of Corollary 140
completes the proof.

A similar results can be given for other residual cost conditions introduced in
Definition 108. The case of the ultra weak residual cost condition has been
considered in the proof of Lemma 185. We proceed to characterize a regular
critical solution of the spectral DARE.

Corollary 190. Make the same assumption as in Lemma 189. By P crit
0 :=

(Ccrit
φ )∗JCcrit

φ ∈ ric0(φ, J) denote the regular critical solution.

Then P crit
0 − P̃ ∈ ric0(φP̃ , ΛP̃ ) is a regular critical solution. If, in addition,

range (Bφ) = H, then it is the unique regular critical solution.
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Proof. By Lemma 189, we see that ∆P := P crit
0 −P̃ ∈ ric0(φP̃ , ΛP̃ ). By equation

(4.4) of Proposition 151, we have for (φP̃ )P crit
0 −P̃ = φP crit

0
, whose I/O map is

the outer factor X of Dφ, by the definition of the critical solution P crit
0 . It

follows that P crit
0 − P̃ ∈ ric(φP̃ , ΛP̃ ) is a regular critical solution of the spectral

H∞DARE ric(φP̃ , ΛP̃ ). If range (Bφ) = H , then also range
(
BφP̃

)
= H because

the controllability maps of φ and φP̃ coincide. The uniqueness of the regular
critical solution of ric(φP̃ , ΛP̃ ) follows from Corollary 116.

The spectral DLS and DARE can be used to show that the solution set ric0(φ, J)
is order-convex:

Lemma 191. Let J ≥ 0 be a cost operator. Let φ = ( A B
C D ) be an output stable

and I/O stable DLS. Assume that the input space U is separable, and the input
operator B ∈ L(U ; H) is Hilbert–Schmidt. By P crit

0 := (Ccrit
φ )∗JCcrit

φ ∈ ric0(φ, J)
denote the regular critical solution.

Then ric0(φ, J) is order-convex in the following sense: if P̃ ∈ ric0(φ, J) is
such that P̃ ≤ P crit

0 , then all P ∈ Ric(φ, J) such that P̃ ≤ P ≤ P crit
0 satisfy

P ∈ ric0(φ, J).

Proof. Because P̃ ≤ P ≤ P crit
0 , then 0 ≤ P − P̃ ≤ P crit

0 − P̃ . By Lemma 156,
P − P̃ ∈ Ric(φP̃ , ΛP̃ ). By Corollary 190, P crit

0 − P̃ ∈ ric0(φP̃ , ΛP̃ ) is a regular
critical solution. By claim (ii) of Corollary 141, P − P̃ ∈ ric0(φP̃ , ΛP̃ ). The
proof is now complete.

Now we have dealt with the spectral DLSs and DAREs. We proceed to study
the regular H∞ solutions for the inner H∞DARE ric(φP̃ , J), centered at P̃ ≥ 0.
We need to assume that the nonnegative cost operator J has a bounded inverse.
By Lemma 171, this guarantees that φP̃ is output stable and I/O stable, when
questions about H∞ solutions become meaningful.

Lemma 192. Let J > 0 a boundedly invertible cost operator. Let φ = ( A B
C D )

be an output stable and I/O stable DLS, such that range (Bφ) = H. Assume
that the input operator B ∈ L(U ; H) is Hilbert–Schmidt, and the input space
U and the output space Y of φ are separable. Assume that the regular critical
solution P crit

0 := (Ccrit
φ )∗JCcrit

φ ∈ ric0(φ, J) exists. Let P̃ ∈ ric0(φ, J), P̃ ≥ 0, be
arbitrary.

Then the inner DLS φP̃ is output stable and I/O stable. The inner DARE
Ric(φP̃ , J) is a H∞DARE. Furthermore, P̃ is the unique regular critical solution
of its own inner DARE ric0(φP̃ , J). In particular, LAP̃ ,P̃ = 0.
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Proof. Let P̃ ∈ ric0(φ, J), P̃ ≥ 0, be arbitrary. By claim (iv) of Lemma 171,
φP̃ is output stable and I/O stable, because J > 0 has a bounded inverse. Thus
Ric(φP̃ , J) is a H∞DARE, and it makes sense to ask about the regular H∞

solutions P ∈ ric0(φP̃ , J).

By claim (iv) of Lemma 171, DφP̃ is (J, ΛP̃ )-inner. Because P̃ ≥ 0 and J ≥ 0,
it follows that ΛP̃ > εI for some ε > 0. Thus the Popov operator satisfies
D∗

φP̃
JDφP̃ = ΛP ·I ≥ εI, and by Corollary 146, there is a regular critical solution

P̃ crit
0 ∈ ric0(φP̃ , J). It follows from the approximate controllability assumption

range (B) = H of φ that the inner DLS φP̃ is approximately controllable, too,
because range

(
BφP̃

)
= range (Bφ) as in the proof of Proposition 178. Now claim

(i) of Corollary 116 implies that P̃ crit
0 is the unique regular critical solution

of H∞DARE ric(φP̃ , J). Furthermore, P̃ crit
0 is nonnegative, because J > 0.

Expectedly, the outer factor of DφP̃ is the static identity operator I, which

equals the I/O map (φP̃ )P̃ crit
0

of the corresponding spectral DLS (associated to

pair (φP̃ , J)).

Let P ∈ Ric(φP̃ , J) = Ric(φ, J), P ≥ 0, be arbitrary. Then the spectral DLS
(φP̃ )P can be put into form

(
(φP̃ )P , Λ̃P

)
:≡
(
φP̃ , J

)
P
≡
((

AP̃ B
KP̃ − KP I

)
, ΛP

)
,(4.51)

see equation (4.2) of Proposition 151. Here AP̃ := A + BKP̃ , ΛQ = D∗JD +
B∗QB, and ΛQKQ = −D∗JC − B∗QA for Q = P̃ , P are the closed loop semi-
group generator, indicator and feedback operator, relative to the original DLS
φ and the cost operator J .

By setting P = P̃ in equation (4.51), we get

(φP̃ )P̃ =
(

AP̃ B

−K̃P̃ I

)
=
(

AP̃ B
0 I

)
,

and the feedback operator K̃P̃ , associated to pair (φP̃ , J), satisfies K̃P̃ = 0.

However, the same is true for the unique regular critical solution P̃ crit
0 ∈ ric0(φP̃ , J)

if range (Bφ) = H . It follows that range
(
BφP̃

)
= range (Bφ) as in the proof of

Proposition 178. But now assumption range (Bφ) = H implies range
(
BφP̃

)
=

H . Furthermore, because the controllability maps of a DLS and any of its

spectral DLSs are equal, the approximate controllability range
(
B(φP̃ )P

)
= H
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follows for all P ∈ Ric(φ, J). Now, for P = P̃ crit
0 equation (4.51) gives

(φP̃ )P̃ crit
0

=
(

AP̃ B

−K̃P̃ crit
0

I

)
=
(

AP̃ B
KP̃ − KP̃ crit

0
I

)
.

By the definition of the critical solution, the I/O map of the spectral DLS
(φP̃ )P̃ crit

0
is the outer factor of DφP̃ . But this is the static identity operator I,

as discussed above. Thus K̃P̃ crit
0

|range
(
B(φP̃ )P

)
= 0, and by the approximate

controllability assumption, it follows that K̃P̃ crit
0

= 0.

By the definition of the inner DARE ric(φP̃ , J), the following Liapunov equa-
tions are satisfied

A∗
P̃
P̃AP̃ − P̃ + C∗

P̃
JCP̃ = K̃∗

P̃
Λ̃P̃ K̃P̃ = 0,

A∗
P̃
P̃ crit

0 AP̃ − P̃ crit
0 + C∗

P̃
JCP̃ = K̃∗

P̃ crit
0

Λ̃P̃ crit
0

K̃P̃ crit
0

= 0.

But now P̃ crit
0 − P̃ = A∗

P̃
(P̃ crit

0 − P̃ )AP̃ and by iterating

P̃ crit
0 − P̃ − A∗j

P̃
P̃ crit

0 Aj

P̃
= −A∗j

P̃
P̃Aj

P̃
.

Because P̃ crit
0 is the regular critical solution of ric(φP̃ , J), it follows that

A∗j

P̃
P̃ crit

0 Aj

P̃
converges strongly to zero as j → ∞. But then LAP̃ ,P̃ :=

s − limj→∞ A∗j

P̃
P̃Aj

P̃
exists, and

P̃ crit
0 − P̃ = −LAP̃ ,P̃ .(4.52)

A similar kind of calculation can be carried out with the open loop operators.
Because K̃P̃ crit

0
= 0 as shown above, and by formula (4.51), K̃P̃ crit

0
= KP̃−KP̃ crit

0
,

it follows that KP̃ = KP̃ crit
0

. For the indicators we have ΛP̃ = ΛP̃ crit
0

, too. To

see this equality, consider first the solution P̃ ∈ ric0(φ, J). The I/O map of
its inner DLS φP̃ is (J, ΛP̃ )-inner, as has already been mentioned. The critical
solution P̃ crit

0 ∈ ric0(φP̃ , J) gives the (J, Λ̃P̃ crit
0

)-inner-outer factorization

DφP̃ = D
(φP̃ )P̃ crit

0
· D(φP̃ )

P̃crit
0

= D
(φP̃ )P̃crit

0
· I = D

(φP̃ )P̃crit
0

by claim (iv) of Lemma 171, and the uniqueness of the (J, S)-inner-outer factor-
izations of an I/O map if the feed-through part of the outer factor is normalized
to identity, see Proposition 83. We conclude that DφP̃ is (J, Λ̃P̃ crit

0
)-inner. So,

DφP̃ is simultaneously both (J, ΛP̃ )-inner and (J, Λ̃P̃ crit
0

)-inner. This implies

that ΛP̃ crit
0

= Λ̃P̃ crit
0

= ΛP̃ because the indicator of a solution is not changed
under transition to any inner DARE.
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Because KP̃ = KP̃ crit
0

and ΛP̃ crit
0

= ΛP̃ holds, the open loop DARE Ric(φ, J)
gives us the equality

A∗P̃ crit
0 A − P̃ crit

0 = A∗P̃A − P̃ ,

because both the operator P̃ crit
0 and P̃ are solutions of the original DARE

Ric(φ, J), and the right hand sides of the DARE at these solutions coincide.

Thus P̃ crit
0 − P̃ = A∗(P̃ crit

0 − P̃ )A and in the same way as proving equation
(4.52) we obtain

P̃ crit
0 − P̃ = LA,P̃ crit

0
− LA,P̃ = LA,P̃ crit

0
.(4.53)

Here the strong limit exists and equality holds because LA,P̃ = 0, by assumption
P ∈ ric0(φ, J).

Comparing equations (4.52) and (4.53), we see that −LAP̃ ,P̃ = LA,P̃ crit
0

. Both
the residual cost operators are nonnegative, as strong limits of sequences of
nonnegative operators. It immediately follows that LAP̃ ,P̃ = LA,P̃ crit

0
= 0. Thus

P̃ ∈ ric0(φP̃ , J) is the critical regular solution of its own inner DARE. This
completes the proof.

In the following Lemma 193 we characterize the regular H∞ solutions of the
inner DARE Ric(φP̃ , J) for nonnegative P̃ ∈ ric0(φ, J). As in Lemma 192,
we have to be a little careful to see that Ric(φP̃ , J) is a H∞DARE. For this
reason, we assume again that the cost operator J > 0 has a bounded inverse.
It is important that the particular case when P̃ = P crit

0 = (Ccrit
φ )∗JCcrit

φ can be
solved for general J ≥ 0, see Theorem 197.

Lemma 193. Let J > 0 a boundedly invertible cost operator. Let φ = ( A B
C D ) be

an output stable and I/O stable DLS, such that range (Bφ) = H. Assume that
the input operator B ∈ L(U ; H) is Hilbert–Schmidt, and the input space U and
the output space Y of φ are separable. Assume that the regular critical solution
P crit

0 := (Ccrit
φ )∗JCcrit

φ ∈ ric0(φ, J) exists.

Then for all P̃ ∈ ric0(φ, J), P̃ ≥ 0, the DLS φP̃ is output stable and I/O stable.
Furthermore, we have the following equality of the solution sets of H∞DAREs{

P ∈ ric0(φ, J) | P ≤ P̃
}

= ric0(φP̃ , J).

Proof. The output stability and I/O stability of φP̃ follow from Lemma 171 and
the assumption that J has a bounded nonnegative inverse. We conclude that
the inner DARE Ric(φP̃ , J) is a H∞DARE, and the claim about the solution
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sets ric0(φ, J) and ric0(φP̃ , J) is meaningful. We proceed to prove the equality
of the solution sets. Fix P̃ ∈ ric0(φ, J) such that P̃ ≥ 0.

To prove inclusion “⊂”, let P ∈ ric0(φ, J) be arbitrary, such that P ≤ P̃ . By
Lemma 189, ∆P := P̃ −P ∈ ric0(φP , ΛP ) and we can consider the inner DARE
of ric(φP , ΛP ), centered at ∆P ≥ 0. Because the input operator B of φP is
Hilbert–Schmidt, the input space U is separable, the cost operator ΛP > 0 is
boundedly invertible, and the H∞ solution ∆P ∈ ric0(φP , ΛP ) is nonnegative,
Lemma 192 implies that ∆P is the unique regular critical solution of its own
inner DARE ric((φP )∆P , ΛP ).

By Corollary 152, the minimax nodes have the “commutation” relation(
(φP )∆P , ΛP

)
≡
(
(φP̃ )P , ΛP

)
.(4.54)

Because the semigroup generator of (φP )∆P = (φP̃ )P , equaling that of φP̃ , is
AP̃ , it follows

0 = LAP̃ ,∆P = LAP̃ ,(P̃−P ) = LAP̃ ,P̃ − LAP̃ ,P = −LAP̃ ,P ,

where the first equality is because ∆P ∈ ric0((φP )∆P , ΛP ) as the unique regular
critical solution, and the last follows from the last claim of Lemma 192. This
implies the existence of LAP̃ ,P as a strong limit and also LAP̃ ,P = 0. Because AP̃

is also the semigroup generator of φP̃ , it remains to prove that P ∈ ric(φP̃ , J).

By identity (4.54), we conclude that (φP̃ )P is output stable and I/O stable,
because this DLS equals (φP )∆P , which is I/O stable and output stable by
claim (iv) of Lemma 171 and the fact that ∆P ∈ ric0(φP , ΛP ) is nonnegative,
as discussed earlier.

Here we have used the fact that the cost operator ΛP of DARE ric(φP , ΛP )
is nonnegative with a bounded inverse, by Lemma 145, because P ∈ ric0(φ, J)
and the regular critical solution P crit

0 := (Ccrit
φ )∗JCcrit

φ ≥ 0 surely has a positive
indicator, by the nonnegativity of J . This completes the first part of the proof.

For the converse inclusion “⊃”, let P ∈ ric0(φP̃ , J) be arbitrary, and define
∆P = P̃ −P . Now our task is to show that φP is output stable and I/O stable,
and P̃ ≥ P . To clarify things, we first write the observability map of φP̃ in
I/O-form, by using formula (4.25), with φP in place of φ, ∆P in place of P , and
so on. Recall that this formula does not require any stability properties of any
of the DLSs involved (apart from the boundedness of the generating operators),
because is solely based on the equivalence of DLSs (and their feedbacks) in I/O-
form and difference equation form, presented in the sense of Lemmas 24 and 26.
We obtain

C(φP̃ )P
= C(φP )∆P = CφP −DφP D−1

(φP )∆P
C(φP )∆P

,
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where the first equality is because (φP )∆P = (φP̃ )P , by equation (4.54). Fur-
thermore, DφP D−1

(φP )∆P
= D(φP )∆P , as causal, shift invariant operators in the se-

quence space Seq(U), by formulae (4.25) and (4.26). But now (φP )∆P = (φP̃ )P

implies that D(φP )∆P = D(φP̃ )
P

in Seq(U). Because (φP )∆P = φP̃ by equation

(4.4) of Proposition 151, we get

CφP = C(φP̃ )P
+
(
D(φP̃ )

P

)
· CφP̃

.(4.55)

Because P ∈ ric0(φP̃ , J) by assumption, both C(φP̃ )P
: H → �2(Z+; U) and

D(φP̃ )
P

: �2(Z; U) → �2(Z; U) are bounded. Similarly CφP̃
: H → �2(Z+; U) is

bounded because P̃ ∈ ric0(φ, J), by assumption. We now conclude that φP is
output stable, because all the operators in equation (4.55) are bounded between
the corresponding (dense subspaces of the) Hilbert spaces H , �2(Z+; U), and
�2(Z; U).

We proceed to show the I/O stability of φP . As above, DφP D−1
(φP )∆P

= D(φP )∆P =
D(φP̃ )

P

in Seq(U). Also, D(φP )∆P
= DφP̃

because (φP )∆P = φP̃ . Because the
feed-through operator of the spectral DLS φP̃ is always the invertible identity
operator, it follows from Proposition 16 that DφP̃

is a causal bijection in Seq(U).
It follows that DφP = D(φP̃ )

P

DφP̃
in Seq(U). From assumptions P̃ ∈ ric0(φ, J)

and P ∈ ric0(φP̃ , J) it follows that both DφP̃
and D(φP̃ )

P

are bounded in

�2(Z; U), and so is DφP . We have now proved that P ∈ ric(φ, J), and thus
Ric(φP , ΛP ) is a H∞DARE.

Because P ∈ ric0(φP̃ , J), it follows from claim (iii) of Lemma 171 that the I/O

map of the inner DLS
(
φP̃
)P

is I/O stable and (J, Λ̃P )-inner. The indicator

Λ̃P of P , as a solution of the inner DARE Ric(φP̃ , J), equals the indicator ΛP

of P , as a solution of the original DARE Ric(φ, J). Because
(
φP̃
)P

= φP by
equation (4.3) of Proposition 151, it follows that DφP is (J, ΛP )-inner.

Thus Dφ = DφP DφP where both the factors are bounded. For the Popov oper-
ator we get

D∗
φJDφ =

(
DφP DφP

)∗
JDφP DφP = D∗

φP
· D∗

φP JDφP · DφP = D∗
φP

ΛPDφP .

Because we already know that P ∈ ric(φ, J) , it follows that the residual cost
operator in I/O-form satisfies Lφ,P = 0, by claim (ii) of Lemma 144. Because
range (Bφ) = H is assumed, it follows that LA,P = 0, by claim (iii) of Lemma
144. We have now shown that P ∈ ric0(φ, J).



4.7. H∞ SOLUTIONS OF THE INNER AND SPECTRAL DARES 233

Because P̃ , P ∈ ric0(φ, J), Lemma 189 implies that that ∆P := P̃ − P ∈
ric0(φP , ΛP ). Because (φP )∆P = (φP̃ )P and P ∈ ric0(φP̃ , J), it follows that
the inner DLS (φP )∆P at solution ∆P is I/O stable. Because the DLS φP , the
cost operator ΛP , and the solution ∆P ∈ ric0(φP , ΛP ) satisfy the conditions
of Theorem 188, it follows that ∆P ≥ 0 and thus P̃ ≥ P . This completes the
proof.
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4.8 Reduction of H∞DARE to an inner DARE

In this section, we consider the H∞DARE ric(φ, J) that has a regular critical
solution P crit

0 := (Ccrit
φ )∗JCcrit

φ ∈ ric0(φ, J), where

Ccrit
φ := (I − π̄+Dφ(π̄+D∗

φJDφπ̄+)−1π̄+D∗
φJ)Cφ.(4.56)

In essence, we show under technical assumptions that ric(φ, J) and ric(φP crit
0 , J)

are practically equivalent, as H∞DAREs. Many of these results hold for general
cost operator J ; the nonnegativity assumption J ≥ 0 is required only when the
sets ric0(φ, J) and ric0(φP crit

0 , J) of regular H∞ solutions are related to each
other.

Suppose we are interested in the H∞ solutions of H∞DARE ric(φ, J). If we
know some solution P̃ ∈ ric(φ, J), we can study the (possibly non-H∞) in-
ner DARE Ric(φP̃ , J) in place of the original ric(φ, J). Furthermore, under
the conditions of claim (iv) Lemma 171, if we can find a nonnegative solution
P̃ ∈ ricuw(φ, J) for J ≥ 0, then the inner DARE Ric(φP̃ , J) is essentially the
H∞DARE ric(J

1
2 φP̃ , I), with an (I, ΛP̃ )-inner I/O map J

1
2DφP̃ . If, in addition,

the nonnegative cost operator J has a bounded inverse, then Ric(φP̃ , J) itself
is a H∞DARE. We remark that an inner DLS φP̃ is generally not observable
(i.e. ker

(
CφP̃

)
= {0}), and the semigroup generator AP is generally not even

power bounded.

In Lemmas 192 and 193 we have considered the solution set ric0(φP̃ , J) for
P̃ ≥ 0 and boundedly invertible, nonnegative cost operator J . In this section,
we give stronger results in the particular case P̃ = P crit

0 . The I/O map D
φP crit

0

is now the (J, ΛP crit
0

)-inner factor N of the I/O map Dφ = NX , and there is no

need to assume a bounded inverse for J to make φP crit
0 output stable and I/O

stable. The outer factor X of the I/O map Dφ is not very important from the
Riccati equation point of view, as implied by Theorem 197, the main result of
this section. An important application of these results is in Section 5.7.

We start by answering the uniqueness questions associated to various critical
operators.

Proposition 194. Let φ = ( A B
C D ) be an output stable and I/O stable DLS, and

J ∈ L(Y ) a self-adjoint cost operator. Assume that the regular critical solution
P crit

0 := (Ccrit
φ )∗JCcrit

φ ∈ ric0(φ, J) exists. Then

(i) the critical indicators satisfy ΛP crit = ΛP crit
0

for all critical
P crit ∈ Ricuw(φ, J),
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(ii) If range (Bφ) = H, then the critical feedback operators satisfy KP crit =
KP crit

0
for all critical P crit ∈ Ricuw(φ, J). Furthermore, the closed loop

operators AP crit = AP crit
0

and CP crit = CP crit
0

, where critical P crit ∈
Ricuw(φ, J) is arbitrary. P crit

0 is the unique critical solution in the set
ric00(φ, J).

(iii) If range (Bφ) = H, and the open loop semigroup A is strongly stable, then
there is only one critical solution P crit ∈ Ricuw(φ, J), and it equals P crit

0 .

We conclude that if range (B) = H , it makes sense to speak about the critical
(closed loop) feedback operator Kcrit, the critical semigroup Acrit and critical
output operator Ccrit, because these are now independent of the choice of the
critical solution. In Definitions 70 and 73, we defined the objects Kcrit, Acrit

and Ccrit differently. We proceed to show that under approximate controllability
range (Bφ) = H , both these definitions coincide. This makes it possible to write

the inner DLS φP crit
0 =

(
A

Pcrit
0

B

C
Pcrit
0

D

)
in I/O-form, without explicit reference to

the solution P crit
0 .

Proposition 195. Let J ∈ L(Y ) be a self-adjoint cost operator. Let φ = ( A B
C D )

be an output stable and I/O stable DLS, such that range (Bφ) = H. Assume that
there exists a regular critical solution P crit

0 ∈ ric0(φ, J).

Define the critical (closed loop) feedback operator

Kcrit := −(π̄+D∗
φJDφπ̄+)−1π̄+D∗

φJCφ

and the critical (closed loop) observability map Ccrit
φ := Cφ +DφKcrit. By X and

N denote the (J, ΛP crit
0

)-inner and outer factors in the (J, ΛP crit
0

)-inner-outer
factorization Dφ = NX .

Then

(i) KP crit
0

= Kcrit, where Kcrit := π0Kcrit with the natural identification of
spaces range (π0) and U ,

(ii) the observability map of the spectral DLS satisfies Cφ
Pcrit
0

= XKcrit,

(iii) AP crit
0

:= A + BKP crit
0

= Acrit, where Acrit := A + Bφτ∗Kcrit,

(iv) CP crit
0

:= C + DKP crit
0

= Ccrit, where Ccrit := π0Ccrit
φ with the natural

identification of spaces range (π0) and Y .

(v) In particular, the inner DLS φP crit
0 is given in I/O-form by the critical

(closed loop) DLS

ΦP crit
0 =

[
(Acrit)j BφX−1τ∗j

Ccrit
φ N

]
.(4.57)
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Proof. Let Dφ = NX be the (J, ΛP crit
0

)-inner-outer factorization, where the
outer part X has a bounded inverse, and the feed-through operator is normalized
π0Xπ0 = I. The existence of such factorization follows from the assumption
that the critical solution P crit

0 exists, by Theorem 114. It also follows that the
Popov operator π̄+D∗

φJDφπ̄+ has a bounded inverse, and it follows that all the
operators Kcrit, Kcrit, Acrit, Ccrit

φ and Ccrit are well defined.

Then, as in the proof of Lemma 87, it follows that the outer factor X has the
realization, written in I/O-form

ΦX =
[

Aj Bφτ∗j

−K X

]
,(4.58)

where K := −Λ−1
P crit

0
N ∗JCφ. On the other hand, the critical (closed loop) feed-

back operator Kcrit := −(π̄+D∗
φJDφπ̄+)−1π̄+D∗

φJCφ can be written in form
Kcrit = X−1 · K, by Lemma 84. We have now enough information to translate
the DLS ΦX in formula (4.58) into difference equation form; we have

φX =
(

A B
−Kcrit I

)
, Kcrit := π0Kcrit,(4.59)

because π0Xπ0 = I implies that π0X−1π0 = I, and then π0K = π0Kcrit. Note
that we have identified the spaces range (π0) and U in the natural way.

Now, because P crit
0 ∈ ric0(φ, J) is a critical solution, the outer factor X can

be expressed also as the I/O map of the spectral DLS φP crit
0

=
(

A B
−K

Pcrit
0

I

)
.

Because the controllability maps of φP crit
0

and φX coincide with Bφ, we con-
clude that Kcrit|range (Bφ) = KP crit

0
|range (Bφ). By approximate controllability,

Kcrit = KP crit
0

, because both the operators are bounded. This proves now claim
(i), and claim (ii) immediately follows because K = Cφ

Pcrit
0

and Kcrit = X−1 · K,
as discussed above.

Claims (iii), (iv) and (v) are consequences of Lemma 26, where it is shown
that the state feedback structures of DLSs in I/O-form and difference equation
form are equivalent. More precisely, the pairs [K, I − X ] and (Kcrit, 0) are
corresponding state feedback pairs for the (open loop) DLS φ in I/O-form and
difference equation form, respectively. It follows that the closed loop DLSs
[φ, [K, I − X ]]� in I/O-form and

(
φ,
(
Kcrit, 0

))
� in difference equation form are

equal, by Lemma 26. But these equal ΦP crit
0 and φP crit

0 , extended by the equal
feedback pairs.

Now we have tools to find out how the continuity properties of φ are inherited
by the inner DLS φP crit

0 .
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Proposition 196. J ∈ L(Y ) a self-adjoint cost operator. Let φ = ( A B
C D ) be

an output stable and I/O stable DLS. Assume that range (Bφ) = H, and the
(unique) regular critical solution P crit

0 ∈ ric0(φ, J) exists. Then

(i) φP crit
0 is output stable and I/O stable. The I/O map of φP crit

0 is the
(J, ΛP crit

0
)-inner factor N of Dφ = NX . Furthermore, φ is input stable if

and only if φP crit
0 is.

(ii) We have range
(
B

φPcrit
0

)
= H. If φ is input stable, then Bφ �2(Z−; U) = H

if and only if B
φPcrit

0
�2(Z−; U) = H.

Proof. In claim (i), the output stability and I/O stability of φP crit
0 follows di-

rectly from equation (4.57) in Proposition 195. More precisely, the observability
map Ccrit

φ is bounded because all operators in (4.56) are bounded by our explicit
assumptions; in particular, the inverse of the Popov operator π̄+D∗

φJDφπ̄+ is
bounded because P crit

0 exists, see Theorem 114. Also the I/O map of φP crit
0 is

(J, ΛP crit
0

)-inner factor N of Dφ, by equation (4.57).

To complete the proof, we first show that show that the bounded, anti-causal
Toeplitz operator π−X−1π− : �2(Z−; U) → �2(Z−; U) with a causal symbol
X−1 is a bijection in this space. Let us start with the surjectivity. Let π−ũ ∈
�2(Z−; U) be arbitrary. Because X is outer with a bounded inverse, it follows
that X−1 : �2(Z; U) → �2(Z; U) is a bounded, shift-invariant and causal bijec-
tion. Thus there is a ṽ ∈ �2(Z; U) such that π−ũ = X−1ṽ. But now

π−ũ = X−1π−ṽ + X−1π̄+ṽ = π−X−1π−ṽ + π−X−1π̄+ṽ.

The causality of X−1 implies that π−X−1π̄+ṽ = 0 and so π−ũ = π−X−1π−·π−ṽ.
The surjectivity of π−X−1π− follows because π−ṽ ∈ �2(Z−; U).

We show the injectivity of π−X−1π−. Assume π−ṽ ∈ �2(Z−; U) is such that
π−X−1π−ṽ = 0. Then

0 = Xπ−X−1π−ṽ = XX−1π−ṽ −X π̄+X−1π−ṽ = π−ṽ −X π̄+X−1π−ṽ,

or equivalently π−ṽ = X π̄+X−1π−ṽ = π−X π̄+X−1π−ṽ. The causality of X
implies that π−X π̄+ = 0, and so π−ṽ = 0. We conclude that the Toeplitz
operator π−X−1π− in injective, and thus a bounded bijection. It then follows
from the Open Mapping Theorem, that π−X−1π− has a bounded inverse in
�2(Z−; U). Because B

φPcrit
0

= BφX−1 = Bφ · π−X−1π− by equation (4.57) in

Proposition 195, the equivalence of the input stabilities of φ and φP crit
0 follows.
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It remains to consider claims (ii) about the range of B
φPcrit

0
. Again, we have

B
φPcrit

0
= Bφπ− · π−X−1π−. As a causal operator, π−X−1 maps the domain

of any controllability map (consisting of the sequences Seq−(U) ⊂ �2(Z−; U)
that have only finitely many nonzero components) onto itself. This implies that
range (Bφ) = range

(
B

φPcrit
0

)
, and the approximate controllability claim follows.

The (infinite time) exact controllability claim follows because the Toeplitz op-
erator π−X−1π− is boundedly invertible. The proof is now complete.

Now that we have related the DLSs φ and φP crit
0 , we proceed to consider the inner

DARE ric(φP crit
0 , J) and give the main result of this section. The significance of

the following theorem is that the structure of a H∞DARE does not essentially
depend on the outer factor of Dφ if the cost operator J is nonnegative. It is then
possible, under proper technical assumptions, to replace an original H∞DARE
ric(φ, J) by the inner H∞DARE ric(φP crit

0 , J) that has a (J, ΛP crit
0

)-inner I/O
map. This result has an application in Section 5.7.

Theorem 197. Let J ∈ L(Y ) be a self-adjoint cost operator. Let φ = ( A B
C D ) be

an output stable and I/O stable DLS, such that range (Bφ) = H. Assume that
the regular critical solution P crit

0 ∈ ric0(φ, J) exists. Then the following holds:

(i) The inner DARE Ric(φP crit
0 , J) is a H∞DARE. The full solution sets

satisfy Ric(φ, J) = Ric(φP crit
0 , J). The I/O map D

φPcrit
0

is the (J, ΛP crit
0

)-
inner factor N of Dφ = NX .

(ii) The unique regular critical solution P̃ crit
0 :=

(
Ccrit

φPcrit
0

)∗
JCcrit

φP crit
0

∈ ric0(φP crit
0 , J) satisfies P̃ crit

0 = P crit
0 .

(iii) Assume, in addition, the input space U and output space Y are separable,
the input operator B is Hilbert–Schmidt, and J ≥ 0. Then

ric0(φ, J) = ric0(φP crit
0 , J).(4.60)

Proof. By claim (i) of Proposition 196, φP crit
0 is output stable and I/O stable. It

follows that Ric(φP crit
0 , J) is a H∞DARE. By claim (v) of Proposition 195, the

I/O map of φP crit
0 is (J, ΛP crit

0
)-inner. The full solution sets satisfy Ric(φ, J) =

Ric(φP crit
0 , J), by Lemma 157.

We prove claim (ii) by calculating an expression for the critical (closed loop)
observability map Ccrit

φPcrit
0

for the inner DLS φP crit
0 and the cost operator J .

Clearly, D
φP crit

0
= N = NI is the unique (J, ΛP crit

0
)-inner-outer factorization,
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where I is the unique outer factor whose feed-through operator is the identity
of U . By claim (iii) Lemma 84, we obtain

Ccrit

φPcrit
0

= C
φPcrit

0
−NΛ−1

P crit
0

π̄+N ∗JC
φP crit

0
.(4.61)

By claim (v) of Proposition 195, C
φPcrit

0
= Ccrit

φ , and again, by (iii) Lemma 84

Ccrit
φ = Cφ −NΛ−1

P crit
0

π̄+N ∗JCφ,(4.62)

because Dφ = NX is the unique (J, ΛP crit
0

)-inner-outer factorization, where X
is the unique outer factor whose feed-through operator is the identity of U . By
combining equations (4.61) and (4.62), we obtain

Ccrit

φPcrit
0

=
(
Cφ −NΛ−1

P crit
0

π̄+N ∗JCφ

)
−NΛ−1

P crit
0

π̄+N ∗J
(
Cφ −NΛ−1

P crit
0

π̄+N ∗JCφ

)
= Cφ −NΛ−1

P crit
0

π̄+N ∗JCφ −NΛ−1
P crit

0
π̄+N ∗JCφ

+ NΛ−1
P crit

0
π̄+ ·

(
N ∗JNΛ−1

P crit
0

)
· π̄+N ∗JCφ.

Because N ∗JN = ΛP crit
0

, the last two terms on the right hand side cancel each
other, and it follows

Ccrit

φP crit
0

= Cφ −NΛ−1
P crit

0
π̄+N ∗JCφ = Ccrit

φ ,

where the last equality is by (iii) Lemma 84. Now claim (ii) is verified.

We prove now the inclusion “⊂” of claim (iii). In fact, the inclusion “⊂” of
Lemma 193 is almost what we need, if we set P̃ = P crit

0 ∈ ric0(φ, J). In the
proof of this lemma, the bounded inverse of the cost operator J > 0 was only
needed to show that φP̃ is output stable and I/O stable. In the special case
when P̃ = P crit

0 , we know by Proposition 196 that φP̃ is output stable and I/O
stable, even if J ≥ 0 is not boundedly invertible. We now conclude that{

P ∈ ric0(φ, J), | P ≤ P crit
0

}
⊂ ric0(φP crit

0 , J).

as in the proof of Lemma 193. By Theorem 188, P crit
0 is the largest element of

the set ric0(φ, J), and P ≤ P crit
0 need not be explicitly written. The claimed

inclusion now follows.

The proof of the converse inclusion “⊃” is identical to that given in Lemma 193
for P̃ = P crit

0 . We remark that the invertibility of the cost operator J is never
used in the proof of this converse inclusion “⊃”. The proof is now complete.

The statement on Theorem 197 is in a perfect harmony with the following
intuitive observation of this paper: finding solutions for the H∞ Riccati equation
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ric(φ, J) is related to moving in the lattice of the inner factors of Dφ. We
remark that the input operator B ∈ L(U : H) is required to be Hilbert–Schmidt
and the cost operator J nonnegative only in claim (iii) of Theorem 197. All the
other results in this section hold for arbitrary B and self-adjoint J .

Under the assumptions of claim (iii) of Theorem 197, it is enough to be able
to solve (numerically) H∞DAREs with an inner I/O map. To transform φ into
φP crit

0 , we need not directly solve the original DARE ric(φ, J); the regular critical
solution P crit

0 can be computed from Ccrit
φ by using formula (4.56). We remark

that in this process, the most requiring thing is to calculate the inverse of the
(Toeplitz) Popov operator π̄+D∗

φJDφπ̄+. At least when U is finite dimensional,
and there is some smoothness in the Popov function eiθ �→ Dφ(eiθ)∗JDφ(eiθ),
we can efficiently solve the required Toeplitz systems of equations iteratively,
see [58], [53], and [63]. We conclude that we have some hope in this direction,
even from the numerical analysis point of view.

So as to the numerical solution of the resulting H∞DARE with an inner I/O
map, things seem to be wide open. It is not even clear what a nice solver would
have to do, in order to be nice. Particularly interesting would be algorithms
that would not require the dimensionality of the state space, and would not re-
duce the computation into some type of generalized eigenvalue problem. Such a
solver could possibly be an iterative process, formulated for infinite dimensional
objects and without any discretization. State space isomorphism techniques
could be helpful, so that convenient (minimal) realizations of D

φP crit
0

could be
used instead. Some additional functionality would have to be required, to en-
able such solver to move in the solution set of DARE and to find a particular
solution of interest. It is not clear, how the natural lattice operations of the
set ric0(φP crit

0 , J) can be realized, without replacing them by intersections and
spans of subspaces. These problems we leave open for the future research.
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4.9 Notes and references

Different DAREs appearing in literature

It is well known that the algebraic Riccati equations are associated to optimal
control problems, more general critical control problems and game theoretic
problems. The information structure of such a problem is reflected by the form
of the associated DARE. Because of the general nature of the critical control
problem formulation, presented in Section 2.2, we are lead to use the DARE

A∗PA − P + C∗JC = K∗
P ΛP KP ,

ΛP = D∗JD + B∗PB,

ΛP KP = −D∗JC − B∗PA,

(4.63)

instead of the conventional LQDARE{
A∗PA − P + C∗JC = A∗PB · Λ−1

P · B∗PA

ΛP = D∗JD + B∗PB,
(4.64)

that appears e.g. in the linear quadratic control problems when a direct cost
is applied on the input of the system. It is the latter equation (4.64) that
is traditionally discussed in the literature, together with its continuous time
analogue. As the reader can see, the difference between DAREs (4.63) and
(4.64) is the absence of the cross term D∗JC in (4.64). The more general
matrix DARE (4.63) is considered in [49, Chapter 12 and 13]. Furthermore, in
the continuous time works [82] (Staffans, 1995), [83] (Staffans, 1997), [103] (G.
Weiss and M. Weiss, 1997) and [64] (Mikkola, 1997), the presented CAREs for
the regular WPLSs generally have nontrivial cross terms.

Reduction of DARE to LQDARE

It is well known that by the preliminary static state feedback

uj = −(D∗JD)−1D∗JCxj ,(4.65)

(if it makes sense) equation (4.63) can always be cast in the form of (4.64)
without changing the full solution set, see [49, Proposition 12.1.1]. This can
be used to check that the DARE theory presented here is in harmony with the
LQDARE and LQCARE theories presented in the literature.

However, there is a number of reasons why this reduction is not always desirable.
Suppose we are given some critical control problem whose DARE is of the general
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form (4.63). Because the preliminary feedback (4.65) changes (one might even
say: confuses) the information structure of the original DARE, it is no longer
possible to conclude what the original critical control problem is, by looking at
the modified cross term free DARE alone.

We remark that the feedback in (4.65) can be “formally” associated to an artifi-
cial zero solution of DARE (4.63), and this feedback can be given a optimization
theoretic interpretation: it minimizes the cost of the first step. The closed loop
trajectories starting from some initial states x0 ∈ H generally grows very wildly.
If the feed-through operator D of the original DLS φ = ( A B

C D ) has a bounded
inverse, then the zero operator 0 ∈ L(H), indeed, solves DARE Ric(φ, J), and
the inner DARE Ric(φ0, J) is of the form (4.64). Now the closed loop I/O map
Dφ0 is a static constant operator D, and the inner DARE Ric(φ0, J) “lives” in
the unobservable subspace, equaling all of the state space H . If the semigroup
generator A of the original DLS φ = ( A B

C D ) is e.g. strongly stable, the same
is not true for the semigroup A0 = A − B(D∗JD)−1D∗JC of φ0, unless Dφ

is outer. Then the semigroup of DLS φ0 would have “undetectable unstable
modes” even if both the open loop semigroup A and the critical closed loop
semigroup AP crit

0
are very nice, e.g. strongly stable.

Let us outline the control theoretic meaning of the inner DLSs for various so-
lutions of the DARE. For simplicity, assume that the cost operator J is non-
negative and coercive, and the nonnegative regular critical solution P crit

0 exists.
Then, each solution 0 ≤ P ≤ P crit

0 of the H∞DARE ric(φ, J) gives a feedback
control strategy, which is a compromise between the desired internal stability
of the closed loop semigroup generator AP , and the desired performance of the
closed loop system, corresponding to the inner DLS φP . Internal semigroup
stability of the closed loop is enhanced when P is chosen larger, and then the
closed loop transfer function DφP (z) will have more “zeroes” in D. However,
because D∗

φP JDφP = ΛP and ΛP increases together with P , the closed loop
systems have a larger “power gain” for larger solutions P . For larger P , a larger
portion of the state space is penalized, and the closed loop cost ||P 1

2 x0||2H of a
given initial state x0 ∈ H is higher.

The non-H∞ solutions P ≥ P crit
0 can be used for feedback control, too, but then

we have introduced additional zeroes to the closed loop transfer function DφP (z)
that are not possessed by the transfer function Dφ(z) of the open loop DLS. For
the corresponding (closed loop) inner DLSs φP we do not have a guarantee of
the I/O stability without extra assumptions, even though the open loop DLS φ
is assumed to be I/O stable.

Now, if the LQDARE Ric(φ0, J) describes completely the solution set Ric(φ, J),
why do we not always normalize the cross term to zero by the preliminary
feedback (4.65)? We first remark that as a H∞DARE, ric(φ0, J) is trivial
because it has no nontrivial nonnegative H∞ solutions, by Lemma 193. The
same comment holds for the general cross term free LQDARE (4.64). This
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is, of course, to be expected, because a nontrivial H∞ solution would have to
factorize the static I/O map D, see Lemma 171. We conclude that the LQDARE
Ric(φ0, J) is no longer directly connected to a factorization of any I/O map into
I/O stable factors. This is somewhat unfortunate if our interest in DAREs comes
from such factorizations.

Internal self-similarity of the DARE theory

In claim (iv) of Lemma 171 we introduce the factorization of the I/O map as a
composition of two I/O stable I/O maps

J
1
2Dφ = J

1
2DφP · DφP ,

for any P ∈ ric0(φ, J), P ≥ 0. The left (I, ΛP )-inner factor J
1
2DφP is related to

the inner DLS φP , and this inner factor can be further factorized by nonnegative
solutions P̃ ∈ ric0(φP , J) of the inner H∞DARE, at least if J is boundedly
invertible. We remark that even if the whole solution set satisfies Ric(φP , J) =
Ric(φ, J), the set of regular H∞ solutions ric0(φP , J) is smaller than the original
ric0(φ, J) by Lemma 193. This is roughly related to the fact that the transfer
function J

1
2DφP has less “zeroes” than J

1
2Dφ(z) because some of them belong

to the factor DφP .

A similar consideration can be given for the right factor DφP , which is a spectral
factor of the Popov operator D∗

φJDφ: nonnegative solutions of the spectral
DARE P ∈ ric0(φP , ΛP ) factorize DφP into stable factors. We remark that the
“cardinality” of nonnegative solutions in ric0(φP̃ , ΛP ) is diminished from that
of the original ric0(φ, J) because a “shift” by P ≥ 0 appears, as described in
Lemma 189. We further remark that each inner and spectral DARE ric0(φP , J),
ric0(φP , ΛP ) is associated to a critical control problem in a natural way. This
gives a system theoretic interpretation to each of the various DAREs.

We conclude that our DARE theory and factorization theory are fully recursive
in the sense explained above. It is clear that the multiplicative factorization in
any associative algebra (or factorial monoid) is recursive in the following sense:
One would like to go on factoring the previous factors, until an irreducible
element has been reached. Because the algebraic Riccati equation is related
to such multiplicative factorization, we feel that the algebraic Riccati equation
theory should be presented in a way that does not hide the recursive nature of
things. For this to be possible, we need to have a class of DAREs that is large
enough to be closed under passage to inner and spectral DAREs at solutions of
interest. In fact, many of our proofs rely on a recursive application of the same
DARE theory to inner or spectral DLSs and DAREs.

We complete this discussion by looking at the chains of inner and spectral
DAREs Ric(φP , J) and Ric(φP , ΛP ). If D∗JD is boundedly invertible, it follows
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that Ric(φP , J) is LQDARE if and only if D∗JCP = 0 if and only if KP =
−(D∗JD)−1D∗JC. If, in addition, D is boundedly invertible, then the previous
is equivalent to KP = K0, ΛP = Λ0 and P = A∗PA. If, in addition, LA,P = 0,
then P = 0 and we conclude that an inner DARE is LQDARE if and essentially
only if P = 0. Because the feed-through operator of φP is the identity and the
indicator ΛP is invertible, a spectral DARE is a LQDARE if and only if KP = 0
if and only if DφP = I. But this is equivalent with the fact that the original I/O
map Dφ is (J, ΛP )-inner, and if, in addition, LA,P = 0, the solution P must equal
the regular critical solution P crit

0 . We conclude that it is very exceptional that
an inner or spectral DARE has a vanishing cross term, and that the cross term
free class of LQDAREs (4.64) is not large enough to accommodate a recursive
DARE theory. Introducing the preliminary feedback would destroy the overall
recursive picture, and confuse the meaning of the various inner and spectral
DAREs.



Chapter 5

Invariant subspaces

5.1 Introduction

Let φ = ( A B
C D ) be an output stable and I/O stable DLS and J ∈ L(Y ) a

nonnegative cost operator. In this chapter, we consider the connection of the
solution subset ric0(φ, J) of a H∞DARE to the invariant subspaces of an as-
sociated linear operator. More precisely, we seek answers to the following two
main questions:

A. Is there a bounded linear operator T , a model operator, such that the
natural partial ordering of the solution set ric0(φ, J) (under some restric-
tive, but technical assumptions) gets encoded into the invariant (or co-
invariant) subspace structure of T ?

B. If such a T exists, can it be expressed in simple and practical terms of the
given original data, namely the quadruple ( A B

C D ) together with the cost
operator J? Furthermore, can we obtain system theoretic information
about the DLS φ and the associated H∞DARE ric(φ, J), by looking at
the structure of such an operator T ?

It is well know that several variants of both these question can be and have been
given a positive answer, under some particular restrictive assumptions that vary
from paper to paper. Several existing approaches provide different descriptions
of the partial ordering of the solutions set of the DARE. A brief survey of this
literature can be found in Section 5.8.

In this chapter, we first give two ways to construct a candidate for the model
operator T , and then we show that these approaches are intimately connected

245
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to each other. Our starting point is Theorem 187. It relates, under technical
assumptions, the partial ordering of the self-adjoint solutions P ∈ ric0(φ, J) to
the partial ordering of certain chains of (adjoined) partial inner factors ÑP of
the I/O map Dφφ

. More precisely, the following claims

(i) P1 ≤ P2 and

(ii) range
(
ÑP1 π̄+

)
⊂ range

(
ÑP2 π̄+

)
are equivalent for P1, P2 ∈ ric0(φ, J). The inclusion of ranges is connected
to the factorization of inner operator-valued functions by the Beurling–Lax–
Halmos Theorem. By using the tools of shift operator models and characteristic
functions, these factorizations are associated to backward shift invariant sub-
spaces in an order preserving way. Finally, a further connection to the invariant
subspaces of semigroup of a certain DLS is given.

The following standing assumptions are used throughout the paper: The ba-
sic DLS φ := ( A B

C D ) is I/O stable and output stable, so that dom(Cφ) :=
{x ∈ H | Cx ∈ �2(Z+; Y )} is the whole state space H . Furthermore, φ is as-
sumed to be approximately controllable in the sense the range (Bφ) = H where
dom (Bφ) := Seq−(U). The input space U , the state space H , and the out-
put space Y are separable Hilbert spaces. The input operator B ∈ L(U ; H) is
Hilbert–Schmidt. The H∞DARE ric(φ, J) has a unique regular critical solution
P crit

0 whose indicator ΛP crit
0

is nonnegative. It given by P crit
0 := (Ccrit

φ )∗JCcrit
φ ∈

ric0(φ, J).

We also assume that the I/O map Dφ is (J, ΛP crit
0

)-inner, but this technical
assumption is lifted in the final Section 5.7. To obtain the full results of this
paper, the DLS φ = ( A B

C D ) is assumed to be input stable, and the cost operator
J is nonnegative. In this case, the regular critical solution P crit

0 is nonnegative,
and its indicator is, of course, positive.

We give a technical outline of this chapter. In Section 5.2, we give basic results
for a DLS φ whose I/O map Dφ is (J, S)-inner, i.e.

D∗
φJDφ = S

for some self-adjoint boundedly invertible S ∈ L(U), regarded above as a static
operator on �2(Z; U). It appears that the H∞DARE ric(φ, J) has a critical
regular solution P crit

0 and in fact ΛP crit
0

= S, see Proposition 198. In claim (iii)
of Lemma 202, we show that P crit

0 = C∗
φJCφ. In claim (iv) of Lemma 202, we

show that the null space ker
(
P crit

0 − P
)

is A-invariant, for any P ∈ ric0(φ, J)
with a positive indicator. The rest of Section 5.2 is devoted to proving that
the null spaces of type ker

(
P̃ − P

)
are AP̃ -invariant, provided that P, P̃ ∈



5.1. INTRODUCTION 247

ric0(φ, J) are comparable to each other, see Lemma 205 and Corollary 206.
The reason to study a DLS with a (J, ΛP crit

0
)-inner I/O map is the following. If

we consider the critical control problem of Section 2.2, associated to the pair
(φ, J), many formulae will simplify considerably. The same comment holds also
for the H∞DARE theory that has been presented in Chapters 3 and 4. This is
due to the fact that the outer factor X in the (J, ΛP crit

0
)-inner-outer factorization

D = NX is identity, because we normalize S = ΛP crit
0

and π0Xπ0 = I. We take
the full advantage of this triviality. In the final Section 5.7, we generalize the
results to DLSs having a nontrivial outer factor X = I, by using the results of
Section 4.8.

In Proposition 208, the null space of the observability map Cφ is “divided away”
from the state space H , to obtain an observable DLS φred that has the same
I/O map as φ but a smaller state space. We remark that the I/O map Dφ

is not required to be (J, ΛP crit
0

)-inner in Proposition 208. In Definition 209, we
associate the characteristic DLS φ(P ) to each P ∈ ric0(φ, J). The characteristic
DLS φ(P ) is simply the reduced, observable version of the spectral DLS φP

in the sense of Proposition 208. The basic properties of φ(P ) are given in
Lemma 210. In particular, Dφ(P ) = DφP = NP , where DφP = NPX = NPI is
the (ΛP , ΛP crit

0
)-inner-outer factorization, see Proposition 147. The semigroup

generator of φ(P ) is the compression ΠP A|HP , where ΠP is the orthogonal
projection of H onto ker

(
P crit

0 − P
)⊥, and HP := range (ΠP ) is the state space

of φ(P ). Because ΠP A = ΠP AΠP by Lemma 202,
(
ΠP A|HP

)∗ equals the
restriction A∗|HP . Trivially, if P crit

0 ≥ P1 ≥ P2 for P1, P2 ∈ ric0(φ, J), then
{0} = HP crit

0 ⊂ HP1 ⊂ HP2 ⊂ H . This connects the partial ordering of the
solution set ric0(φ, J) to the partial ordering of the A∗-invariant subspaces HP ,
for the DLS φ with a (J, S)-inner I/O map. We conclude that the operator A∗

can be seen as a model operator, as discussed in the beginning of this section.

We consider also another description of the solution set ric0(φ, J), with the aid
of the shift operator model of contractions and their characteristic functions. In
order to accomplish this, we must first deal with some technicalities. In Section
5.4, an orthogonality result is given for DLSs whose transfer functions are inner.
In claim (iii) of Proposition 211, it is shown that range (Cφ) = range (π̄+Dφπ−)
if range (π̄+Dφπ−) is closed and proper technical assumptions hold. An applica-
tion of this result is Lemma 213, where the orthogonal direct sum decomposition

�2(Z+; U) = range
(
Ñ ◦

P π̄+

)
⊕ range

(
C

φ̃◦(P )

)
(5.1)

is proved for DLSs φ whose I/O map is (J, ΛP crit
0

)-inner and P ∈ ric0(φ, J)

is arbitrary. We remark that the statement that range
(
C

φ̃◦(P )

)
is closed is a

conclusion, not an assumption of Lemma 213. The operator Ñ ◦
P and the DLS

φ̃◦(P ) are connected to the characteristic DLS φ(P ) by the defining equations
(5.7) and (5.8). In Section 5.5, we give a brief overview of a particular case
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of the Sz.Nagy–Foias shift operator model. The inner characteristic functions
for the C00-contractions are introduced, and necessary results from the spectral
function theory are presented. Some work is done to translate the frequency
space notions, commonly used in the literature, to the time domain notions used
in this book.

In Section 5.6 we give our first main results. For arbitrary P ∈ ric0(φ, J),

we study the normalized and adjoint version φ̃◦(P ) of the characteristic DLS.
The inner transfer function D

φ̃◦(P )
(z) = Ñ ◦

P (z) is the characteristic function
of the truncated shift operator S∗|K

φ̃◦(P )
in the sense of Sz.Nagy–Foias. Here

K
φ̃◦(P )

:= �2(Z+; U)� range
(
D

φ̃◦(P )

)
is the S∗-invariant subspace, as given in

Definition 217. This gives another candidate S∗ for the model operator whose
invariant subspaces K

φ̃◦(P )
encode the partial ordering of ric0(φ, J). The spec-

tral function theory, presented in Section 5.5, connects effectively the operator
theoretic properties of the C00-contraction S∗|K

φ̃◦(P )
to the function theory of

the normalized transfer function Ñ ◦
P (z), without assuming any finite dimen-

sionality in any of the spaces or the operators. It remains to connect the model
operators S∗|K

φ̃◦(P )
to the state spaces and semigroup generators of the DLSs

φ̃◦(P ).

Because Dφ(P ) = DφP = NP by our standing assumption on the triviality of
the outer factor X = I, we conclude from equation (5.1) the equality K

φ̃◦(P )
=

range
(
C

φ̃◦(P )

)
, by Lemma 213. This gives the similarity transform(
S∗|K

φ̃◦(P )

)
C

φ̃◦(P )
= π̄+τ∗C

φ̃◦(P )
= C

φ̃◦(P )

(
A∗|HP

)
by the basic formula π̄+τ∗Cφ = CφA that describes the interaction of the back-
ward time shift and the semigroup generator A for any DLS φ. When the
observability map C

φ̃◦(P )
is a bounded bijection with a bounded inverse, the

two descriptions of the set ric0(φ, J), the former by restricted adjoint semi-
group generators A∗|HP and the latter by restricted shifts S∗|range

(
C

φ̃◦(P )

)
,

are connected by a similarity equivalence, see Lemma 218 and Theorem 219. In
particular, the restrictions A∗|HP are similar to a C00-contractions, whose char-
acteristic functions are causal, shift-invariant and stable partial inner factors of
the I/O map Dφ, see Theorems 173 and 175. This connection is analogous to the
connection of the zeroes and poles of a rational inner function to the eigenvalues
of the semigroup generator of its matrix-valued realization. However, we use
neither the notion of zeroes, nor the generalized eigenspaces of the semigroups.

So far we have considered only DLSs φ = ( A B
C D ) whose I/O maps are (J, ΛP crit

0
)-

inner. The general case, when Dφ is assumed to be only I/O stable, is considered
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in Section 5.7. Instead of requiring an inner I/O map, we now require only that
the regular critical solution P crit

0 ∈ ric0(φ, J) exists. It is shown in Section 4.8,
that the structure of the H∞DARE ric(φ, J) remains unchanged, if a prelimi-
nary critical feedback associated to P crit

0 ∈ ric0(φ, J) is applied. The resulting
(closed loop) inner DLS has a (J, ΛP crit

0
) -inner I/O map, and the results of the

previous sections can be applied on the pair (φP crit
0 , J) instead of the original

pair (φ, J). For details, see Theorem 223. Clearly, now the co-invariant sub-
space results are for the critical closed loop semigroup generator Acrit = AP crit

0

of the inner DLS φP crit
0 , rather than the open loop semigroup generator A of the

original DLS φ.

The results of this chapter appeared in [60] (Malinen, 1999). A preliminary
version [57] has been presented in MMAR98 conference (Poland, August, 1998).
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5.2 DLSs with inner I/O maps

As discussed in Section 5.1, we start this paper by considering first DLSs φ =
( A B

C D ) whose I/O map Dφ is (J, S)-inner for two self-adjoint operators J ∈
L(Y ) and S ∈ L(U). Basic results for such DLSs are given in this section.
In particular, we are interested in the invariant subspaces of the semigroup
generator A that are of the form ker

(
P crit

0 − P
)
. Here P crit

0 :=
(
Ccrit

φ

)∗
JCcrit

φ ∈
ric0(φ, J) is a regular critical solution, the closed loop critical observability map
is given by

Ccrit
φ := (I − π̄+Dφ(π̄+D∗

φJDφπ̄+)−1π̄+D∗
φJ)Cφ,

and P ∈ ric0(φ, J) is another solution that is comparable to P crit
0 . Such invari-

ant subspaces are considered in Corollary 206. The A-co-invariant orthogonal
complements HP := ker

(
P crit

0 − P
)⊥ in H are central in the later developments

of this work.

In order to be able to speak about the spaces ker
(
P crit

0 − P
)
, the regular critical

solution P crit
0 must, of course, exist. Clearly, for an (J, S)-inner I/O map Dφ,

the Popov operator is a static constant: D∗
φJDφ = S. Then the sufficient and

necessary conditions for the existence of a critical solution of DARE are easy
to give. The following result is a consequence of Theorem 114 and Proposition
115.

Proposition 198. Let J ∈ L(Y ) be a self-adjoint cost operator, and φ = ( A B
C D )

an output stable and I/O stable DLS, such that Dφ is (J, S)-inner.

Then S has a bounded inverse if and only if a regular critical solution P crit
0 ∈

ric0(φ, J) exists. When this equivalence holds, S = ΛP crit
0

, Dφ is (J, ΛP crit
0

)-
inner and Dφ = DφI is the unique (J, ΛP crit

0
)-inner-outer factorization, where

the outer factor has a bounded inverse.

For later reference, we give somewhat trivial and technical results about DLSs
with an inner I/O map. If a DLS has an inner I/O map, so has its adjoint DLS:

Proposition 199. Let N : �2(Z; U) → �2(Z; U) be an I/O map of an output
stable and I/O stable DLS φ, whose input operator B ∈ L(U ; H) is Hilbert–
Schmidt and U is a separable Hilbert space. Assume that S1, S2 ∈ L(U) are
boundedly invertible and positive. If N is (S1, S2)-inner, and the feed-through
operator N (0) of φ is identity, then the adjoint I/O map Ñ is (S−1

2 , S−1
1 )-inner.

Proof. By Proposition 198, Dφ = DφI is the unique (S1, ΛP crit
0

)-inner-outer
factorization, where S2 = ΛP crit

0
and the trivial outer factor I has a bounded

inverse. It follows from claim (ii) of Lemma 134 that the normalized transfer
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function N ◦(z) is inner from both sides, and the boundary trace N ◦(eiθ) is
unitary a.e. eiθ ∈ T. So the boundary trace of the adjoint function satisfies
Ñ ◦(eiθ) := S

− 1
2

2 Ñ (eiθ)S
1
2
1 = N ◦(e−iθ)∗ which is unitary a.e. eiθ ∈ T. But now

Ñ is (S−1
2 , S−1

1 )-inner.

The following corollary is about the I/O map ÑP whose Toeplitz operator ap-
pears in Theorem 187.

Corollary 200. Let J ∈ L(Y ) a self-adjoint cost operator. Let φ = ( A B
C D )

be an output stable and I/O stable DLS, whose input operator B ∈ L(U ; H)
is Hilbert–Schmidt and the input space U is separable. Assume that a critical
P crit

0 ∈ ric0(φ, J) exists, such that ΛP crit
0

> 0. For any P ∈ ric0(φ, J), let NP

denote the (ΛP , ΛP crit
0

)-inner factor of DφP . Then the adjoint I/O map ÑP is
(Λ−1

P crit
0

, Λ−1
P )-inner.

Proof. By claim (i) of Proposition 147, DφP has the (ΛP , ΛP crit
0

)-inner factor
NP . The static part of NP is identity, by claim (iii) of Proposition 147. The
inertia result, Lemma 145 implies that ΛP > 0 for all P ∈ ric0(φ, J). An
application of Proposition 199 completes the proof.

If J ≥ 0, there are plenty of examples of DLS with (J, S)-inner I/O maps. If
the conditions of claim (iii) of Lemma 171 are satisfied, the (normalized) inner
DLS J

1
2 φP has a (I, ΛP )-inner I/O map, for each nonnegative P ∈ ric0(φ, J).

We also remark that, under restrictive assumptions, the family of DLSs with
inner I/O maps is sufficiently rich to carry the structure of all H∞DAREs that
have a critical solution, in the sense of Theorem 197. This will be exploited in
Section 5.7 where the results of this paper are extended to the general DLSs
that do not have an inner I/O map.

The rest of this section is devoted to the study the Riccati equation, and semi-
group invariant subspaces of the state space. We start with a technical propo-
sition that only marginally depends on the structure of DARE.

Proposition 201. Let φ = ( A B
C D ) be a DLS and J a self-adjoint cost oper-

ator. Let P1, P2 ∈ Ric(φ, J). Then KP2 − KP1 = Λ−1
P2

B∗(P2 − P1)AP1 and
Λ−1

P1
B∗(P2 − P1)AP1 = Λ−1

P2
B∗(P2 − P1)AP2 .

Proof. To prove the first equation, we calculate

KP1 − KP2 = Λ−1
P1

QP1 − Λ−1
P2

QP2 = (Λ−1
P1

− Λ−1
P2

)QP1 + Λ−1
P2

(QP1 − QP2),
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where QP := −D∗JC − B∗PA. Because x−1 − y−1 = y−1(y − x)x−1, we have
Λ−1

P1
− Λ−1

P2
= Λ−1

P2
B∗(P2 − P1)BΛ−1

P1
. Now we obtain, because QP1 − QP2 =

B∗(P2 − P1)A

KP1 − KP2 = Λ−1
P2

(B∗(P2 − P1)B KP1 + B∗(P2 − P1)A)

= Λ−1
P2

B∗(P2 − P1)(A + BKP1).

This gives the first equation of the claim. The second equation is obtained
by interchanging P1 and P2 in the first equation, and comparing these two
equations.

Basic properties of DLSs with (J, ΛP crit)-inner I/O map are given below.

Lemma 202. Let J ∈ L(Y ) be a self-adjoint cost operator. Let φ = ( A B
C D ) be

an output stable and I/O stable DLS, such that range (Bφ) = H. Assume that

the regular critical solution P crit
0 :=

(
Ccrit

φ

)∗
JCcrit

φ ∈ ric0(φ, J) exists, and the
I/O map Dφ is (J, ΛP crit

0
)-inner.

Then for any P ∈ Ric(φ, J) the following holds:

(i) The feedback operators satisfy KP crit
0

= 0 and KP = −Λ−1
P B∗(P crit

0 −P )A.
Furthermore, AP crit

0
= A and CP crit

0
= C. The operator Q = P crit

0 − P
satisfies the following Riccati equation{

A∗QA − Q + A∗QB · Λ−1
P · B∗QA = 0,

ΛP = D∗JD + B∗PB.
(5.2)

(ii) The spectral DLS φP can be written in the following equivalent forms:

φP =
(

A B
−KP I

)
=
(

AP crit
0

B

KP crit
0

− KP I

)
=
(

A B
Λ−1

P B∗(P crit
0 − P )A I

)
.

(5.3)

(iii) We have Cφ = C
φPcrit

0
= Ccrit

φ and P crit
0 = C∗

φJCφ.

(iv) Assume, in addition, that P ∈ ric0(φ, J) and ΛP > 0. Then ker
(
P crit

0 − P
)

= ker (CφP ). In particular, ker
(
P crit

0 − P
)

is A-invariant.

Proof. Because Dφ is assumed to be (J, ΛP crit
0

)-inner, the outer factor X in the
unique (J, ΛP crit

0
)-inner-outer factorization Dφ = NX equals the identity I. The

outer factor X = I is the I/O map of the spectral DLS φP crit
0

=
(

A B
−K

Pcrit
0

I

)
,

whence we conclude that −KP crit
0

|range (Bφ) = 0. Because KP crit
0

is a bounded
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operator and range (Bφ) = H , by explicit assumption, it follows that the critical
feedback operator KP crit

0
= 0. Immediately AP crit

0
= A + BKP crit

0
= A, CP crit

0
=

C + DKP crit
0

= C, and the second equality in (5.3) is proved.

By applying Proposition 201 to KP = KP − KP crit
0

we obtain KP =
−Λ−1

P B∗(P crit
0 − P )A, for any P ∈ Ric(φ, J). This gives the third equality

in (5.3), and completes the proof of claim (ii).

To complete the proof of claim (i), the Riccati equation (5.2) must be verified.
Because A∗

P crit
0

P crit
0 AP crit

0
− P crit

0 + C∗
P crit

0
JCP crit

0
= 0 by Proposition 160 and

AP crit
0

= A, CP crit
0

= C, we have

A∗P crit
0 A − P crit

0 + C∗JC = 0.

By rewriting the original DARE Ric(φ, J) with the aid of the already proved
KP = −Λ−1

P B∗(P crit
0 − P )A, we obtain for any P ∈ Ric(φ, J)

A∗PA − P + C∗JC = A∗(P crit
0 − P )B · Λ−1

P · B∗(P crit
0 − P )A.

Subtracting these equations will give give the Riccati equation (5.2).

We now consider claim (iii). Because KP crit
0

= 0, the inner DLS at P crit
0 satisfies

φP crit
0 =

(
A B
C D

)
= φ,

and so Cφ = C
φPcrit

0
. Now claim (v) of Proposition 195 gives C

φP crit
0

= Cφcrit,
where

Ccrit
φ := (I − π̄+Dφ(π̄+D∗

φJDφπ̄+)−1π̄+D∗
φJ)Cφ.

Thus P crit
0 :=

(
Ccrit

φ

)∗
JCcrit

φ = C∗
φJCφ, and claim (iii) follows.

Because P ∈ ric(φ, J), both φ and φP are output stable. As in the proof of
Proposition 110, we conclude from DARE A∗PA−P +C∗JC = K∗

P ΛP KP that

P = P − LA,P = C∗
φJCφ − C∗

φP
ΛPCφP ,(5.4)

where the residual cost LA,P = s − limn→∞A∗PA exists and vanishes because
P ∈ ric0(φ, J), by assumption. Inserting P crit

0 = C∗
φJCφ into equation (5.4)

gives

P crit
0 − P = C∗

φP
ΛPCφP

where P ∈ ric0(φ, J) is arbitrary. Because ΛP > 0, claim (iv) immediately
follows because ker (CφP ) is A-invariant.
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Actually, we now have all the results on invariant subspaces of the semigroup
that we need to complete this work. For academic interest, we continue to study
the subspaces ker

(
P crit

0 − P
)
. We begin with another variant for the result of

claim (iv) of Lemma 202 is the following:

Corollary 203. Make the same assumptions as in Lemma 202. Let P ∈
Ric(φ, J) be arbitrary, such that ΛP > 0 and P ≤ P crit

0 .

Then A ker
(
P crit

0 − P
)
⊂ ker

(
P crit

0 − P
)
.

Proof. Now Q := P crit
0 −P ≥ 0 satisfies DARE (5.2). Furthermore, this equation

can be put into form

A∗Q
1
2 · R · Q 1

2 A = Q, R = I + Q
1
2 BΛ−1

P B∗Q
1
2 .

Now, because ΛP > 0 and the indicator is always invertible, Λ−1
P > 0. It now

follows that R ≥ I. For any x ∈ H we can now write the balance equation

||R 1
2 · Q 1

2 Ax|| = ||Q 1
2 x||.

Because ker
(
Q

1
2

)
= ker (Q) = ker

(
P crit

0 − P
)
, and R

1
2 has a bounded inverse,

the claim follows.

The case when P crit
0 ≤ P instead of P crit

0 ≥ P is investigated similarly:

Corollary 204. Make the same assumptions as in Lemma 202, but assume,
in addition, that 0 ∈ Ric(φ, J), Λ0 > 0, and P crit

0 ≥ 0. Let P ∈ Ric(φ, J) be
arbitrary, such that ΛP > 0 and P crit

0 ≤ P .

Then A ker
(
P crit

0 − P
)
⊂ ker

(
P crit

0 − P
)
.

Proof. Again, we use the DARE (5.2). This time we write Q := P − P crit
0 ≥ 0.

By claim (i) of Lemma 202, Q satisfies

A∗Q
1
2 · R · Q 1

2 A = Q, R = I − Q
1
2 BΛ−1

P B∗Q
1
2 .

This is exactly the same as the corresponding equation in Corollary 203, except
that one + has changed into −. The claim is proved when we can show, under
the additional assumption, that nevertheless R > 0 is boundedly invertible.

Because P crit
0 ≥ 0, we have 0 < ΛP−P crit

0
= ΛP − B∗P crit

0 B ≤ ΛP . Because
the indicator operator always has a bounded inverse, it follows that 0 < Λ−1

P ≤
Λ−1

P−P crit
0

= Λ−1
Q . Now, clearly R > 0 has a bounded inverse, if in equation

R ≥ I − Q
1
2 BΛ−1

P−P crit
0

B∗Q
1
2 = I − Q

1
2 BΛ−1

Q B∗Q
1
2
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the right hand side is strictly positive. Because 0 ∈ Ric(φ, J), is follows that
Λ0 = D∗JD > 0 has a bounded inverse. We have

Q
1
2 BΛ−1

Q B∗Q
1
2 = Q

1
2 B (Λ0 + B∗QB)−1

B∗Q
1
2

= Q
1
2 BΛ− 1

2
0

(
I + Λ− 1

2
0 B∗QBΛ− 1

2
0

)−1

Λ− 1
2

0 B∗Q
1
2 = Q

1
2 B̃

(
I + B̃∗QB̃

)−1

B̃∗Q
1
2 ,

where B̃ := BΛ− 1
2

0 . Now, by a straightforward calculation (e.g. with the aid of
the Neumann series),

(I + Q
1
2 B̃B̃∗Q

1
2 )−1 = I − Q

1
2 B̃(I + B̃∗QB̃)−1B̃∗Q

1
2 = R,

because Q
1
2 B̃B̃∗Q

1
2 ≥ 0 and thus I + Q

1
2 B̃B̃∗Q

1
2 is boundedly invertible. It

follows that R > 0 with a bounded inverse, and the claim is proved.

An immediate consequence of Corollaries 203 and 204 is the following:

Lemma 205. Let J ∈ L(Y ) be a self-adjoint cost operator. Let φ = ( A B
C D )

be an output stable and I/O stable DLS, such that range (Bφ) = H. Assume

that the regular critical solution P crit
0 :=

(
Ccrit

φ

)∗
JCcrit

φ ∈ ric0(φ, J) exists, and

P crit
0 ≥ 0. Assume that the I/O map Dφ is (J, ΛP crit

0
)-inner. Assume that

0 ∈ Ric(φ, J) and D∗JD = Λ0 > 0,

Let P ∈ Ric(φ, J) be arbitrary, such that ΛP > 0, and P is comparable to P crit
0 .

Then A ker
(
P crit

0 − P
)
⊂ ker

(
P crit

0 − P
)
.

The closed loop semigroup generators AP̃ = A = BKP̃ have the following
invariance properties, for P̃ ∈ ric0(φ, J), P̃ ≥ 0. Recall that these solutions are
exactly those that satisfy 0 ≤ P̃ ≤ P crit

0 , if the conditions of Theorem 188 hold.

Corollary 206. Let J > 0 be a coercive self-adjoint cost operator in L(Y ). Let
φ = ( A B

C D ) be an output stable and I/O stable DLS, such that range (Bφ) =
H. Assume that the input space U and the output space Y are separable, and
the input operator B ∈ L(U ; H) is Hilbert–Schmidt. Assume that the regular

critical solution P crit
0 :=

(
Ccrit

φ

)∗
JCcrit

φ ∈ ric0(φ, J) exists, 0 ∈ Ric(φ, J). Let

P̃ ∈ ric0(φ, J), P̃ ≥ 0, be arbitrary.

Let P ∈ Ric(φ, J) be arbitrary, such that ΛP > 0 and P is comparable to P̃ .
Then AP̃ ker

(
P̃ − P

)
⊂ ker

(
P̃ − P

)
.

Proof. By claim (iii) of Lemma 171 and the assumption that J has a bounded
inverse, the inner DLS

φP̃ =
(

AP̃ B
CP̃ D

)
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is output stable and I/O stable, and the I/O map DφP̃ is (J, ΛP̃ )-inner. Thus

Ric(φP̃ , J) is a H∞DARE. Because range (Bφ) = H , it also follows that

range
(
BφP̃

)
= H , as in the proof of Proposition 178. By Proposition 198, there

is a regular critical solution P̃ crit
0 ∈ ric0(φP̃ , J), and by Lemma 192, P̃ crit

0 = P̃ ≥
0. Because the full solution sets of DAREs satisfy Ric(φ, J) = Ric(φP̃ , J) by
Lemma 157, it follows that 0 ∈ Ric(φP̃ , J). Because J ≥ 0, it follows that the
indicator Λ̃0 = Λ0 = D∗JD > 0. An application of Lemma 205 on DLS φP̃ and
cost operator J proves the claim.
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5.3 Characteristic DLS φ(P )

In this section, we first develop tools that are required to “divide” the unob-
servable subspace ker (Cφ) away from the state space. This gives us a reduced
DLS. With the aid of this construction, we define the characteristic DLS φ(P )
for each solution P ∈ ric(φ, J), see Definition 209. The basic properties of φ(P )
are given in Lemma 210.

Proposition 207. Let φ = ( A B
C D ) be an output stable DLS. Then φ̃ =

(
A∗ C∗
B∗ D∗

)
is input stable, and C∗

φ = Beφ · flip . Here flip = flip 2 = flip ∗ is the unitary
mapping on ỹ ∈ �2(Z; Y ), given by

(flip ỹ)j = y−j−1.

Proof. Let ỹ ∈ �2(Z+; Y ), x0 ∈ H be arbitrary. Then

〈ỹ, Cx0〉 =
∞∑

j=0

〈
yj , CAjx0

〉
=

∞∑
j=0

〈
A∗jC∗yj , x0

〉
=

∞∑
j=0

〈
A∗jC∗(flip ỹ)−j−1, x0

〉
=
〈
Beφ(flip ỹ), x0

〉
=
〈
C∗

φỹ, x0

〉
.

Actually the previous is (at first) true only for ỹ with finitely many nonzero com-
ponents. Only in this case flip ỹ ∈ dom

(
Beφ

)
, but then because dom

(
Beφ

)
:=

Seq−(Y ) is dense in �2(Z−; Y ), it follows that Beφ·flip coincides with the bounded
operator C∗ in a dense set. Because flip is unitary, it follows that Beφ is bounded

and φ̃ is input stable. Recall that dom(B) := Seq−(U) consist of finitely long in-
put sequences for all controllability maps. The input stable controllability map
B can always be extended by continuity from dom(B) to all of �2(Z−; U).

For a quite general DLS φ, the kernel ker (Cφ) can be divided away from the
state space, without changing the I/O map Dφ.

Proposition 208. Let φ = ( A B
C D ) be an output stable and I/O stable DLS, with

state space H. Assume that H0 := ker (Cφ) is nontrivial.

(i) Then there is a reduced DLS φred with a smaller state space Hred :=
ker (Cφ)⊥ ⊂ H, H = H0 ⊕ Hred, such that Dφ = Dφred and ker

(
Cφred

)
=

{0}. The DLS φred is given by

φred :=
(

ΠredA|Hred ΠredB
C|Hred D

)
,

where Πred is the orthogonal projection of H onto Hred. In particular,
φred is I/O stable and output stable.
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(ii) We have ΠredA = ΠredAΠred, Bφred = ΠredBφ and Cφred = Cφ|Hred.
Thus φred written in I/O-form is

Φred =
[
(ΠredA|Hred)j ΠredBφτ∗j

Cφ|Hred Dφ

]
.

(iii) The adjoint DLS φ̃red is I/O stable and input stable. Furthermore,

range
(
B gφred

)
= Hred.

(iv) If, in addition, φ is input stable, then φred is input stable and φ̃red is
output stable.

Proof. Trivially H0 := ker (Cφ) = ∩j≥0ker
(
CAj

)
is A-invariant. By Propo-

sition 207, C∗
φ = Beφ · flip , where flip is the unitary flip reflecting �2(Z+; Y )

onto �2(Z−; Y ). We have ker (Cφ) = range
(
C∗

φ

)⊥
= range

(
Beφ

)⊥
, where φ̃ =(

A∗ C∗
B∗ D∗

)
is the adjoint DLS of φ.

Because the semigroup generator of φ̃ is A∗, it follows that the controllable

subspace of φ̃, given by Hred := range
(
Beφ

)
= ker (Cφ)⊥ is A∗-invariant, and

we have the orthogonal direct sum decomposition H0 ⊕ Hred = H . If Πred is
the orthogonal projection onto Hred, then A∗Πred = ΠredA∗Πred because the
range of the observability map is always semigroup invariant.

Define the bounded operators via their adjoints as follows: (Ared)∗ := A∗|Hred :
Hred → Hred, (Cred)∗ := ΠredC∗ : Y → Hred and (Bred)∗ := B∗|Hred :
Hred → U . Define the DLSs

φred :=
(

Ared Bred

Cred D

)
, φ̃red =

(
(Ared)∗ (Cred)∗

(Bred)∗ D∗

)
.

These DLSs are adjoints of each other, and the state space of both φred and
φ̃red is, by definition, Hred ⊂ H . It is easy to see that φred equals the one given
in claim (i).

Because A∗Πred = ΠredA∗Πred, it follows that (Ared)∗j(Cred)∗ =
(A∗)jΠredC∗. Now, because C∗ is the input operator of φ̃, we have range (C∗) ⊂
range

(
Bφ̃

)
, and thus ΠredC∗ = C∗. This shows that B gφred = Beφ = ΠredBeφ

where Hred is regarded as a subspace of H and the projection Πred serves only
as a reminder of this. In particular, because φ is output stable, then φ̃ is input
stable together with φ̃red. But then, φred is output stable. From definition
of Hred, it immediately follows that range

(
B gφred

)
is dense in Hred, and then

ker
(
Cφred

)
= {0}, where Cφred : Hred → �2(Z+; Y ).
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Claim (i) is proved, once we show that the I/O maps coincide Deφ = D gφred .
Because A∗Πred = ΠredA∗Πred, then (A|Hred)j = Aj |Hred. Now

(Bred)∗
(
Ared

)∗j
(Cred)∗ = B∗(A∗)j |Hred · ΠredC∗

As above, from the inclusion range (C∗) ⊂ range
(
Beφ

)
it follows that

(Bred)∗
(
Ared

)∗j (Cred)∗ = B∗(A∗)jC∗ for all j ≥ 0. Because also the static
parts coincide, we have Deφ = D gφred , and equivalently Dφ = Dφred .

We consider the second claim (ii). The claim about the semigroup is already
settled. We have already shown B gφred = ΠredBeφ, and adjoining this gives flip ·
CφΠred = flip · Cφred , or Cφ|Hred = Cφred , because flip is unitary.

It remains to consider the controllability map of φred. Because ΠredA =
ΠredAΠred, (Ared)jBred = (ΠredAΠred)jΠredB = ΠredAjB. Thus Bφred ũ =
ΠredBφũ for all ũ ∈ dom (Bφ). Consequently, if φ is input stable, so is φred.
This proves claims (ii) and (iv). The claim (iii) follows by adjoining the previ-
ous results.

We make an additional remark on the controllability properties of φred. Be-
cause Bφred = ΠredBφ, it follows from the boundedness of the orthogonal
projection that Πred range (Bφ) ⊂ Πredrange (Bφ) = range

(
Bφred

)
. Because

the range of the projection Πred : H → Hred is of the second category in
Hred, Πred range (Bφ) is, by the Open Mapping Theorem, a closed subspace
of range

(
Bφred

)
, in the norm of HP . If φ is approximately controllable, then

Πred range (Bφ) is dense in Hred, because a continuous surjective mapping maps
dense sets onto dense sets. It then follows that range

(
Bφred

)
= Hred; i.e. φred

is approximately controllable.

Similar results as Proposition 208 for continuous time well-posed linear systems
are given in [89]. There, the state space of the reduced system is a factor space
of type H/ker (Cφ). If H is a Hilbert space, we can identify this with the Hilbert
subspace ker (Cφ)⊥.

We are ready to define the main object of this section, namely the characteristic
DLS φ(P ), for P ∈ ric(φ, J).

Definition 209. Let J ∈ L(Y ) be a self-adjoint cost operator. Let φ = ( A B
C D )

be an output stable and I/O stable DLS. Assume that there exists a regular
critical solution P crit

0 ∈ ric0(φ, J) and the I/O map D is (J, ΛP crit
0

)-inner. Let
P ∈ ric(φ, J) be arbitrary.
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(i) Define the closed subspaces

HP := ker (CφP ) , HP := ker (CφP )⊥ ,

of the state space H. By ΠP denote the orthogonal projection onto HP .

(ii) The reduced DLS (φP )red of φP (as given in Proposition 208) is denoted
by

φ(P ) :=
(

ΠP A|HP ΠP B
−KP |HP I

)
,

The DLS φ(P ) is called the characteristic DLS (of pair (φ, J)), centered
at P

The following lemma collects the results we have obtained in a useful form.

Lemma 210. Let J ∈ L(Y ) be a self-adjoint cost operator. Let φ = ( A B
C D )

be an output stable and I/O stable DLS. Assume that there exists a regular
critical solution P crit

0 ∈ ric0(φ, J), and the I/O map Dφ is (J, ΛP crit
0

)-inner. Let
P ∈ ric0(φ, J) be arbitrary. Then the following holds:

(i) The state space of φ(P ) is HP . The DLS φ(P ) is I/O stable, output stable,
and ker

(
Cφ(P )

)
= {0}. The I/O map of φ(P ) satisfies Dφ(P ) = DφP .

The adjoint DLS φ̃(P ) is input stable and approximately controllable:

range
(
B

φ̃(P )

)
= HP .

(ii) If, in addition, φ is input stable, then φ(P ) is input stable and φ̃(P ) is
output stable.

(iii) Assume, in addition, that range (Bφ) = H, and ΛP > 0. Then HP =

ker
(
P crit

0 − P
)
, where P crit

0 :=
(
Ccrit

φ

)∗
JCcrit

φ ∈ ric0(φ, J) is the unique
regular critical solution.

Proof. Claim (i) follows from claims (i) and (iii) of Proposition 208. If φ is input
stable, so are all spectral DLSs φP , P ∈ ric(φ, J) because they have the same
controllability map. Claim (ii) follows now from claim (iv) of Proposition 208.
Claim (iii) is a consequence of claim (iv) of Lemma 202.

We remark that only the last claim (iii) required the I/O map of φ to be
(J, ΛP crit

0
)-inner. Because we can write HP in terms of the solutions P and

P crit
0 , we can actually calculate the projection ΠP and also the operators ap-

pearing in φ(P ).
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5.4 Hankel and Toeplitz operators,

and the characteristic DLS φ(P )

Let J ∈ L(Y ) be a self-adjoint cost operator, and φ = ( A B
C D ) be an I/O stable

and output stable DLS, such that a regular critical P crit
0 ∈ ric0(φ, J) exists.

Furthermore, assume that φ has a (J, ΛP crit
0

)-inner I/O map. In Definition
209 and Lemma 210, we associate the characteristic DLS φ(P ) to each P ∈
ric0(φ, J). The I/O map Dφ(P ) equals the (ΛP , ΛP crit

0
)-inner operator NP , where

NP is the inner factor in the (ΛP , ΛP crit
0

)-inner-outer factorization of the spectral
factor DφP = NPX . If Dφ itself is (J, ΛP crit

0
)-inner, then DφP = NP and the

outer factor is trivially X = I, see Proposition 147. However, we use the symbol
NP in place for DφP , because in the final Section 5.7, we allow DφP to have a
nontrivial outer factor X .

In the main result of this section, Lemma 213, we consider the ranges of the
observability map C

φ̃(P )
and the Hankel operator π̄+ÑP π− of the adjoint char-

acteristic DLS given by

φ̃(P ) :=
(

A∗|HP −ΠP K∗
P

B∗|HP I

)
.

Naturally, the I/O map of φ̃(P ) equals ÑP . If the input operator B ∈ L(U ; H)
is Hilbert–Schmidt and the input space U is separable, it follows that ÑP is
(Λ−1

P crit
0

, Λ−1
P )-inner because NP is (ΛP , ΛP crit

0
)-inner, by Corollary 200.

The DLS φ̃(P ) is interesting because the ranges of the Toeplitz operators ÑP π̄+

code the partial ordering of the solution set ric0(φ, J), even if DφP contains a
nontrivial outer factor. For details, see Theorem 187 and the discussion as-
sociated to it. We remark that because Theorem 187 deals with the adjoint
operators ÑP rather than the original NP , the adjoint DLS φ̃(P ) must be con-
sidered instead of φ(P ).

In order to prove Lemma 213, we again need auxiliary Propositions 211 and
212 that have some interest in themselves. Let φ be a quite general I/O sta-
ble and output stable DLS. In Proposition 211, we consider the inclusions of
the ranges range (Cφ) and range (π̄+Dφπ−). In the particular case, when the
range (π̄+Dφπ−) is closed, equality of the ranges appears.

Proposition 211. Let φ := ( A B
C D ) be an output stable and I/O stable DLS,

with input space U , state space H and output space Y . Define the domains and
ranges as follows: range (π̄+Dφπ−) := π̄+Dφ �2(Z−; U), dom (Bφ) := Seq−(U),
range (Bφ) := Bφ dom (Bφ), and range (Cφ) := Cφ H.
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(i) If φ is input stable, then

range (π̄+Dφπ−) ⊂ range (C) .

(ii) If φ is approximately controllable, i.e. range (Bφ) = H, then

range (Cφ) ⊂ range (π̄+Dφπ−).

(iii) If φ is input stable and approximately controllable, and the Hankel operator
π̄+Dφπ− has closed range, then

range (Cφ) = range (π̄+Dφπ−) .

Proof. We start by establishing claim (i). Let ỹ ∈ range (π̄+Dφπ̄−) be ar-
bitrary. Then there exists a (possibly nonunique) ũ ∈ �2(Z−; U) such that
ỹ = π̄+Dφπ−ũ. Because dom(Bφ) := Seq−(U) is dense in �2(Z−; U), we
can choose a sequence {ũj}j≥0 ⊂ dom(Bφ) such that ũj → ũ in the norm
of �2(Z−; U). Then, because Dφ is bounded,

π̄+Dφπ−ũj → ỹ as j → ∞,(5.5)

in the norm of �2(Z+; Y ). Because Bφ is bounded, there is x ∈ H , such that
Bφπ−ũj → x. Because Cφ is bounded,

CφBφπ−ũj → Cφx as j → ∞,(5.6)

in the norm of �2(Z+; Y ). Because π̄+Dφπ− = CφBφ on dom (Bφ), we have
Cφx = ỹ and ỹ ∈ range (Cφ), by equations (5.5), (5.6), and the uniqueness of the
limit. Because ỹ ∈ range (π̄+Dφπ̄−) was arbitrary, claim (i) follows.

The proof of claim (ii) is straightforward. Trivially Cφ range (Bφ) ⊂
range (π̄−Dπ−). But then, the continuity of Cφ implies the inclusions

range (C) := C H = C range (Bφ) ⊂ C range (Bφ) ⊂ range (π̄−Dπ−),

because H = range (Bφ) as claimed. The last claim (iii) is an easy consequence
of the previous claims.

Proposition 212. Let H be a Hilbert Space, and H1 its closed subspace. Let
H2 be a (possibly nonclosed) vector subspace of H, such that H1⊥H2 and H =
H1 + H2.

Then H2 is closed, and we have the orthogonal direct sum decomposition H =
H1 ⊕ H2.
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Proof. If x ∈ H1 ∩ H2, then the orthogonality of H1 and H2 implies that 0 =
〈x, x〉 = ||x||2, whence x = 0. Thus H1 ∩ H2 = {0}, and H = H1 + H2 is an
algebraic direct sum. Assume x ∈ H2, and let H2 
 xj → x in the norm of H .
Then x = x̃1 + x̃2 for unique x̃1 ∈ H1 and x̃2 ∈ H2. Let P be the orthogonal
projection onto H1. Then Pxj = 0 for all j because xj ∈ H2 ⊂ H⊥

1 . Now we
can estimate

||Px|| = ||Px − Pxj || ≤ ||x − xj || → 0 as j → ∞.

It follows that 0 = Px = P x̃1+P x̃2. Because x̃1 ∈ H1, then P x̃1 = x̃1. Because
x̃2 ∈ H2 ⊂ H⊥

1 , then P x̃2 = 0. Thus x̃1 = 0 and x = x̃2 ∈ H2. This implies
that H2 is (sequentially) closed.

Now we have obtained necessary preliminary results, and it remains to apply
Propositions 211 and 212 to the adjoint characteristic DLS φ̃(P ). We work
under the assumption that a regular critical P crit

0 ∈ ric0(φ, J) exists, the critical
indicator ΛP crit

0
is positive, the input operator B ∈ L(U ; H) is Hilbert–Schmidt

and the input space U is separable. Then all indicators ΛP for P ∈ ric0(φ, J)
are positive by Lemma 145, applied as in Corollary 200. So we can define the
normalized I/O maps

N ◦
P := Λ

1
2
PNP Λ− 1

2
P crit

0
, Ñ ◦

P := Λ− 1
2

P crit
0

ÑP Λ
1
2
P(5.7)

where N ◦
P is inner from the left, (i.e. (I, I)-inner). In fact, the transfer functions

of both these normalized DLSs are inner from both sides. If the input space U
is finite dimensional, this is a trivial fact because all isometries are unitary in a
finite dimensional space. The general case, when U is just a separable Hilbert
space, has been dealt in claim (ii) of Proposition 147. The normalized DLSs
are defined analogously:

φ◦(P ) := Λ
1
2
P φ(P )Λ− 1

2
P crit

0
, and φ̃◦(P ) := Λ− 1

2
P crit

0
φ̃(P )Λ

1
2
P .(5.8)

In the following lemma, we consider the adjoint characteristic DLS φ̃◦(P ).
We show that the range of the Toeplitz operator ÑP π̄+ is “complemented”
in �2(Z+; U) by the state space HP of φ̃(P ), through the observability map
C

φ̃◦(P )
.

Lemma 213. Let J ∈ L(Y ) be a self-adjoint cost operator. Let φ = ( A B
C D ) be

an input stable, output stable and I/O stable DLS, whose input operator B is
Hilbert–Schmidt and input space U is separable. Assume that a regular critical
P crit

0 ∈ ric0(φ, J) exists, and ΛP crit
0

> 0. Assume that the I/O map Dφ is
(J, ΛP crit

0
)-inner.

For all P ∈ ric0(φ, J), we have an orthogonal direct sum decomposition

�2(Z+; U) = range
(
Ñ ◦

P π̄+

)
⊕ range

(
C

φ̃◦(P )

)
,
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where the symbols are defined as in equations (5.7) and (5.8). In fact,
range

(
C

φ̃◦(P )

)
= range

(
π̄+Ñ ◦

P π−
)
, where both subspaces are closed.

Proof. We first show that

�2(Z+; U) = range
(
Ñ ◦

P π̄+

)
⊕ range

(
π̄+ÑP π̄−

)
,(5.9)

where both the spaces are closed in �2(Z+; U). Because N ◦
P (eiθ) is inner from

both sides, also Ñ ◦
P (eiθ) is inner from both sides as has been discussed before

the statement of this lemma. We conclude that Ñ ◦
P : �2(Z; U) → �2(Z; U) is a

bounded bijection, with range
(
Ñ ◦

P

)
= �2(Z; U) and a bounded, shift-invariant

(but noncausal) inverse. Thus, for each w̃ ∈ �2(Z+; U), there is a ũ ∈ �2(Z; U)
such that

w̃ = π̄+Ñ ◦
P ũ = π̄+Ñ ◦

P π̄+ũ + π̄+Ñ ◦
P π−ũ.

So the algebraic direct sum of the (yet possibly nonclosed) vector spaces
range

(
π̄+Ñ ◦

P π̄+

)
and range

(
π̄+Ñ ◦

P π−
)

is all of �2(Z+; U).

We prove the orthogonality of these spaces. Ñ ◦
P is a causal isometry on �2(Z; U),

by [27, part (a) Theorem 1.1]; here we have used the fact that N ◦
P (eiθ) is unitary

a.e. eiθ ∈ T, as discussed before this lemma. We have

(π̄+Ñ ◦
P π̄+)∗ · π̄+Ñ ◦

P π− = π̄+(Ñ ◦
P )∗π̄+ · π̄+Ñ ◦

P π−

= π̄+(Ñ ◦
P )∗Ñ ◦

P π− − (π−Ñ ◦
P π̄+)∗π−Ñ ◦

P π−

= π̄+π− − (π−Ñ ◦
P π̄+)∗π−Ñ ◦

P π− = 0,

because π−Ñ ◦
P π̄+ = 0 by causality. The range of the Toeplitz operator Ñ ◦

P π̄+

is closed, because its symbol is inner from both sides. The range of the Hankel
operator range

(
π̄+Ñ ◦

P π−
)

is closed, by Proposition 212 where the spaces are

H = �2(Z+; U), H1 = range
(
Ñ ◦

P

)
and H2 = range

(
π̄+Ñ ◦

P π−
)
. This verifies

that we have the orthogonal direct sum decomposition (5.9), and it remains to
show that the same is essentially true when the Hankel operator is replaced by
the observability map C

φ̃◦(P )
.

As discussed before the statement of this Lemma, ΛP > 0 for all P ∈ ric0(φ, J),

and the adjoint characteristic DLS is described by Lemma 210. Clearly φ̃◦(P )
is I/O stable, because its I/O map is even inner. By claim (i) of Lemma 210,

φ̃◦(P ) is input stable, and approximately controllable range
(
B

φ̃◦(P )

)
= HP .

Finally, by claim (ii) of Lemma 210, φ̃◦(P ) is output stable, because φ is as-
sumed to be input stable. Now, claim (iii) of Proposition 211 implies that
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range
(
π̄+Ñ ◦

P π−
)

= range
(
C

φ̃◦(P )

)
, and, in particular, they are closed sub-

spaces. The proof is now complete.

For the closedness of the range of a Hankel operator, see [35, p. 258-259]. In
Theorem 219 it is important that the observability map C

φ̃◦(P )
is coercive. To

have this under the conditions of Lemma 213, it is enough to establish the
injectivity.
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5.5 Truncated shifts and operator models

In this section, we recall some notions from the Sz.Nagy–Foias operator model
for later use in Section 5.6. Good references are e.g. [27, Chapter IX, Section
5], [70], and [90]. In this section, all Hilbert spaces are assumed to be separable.
This makes it possible to work in terms of the boundary traces because our
transfer functions are always of bounded type. As before, if Θ denotes an
I/O map, then Θ(z) is its transfer function, and Θ(eiθ) is the nontangential
boundary trace. We identify the spaces H2(T; U), (L2(T; U)) and �2(Z+; U),
(�2(Z; U), respectively), by Fourier transform. With this identification, the
unilateral shift operator S = τπ̄+ denotes the forward shift on �2(Z+; U) as
well as multiplication by eiθ on H2(T; U). The adjoint backward shift S∗ =
π̄+τ∗ is understood in the analogous way. Finally, the symbol Θ denotes the
multiplication operator by Θ(eiθ) on L2(U), as well as the corresponding I/O
map on �2(Z; U).

As before, an analytic function Θ(z) ∈ H∞(L(U)) is called inner (inner from the
left), if the boundary trace function Θ(eiθ) is unitary (isometry, respectively)
a.e. eiθ ∈ T. If Θ(z) is an inner from the left, the closed subspace is defined by

KΘ := H2(T; U) � ΘH2(T; U).(5.10)

By PΘ we denote the orthogonal projection onto KΘ. Because ΘH2(T; U) is S-
invariant, KΘ is S∗-invariant, or equivalently, S-co-invariant. By the Beurling–
Lax–Halmos Theorem, all S∗-invariant subspaces of H2(T; U) are of the form
H2(T; U) � ΘH2(T; U ′), where Θ(z) ∈ H∞(L(U ; U ′)) is inner from the left,
and U ′ ⊂ U is a Hilbert subspace.

We now consider the restriction S∗|KΘ and its adjoint, the compression PΘS|KΘ.
The restriction S∗|KΘ is a contractive linear operator on the Hilbert subspace
KΘ ⊂ H2(T; U). It is well known that various properties of S∗|KΘ are coded
into the function Θ(eiθ); for this reason it is called the characteristic function of
S∗|KΘ. In a more general case, the characteristic function Θ(eiθ) ∈ H∞(T; U)
can be allowed to be just contractive in the sense that ||Θ(eiθ)|| ≤ 1 a.e. eiθ ∈ T.
In this case, the set of operators {S∗|KΘ} is rich enough to model all contractive
linear operators. This is the famous Sz.Nagy–Foias operator model of contrac-
tions. For a lucid introduction, see [27, Chapter IX, Section 5]. The special
case, appropriate to this work, is when the characteristic function Θ(eiθ) is in-
ner. Then the contraction S∗|KΘ has a number of interesting properties and we
now look at some of them. The following proposition is [70, Corollary, p. 43]:

Proposition 214. Let Θ(eiθ) be a contractive analytic function. Then Θ(eiθ)
is inner (from both sides) if and only if S∗|KΘ ∈ C00. Here C00 denotes the
class of contractions T on a Hilbert space, such that

s − limj→∞T j = 0, s − limj→∞T ∗j = 0.
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We clearly see that class of C00-contractions is invariant under unitary similarity,
and closed under taking the Hilbert space adjoint. Actually [70, Corollary on p.
43] says more than Proposition 214: all C00-contractions are unitarily equivalent
to some S∗|KΘ, for some inner Θ(z). The adjoint (S∗|KΘ)∗ = PΘS|KΘ is a
C00-contraction, and it is unitarily equivalent to S∗|KeΘ, where Θ̃(z) = Θ(z̄)∗ is
the adjoint inner function. For proof, see [70, Lemma on p. 75].

The spectrum of S∗|KΘ ∈ C00 is studied in Lemma 216 with the aid of spectrum
of the function Θ(z), defined as follows:

Definition 215. Let Θ(z) be an inner function. Its spectrum σ(Θ) is defined to
be the complement of the set of z ∈ D, such that an open neighborhood Nz ⊂ C
of z exists with

(i) Θ(z)−1 exists in Nz ∩ D,

(ii) Θ(z)−1 can be analytically continued to a full neighborhood Nz.

For the proof of the following Livsic-Möller -type result, [70, Theorem on p. 75].

Lemma 216. Let U be a separable Hilbert space, and Θ(z) ∈ H∞(L(U)) be
inner. Define TΘ := PΘS|KΘ ∈ L(KΘ). Then

(i) σ(TΘ) = σ(Θ), where σ(Θ) ⊂ D is the spectrum of the characteristic
function Θ(z).

(ii) The point spectrum of TΘ and T ∗
Θ = S∗|KΘ satisfies

σp(TΘ) = {z ∈ D | ker (Θ(z)) = {0}}

σp(T ∗
Θ) = {z ∈ D | ker

(
Θ̃(z)

)
= {0}}

We remark that σP (TΘ) ⊂ σ(TΘ), and the inclusion can be proper. The dimen-
sion dimU is the multiplicity of the shift that models TΘ. If dimU < ∞, then
σp(T ∗

Θ) = σp(TΘ), by dimension counting. Also, dim ker (z − TΘ) ≤ dimU for
all z ∈ D. Much more is known about the truncated shift S∗|KΘ if we know
its characteristic function Θ(z), and conversely. For example, the invariant sub-
space structure of S∗|KΘ and the left inner factors of Θ(z) are connected. To
apply these descriptions to DARE, we need to translate these notions into the
time domain and state space language.

Definition 217. Let φ = ( A B
C D ) be an I/O stable and output stable DLS. We

define the following subspaces

Kφ := �2(Z+; Y ) � range (Dφπ̄+)

K̃φ := range (Cφ) ⊂ �2(Z+; Y ).
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Both Kφ and K̃φ are S∗-invariant. If the transfer function Dφ(z) is inner,
we see that the closed subspace Kφ corresponds, via Fourier transform, to the
co-invariant subspace KDφ

⊂ H2(T; Y ), as defined in equation (5.10). In this
paper, the spaces K

φ̃◦(P )
is investigated. Under the assumptions of Lemma 213,

we have the equality of the spaces range
(
C

φ̃◦(P )

)
= K̃

φ̃◦(P )
= K

φ̃◦(P )
, where

D
φ̃◦(P )

= Ñ ◦
P . The model operator S∗|K eN◦

P
is the truncated unilateral shift

(π̄+τ∗) |K
φ̃◦(P )

in space �2(Z+; U). Actually, we shall write S∗ instead of π̄+τ∗

also in the time domain. Stated in other words, the backward shift S∗ = π̄+τ∗,
restricted to K

φ̃◦(P )
= range

(
C

φ̃◦(P )

)
is a contractive linear operator whose

characteristic function is Ñ ◦
P (z) ∈ H∞(L(U)). In the next section, we shall

make a connection to the state space and semigroup of φ̃◦(P ).
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5.6 Invariant subspaces of the semigroup

It is now time to combine the results of previous sections, and produce the
first of our main results. We start by reminding the main lines of previous
sections. Let J ∈ L(Y ) be a cost operator, and φ = ( A B

C D ) be an output stable
and I/O stable DLS, such that range (Bφ) = H . We assume that the regular
critical solution P crit

0 := (Ccrit
φ )∗JCcrit

φ ∈ ric0(φ, J) exists and ΛP crit
0

> 0. It
then follows that all P ∈ ric0(φ, J) have a positive indicator, see Corollary 146.
In this section, we still make the technical assumption that the I/O map Dφ

is (J, ΛP crit
0

)-inner, as in Lemma 210. This assumption will be removed in the
final Section 5.7 of this work.

Under these assumptions, we associate two mutually orthogonal subspaces HP :=
ker (CφP ) ⊂ H and HP := H � HP to each solution P ∈ ric0(φ, J). Here, as
always before, φP :=

(
A B

−KP I

)
denotes the spectral DLS, centered at P . In

claim (iv) Lemma 202 it is shown that HP is A-invariant. By the same lemma,
the subspace HP is related to the solution P ∈ ric0(φ, J) in the following sim-
ple way: Because Dφ is (J, ΛP crit

0
)-inner, HP = ker (CφP ) = ker

(
P crit

0 − P
)
.

Now we see that the solutions P ∈ ric0(φ, J) are immediately associated to a
family {HP} of A∗-invariant subspaces. This makes it possible to define the
restricted operators A∗|HP and their adjoints, the compressions ΠP A|HP of
the semigroup generator.

In this section, we study the structure of the restriction A∗|HP ∈ L(HP )
in terms of the characteristic (transfer) function Ñ ◦

P (z), for arbitrary P ∈
ric0(φ, J). This is done with the aid of the (normalized) adjoint characteristic

DLS φ̃◦(P ) whose semigroup generator is A∗|HP , and I/O maps is D
φ̃◦(P )

(z) =

Ñ ◦
P (z). The DLS φ̃◦(P ) is the conveniently normalized adjoint DLS of φ(P )

which has been introduced in the following way: By Proposition 208, the null
space HP := ker (CφP ) ⊂ H is divided away from the state space H of the spec-
tral DLS φP . We obtain another DLS, the characteristic φ(P ) := (φP )red whose
state space is HP — it is the reduced DLS whose I/O map equals that of the
spectral DLS φP . Furthermore, the DLS φ(P ) is output stable and observable:
ker

(
Cφ(P )

)
= {0}. The adjoint DLS φ̃(P ) is input stable and approximately

controllable: range
(
B

φ̃(P )

)
= HP . A simple normalization is now required to

turn φ̃(P ) into φ̃◦(P ).

Under the above assumptions, the I/O map NP of φ(P ) is (ΛP , ΛP crit
0

)-inner,
where both ΛP and ΛP crit

0
are positive. The normalization of formulae (5.7)

and (5.8), gives us φ◦(P ) and its adjoint DLS φ̃◦(P ). The latter is particularly
interesting to us, and already considered in Section 5.4. The DLS φ(P ) and its
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normalized version φ◦(P ) is given by

φ(P ) :=
(

ΠP A|HP ΠP B
−KP |HP I

)
, φ◦(P ) :=

(
ΠP A|HP ΠP BΛ− 1

2
P crit

−Λ
1
2
P KP |HP Λ

1
2
P Λ− 1

2
P crit

)
.

The state space of the DLSs φ(P ), φ◦(P ), φ̃(P ) and φ̃◦(P ) is HP , which is re-

garded as a subspace of H . The properties of φ̃◦(P ) and its semigroup generator
A∗|HP are described in the following.

Lemma 218. Let J ∈ L(Y ) be a self-adjoint cost operator. Let φ = ( A B
C D )

be an output stable and I/O stable DLS, whose input operator B ∈ L(U ; H) is
Hilbert–Schmidt and input space U is separable. Assume that the regular critical
solution P crit

0 := (Ccrit
φ )∗JCcrit

φ ∈ ric0(φ, J) exists, and ΛP crit
0

> 0. Assume that
the I/O map Dφ is (J, ΛP crit

0
)-inner.

For arbitrary P ∈ ric0(φ, J), the following holds:

(i) The normalized adjoint characteristic DLS φ̃◦(P ) is input stable and

range
(
B

φ̃◦(P )

)
= HP . The observability map C

φ̃◦(P )
is densely defined

and closed in HP . We have the commutant equation(
S∗|K̃

φ̃◦(P )

)
· C

φ̃◦(P )
x0 = C

φ̃◦(P )
· (A∗|HP )x0, S∗ := π̄+τ∗,(5.11)

for all x0 ∈ dom
(
C

φ̃◦(P )

)
, where the possibly nonclosed subspace K̃

φ̃◦(P )
⊂

�2(Z+; U) is given in Definition 217.

(ii) Assume, in addition, that φ is input stable. Then the DLS φ̃◦(P ) is output
stable and dom

(
C

φ̃◦(P )

)
= HP . The range of C

φ̃◦(P )
is closed, and equals

K
φ̃◦(P )

, given in Definition 217. The following similarity transform holds(
S∗|K

φ̃◦(P )

)
· C

φ̃◦(P )
= C

φ̃◦(P )
· (A∗|HP ),(5.12)

where all the operators are bounded.

(iii) Assume, in addition, that φ is input stable and approximately controllable:
range (Bφ) = H. Then ker

(
C

φ̃◦(P )

)
= {0}, and the observability map

C
φ̃◦(P )

: HP → K
φ̃◦(P )

is a bounded bijection with a bounded inverse.

Proof. We start with claim (i). The DLS φ̃◦(P ) is input stable and approxi-
mately controllable, by claim (i) of Lemma 210, because the normalization by
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the boundedly invertible indicator operators ΛP crit
0

and ΛP plays no essential
role. For any I/O stable DLS φ, range (Bφ) ⊂ dom(Cφ), by Lemma 35. It
follows that the observability map C

φ̃◦(P )
is densely defined in HP , because

range
(
φ̃◦(P )

)
= HP . The closedness of C

φ̃◦(P )
has been proved in Lemma 31.

Equation (5.11) is a basic property of the DLS, and claim (i) is now proved.

We proceed to prove claim (ii). Claim (ii) of Lemma 210 implies the output

stability of φ̃◦(P ), if it is assumed that φ is input stable. By the Closed Graph
theorem, we see that dom

(
C

φ̃◦(P )

)
= HP . The range of C

φ̃◦(P )
is closed, and

equals K
φ̃◦(P )

, by Lemma 213. Now the similarity transform (5.12) follows now
from equation (5.11).

To prove the final claim (iii), we show that approximately controllability
range (Bφ) = H implies the injectivity of the observability map C

φ̃◦(P )
. We

first show that if range (Bφ) = range (BφP ) = H , then range
(
Bφ(P )

)
= HP =

range (ΠP ). For contradiction, assume that x0 ∈ range (ΠP ) � range
(
Bφ(P )

)
.

Because Bφ(P ) = ΠPBφP = ΠPBφ by claim (ii) of Proposition 208, we would
have for such x0 and all ũ ∈ �2(Z−; U):

0 = 〈x0, ΠPBφũ〉 = 〈ΠP x0,Bφũ〉 = 〈x0,Bφũ〉 .

But then x0 = 0 because range (Bφ) is dense in H . So range
(
Bφ(P )

)
= HP , or

equivalently, ker
(
C

φ̃(P )

)
= {0}, by Proposition 207. The proof is completed,

by recalling the well known functional analytic fact that a bounded bijection
between Hilbert spaces has a bounded inverse.

We conclude from claim (iii) of Lemma 218 that if the observability map C
φ̃◦(P )

is
injective, then the similarity transform (5.12) effectively combines the properties
of A∗|HP to the properties of the restricted shift S∗|K

φ̃◦(P )
. By using the theory

of shift operator models as outlined in Section 5.5, the properties of S∗|K
φ̃◦(P )

and its characteristic function D
φ̃◦(P )

(z) = Ñ ◦
P (z) are tied together in a very

strong manner.

Theorem 219. Let J ∈ L(Y ) be a self-adjoint cost operator. Let φ = ( A B
C D )

be an input stable, output stable and I/O stable DLS, such that range (Bφ) = H.
Assume that the input operator B ∈ L(U ; H) is Hilbert–Schmidt and the input
space U is separable. Assume that the regular critical P crit

0 := (Ccrit
φ )∗JCcrit

φ ∈
ric0(φ, J) exists, and ΛP crit

0
> 0. Assume that the I/O map Dφ is (J, ΛP crit

0
)-

inner.

Then for arbitrary P ∈ ric0(φ, J) the following holds:
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(i) The restriction A∗|HP is similar to a C00-contraction, whose inner char-
acteristic function is Ñ ◦

P (z) ∈ H∞(L(U)). The similarity transform is
given by (

S∗|K
φ̃◦(P )

)
· C

φ̃◦(P )
= C

φ̃◦(P )
· (A∗|HP )(5.13)

where C
φ̃◦(P )

: HP → K
φ̃◦(P )

is a bounded bijection, and the S∗-invariant
subspace K

φ̃◦(P )
is given in Definition 217.

(ii) The spectra satisfy σ(ΠP A|HP ) = σ(Ñ ◦
P ) = σ(A∗|HP ), where the bar

denotes complex conjugation, and the spectrum of the inner function is
given in Definition 215.

In particular, both σ(ΠP A|HP ) and σ(A∗|HP ) are subsets of the closed
unit disk D.

(iii) The point spectra satisfy

σp(A∗|HP ) = {z ∈ D | ker (NP (z)) = {0}}(5.14)

and

σp(ΠP A|HP ) = {z ∈ D | ker
(
ÑP (z)

)
= {0}}.(5.15)

In particular, if A∗|HP is compact, then it is power stable
(i.e. ρ(A∗|HP ) < 1).

(iv) Both A∗|HP and its adjoint ΠP A|HP are strongly stable.

Proof. The first claim (i) follows from the similarity transform in equation
(5.12), under the assumptions of claim (iii) of Lemma 218, together with the
discussion in Section 5.5.

Let us look at claim (ii) of the spectrum. Let λ ∈ C be arbitrary. Then we have(
λ − S∗|K

φ̃◦(P )

)
= C

φ̃◦(P )

(
λ − A∗|HP

) (
C

φ̃◦(P )

)−1

.(5.16)

where
(
C

φ̃◦(P )

)−1

: K
φ̃◦(P )

→ HP is the bounded inverse of the bounded bijec-

tion. Immediately, σ
(
S∗|K

φ̃◦(P )

)
= σ(A∗|HP ). By adjoining

σ
(
P

φ̃◦(P )
S|K

φ̃◦(P )

)
= σ(

(
A∗|HP

)∗
) = σ(ΠP A|HP ),

where P
φ̃◦(P )

is the orthogonal projection of �2(Z+; U) onto K
φ̃◦(P )

. Lemma

216 implies now that σ(A∗|HP ) = σ(ΠP A|HP ) = σ(Ñ ◦
P ). This proves claim
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(ii). Claim (iii) about the point spectra follows similarly from equation (5.16)
and the latter claim of Lemma 216. We just remark that if A∗|HP is compact,
then σ(A∗|HP ) ⊂ D because the origin is the only accumulation point that a
spectrum of a compact operator can have.

To verify claim (iv), note first that
(
S∗|K

φ̃◦(P )

)
is a C00-contraction, see Propo-

sition 214. Then we have

||
(
A∗|HP

)j
x0|| ≤ ||

(
C

φ̃◦(P )

)−1

|| · ||
(
S∗|K

φ̃◦(P )

)j

C
φ̃◦(P )

x0|| → 0,

as j → ∞. The adjoint part is similar, and the proof is complete.

Corollary 220. Make the same assumptions as in Theorem 219, but assume,
in addition, that dimU < ∞ . Then for arbitrary P ∈ ric0(φ, J)

σ(A∗|HP ) ∩ D = σp(A∗|HP ) = σp(ΠP A|HP ),(5.17)

where the bar denotes complex conjugation. If {λj(A∗|HP )}j≥1 is the enumera-
tion of the eigenvalues σp(A∗|HP ) in the nondecreasing order of absolute values,
then the following Blaschke condition is satisfied∑

j≥1

(1 − |λj(A∗|HP )|) < ∞.(5.18)

In particular, both A∗|HP and ΠP A|HP are injective.

Proof. From claim (iii) of Theorem 219 we conclude that σp(A∗|HP ) =

σp(ΠP A|HP ) because for each z ∈ D, ker
(
Ñ ◦

P (z)
)

= {0} is equivalent to

ker
(
Ñ ◦

P (z)∗
)

= ker (N ◦
P (z̄)) = {0}, by dimension counting in the finite dimen-

sional space U . Because σp(A∗|HP ) ⊂ σ(A∗|HP )∩D by claim (iii) of Theorem
219, the equality (5.17) is proved once we establish σ(A∗|HP )∩D ⊂ σp(A∗|HP ).

Because n := dimU < ∞, we can consider the complex function det Ñ ◦
P (z), for

z ∈ D. By recalling the definition of the determinant as a finite sum of products
of the matrix elements, we see that det Ñ ◦

P (z) is an analytic function. For any
n × n matrix M we have by

| detM | =
n∏

j=1

|λj(M)| ≤
n∏

j=1

σj(M) ≤ ||M ||n

where λj(M) are the eigenvalues of H , σj(M) are the singular values of M ,
and their inequality is by H. Weyl, see [24, p. 1092]. This makes is possible to
conclude that det Ñ ◦

P (z) ∈ H∞(D;C), and because | det(U)| = 1 for unitary U ,
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we conclude that det Ñ ◦
P (z) is an inner function. Of course, the same is true for

detN ◦
P (z), too.

We proceed to show that

σ(Ñ ◦
P ) ∩ D = {z ∈ D | det Ñ ◦

P (z) = 0}.(5.19)

By the basic property of the determinant, the open set

E := D \ {z ∈ D | det Ñ ◦
P (z) = 0}

is exactly the set of z ∈ D where Ñ ◦
P (z) is invertible. To show (5.19), we

must additionally show that the mapping z �→ Ñ ◦
P (z)−1 is analytic in the set

E ⊂ D. This follows from the following outline of an argument: Assume f(z)
is a matrix-valued analytic function in E ⊂ C, such that det f(z0) = 0 for some
z0 ∈ E. Then f(z0) has an inverse, and we can assume that f(z0) = I without
any loss of generality. By developing f(z) into its power series at z0, we have
||I − f(z)|| ≤ 1/2 if |z − z0| < δ for some δ > 0. It then follows that the von
Neumann series

f(z)−1 = (I − (I − f(z)))−1 =
∑
j≥0

(I − f(z))j

converges for all |z−z0| < δ. In fact, the convergence is uniform on the compact
subsets of {z | |z − z0| < δ}. Because the limit of such a sequence of analytic
functions is analytic, f(z)−1 is analytic for |z− z0| < δ. Equation (5.19) follows
from this consideration and Definition 215 of σ(Ñ ◦

P ).

From equality (5.19), we conclude that σ(A∗|HP ) ∩ D = {z ∈ D |
det Ñ ◦

P (z) = 0}, by claim (ii) of Theorem 219. Let z ∈ σ(A∗|HP ) ∩ D be
arbitrary. Then det Ñ ◦

P (z) = 0, and the matrix Ñ ◦
P (z) fails to be injective.

The same is true for N ◦
P (z̄) = Ñ ◦

P (z)∗ because dim U < ∞. Now claim
(iv) of Theorem 219 shows that z̄ ∈ σP (A∗|HP ), and the converse inclusion
σ(A∗|HP ) ∩ D ⊂ σp(A∗|HP ) follows.

We have now proved that

σ(A∗|HP ) ∩ D = {z ∈ D | detN ◦
P (z) = 0} = σP (A∗|HP ),

where detN ◦
P (z) is an inner function. By e.g. [78, Theorem 17.9], the zeroes of

an inner function can be factorized away by a Blaschke product. Because the
zeroes of the Blaschke product satisfy the Blaschke condition, equation (5.18)
follows. The final claim about the injectivity of A∗|HP and ΠP A|HP follows
because ÑP (0) = I is invertible.

Under particular conditions, we can make conclusions of the unrestricted semi-
group generator A itself. The proof of the following corollary is based on Lemma
218 and Corollary 220.
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Corollary 221. Make the same assumptions as in Theorem 219. Assume that
there exists a P ∈ ric0(φ, J) such that HP = H. Then A is similar to a
C00-contraction, and is strongly stable together with its adjoint A∗. If A is
compact, then it is power stable ρ(A) < ∞. If dimU < ∞, then the eigenvalues
λj(A)j≥0 = σ(A) ∩ D satisfy the Blaschke condition∑

j≥1

(1 − |λj |) < ∞.

In particular, if P crit
0 > 0 and there exists a P ∈ ric0(φ, J) such that P ≤ 0, it

follows that HP = H.

We complete this section by considering what happens if the approximate con-
trollability condition in claim (iii) of Lemma 218 is not satisfied, but all the
other conditions of the preceding claim (ii) are satisfied. Then all the operators
are bounded in the commutant equation(

S∗|K
φ̃◦(P )

)
· C

φ̃◦(P )
= C

φ̃◦(P )
· (A∗|HP ),

and even range
(
C

φ̃◦(P )

)
= K

φ̃◦(P )
is closed. However, ker

(
C

φ̃◦(P )

)
can be non-

trivial. If we make the decomposition of the state space HP = ker
(
C

φ̃◦(P )

)⊥
⊕

ker
(
C

φ̃◦(P )

)
and use the fact the null space of the observability map is semi-

group invariant, the commutant equation takes now the form(
S∗|K

φ̃◦(P )

)
·
[
C

φ̃◦(P )
|ker

(
C

φ̃◦(P )

)⊥
0
]

=
[
C

φ̃◦(P )
|ker

(
C

φ̃◦(P )

)⊥
0
]
·

·

 Π1A
∗|ker

(
C

φ̃◦(P )

)⊥
0

(I − Π1)A∗|ker
(
C

φ̃◦(P )

)⊥
(I − Π1)A∗|ker

(
C

φ̃◦(P )

)


or (
S∗|K

φ̃◦(P )

)
· C

φ̃◦(P )
|ker

(
C

φ̃◦(P )

)⊥
= C

φ̃◦(P )
|ker

(
C

φ̃◦(P )

)⊥
·
(

Π1A
∗|ker

(
C

φ̃◦(P )

)⊥)
,

where Π1 is the orthogonal projection of HP onto ker
(
C

φ̃◦(P )

)⊥
, and

C
φ̃◦(P )

|ker
(
C

φ̃◦(P )

)⊥
is now a bounded bijection. What has already been stated

about A∗|HP under the approximate controllability of φ, can now be generally

stated about the compression Π1A
∗|ker

(
C

φ̃◦(P )

)⊥
, at the cost of increased no-

tational burden.
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5.7 Generalization

In this section, we use extensively the tools developed in Section 4.8, and in
particular Proposition 196 and Theorem 197. The general goal of this section
is to translate the results of previous sections (valid for DLSs φ having a (J, S)-
inner I/O map) to general output stable and I/O stable DLS φ without this
restriction. For this to be possible, we must require that a regular critical
solution P crit

0 := (Ccrit
φ )∗JCcrit

φ ∈ ric0(φ, J) exists, where

Ccrit
φ := (I − π̄+Dφ(π̄+D∗

φJDφπ̄+)−1π̄+D∗
φJ)Cφ.

Furthermore, we make it a standing hypothesis that both J ≥ 0 and
range (Bφ) = H . This implies that P crit

0 is the unique critical solution in set
ric(φ, J) ⊃ ric0(φ, J).

We first make the preliminary state feedback, associated to the solution P crit
0 .

This gives the closed loop system

φP crit
0 =

(
AP crit

0
B

CP crit
0

D

)
.

This is the inner DLS of φ, centered at the regular critical solution P crit
0 ∈

ric0(φ, J). The DLS φP crit
0 carries much of the interesting structure of the

original DLS φ, see Proposition 196, Even the structure H∞DAREs ric(φ, J)
and ric(φP crit

0 , J) is quite similar, see Theorem 197. However, the I/O map of
φP crit

0 is (J, ΛP crit
0

)-inner, by Lemma 171. To the inner DLS φP crit
0 and inner

DARE ric(φP crit
0 , J), we can apply the theory of Section 5.6. The results are

then translated back to the original data, namely the DLS φ, cost operator J and
H∞DARE ric(φ, J). This trick gives us information about the invariant and
co-invariant subspace structure of the closed loop semigroup generator AP crit

0
,

rather than the open loop semigroup generator A.

The full solution sets of the DAREs Ric(φ, J) and Ric(φP crit
0 , J) are equal by

Lemma 157. Thus the spectral DLS (φP crit
0 )P makes sense, for all P ∈ Ric(φ, J).

It is given by

(φP crit
0 )P =

(
AP crit

0
B

KP crit
0

− KP I

)
.(5.20)

by equation (4.2) of Proposition 151. With the aid of formula (5.20), we enlarge
the definition of the characteristic DLS φ(P ) (see Definition 209) to DLSs whose
I/O map need not be (J, ΛP crit

0
)-inner.

Definition 222. Let J ∈ L(Y ) be a self-adjoint cost operator. Let φ = ( A B
C D )

be an output stable and I/O stable DLS, such that the input space U is separable.
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Assume that the regular critical solution P crit
0 := (Ccrit

φ )∗JCcrit
φ ∈ ric0(φ, J)

exists.

For P ∈ ric(φ, J), the characteristic DLS φ(P ) of P is the reduced DLS (in the
sense of Proposition 208) of the spectral DLS (φP crit

0 )P . It is given by

φ(P ) =
(

ΠP AP crit
0

|HP ΠP B

(KP crit
0

− KP )|HP I

)
.

where HP := ker
(
P crit

0 − P
)⊥, ΠP is the orthogonal projection of H onto HP .

If range (Bφ) = H and φ itself has an (J, ΛP crit
0

)-inner I/O map, then KP crit
0

= 0,

AP crit
0

= A and immediately φP crit
0 = φ, see the proof of Lemma 202. In this

case, the characteristic DLS φ(P ) coincides with the one given in Definition 209,
for DLSs with (J, ΛP crit

0
)-inner I/O map. We now consider restrictions of AP crit

0

to its certain invariant subspaces, for each P ∈ ric0(φ, J).

Theorem 223. Let J ≥ 0 be a self-adjoint cost operator. Let φ = ( A B
C D ) be

an input stable, output stable and I/O stable DLS, range (Bφ) = H. Assume
the input operator B ∈ L(U ; H) is Hilbert–Schmidt and the input space U and
output space Y are separable. Assume that the regular critical solution P crit

0 :=
(Ccrit

φ )∗JCcrit
φ ∈ ric0(φ, J) exists.

Let P ∈ ric0(φ, J) be arbitrary. By φ(P ) denote its characteristic DLS, given
by Definition 222. By NP denote the (ΛP , ΛP crit

0
)-inner factor of DφP . Then

the following holds:

(i) The restriction of ΠP A∗
P crit

0
|HP is similar to a C00-contraction, whose

characteristic function is Ñ ◦
P (z). The similarity transform is given by(

S∗|K
φ̃◦(P )

)
C

φ̃◦(P )
= C

φ̃◦(P )
·
(
Acrit∗|HP

)
(5.21)

where C
φ̃◦(P )

: HP → K
φ̃◦(P )

is a bounded bijection, and the S∗-invariant
subspace K

φ̃◦(P )
is given in Definition 217.

(ii) The spectra satisfy σ(ΠP AP crit
0

|HP ) = σ(Ñ ◦
P ) = σ(A∗

P crit
0

|HP ), where the
bar denotes complex conjugation, and the spectrum of the inner func-
tion is given in Definition 215. In particular, both σ(ΠP AP crit

0
|HP ) and

σ(A∗
P crit

0
|HP ) are subsets of the closed unit disk D.

(iii) The point spectra satisfy

σp(A∗
P crit

0
|HP ) = {z ∈ D | ker (NP (z)) = {0}}
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and

σp(ΠP AP crit
0

|HP ) = {z ∈ D | ker
(
ÑP (z)

)
= {0}}.

In particular, if A∗
P crit

0
|HP is compact, then it is power stable

(i.e. ρ(A∗
P crit

0
|HP ) < 1).

(iv) Both A∗
P crit

0
|HP and its adjoint ΠP AP crit

0
|HP are strongly stable.

Proof. We reduce this theorem to Theorem 219 by making a preliminary feed-
back, associated to the solution P crit

0 := (Ccrit
φ )∗JCcrit

φ . This amounts to re-

placing the original pair (φ, J) by the pair (φP crit
0 , J). By claims (i) and (ii) of

Proposition 196, the inner DLS φP crit
0 is input stable, output stable, I/O sta-

ble and approximately controllable range
(
B

φPcrit
0

)
= H . Also, the I/O map of

φP crit
0 is (J, ΛP crit

0
)-inner. The input and output spaces of φ and φP crit

0 coincide,
and are thus separable. The Hilbert–Schmidt input operator B ∈ L(U ; H) is
common to both φ and φP crit

0 .

By (ii) of Proposition 196, P crit
0 is the unique regular critical solution of its

inner DARE ric(φP crit
0 , J), too. Because J ≥ 0, it follows that P crit

0 ≥ 0 and its
indicator, equaling ΛP crit

0
, is positive. We conclude that the inner DLS φP crit

0 ,
together with the cost operator J , satisfies the conditions of Theorem 219.

An application of Theorem 219 to the DLS φP crit
0 , the cost operator J and the

H∞DARE ric(φP crit
0 , J) proves all claims (i), (ii), (iii) and (iv) for arbitrary

P ∈ ric0(φP crit
0 , J). But ric0(φP crit

0 , J) = ric0(φ, J), by claim (iii) of Theorem
iii and the fact that the input operator B, common to both φ and φP crit

0 , is
Hilbert–Schmidt. This completes the proof.

Under the assumptions of Theorem 223, also the analogous results to Corollaries
220 and 221 hold, if the open loop semigroup generator A is replaced by the
closed loop semigroup generator AP crit

0
. In particular, Corollary 221 gives a

stabilization result for the critical closed loop semigroup. We remark that the
Hilbert–Schmidt compactness assumption of the input operator B in Theorem
223 is required only to obtain the equality of the solution sets ric0(φP crit

0 , J) =
ric0(φ, J). In particular, if dimU < ∞, this assumption is trivially satisfied.
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5.8 Notes and references

Description of Ric(φ, J) in terms of invariant subspaces
of a Hamiltonian operator

The standard theory of a matrix DARE has been presented in great detail in
the monograph [49] (Lancaster and Rodman, 1995). The presented algebraic
Riccati equation theory provides us with a construction of a model operator in
the following way. The solutions of the DARE are shown to be in one-to-one
correspondence with the family of maximal, j-neutral invariant subspaces of a
j-unitary Hamiltonian operator T . Here the Hermitian matrix j :=

(
0 −iI
iI 0

)
in-

duces an indefinite scalar product, and the requirement of j-neutrality is related
to the requirement that the solution of the DARE should be self-adjoint. For a
particular construction of T from the data of DARE, see [49, Chapter 12]. See
also [47] (Ionescu and M. Weiss, 1993) which contains a lot of further references
and an account of the history.

Analogous operator approaches have been developed for systems with an infinite-
dimensional state space, see the continuous time example [18, Ex. 6.25] (Curtain
and Zwart, 1995) for Hamiltonians that are Riesz spectral operators, and its ap-
plication [23, Lemma 3.0.4] (Dumortier, 1998). The latter two references deal
with the LQDARE{

A∗PA − P + C∗JC = A∗PB · Λ−1
P · B∗PA

ΛP = D∗JD + B∗PB.
(5.22)

Description of Ric(φ, J) in terms of unobservable,
unstable semigroup invariant subspaces

The unobservable and unstable subspaces of the semigroup generator A can
be used to classify the nonnegative solutions P for LQDARE of type (5.22).
These subspaces coincide with (the essential part of) the null spaces ker (P ).
In this direction we refer to finite dimensional papers [104], [105], [107], [106]
(Wimmer, 1994, 1995, 1996, 1996) and [50] (Langer, Ran and Temme, 1997).
Solutions of a special homogeneous algebraic Riccati equation are parameterized
by unobservable, semigroup invariant subspaces of the semigroup and by the
inner factors of a rational inner I/O map in [36, Theorem 4.3] (Fuhrmann,
1995) in continuous time and [39, Theorem 4.1] (Fuhrmann and Hoffmann,
1997) in discrete time. The continuous time infinite dimensional results in [9]
(Callier, Dumortier and Winkin, 1995), [23] (Dumortier, 1998) and [8] (Callier
and Dumortier, 1998) are also closely related.
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We now consider the discrete time matrix work [107] (Wimmer, 1996) as a
representative of this genre. The LQDARE considered is a special case of (5.22),
written in our notations as

A∗PA − P + C∗C = A∗PB (I + B∗PB)−1
B∗PA.(5.23)

The linear system associated to this LQDARE is assumed to output stabiliz-
able, which is a sufficient and necessary condition for the LQDARE to have a
nonnegative solution. The state space Cn is written as a direct sum of two sub-
spaces Cn := U0⊕Ur, where U0 is a subspace of V=(A, C), which is the subspace
spanned by unobservable generalized eigenvectors associated to the unimodular
eigenvalues of A. In [107, Theorem 1.1], it is shown that any nonnegative so-
lution P of LQDARE (5.23) can be decomposed according to this direct sum
representation. The part corresponding to U0, say P0 ≥ 0, is a solution of a
Liapunov equation. As a source of inconvenience, P0 is essentially forgotten.
The other part, say Pr ≥ 0, solves a reduced algebraic Riccati equation, and it
is interesting enough to be further studied. The nonnegative solutions Pr ∈ S of
the reduced algebraic Riccati equation can now be classified roughly as follows.
Firstly, the family N of subspaces of Cn

N :=
{
N ⊂ Cn | AN ⊂ N,

V≤(A, C) ⊂ N ⊂ V (A, C), N + R(A, B) + E<(A) = Cn
}

is introduced where V (A, C) is the unobservable subspace, V≤(A, C) is the sta-
ble unobservable subspace, R(A, B) is the controllable subspace (range of the
controllability map) and E<(A) is the stable spectral subspace of the semi-
group generator A. The set N is shown to be in one-to-one order-preserving
correspondence with the solutions Pr ∈ S of the reduced LQDARE, see [107,
Theorem 1.3]. The correspondence is given by the mapping γ : S → N is given
by γ(Pr) = ker (Pr). We remark that for the class of LQDAREs (5.23), it is
quite easy to show that the null spaces ker (P ) are A-invariant. In fact, we use
this type of technique in the proof of Lemma 205.

Comparison of existing approaches

In the previous subsection, it was indicated how to parameterize the solution of
LQDARE by the A-invariant null spaces of P . In our approach, we seem to have
turned everything upside down; we associate

(
Acrit

)∗-invariant subspaces HP :=

ker
(
P crit

0 − P
)⊥ to the solutions P ≤ P crit

0 of DARE. We now explain why this
is done. For all nonnegative P ∈ ric0(φ, J) we have the stable factorization

J
1
2Dφ = J

1
2DφP · DφP ,(5.24)

assuming that the technical assumptions of Lemma 171 are satisfied. In princi-
ple, either of the factors J

1
2DφP and DφP could be used to associate chains of
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inner factors and shift-invariant subspaces to the ordered chains in ric0(φ, J).
In Chapter 4.2, we have chosen to use spectral DLS φP because it is an easier
object to handle than the normalized inner DLS J

1
2 φP . The first reason for this

is that the input space U and the output space Y of J
1
2 φP are generally differ-

ent, but for φP only the space U is used. We have the additional trouble that
for noncoercive J ≥ 0, we can conclude the output stability and I/O stability
of only J

1
2 φP in Lemma 171, and not of the inner DLS φP . Thus Ric(φP , J)

is not necessarily a H∞DARE, even if P ∈ ric0(φ, J) is nonnegative. Finally,
because we make the requirement that any solution P ∈ Ric(φ, J) must have a
boundedly invertible indicator ΛP , it has been possible to normalize the spec-
tral DLSs φP so that they have boundedly invertible feed-through operators —
in our case they equal the identity. Thus the inconvenient nonsquareness and
possible “zero” of the transfer function Dφ(z) at z = 0 is always included in the
left factor J

1
2DφP in the factorization (5.24).

We now explain why the choice of φP over φP “turns everything upside down” in
the sense discussed in the beginning of this subsection. Denote the (ΛP , ΛP crit

0
)-

inner-outer factorization by DφP = NPX . Because the inner factor in DφP

“decomposes” from the left in the factorization (5.24), and it should “decom-
pose” from the right in order to be in harmony with the Beurling–Lax–Halmos
Theorem, we have to adjoin and use ÑP instead of NP in Theorem 187. This is
the reason why

(
Acrit

)∗-invariant subspaces HP must be used, instead of some
Acrit-invariant subspaces.

In this section, we have discussed two approaches to parameterize the solution
set of an algebraic Riccati equation. We remark that, under proper technical
assumptions, the two approaches discussed in the previous subsections give a
full classification of the solution sets of the DARE by invariant subspaces of a
linear operator, at least in the case of a finite dimensional state space. Par-
ticularly interesting equivalence results on the factorization of rational inner
function are [36, Theorem 4.3] (Fuhrmann, 1995) in continuous time and [39,
Theorem 4.1] (Fuhrmann and Hoffmann, 1997) in discrete time. In [36, The-
orem 4.3], an equivalence is shown between left and right inner factors of an
inner I/O map, nonnegative solutions of a DARE and invariant subspaces of
the semigroup generator. However, a special minimal realization and a homo-
geneous CARE is used. Our corresponding results work only in one direction:
to each reasonable solution of the DARE, a restricted backward shift is associ-
ated, but not conversely. Much of this apparent weakness could be fixed (under
stronger assumptions) if a practical form of a state space isomorphism theo-
rem were available, and equivalence results on the special realizations could be
transferred to more general realizations.

Grau, theurer Freund, ist alle Theorie
Und grün des Lebens goldner Baum.

J. W. Goethe
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