
RESEARCH ARTICLE

STACK with state
Matti Harjula, Dept. Mathematics and Systems Analysis, Aalto University, Helsinki, Finland. Email:
matti.harjula@aalto.fi
Antti Rasila, Dept. Mathematics and Systems Analysis, Aalto University, Helsinki, Finland.
Jarmo Malinen, Dept. Mathematics and Systems Analysis, Aalto University, Helsinki, Finland.

Abstract
The question model of STACK provides an easy way for building automatically assessable questions
with mathematical content, but it requires that the questions and their assessment logic depend only
on the current input, given by the student at a single instant. However, the present STACK question
model already has just the right form to be extended with state variables that would remove this
limitation. In this article, we report our recent work on the state-variable extension for STACK, and
we also discuss combining the use of state variables with our previous work on conditional output
processing. As an outcome, we propose an expansion to the STACK question model, allowing the
questions to act as state machines instead of pure functions of a single input event from the student.

We present a model question using the state variable extension of STACK that demonstrates some
of the new possibilities that open up for the question author. This question is based on a finite state
machine in its assessment logic, and it demonstrates aspects of strategic planning to solve problems
of recursive nature. The model question also demonstrates how the state machine can interpret the
solution path taken by the student, so as to dynamically modify the question behaviour and progress
by, e.g., asking additional questions relevant to the path. We further explore the future possibilities
from the point of view of learning strategic competencies in mathematics (Kilpatrick et al., 2001;
Rasila et al., 2015).

Keywords: STACK, state machine, interactive question.

1. Introduction
Various types of e-Learning systems have been used in teaching mathematics for a long time.
Currently, there is a wide selection of both commercial and open source systems (such as Maple
T.A., Numbas, SOWISO, STACK, etc.) that are capable not only of automatic assessment but also
giving useful feedback according to student's inputs. In some of the older systems, the assessment
logic is realised rather restrictively by using multiple choice questions or by string comparisons. More
advanced technologies make use of symbolic computations with the aid of a Computer Algebra
System (CAS) (such as Maple or Maxima) for the evaluation of students' inputs. These systems
make it a relatively straightforward task to create teaching materials consisting of series of mutually
independent questions, or series of questions with a common theme. It is, however, difficult to
produce more multifaceted materials that are able to approach an underlying narrative from many
directions in a game-like manner. This is a serious shortcoming in the age of simulations based,
interactive e-learning technologies.

One way of introducing modest game-likeness to current systems is to use a series of independent
questions so that the selection of the next question depends on student's earlier success. This
amounts to applying Computer Adaptive Testing (CAT) techniques in material design. Coupling
individual questions in this way is a rather restrictive form of storytelling since it only allows queuing
pre-made questions in a changing order. It does not allow the questions to adapt to the student's
answers at a finer level.

The next step is to allow the question logic to do adaptation within the question itself, resulting in a
more direct, more focused, and more immediate adaptation. In order for this to be possible, the
question logic needs some kind of memory (i.e., internal state variables) for the current and past
forms of the question. Another related desirable feature is an ability to access the memory of the
ambient system (such as Moodle for STACK) through external state variables.

STACK (Sangwin et al., 2016) has been used at Aalto University since 2006 (Sangwin, 2013), and
it has been extensively improved to meet the needs of material developers during that time.
However, adaptation of the question based on the student's previous answers has been difficult to
implement. Adding the required memory features changes the earlier stateless question model to a
stateful model. At the moment, we have an improved STACK question model (and the system
executing it) where both the stateless and the stateful questions can coexist (Harjula, 2016). The
stateful question model adds complications to the implementation and design of materials as well as
to the technical side of the executing system.

2. Abstraction of the stateful question
A stateful question can be understood as a set of traditional parametric questions that (i) can transfer
the student to another such question based on the student's actions, and (ii) set the parameters of
the consequent question accordingly. Within a stateful question, the component parametric
questions are called scenes that must be merged to a whole. In other words, the scenes are
described in terms of traditional parametric questions. As opposed to coupling of similar questions
in traditional CAT, the parameterisation of scenes can be carried of using anything that the CAS can
construct (based on student's actions and the earlier state) as parameters. Traditionally, most of
question coupling approaches only care about the grade, success, or failure in the preceding
questions.

Scenes can be considered as states of a Finite State Machine (FSM). However, the scenes are
parametric and parameter values may change during transitions between scenes or in transitions
within a single scene. This leads to situations where each distinct scene (i.e., state of the FSM) and
the associated parameter values give rise to what we could call the (full) state. In particular, a
question with only one scene can be stateful if it has parameters that it can change based on the
inputs from the student, and, hence, modify the output it presents to the student. Having just one
scene is enough, e.g., for implementing delayed feedback and conditional hints.

The concise terminology of stateful questions is as follows:
 state defines the values for all parameters of all scenes and keeps track of the active scene.
 scene is a parametric component question that may transfer the student to another scene

depending on the input received.
 transition is the actual act of transferring between the states, consisting of the scenes and the

associated parameter values.
 transition condition defines when the inputs from the student and the current parameter values

lead to a state transition.
 path is the listing of previously visited scenes in sequential order, including the current scene.

In the context of the stateful STACK, the merging of scenes to a single stateful question can be done
by using conditional rendering of the question presentation (i.e., text and graphics) where only the
details relevant to the current state are presented. The triggering of state transitions can be done
using CAS level coding within the free-code portion of the normal response generation.

3. Modifications to the question model of STACK
The original STACK handles an user input event along the following lines:

1. Reconstruct the question variables based on a (potentially earlier) generated, original
random number seed. Using the original seed, generate all the random parameter values
required by the question.

2. Identify from the input of the student which ones of the (potentially many) input fields of the
question have received valid values.

3. Find those potential response trees (PRTs) within the question that have received valid input
values for all of their input variables required for processing the PRT. Then for each such
PRT:

a. Evaluate the feedback variables, i.e., the free-code portion of the PRT to preprocess
the input values. This portion and the PRT nodes may reference the question
variables and are in that sense parametric.

b. Traverse the nodes of the PRT starting from the root and evaluating each the binary
answer test of each node in order to decide to which branch of the PRT to continue,
until the branch ends. At each node, modify the points given and the penalties
accrued for this question part for this attempt, based on the binary answer test result.
Also, each node may append to the feedback presentation connected to this PRT,
again based on the test result.

4. Render the question presentation based on the variables reconstructed at step 1, inserting
the feedback generated by the PRTs and input validation inline to it, if required.

As this description is about a stateless model, the processing of the answer does not change the
way the forthcoming processing rounds would act. Here, the general presentation of the question
stays the same, and only feedback or validation messages are added to it.

The stateful extension modifies the above described outline so that the free-code portion of PRTs is
allowed to write values into the state. These values can later be referenced in all other stages of
question processing, including the rendering of the question presentation. In rendering, it is now
possible to select the parts to be displayed based on the state. Moreover, the PRTs may evaluate
the properties of the student's answer based on the state constructed from previous answers,
contrary to the original STACK.

Note that the original random number seed is still in control of all random parameter values. This
means that these parameter values are “frozen” to the same even if the question had cycles and the
author would like to construct new random values for every time a specific scene is returned to. It
would be more desirable for the author to be able to decide, based on the path, whether one would
present the scene using the original random number seed or a new seed constructed from the path
so as to avoid repetition.

To identify which questions have state, the proposed extension requires that all state variables (both
local to this question instance and external) must be declared by the author. The declaration must
also define if the variable is read-only, and set the variable's default value should it not have been
initialised elsewhere. Questions without writable state variables are by definition stateless; i.e., a
stateless question may have references to an external state that is used similarly as the random
number seed in question initialisation. If the question, however, has a writable state variable, all CAS
evaluations performed by the question must be augmented with calls that transfer the current state
to the CAS. Conversely, the relevant output from CAS must be stored to a state variable.

When a question references external state variable, its value is stored as a local variable at the
initialisation of the question. All references to this external variable are then rerouted to the local

variable, thus eliminating problem due to changing external state variable values while the question
instance is being used. This, however, makes it difficult to change the external state as the current
value is not shown directly to the question. To overcome these complications, the external state is
typically handled as a data structure that can only be updated (e.g., a counter that gets incremented,
a set that gets augmented, etc.) rather than entirely rewritten.

4. Three classes of stateful questions
The stateful question type makes it feasible to produce materials with which higher abilities – such
as strategic competencies – can be trained and assessed instead of drilling. As examples, consider
these classes of stateful questions having narratives:

1. The constrained-path questions demonstrate the progress of some algorithm or a more
general collection of fixed rules and verify that the student's answers match the steps. The
well-defined states and steps can be easily reproduced by CAS for verification. Collections
of rules may leave the student some freedom of choice so as to use strategic thinking for
attaining the desired goal. Erroneous values are typically not accepted in answers but the
student is allowed to go in a wrong direction for a while.

2. In sudoku questions, some initial setting is given with incomplete details. The student is asked
to gradually fill in the missing details by logical reasoning from what is already regarded as
known. The next detail to fill in is chosen randomly, based on a dependency graph that
describes what can be concluded by relatively few logical steps from what is already known.
One may also consider accepting mistakes and allowing them to propagate in reasoning
without letting the student know, but then there has to be a way for the student to fix the
errors afterwards.

3. A dynamical mathematical (state space) model of some phenomenon lies in the core of
model-based questions. The student's answer is a control input, and the state transitions are
computed by the model. There are means for evaluating whether (and at what cost) the
desired target state has been achieved, and there may even be dynamically generated new
targets.

All these types can be realised as stateful STACK questions but their designs may get very complex
in the two latter classes since many states are required to handle the storytelling logic and to
separate it from the state of the mathematical model. The designs may benefit from a narrative
backbone such as Interactive Storytelling (IS) taken from the game design context (Crawford, 2012).
Within mathematics e-learning, storyboards have not been widely used even though various
requirements for successful high-level system designs have been proposed in, e.g., Devlin (2011).
We emphasise that the storytelling aspect is more important in authoring than programming skills
since a stateful question must react sensibly and reasonably to students' various answers.

The three classes introduced above are not to be understood as exclusive or canonical but they help
in characterising and comparing different types of possible stateful questions. Obviously, stateless
questions are one end of the scale, and we could call them the no-path type in comparison to
constrained-path questions where allowed transitions between scenes are very limited; however, not
excluding infinite loops. Sudoku type questions have transitions between scenes that are best
described are non-trivial directed graphs without cycles. Similarly, model-based questions are
expected to lead to undirected, dense graphs as transition paths between highly parametric scenes.

The logical end point of this scale could be called the free-path question type where so little
restrictions in transitions between scenes are posed that the student may not even notice any
restrictions of freedom. As we move towards the model-based and free-path designs, we expect that
methods from IS become particularly useful, starting from constrained narrative generation
(Porteous and Cavazza, 2009) and leading to full-on drama management. We further expect that
the design of a pedagogically relevant free-path question in mathematics to be very difficult.

5. Stateful question design principles
One example of a stateful question is given below. A prototypal design process for this kind of
questions is outlined as follows:

1. Design the narrative for the question, consisting of scenes that can be represented as usual
STACK exercises.

2. Describe the narrative as a FSM diagram such as Fig. 1 where each scene corresponds to
one or several potential tasks. Enumerate all scenes and describe their scene transitions in
response to student's answers and parameters.

3. Specify what information the scenes need as parameters. Define the necessary internal state
variables to convey this information.

4. Produce the rendering code of the user interface for each scene.
5. Realise each scene like an usual STACK exercise whose response tree is activated by the

student's answers. Add transition conditions and transitions to the free-code portion of the
PRTs to produce transitions between the scenes.

The author should minimise the number of scenes and state variables without making the code
unreadable. The generation of the question texts is challenging as the text depends on the full state,
leading to many variants.

6. An example question of constrained-path type
We present an example of a constrained-path question involving integration by parts where the
integrand includes a monomial. The student is allowed to split the integrand into two parts at will,
and then use integration by parts to compute the antiderivative. Some strategic competency is
required in addition to computation skills. Indeed, the degree of the monomial may increase as the
result of a silly chosen splitting 𝑓 = 𝑢	𝑣′, and the student gets further away from the right solution.

Figure 1. The state transitions of the example question having four scenes.

The question consists of four scenes as described in Fig.1, two first of which are being visited
repeatedly. The user interfaces associated to these scenes are given in Fig 2–4 below. More
precisely, the scenes are as follows:

Entry and integrand splitting: The initial or current integration by parts exercise is displayed by
this scene, and the student is asked to split the integrand for the integration by parts process.

 Decision: In this scene, the student is shown the valid splitting given earlier. Now it is possible to
revert the earlier splitting, choose applying integration by parts again, or just compute the
integral by other means.

 Introspection: The student arrives at this scene after having produced the correct answer.
Comments are given on the solution path of the student, and relevant control questions are
asked concerning the solution strategy.

 Exit: This scene shows the points and penalties with final comments.

The state transition rules of the question are described in Fig. 1. These allow the student to go on
integrating by parts as far as they wish (within storage/memory limitations). The question is initialised
with a randomised degree of the monomial in the integrand. The question state only keeps track of
the two expressions generated by the process, the ejected part and the remaining integral, as a list
consisting of all the values generated by previous splittings, the current scenes name, and some
flags signalling which warnings have been given. The most difficult part in the authoring of this
question is describing the logic for checking if the given splitting of the integrand leads to the desired
direction in integration by parts process.

The stateful question type makes it possible to give specific feedback to the student after complex
conditions are met. In the example question, we start to warn about going in the wrong direction only
after multiple steps of integration by parts in that direction. The warnings get more direct if the student
continues even further. It is also detected if the student returns to the original expression after many
steps, or if the student tries to integrate by parts an expression that does not require it. A simple way
of constructing the final grade is to keep track of the warnings that have been given, and this is the
approach used here. More complicated evaluations can be based on the trajectory that is stored as
a list of 𝑢𝑣 and 𝑣𝑢′ expressions.

Any of the four scenes in the example question can be implemented without using states. The point
of example question is in joining those scenes as a dynamic storyline and evaluating the path the
student takes. This is impossible to achieve without having the kind of memory that the state variable
extension provides.

7. Conclusions
The state variable extension to STACK was proposed. The extension can be used to produce e-
learning materials that respond more adaptively and intelligently than earlier such materials. An
elementary example involving integration by part was given to show some of its technological and
pedagogical potential.

As STACK with state gets technically more mature, the next big step is to build advanced tools to
simplify the question authoring process. Drawing diagrams such as Fig. 1 and manually translating
them into conditional branching statements is not the way to go when building large scale
applications – it is better to have a more refined “method in madness”. The state dependent
randomisation of questions is highly nontrivial, and its framework remains unspecified at the moment.
Furthermore, there is need for analytical systems for (i) evaluating the structure of a stateful question,
(i.e., static code analysis), and for (ii) analysing in bulk the solution paths (i.e., the state trajectories)
generated by the students. The latter requirement relates to learning analytics.

In this article, we concentrated on finite states (scenes) and internal state variables. External state
variables are used for accessing the global state in an ambient system (such as Moodle), providing
an interface for an external learning analytics system, or used for sharing student specific information
between different stateful STACK questions.

Figure 2. The entry scene of the example question presents the currently relevant
integral and asks to split the integrand. In the lower panel, the student has returned to
the starting point after some unlucky choices.

Figure 3. The decision scene gives information of the current situation and allows the
student decide how to proceed. The student may continue to integrate by parts even if
the integrand is zero.

Figure 4. The introspection scene presents multiple choice questions about matters
that should have become apparent during the solution process. The exit scene gives
the grading with comments.

We conclude that the most exciting aspect is the exploring the new types of mathematical questions
made possible by the proposed STACK with state, its future modifications, and other improvements.
We believe that a practically limitless terra incognita of possibilities opens up for game-like e-learning
materials in mathematics, challenging the current technological and pedagogical paradigms.

8. References
Crawford, C., 2012. Chris Crawford on Interactive Storytelling. New Riders.

Devlin, K., 2011. Mathematics Education for a New Era: Video Games As a Medium for Learning,
1st Edition. A. K. Peters, Ltd., Natick, MA, USA.

Harjula, M., 2016. Stateful extension, frozen proof of concept code version. Available at:
https://github.com/aharjula/moodle-qtype stack/tree/EAMS-frozen-state [Accessed 12 December
2016].

Kilpatrick, J., Swafford, J., Findell, B., 2001. Adding It Up: Helping Children Learn Mathematics.
Mathematics Learning Study Committee, Center for Education, Division of Behavioral and Social
Sciences and Education, National Research Council. Washington, DC: National Academy Press.

Porteous, J., Cavazza, M., 2009. Controlling narrative generation with planning trajectories: the
role of constraints. In: Joint International Conference on Interactive Digital Storytelling. Springer
Berlin Heidelberg, pp. 234–245.

Rasila, A., Malinen, J., Tiitu, H., 2015. On automatic assessment and conceptual understanding.
Teaching Mathematics and its Applications 34 (3), 149–159.

Sangwin, C., 2013. Computer Aided Assessment of Mathematics. Oxford University Press.

Sangwin, C. J., Hunt, T., Harjula, M., et al., 2016. STACK, code of the master version. Available at:
https://github.com/maths/moodle-qtype stack [Accessed 12 December 2016].

