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Abstract

It is well known that during voiced speech, the human vocal folds interact with the vocal
tract acoustics. The resulting source-filter coupling has been observed using mathemat-
ical and physical models as well as in in vivo phonation.

We propose a computational time-domain model of the full speech apparatus that,
in particular, contains a feedback mechanism from the vocal tract acoustics to the vocal
fold oscillations. It is based on numerical solution of ordinary and partial differential
equations defined on vocal tract geometries that have been obtained by Magnetic Reso-
nance Imaging. The model is used to simulate rising and falling pitch glides of [A, i] in
the fundamental frequency (f0) interval [180 Hz, 360 Hz]. The interval contains the first
formant F1 of [i] as well as the subformants F1/4 and F1/3 of [A].

The simulations reveal a locking pattern of the f0-trajectory at F1 of [i] in falling and
rising glides. The subformants of [A] produce perturbations in the waveforms of glottal
signals but no locking. All these observations from the model behaviour are consistent
and robust within a wide range of feasible model parameter values and under exclusion of
secondary model components. The simulation results suggest that the leading source of
discrepancy between the model and true speech biophysics in vowels at frequencies under
4 kHz is due to simplified flow modelling. The characteristics of the simulated locking
pattern can be used for developing a high-resolution statistical instrument for detection
of the same pattern in experimental material.

Keywords: Speech modelling, vocal fold model, flow induced vibrations,

modal locking.

1. Introduction

The classical source–filter theory of vowel production is built on the assumption that
the source (i.e., the vocal fold vibration) operates independently of the filter (i.e., the
vocal tract, henceforth VT) whose resonances modulate the resulting vowel sound [1, 2].
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Even though this approach captures a wide range of phenomena in speech production, at
least in male speakers, some observations remain unexplained by the source–filter model
lacking feedback. The purpose of this article is to deal with some of these observations
using computational modelling.

More precisely, simulated rising and falling frequency glides of vowels [A] and [i] over
the frequency range [180 Hz, 360 Hz] are considered. Similar glides recorded from eleven
female test subjects are treated in the companion article [3]. Such a vowel glide is
particularly interesting if its glottal frequency (f0) range intersects an isolated acoustic
resonance of the supra- or subglottal cavity, which we here assume to correspond to the
lowest VT formant F1. Since F1 almost always lies high above f0 in adult male phonation,
this situation occurs typically in female subjects and only when they are producing vowels
such as [i] with low F1. As reported in Section 7, simulations reveal (in addition to
other observations) a characteristic locking behaviour of f0 at the VT acoustic resonance
R1 ≈ F1.1 To check the robustness of the model observations, secondary features of the
model are discussed in Section 8, and the role of unmodelled physics is considered in
Section 9.

As a matter of fact, this article has two equally important objectives. Firstly, we
pursue better understanding of the time-domain dynamics of glottal pulse perturbations
near F1 of [i] and at other acoustic “hot spots” of the VT and the subglottal system
within [180 Hz, 360 Hz] that may be reached in speech or singing. Obviously, an acoustic
and flow-mechanical model of the speech apparatus is a suitable tool for this purpose.
Secondly, we introduce and validate a computational model that meets these require-
ments. The proposed model has been originally designed to be a glottal pulse source for
high-resolution 3D computational acoustics model of the VT which is being developed
for medical purposes [4, 5]. There is an emerging application for this model as a de-
velopment platform of speech signal processing algorithms such as discussed in [6, 7, 8];
however, the model introduced in [9] by Story has been used in [6]. Since perturbations
of f0 near F1 are a widely researched, yet quite multifaceted phenomenon, it is a good
candidate for model validation and benchmarking experiments.

Simulations indicate special kinds of perturbations in vocal folds vibrations near a VT
resonance as described in Section 7. The mere existence of such perturbations is hardly
surprising considering the wide range of existing literature. Since the seminal work [10] of
Ishizaka and Flanagan in 1972, the resonance perturbation problem has been approached
from many other directions: experiments on excised larynges mounted on a resonator by
Austin and Titze [11], physical models without tissue components with variable subglottal
resonators by Zhang et al. [12] and Lucero et al. [13], and reasoning based on sub-
and supraglottal impedances combined with a non-computational flow model by Titze
[14]. A two-mass model of vocal folds, coupled with a variable-length resonator tube,
was used by Hatzikirou at al. [15], and pitch glides were simulated using a four-mass
model to analyse the interactions between vocal register transitions and VT resonances
by Tokuda et al. [16]. All these works reveal a consistent picture of the existence of

1We denote the VT resonances by letters R1, R2, . . . to keep them conceptually apart from the for-
mants F1, F2, . . .. The resonances are understood here as purely mathematical objects, determined by
an acoustic PDE and its boundary conditions that are defined on the VT geometry. Formants refer to
respective frequency peaks extracted from natural speech. Of course, we expect to have Rj ≈ Fj for
j = 1, 2, . . ..
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a perturbation pattern, and it has also been detected experimentally by Titze et al.
[17] using speech recordings and by Zañartu et al. [18] using simultaneous recordings
of laryngeal endoscopy, acoustics, aerodynamics, electroglottography, and acceleration
sensors. The latter article also contains a review on related voice bifurcations.

Many earlier models of phonation were based on the Kelly–Lochbaum vocal tract
[19] or various transmission line analogues [20, 21, 22]. Contrary to these approaches,
the proposed model consists of (ordinary and partial) differential equations, conservation
laws, and coupling equations introduced in Sections 2–4. In particular, the curvature of
the vocal tract as well as acoustic losses to tissues are explicitly included in the mathe-
matical description. In this modelling paradigm, the temporal and spatial discretisation
is conceptually and practically separated from the actual mathematical model of speech.
The computational model is simply a numerical solver for the model equations, writ-
ten in MATLAB environment. The modular design makes it easy to decouple model
components for assessing their significance to simulated behaviour.2 Since the gener-
alised Webster’s equation for the VT acoustics assumes intersectional area functions as
its geometric data, VT configurations from Magnetic Resonance Imaging (MRI) can be
used without transcription to non-geometric model parameters. Thus, time-dependent
VT geometries are easy to implement. Further advantages of speech modelling based
on Webster’s equation have been explained in [24, Section 1] where the approach is
somewhat similar to one taken here.

The proposed model aims at qualitatively realistic functionality, tunability by a low
number of parameters, and tractability of model components, equations, and their re-
lation to biophysics. Similar functionality in higher precision can be obtained using
Computational Fluid Dynamics (CFD) with elastic tissue boundaries. In the CFD ap-
proach, the aim is to model the speech apparatus as undivided whole [25, 26], but the
computational cost is much higher compared to our model or the models proposed in,
e.g., [24, 27]. The numerical efficiency is a key issue because some parameter values or
their feasible ranges (in particular, for hard-to-get physiological parameters) can only be
determined by the trial and error method. This leads to a high number of simulation
runs as reported in [28, Chapter 4].

2. Model of the vocal folds

2.1. Anatomy, physiology, and control of phonation

All voiced speech sounds originate from self-sustained quasi-periodic oscillations of
the vocal folds where the closure of the aperture — known as the rima glottidis —
between the two string-like vocal folds cuts off the air flow from lungs. This process is
called phonation, and the system comprising the vocal folds and the rima glottidis is
known as the glottis. A single period of the glottal flow produced by phonation is known
as a glottal pulse.

As shown in Fig. 1 (left panel), each vocal fold consists of a vocal ligament (also
known as a vocal cord) together with a medial part of the thyroarytenoid muscle, and

2Some economy of modelled features should be maintained to prevent various forms of “overfitting”
while explaining the experimental facts. Good modelling practices within mathematical acoustics have
been discussed in [23, Chapter 8].
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Figure 1: Left: Sketch of the anatomy of the larynx seen from above according to [29, Fig. 960]. Right:
The geometry of the glottis model and the symbols used. The trachea (i.e., the channel leading from
the lungs to glottis) is to the left in this sketch and the vocal tract is to the right.

the vocalis muscle that (not specified in Fig. 1). Left and right vocal folds are attached
to the thyroid cartilage from their anterior ends and to the respective left and right
arytenoid cartilages from their posterior ends. In addition, there is the fourth, ring-
formed cricoid cartilage whose location is inferior to the thyroid cartilage. The vocal
folds and the associated muscles are supported by these cartilages.

There are two muscles attached between each of the arytenoid cartilages and the
cricoid cartilage: the posterior and the lateral cricoarytenoid muscles whose mechani-
cal actions are opposite. The vocal folds are adducted by the contraction of the lat-
eral cricoarytenoid muscles during phonation, and conversely, abducted by the posterior
cricoarytenoid muscles during, e.g., breathing. This control action is realised by a rota-
tional movement of the arytenoid cartilages in a transversal plane. In addition, there is a
fifth (unpaired) muscle — the arytenoid muscle — whose contraction brings the arytenoid
cartilages closer to each other, thus reducing the opening of the glottis independently of
the lateral cricoarytenoid muscles. These rather complicated control mechanisms regu-
late the type of phonation in the breathy-pressed scale.

The main mechanism controlling the fundamental frequency f0 of voiced speech sound
is actuated by two cricothyroid muscles (not visible in Fig. 1). The contraction of these
muscles leads to a rotation of the thyroid cartilage with respect to the cricoid cartilage. As
a result, the thyroid cartilage inclines to the anterior direction, thus stretching the vocal
folds. The elongation of the string-like vocal folds leads to increased stress which raises
the fundamental frequency f0 of their longitudinal vibrations. The vertical movement
of larynx also rotates cricoid cartilage impacting f0. Finally, the phonation and f0 are
influenced by subglottal pressure through the control of respiratory muscles.

2.2. Glottis model

The anatomic configuration in Fig. 1 (left panel) is idealised as a low-order mass-
spring system with aerodynamic surfaces as shown in Fig. 1 (right panel) and discussed
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in [30, 31, 28]. Such lumped-element models have been used frequently (see, e.g., [32,
33, 34, 35, 36]) since the introduction of the classic two-mass model [10] by Ishizaka and
Flanagan in 1972. For recent reviews of the variety of lumped-element and PDE based
models and their applications, see [37, 38, 39].

The radically simplified glottis model geometry in Fig. 1 (right panel) corresponds to
the coronal section through the center of the vocal folds. Both the fundamental frequency
f0 as well as the phonation type can be chosen by adjusting parameter values, see [28,
Section 4]. Register shifts (e.g., from modal register to falsetto) are not in the scope of this
model since it would require either modelling the vocal folds as aerodynamically loaded
strings or as a high-order mass-spring system that has a string-like “elastic” behavior.

The vocal fold model in Fig. 1 (right panel) consists of two wedge-shaped moving
elements that have two degrees of freedom each. The distributed mass of these elements
can be reduced into three mass points which are located so that mj1 is at x = L, mj2

at x = 0, and mj3 at x = L/2. Here L denotes the thickness of the modelled vocal fold
structures. The elastic support of the vocal ligament is approximated by two springs at
points x = l1L = L/2 + l and x = l2L = L/2− l. The equations of motion for the vocal
folds are given by{

M1Ẅ1(t) +B1Ẇ1(t) +K1W1(t) = −F (t),

M2Ẅ2(t) +B2Ẇ2(t) +K2W2(t) = F (t), t ∈ R.
(1)

where Wj =
[
wj1 wj2

]T
are the displacements of the right and left endpoints of the

jth fold, j = 1, 2, as shown in Fig. 1 (right panel). The respective mass, damping, and
stiffness matrices Mj , Bj , and Kj in (1) are

Mj =

[
mj1 +

mj3

4
mj3

4mj3

4 mj2 +
mj3

4

]
, Bj =

[
bj1 0
0 bj2

]
,

and Kj =

[
l21kj1 + l22kj2 l1l2(kj1 + kj2)
l1l2(kj1 + kj2) l22kj1 + l21kj2

]
.

(2)

The entries of these matrices have been computed by means of Lagrangian mechanics.
The damping matrices Bj are diagonal since the dampers are located at the endpoints of
the vocal folds. The model supports asymmetric vocal fold vibrations but for this work
symmetric vocal fold parameters are used (i.e. M = Mj , K = Kj , and B = Bj , j = 1, 2).

The glottal openings at the two ends of the vocal folds, denoted by ∆Wi, i = 1, 2,
are related to Eqs. (1) through[

∆W1

∆W2

]
= W2 −W1 +

[
g
H0

]
, (3)

where the rest gap parameters g and H0 are as in Fig. 1 (right panel). In human anatomy,
the parameter g is related to the position and orientation of the arytenoid cartilages.
During the glottal open phase (i.e., when ∆W1(t) > 0 at the narrow end of the vocal

folds), the load terms in Eq. (1) are given by F =
[
FA,1 FA,2

]T
as introduced below

in Eq. (7) in terms of the aerodynamic forces from the glottal flow. During the glottal
closed phase (i.e., when ∆W1(t) < 0), there are no aerodynamic forces apart from the
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joint acoustic counter pressure, denoted by pc in Eq. (12), from the VT and subglottal
cavities as properly introduced in Section 4 below. Instead, the acoustic counter pressure
is accompanied by a nonlinear spring force with parameter kH , accounting for the elastic
collision of the vocal folds and given by

F =

[
kH |∆W1|3/2 − H0−H1/2

2L
H1

2 h · pc
H0−H1/2

2L
H1

2 h · pc

]
. (4)

This is related to the Hertz impact model that has been used similarly in [40, 32].
As is typical in related biomechanical modelling [16, 32, 41], the lumped parameters

of the mass-spring system (1)–(2) are in some correspondence to true the masses, ma-
terial parameters, and geometric characteristics of the sound producing tissues. More
precisely, matrices M correspond to the vibrating masses of the vocal folds, including
the vocal ligaments together with their covering mucous layers and (at least, partly)
the supporting vocalis muscles. The elements of the matrices K, are best understood
as linear approximations of k(s) = f/s where f = f(s) is the contact force required
for deflection s at the center of the string-like vocal ligament in Fig. 1 (left panel). It
should be emphasised that the exact numerical correspondence of tissue parameters to
lumped model parameters M and K is intractable (and for most practical purposes even
irrelevant), and their values in computer simulations must be tuned using measurement
data of f0 and the measured form of the glottal pulse [42, 28].

3. Glottal flow and the aerodynamic force

An incompressible one-dimensional flow through the glottal opening with velocity vo
is described by

v̇o(t) =
1

CinerhH1
(psub −Rg(t)vo(t)) , (5)

where psub is the subglottal static (lung) pressure above ambient pressure, Ciner regulates
flow inertia, h is the width of the rectangular flow channel, and Rg(t) represents the total
pressure loss in the glottis. In fact, Eq. (5) is related to Newton’s second law for the air
column in motion. The total pressure loss consists of two components, namely

Rg(t) = Rv(t) +Rt(t) where

Rv(t) =
12µH1Lg
∆W1(t)3

and Rt(t) = kg
ρH2

1vo(t)

2∆W1(t)2
.

(6)

The first term Rv(t) represents the viscous pressure loss, and it is motivated by the
Hagen–Poiseuille law in a narrow aperture. It approximates the pressure loss in the
glottis using a rectangular tube of width h, height ∆W1, and length Lg. The parameter
µ is the kinematic viscosity of air. The second term Rt(t) takes into account the pressure
loss due to turbulence, and its form is motivated by the experimental work in [43, Eq. (4)
on p. 628]. The coefficient kg represents the difference between turbulent energy loss at
the glottal inlet and pressure recovery at the outlet. This coefficient depends not only
on the glottal geometry but also on the glottal opening, subglottal pressure, and flow
through the glottis [44].
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In the glottis, the flow velocity V (x, t) is assumed to satisfy the mass conservation
law H(x, t)V (x, t) = H1vo(t) for incompressible flow where H(x, t) is the height of the
flow channel inside the glottis. In the model geometry of Fig. 1 (right panel), we have

H(x, t) = ∆W2(t) +
x

L
(∆W1(t)−∆W2(t)), x ∈ [0, L].

Now, the pressure p = p(x, t) in the glottis is given in terms of v0 from Eq. (5) by these
two equations and the Bernoulli law p(x, t) + 1

2ρV (x, t)2 = psub for static flow.
Since each vocal fold has two degrees of freedom, the pressure p in the glottis and the

VT/SGT counter pressure pc can be reduced to an aerodynamic force pair
[
FA,1 FA,2

]T
where FA,1 affects at the right (i.e., the superior) end of the glottis (x = L) and FA,2 the
left (i.e., the inferior) end (x = 0) in Fig. 1 (right panel). This reduction can be carried
out by using the total force and moment balance equations

FA,1 + FA,2 = h

∫ L

0

(p(x, t)− psub) dx

and

L · FA,1 = h

∫ L

0

x(p(x, t)− psub) dx− pc · h
H1

2

H0 −H1/2

2
.

The moment is evaluated with respect to point (x, y) = (0, 0) for the lower fold and
(x, y) = (0, H0) for the upper fold in Fig. 1 (right panel). Evaluation of these integrals
yields

FA,1 = 1
2ρv

2
ohL

(
− H2

1

∆W1(∆W2−∆W1) +
H2

1

(∆W1−∆W2)2 ln
(

∆W2

∆W1

))
− H1(H0−H1/2)

4L hpc,

FA,2 = 1
2ρv

2
ohL

(
H2

1

∆W2(∆W2−∆W1) −
H2

1

(∆W1−∆W2)2 ln
(

∆W2

∆W1

))
+ H1(H0−H1/2)

4L hpc.

(7)

4. Vocal tract and subglottal acoustics

4.1. Modelling VT acoustics by Webster’s equation

A generalised version of Webster’s horn model resonator is used as acoustic loads to
represent both the VT and the SGT. It is given by

1

c2Σ(s)2

∂2ψ

∂t2
+

2παW (s)

A(s)

∂ψ

∂t
− 1

A(s)

∂

∂s

(
A(s)

∂ψ

∂s

)
= 0, (8)

where c denotes the speed of sound, the parameter α ≥ 0 regulates the energy dissipation
through air-tissue interface, and the solution ψ = ψ(s, t) is the velocity potential of the
acoustic field. Then the sound pressure is given by p = ρψt where ρ denotes the density
of air. The generalised Webster’s model for acoustic waveguides has been derived from
the wave equation in a tubular domain in [45], its solvability and energy notions have
been treated in [46], and the approximation properties in [47].

The generalised Webster’s equation (8) is applicable if the VT is approximated as
a curved tube of varying cross-sectional area and length LV T . The centreline γ :
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[0, LV T ] −→ R3 of the tube is parametrised using distance s ∈ [0, LV T ] from the su-
perior end of the glottis, and it is assumed to be a smooth planar curve. At every s, the
cross-sectional area of the tube perpendicular to the centreline is given by the area func-
tion A(s), and the (hydrodynamic) radius of the tube, denoted by R(s) > 0, is defined
by A(s) = πR(s)2. The curvature of the tube is defined as κ(s) := ‖γ′′(s)‖, and the
curvature ratio as η(s) := R(s)κ(s). Since the tube does not fold on to itself, we have
always η(s) < 1, and clearly η ≡ 0 if the tube is straight.

We are now ready to describe the rest of the parameters appearing in Eq. (8): They
are the stretching factor W (s) and the sound speed correction factor Σ(s), defined by

W (s) := R(s)
√
R′(s)2 + (η(s)− 1)2,

Σ(s) :=
(
1 + 1

4η
2(s)

)−1/2
.

(9)

In the context of VT, we use the following boundary conditions for Eq. (8):{
∂ψ
∂t (LV T , t) + θc∂ψ∂s (LV T , t) = 0,

∂ψ
∂s (0, t) = −c1v0(t).

(10)

The first boundary condition is imposed at the mouth opening, and the parameter θ ≥ 0
is the normalised acoustic resistance due to exterior space [48, Chapter 7]. The latter
boundary condition in Eq. (10) couples the resonator to the glottal flow given by Eq. (5).
The scaling parameter c1 = H1h/A(0) extends the assumption of incompressibility from
the control area just right to the glottis in Fig. 1 (right panel) to the VT area slice nearest
to the glottis.

4.2. Subglottal tract acoustics

Anatomically, the SGT consists of the airways below the larynx: trachea, bronchi,
bronchioles, alveolar ducts, alveolar sacs, and alveoli. This system has been modelled ei-
ther as a tree-like structure [27] or, more simply, as an acoustic horn whose area increases
towards the lungs [49, 34]. We take the latter approach and denote the cross-sectional
area and the horn radius by As(s) and Rs(s), respectively, where s ∈ [0, LSGT ] and LSGT
is the nominal length of the SGT.

Since the subglottal horn is assumed to be straight, i.e. η ≡ 0, we have Σ ≡ 1 and
Ws(s) = Rs(s)

√
R′s(s)

2 + 1. Then Eqs. (8)–(10) translate to
1
c2
∂2ψ̃
∂t2 + 2παWs(s)

As(s)
∂ψ̃
∂t −

1
As(s)

∂
∂s

(
As(s)

∂ψ̃
∂s

)
= 0,

∂ψ̃
∂t (LSGT , t) + θsc

∂ψ̃
∂s (LSGT , t) = 0,

∂ψ̃
∂s (0, t) = c2v0(t),

(11)

where the solution ψ̃ is the velocity potential for the SGT acoustics. Again, the parameter
θs ≥ 0 is the normalised acoustic resistance at the lung end of the horn, and we now use
the scaling parameter value c2 = H1h/As(0).

4.3. The acoustic counter pressure

The final part of the vowel model produces the feedback coupling from VT/SGT
acoustics back to glottal oscillations. This coupling is realised by the acoustic counter
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Figure 2: Left: The VT intersections extracted from the test subject during phonation of [A] and [i].
Right: The resulting area functions for Eq. (8), represented as a function of distance from the glottis.

pressure pc = pc(t) that already makes appearance in Eqs. (4) and (7) above. The
counter pressure is the resultant of sub- and supraglottal pressure components, and it is
given in terms of velocity potentials from Eqs. (8) and (11) by

pc(t) = Qpcρ
(
ψt(0, t)− c3ψ̃t(0, t)

)
. (12)

The tuning parameter Qpc ∈ [0, 1] enables scaling the magnitude of the feedback from
the VT and SGT resonators to the vocal folds. The parameter Qpc is necessary because
it is difficult to estimate from anatomic data the area on which the counter pressure pc
acts. In simulations, excessive acoustic load forces lead to non-stationary, even chaotic
vibrations of the vocal folds.

The second parameter c3 ≥ 0 in Eq. (12) accounts for the differences in the areas and
moment arms for the supra- and subglottal pressures that load the equations of motion
Eqs. (1) for vocal folds. Based on the idealised vocal folds geometry in Fig. 1, we obtain
an overly high nominal value c3 = 8.6. In the simulations of this article, we use Qpc as
a tuning parameter to obtain the desired glottal pulse waveform, and the value of c3 is
kept fixed (one could say, arbitrarily) at c3 = 1 (if the subglottal resonator is coupled) or
c3 = 0 (if the subglottal acoustics is ignored). If it is necessary for producing a realistic
balance between supra- and subglottal feedbacks, the value of c3 can be increased without
losing stable phonation up to Qpcc3 ≈ 0.6.

5. Anatomic data and model parameters

5.1. Area functions for VT and SGT

Solving Webster’s equation requires that the VT is represented with an area function
and a centreline, from which curvature information can be computed. Two different VT
geometries corresponding to vowels from a healthy 26 years old female3 are used: A
prolonged [A] produced at fundamental frequency f0 = 168 Hz and similarly produced [i]
at f0 = 210 Hz. These geometries have been obtained by Magnetic Resonance Imaging
(MRI) using the experimental setting that has been described in [4, 5]. The extraction
of the computational geometry from raw MRI data has been carried out by the custom
software described in [50, 51]. The VT geometries and the area functions are shown in
Fig. 2, and related VT geometry dependent parameter values are given in Table 1.

3In fact, she is one of test subjects in the experimental companion article [3].
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The piston model in [48, Chapter 7] gives the expression θ = 2πA(LV T )/`2 for the
normalised acoustic resistance in Eq. (10) where we use the nominal wavelength ` =
171.5 mm. The corresponding values for θ[A], θ[i] together with the resonances Rj [A],
Rj [i] for j = 1, 2 are given in Table 1.

Table 1: Physical and physiological parameters dependent on the
VT geometry.

Parameter [A] [i]
normalised acoustic resistance at mouth, θ 0.042 0.009
inertia parameter, Ciner 2370 kg/m4 2570 kg/m4

length of VT, LV T 0.124 m 0.126 m
1st VT resonance, R1, from Eqs. (8)–(10) 807 Hz 219 Hz
2nd VT resonance, R2, from Eqs. (8)–(10) 2232 Hz 2980 Hz

The MRI data that is used for the VT does not cover all of the SGT. For this reason,
an exponential horn is used as the subglottal area function for Eq. (11)

As(s) = As(0)eεs where ε = 1
LSGT

ln
(
As(LSGT )
As(0)

)
(13)

following [49]. The values for As(0) = 2 cm2 and As(LSGT ) = 10 cm2 are taken from
[49, Fig. 1]. The horn length LSGT is tuned so that the lowest subglottal resonance is

R̃1 = 500 Hz which results in the second lowest resonance at R̃2 = 1230 Hz. This is,
indeed, a reasonable value for R̃1 based on [11, Table 1]; see also [52, 53, 40] and [27,
Fig. 1a].

5.2. Static parameter values

Table 2 lists the numerical values of physiological and physical constants used in
all simulations. Based on the acoustic reflection and transmission coefficients at the
air/tissue interface, the value of the energy loss coefficient in Eqs. (8) and (11) is taken
as

α =
ρ

ρhch
= 7.6 · 10−7 s

m
. (14)

The SGT lung termination resistance in Eq. (11) is given the value θs = 1 which corre-
sponds to an absorbing boundary condition.

All the model parameter values introduced so far are assumed to be equally valid
for both female and male phonation, except for vocal fold length h. As we are treating
female phonation in this article, it remains to describe the parameter values for Eqs. (1)
where the differences between female and male phonation are most significant. Horáček
et al. provide parameter values for M and K for in male phonation [41, 32] but similar
data for female subjects cannot be found in literature. Instead, the masses in M are
calculated by combining the vocal fold shape function used by Horáček et al. [32] with
female vocal fold length reported by Titze [54]. A first estimate for the spring coefficients
in K is calculated by assuming that the first eigenfrequency of the vocal folds matches
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the starting frequency for the simulations. The spring coefficients are then adjusted until
simulations produce the desired starting fundamental frequency for the f0-glides, giving
the constant K0 for Eqs. (15)–(16). For details of these rather long calculations, see
[30, 28].

Table 2: Physical and physiological constants.

Parameter Symbol Value
speed of sound in air c 343 m/s
density of air ρ 1.2 kg/m3

kinematic viscosity of air µ 18.27 µN s/m2

vocal fold tissue density ρh 1020 kg/m3

VT loss coefficient α 7.6 ·10−7 s/m
spring constant in contact (from [32]) kH 730 N/m
glottal gap at rest g 0.3 mm
vocal fold length (from [54]) h 10 mm
vocal fold thickness (from [32]) L 6.8 mm
vocal fold spring location parameter (from [30]) l 0.35L
control area height below glottis H0 11.3 mm
control area height above glottis H1 1 mm
equivalent gap length for viscous loss in glottis Lg 1.5 mm
SGT length LSGT 220 mm
normalised acoustic resistance at lungs θs 1
glottal entrance/exit coefficient kg 0.044
subglottal (lung) pressure over the ambient p0

sub 600 Pa

Let us conclude with a sanity check on the parameter magnitudes for Eq. (1) describ-
ing the vocal folds. The total vibrating mass for female phonation is m1 + m2 + m3 =
0.27 g and the total spring coefficients are k1 + k2 = 321 N/m. These nominal values
yield f0 ≈ 180 Hz for female phonation. If the characteristic thickness of the vocal folds
is assumed to be about 5 mm, these parameters yield a magnitude estimate for the elas-
tic modulus of the vocal folds by E ≈ k1+k2

Lh · 5 · 10−3 m ≈ 23.6 kPa. This should be
compared to [55, Fig. 7] where estimates are given for the elastic modulus of ex vivo male
vocal folds where values between 2.0 kPa and 7.5 kPa are proposed for different parts of
the vocal fold tissue.

6. Computational aspects

6.1. Parameter control for obtaining vowel glides

The f0-glide is simulated by controlling two parameter values dynamically. First, the
matrix K is scaled while keeping the matrix M constant. This approach is based on the
assumption that the vibrating mass of vocal folds is not significantly reduced when the
speaker’s pitch increases; a reasonable assumption as far as register changes are excluded.
The authors would like to remark that the relative magnitudes of M and K essentially
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Figure 3: Left: Volume flow (U), glottal area (Ag), sound pressure at lips (pm), and fundamental
frequency (f0) for a glide for the vowel [i] with Qpc = 0.1 and β = 0.046 kg/s. Right: The same glide
without VT feedback (Qpc = 0). The fundamental frequency has been extracted from the volume flow
signal.

determine the resonance frequencies of model (1). However, attention must be paid
to their absolute magnitudes using, e.g., dimensional analysis since otherwise the load
terms ±F (t) in Eq. (1) (containing the aerodynamic forces, contact force between the
vocal folds during the glottal closed phase, and the counter pressure from the VT/SGT)
would scale in an unrealistic manner.

The subglottal pressure, psub, is the second parameter used to control the glide pro-
duction. The dependence of the fundamental frequency on psub has been observed in
simulations [10, 56] as well as in humans [57] and excised canine larynges [58]. The im-
pact of psub on f0 is, however, secondary in these glides (less than 10 %). Instead, psub
is scaled in order to maintain phonation as the stiffness of the vocal folds changes.

The parameters are scaled exponentially with time

K(t) = 2.22t/TK0, psub(t) = 2t/T p0
sub (15)

for rising glides, and

K(t) = 2.22−2t/TK0, psub(t) = 21−t/T p0
sub (16)

for falling glides. The duration of the glide is T = 3 s, and t is the time from the
beginning of the glide. Other starting conditions (particularly, vocal fold displacements
and velocities, and pressure and velocity distributions in the resonators) are taken from
stabilised simulations. These parameters produce glides with f0 approximately in the
range [180 Hz, 360 Hz], although the exact range depends on the VT geometry and vocal
fold damping as well.

The damping parameters bi for i = 1, 2, in Eq. (2) play an important but problematic
role in glottis models. If there is too much damping (while keeping all other model
parameters fixed), sustained oscillations do not occur. Conversely, too low damping will
cause instability in simulated vocal fold oscillations. The magnitude of physically realistic
damping in vibrating tissues is not available, and the present model could possibly fail
to give a quasi-stationary glottis signal even if realistic experimental damping values
were used. With some parameter settings, the model even produces quasi-stationary
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Figure 4: Left: Volume flow (U), glottal area (Ag), sound pressure at lips (pm), and fundamental
frequency (f0) for a glide for the vowel [A] with Qpc = 0.2 and β = 0.046 kg/s. Right: The same glide
without VT feedback (Qpc = 0).

signal at several damping levels. For simplicity, we set bi = β > 0 for i = 1, 2, and use
golden section search to find at least one value of vocal fold loss β that results in stable,
sustained oscillation. The damping remains always so small that its lowering effect on
the resonances of the mass-spring system (1) is negligible.

6.2. Numerical realisation

The model equations are solved numerically using MATLAB software and custom-
made code. The vocal fold equations of motion (1) are solved by the fourth order Runge–
Kutta time discretisation scheme. The flow equation (5) is solved by the backward Euler
method. The VT is discretised by the FEM using piecewise linear elements (N = 28)
and the physical energy norm of Webster’s equation. Energy preserving Crank–Nicolson
time discretisation (i.e., Tustin’s method [59]) is used. The time step is almost always
10 µs which is small enough to keep the frequency warping in Tustin’s method under
one semitone for frequencies under 13kHz. Reduced time step, however, is used near
glottal closure. This is due to the discontinuity in the aerodynamic force in Eq. (7) at
the closure which requires numerical treatment by interpolation and time step reduction
as explained in [30, Section 2.4.1].

7. Simulation results

The results of glide simulations for vowels [A, i] are shown in Figs. 3–4. The funda-
mental frequency f0 trajectory has been extracted from the glottal volume flow (i.e., U)
signal in all figures.

The simulations indicate a consistent locking pattern at R1[i] in f0 trajectories that
vanishes if the VT feedback is decoupled by setting Qpc = 0. The locking pattern in rising
glides follows the representation given in Fig. 6 (right panel): sudden jump upwards toR1,
a locking to a plateau level, and a smooth release. Such locking behaviour is not observed
for glides of [A] where R1[A] is not inside the simulated frequency range [180 Hz, 360 Hz].
The subresonances R1[A]/4 = 201 Hz and R1[A]/3 = 269 Hz are within the frequency
range, and the corresponding events are visible in the sound pressure signal at the lips;
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Figure 5: Left: Volume flow (U), glottal area (Ag), sound pressure at lips (pm), and fundamental
frequency (f0) for an rising glide for the vowel [i] with Qpc = 0.05 and β = 0.046 kg/s. Right: The
falling glide using the same parameter settings.

see Fig. 4. They do not, however, cause noticeable changes in the f0 trajectory of the
glottal flow. The effect of the loss parameter β on locking pattern has been shown in
Fig. 6 (left panel).

Keeping Qpc and other model parameters the same, a falling f0 glide shows a more
pronounced or longer locking at R1 compared to rising glides; see Fig. 5. In falling glides,
there also tend to be ”ripples” in f0, glottal flow, and glottal area right after the jump
downward. Such ripples cannot be observed in rising glides. Using relatively high values
of VT feedback parameter Qpc, rising glides will exhibit a sharp corner or an overshoot
at the beginning of the plateau which is not observed in falling glides.

Finally, the effect of extreme values of model parameters β and Qpc on the glide
simulations at R1[i] is considered. These observations are qualitatively described in
Fig. 6 (middle and right panels). In the right panel, the medium values for β refer to
the interval [0.01, 0.05] and for Qpc to the interval [0.05, 0.25]. These intervals can thus
be regarded as feasible parameter ranges for vowel glide simulations of [i].

Referring to Fig. 6 (right panel), the full frequency range [180 Hz, 360 Hz] for f0 can
be obtained with modal locking as shown in Fig. 3 if medium Qpc and low-to-medium
β are used. Higher Qpc with medium β reduces the simulated f0 range to above 220 Hz
which is the value of R1[i]; see Fig. 6 (middle panel, three bottom pictures). This glide
starting frequency cannot be lowered by changing K, and it appears to represent very
strong modal locking at the onset of the vowel glide simulation.

The stability of glide simulations (understood as slowly changing amplitude envelope
of glottal volume flow U) becomes a serious issue at low and high values of β. We have
tuned the subglottal pressure psub in glide simulations as given in Eqs. (15)–(16). If we
produce the glides with constant psub, the range of parameter β, giving stable phonation,
shifts down a little. Moreover, the range of f0 shrinks to about [180 Hz, 330 Hz] but the
qualitative behaviour of glides and modal locking events remains very similar.
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Figure 6: Left: f0 trajectories for [i] with different values of β and fixed Qpc = 0.25. Solid line
β = 0.013 kg/s, dashed line β = 0.023 kg/s, and dotted line β = 0.034 kg/s. Middle: f0 trajectories
for [i] with different values of Qpc with β ∈ [0.03 kg/s, 0.05 kg/s]. Values of Qpc from left to right
in top row: 0.01, 0.025, and 0.05; middle row: 0.075, 0.1, and 0.25; bottom row: 0.5, 0.75, and 1.
Right: f0 trajectories for [i] qualitatively as Qpc and β increase in the direction of the arrow. Light
gray background indicates that few Qpc-β -combinations produce stable simulations; dark gray that no
combinations producing stable glides were found.

8. Sensitivity and robustness

Parameter tuning of the vowel model is tricky business as can be seen from model
parameter optimisation experiments described in [28, Chapter 4]. By exaggerating some
of the parameter values, it is possible to make vowel glide simulations over R1[i] behave
in a way that can be excluded by experiments or observations from natural speech.

In phonetically relevant simulations, various tuning parameters must be kept in values
that are not only physically reasonable but also do not produce obviously counterfactual
predictions. When such a realistic operating point has been found, it remains to make
sure that the simulations give consistent and robust results near it. In doing so, we also
check which parts of the full model are truly significant for the model behaviour reported
in Section 7.

8.1. Acoustics of the vocal tract by Webster’s equation

The constant α in Eqs. (8) and (11) regulates the boundary dissipation at the
air/tissue interface. As shown in [45, Section 3], it appears in the corresponding dis-
sipating boundary condition αφt + ν̄ · ∇φ = 0 for the wave equation φtt = c2∆φ where
φ is the 3D acoustic velocity potential and ν̄ denotes the exterior normal of the VT/air
boundary. The qualitative effect of physically realistic tissue losses to vowel glide sim-
ulations was observed to be insignificant; see also [24, Section 5]. However, these losses
move slightly the VT resonance positions computed from Eqs. (8).

On the other hand, the VT resonances are quite sensitive to the normalised acoustic
resistance θ in Eq. (10). This parameter regulates the energy loss through mouth to the
external acoustic space, and its extreme values 0 and ∞ correspond to open and closed
ends for idealised acoustic waveguides, respectively. Again, physically realistic variation
in θ does not change the qualitative behaviour of vowel glides near R1[i] as reported in
Section 7.

The role of the VT curvature in Eq. (8) is more involved. As can be seen from Eq. (9),
the curvature results in a second order correction in the curvature ratio η to the speed
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of sound c in Eq. (8).4 In waveguides of significant intersectional diameter compared to
wavelengths of interest, the contribution of η in Eq. (9) appears to be secondary to a
larger error source that is related to curvature as well. This is caused by the fact that
a longitudinal acoustic wavefront does not propagate in the direction of the geometric
centreline of a curved waveguide even if the waveguide were of circular intersection with
constant diameter. The wavefront has a tendency to “cut the corners” in a frequency and
geometry dependent manner, and we do not have a mathematically satisfying description
of the “acoustically correct” centreline that would deal with this phenomenon optimally
in the context of Webster’s equation. Extraction of the the area function A(·) in Eq. (8)
from MR images, however, requires some notion of a centreline, and using a different
centreline would lead to slightly different version of A(·). This would somewhat change,
e.g., the resonance frequencies of Eq. (8) but not the mathematical structure of the model
nor the results of vowel glide simulations reported in Section 7. Hence, we simply use
the area functions and centrelines obtained from 3D MR images by the custom code
described in [50], using its nominal settings.

It remains to consider the non-longitudinal resonances of the VT. By its construc-
tion, the generalised Webster’s equation does not take into account at all the transversal
acoustic dynamics of the VT. It is known from numerical 3D Helmholtz resonance ex-
periments on several dozens of VT geometries that lowest non-longitudinal resonances of
the human VT tract are at approximately 4 kHz corresponding to λ/2 ≈ 4 cm; see, e.g.,
[4, Section 5], [60]. Anatomically, such length may appear between opposing valleculae,
piriform fossae, or even across the mouth cavity in some VT vowel configurations. How-
ever, the upper limit of 4 kHz for Webster’s equation is adequate for the computation
of the acoustic counter pressure pc in Eq. (12) for several octaves lower fundamental
frequencies f0 ∈ [180 Hz, 360 Hz] that are used in vowel glide simulations.

8.2. Subglottal acoustics

To large extent, what was stated above about the modelling error of the VT acoustics
applies to the SGT acoustics as well. We complement this treatment by considering how
and to what extent subglottal acoustics plays a role in the vowel glide simulations of
Section 7.

Firstly, significant ringing takes place in the subglottal space. This has been verified
by in vivo measurements [52, 53, 61, 12], using physical models [11, 62], and by mathe-
matically modelling the subglottal acoustics [27] based on anatomic data of trachea and
the progressively subdividing system of bronchi and the alveoles [63, 64]. During the
open phase, the inertia of the air column from bronchi up to mouth opening is taken
into account by Ciner in Eq. (5). At closure, the flow velocity vo drops to zero, and a
rarefaction pulse is formed above the vocal folds due to air column inertia in the VT, and
this is part of the acoustics modelled by Eq. (8). Similarly, a compression pulse is formed
below the vocal folds, known as the “water hammer” in [65]. The subglottal resonator
Eq. (11) is mainly excited by the water hammer. Both of these pulses can be seen in the
supra- and subglottal pressure signals psp and psb in Fig. 7.

4It should be pointed out that Eqs. (8)–(9) with nonvanishing η is the “right” generalisation of
Webster’s horn model, corresponding to the wave equation in curved acoustic waveguides. This approach
results in the approximation error analysis given in [47]. Somewhat paradoxically, a similar error analysis
for the simpler model Eqs. (8)–(9) with η ≡ 0 would require more complicated error estimation.
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Figure 7: Left: Volume flow (U), glottal area (Ag), supraglottal pressure (psp) just superior to the vocal
folds, counter pressure (pc), and subglottal pressure just inferior to the vocal folds (psb) without SGT
(black line) and with SGT (red line) for the vowel [i] at f0 = 180 Hz. Glottal closure are indicated by
squares and openings by circles. Right: Similar signals for the vowel [A].

The water hammer is the most important component of subglottal ringing, accom-
panied by its first echo that arrives back to vocal folds after approximately 2 ms delay.
The delay corresponds to the lowest subglottal formant between 500 Hz and 600 Hz as re-
ported in [53, 27]. The first echo returns during the glottal closure at least if f0 < 150 Hz
and the open quotient (OQ) of the pulse does not exceed 50 %; see [52, Fig. 4] for mea-
surements and [27, Fig. 12] for simulations. The echoes of the water hammer pulse can
be clearly seen in Fig. 7 as well but now the first echo returns after the glottis has opened
again due to higher values of f0 and OQ in these simulations.

The observations from simulations indicate that the subglottal acoustics has an ob-
servable effect on glottal pulse waveform. The subglottal effect will get more pronounced
when f0 → R̃1 = 500 Hz which is the predefined frequency of the first subglottal reso-
nance. This can be understood in terms of the supraglottal behaviour shown in Fig. 7
since both the VT and the SGT resonators have been realised similarly within the full
model. The sensitivity of the f0 trajectory in the range [180 Hz, 360 Hz] for the sub-
glottal effect depends on the magnitude of the SGT component of the counter pressure,
regulated by the parameter c3 in Eq. (12). Considering the model behaviour at supra-
glottal subresonances of R1[A] as explained in Section 7, it is to be expected that the

first subglottal subharmonic R̃1/2 should show up similarly. This, indeed, happens if the
coupling constant c3 is large; see the discussion in Section 4.3.

8.3. Flow model

The glottal flow described by Eqs. (5)–(6) contains terms representing both the vis-
cous and turbulent pressure loss in glottis. Viscous pressure loss can easily be seen to
be significant by considering the glottal dimensions and viscosity of air in the first term
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of Eq. (6). It is clear from this equation that the viscous losses dominate at least if the
glottal opening is small.

The importance of turbulence loss during parts of the glottal open phase can be seen,
for example, by comparing simulated volume velocities and glottal opening areas with
the experimental curves in [43, Fig. 3 on p. 628], obtained from a physical model of
glottis. In model simulations, leaving out the turbulence term changes the glottal pulse
waveform significantly if other model parameters are kept the same as shown in [28,
Fig. 3.7]. About half of the total pressure loss in simulations is due to turbulence at the
peak of opening of the glottis; see [28, Fig. 3.6]. However, the behaviour of the simulated
f0 trajectories over R1[i] does not change if the turbulence loss term is removed. Then,
however, the vowel glide must be produced by different model parameter values.

9. Discussion

We have reported consistent observations on the locking of simulated f0 glides on a
resonance of the VT. The locking behaviour shows a consistent time-dependent behaviour
that is similar for rising and falling glides. The locking takes place only at frequencies
determined by sub- or supraglottal resonances. By modifying the strength of the acoustic
feedback (i.e., the parameter Qpc in Eq. (12)) and vocal fold tissue losses (i.e., the
parameter β), the locking tendency at R1[i] may be modulated from non-existent (where
both Qpc and β have low values) to extreme locking at R1[i] without release (where
Qpc and/or β have exaggeratedly large values); see Fig. 6. By decoupling secondary
components from the simulation model as explained in Section 8 above, the locking
behaviour at R1[i] remains the same, even though the model parameter values required
for the desired glottal pulse change. We conclude that the results reported in Section 7
reflect the model behaviour in a consistent and a robust manner.

Vowel glides observed in test subjects are another matter. Any model is a simplifica-
tion of reality, and there is a catch in assessing the role of unmodelled physics: a proper
treatment would require the modelling of it. Short of this, we discuss these aspects based
on literature, model experiments, and reasoning by analogy.

Acoustics

Viscosity of air has not been taken into account in the acoustics model though a
measurable effect is likely take place in narrow parts of the VT or SGT. Resulting atten-
uation can be treated by adding a dissipation term of Kelvin–Voigt type to Eqs. (8) and
(11). For a constant diameter waveguide, the term is proportional to µψsst/c

2. Adding
viscosity losses will widen and lower the resonance peaks of Webster’s resonators (i.e.,
lower their Q-value), with a slight change in the centre frequencies. An analogous effect
can be studied by increasing the tissue dissipation parameter α in Eq. (8) to a very high
value which has been observed not to change the conclusions of Section 7.

The SGT modelling by the horn is a crude simplification of the fractal-like lower
airways and lungs. The network structure of the subglottal model in [27] could be
replicated by interconnecting a large number of Webster’s resonators, each modelled
by Eq. (11). The resulting transmission graph is a passive dynamical system by [66,
Section 5], but it is not clear how to write an efficient FEM solver for such configurations.

The model proposed in [27] as well as the transmission graph approach are likely to
produce the correct resonance distribution and frequency-dependent energy dissipation
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rate at the lung end without tuning. The horn model does require tuning of the horn
opening area and the boundary condition on it in order to get realistic behaviour on
the lowest subglottal resonance R̃1 = 500 Hz. Doing so freezes all the higher subglottal
resonances at fixed positions, e.g., R̃2 = 1.230 kHz. The branching subglottal models
given in [27, Fig. 8] have the second subglottal resonance between 1.3kHz and 1.5kHz.

Based on the observations of Section 7, it seems likely that the overall subglottal effect
on the fundamental frequency f0 is insignificant for vowel glides within [180 Hz, 360 Hz]

that is over 100 Hz away from R̃1. However, the subglottal effect is certainly discernible
in waveforms as in Fig. 7, but the effect of higher subglottal formants R̃2, R̃3, . . . cannot
be seen even there. In current simulations of female phonation, the vocal fold mass-
spring system has its mechanical resonances at approximately 150 Hz, which acts as a
low-pass filter for subglottal excitation in higher frequencies. The same conclusions are
likely to hold when using a more complicated subglottal resonator geometry with one
caveat: a graph-like subglottal geometry has lots of cross-mode resonances that affect
the subglottal acoustic impedance in other ways than just moving the pole positions.

Vocal fold geometry and glottal flow

The idealised vocal folds geometry shown in Fig. 1 leads to a particularly simple
expression for the aerodynamic force in Eq. (7). Replacing the sharp peaks by flat tops
in Fig. 1 (but keeping the same glottal gap g at rest) results in phonation that has
typically lower open quotient (OQ) whereas the original wedge-like geometry produces
more often phonation where the glottis does not close. However, these changes do not
affect the conclusions of Section 7.

The glottal flow has been studied extensively since 1950’s. Compared to the model
given in Section 3, physiologically more faithful glottal flow solvers have been proposed
in, e.g., Pelorson et al. (1994) in [35], Titze (2002) in [67], and Erath et al. (2011) in
[68]; see also [49, 10, 69, 43, 26]. As pointed out in [69, p. 83], more sophisticated flow
models are challenging to couple to acoustic resonators since the interface between the
flow-mechanical (in particular, the turbulent) and the acoustic components is no longer
clearly defined. We next discuss improvements of glottal flow modelling in terms of
including flow separation and turbulence as an acoustic source.

Flow separation and Coandă effect during the diverging phase of the phonatory cycle
(which obviously cannot occur in wedge-like geometry of Fig. 1) have been studied in
[68, 70, 35] using boundary layer theory and physical model experiments. The boundary
layer leaves the vocal fold surfaces at the time-dependent flow separation point, say
xs, forming a jet which extends downstream into supraglottal space. Thus, the vocal
folds “stall” at xs, and the aerodynamic force on them is greatly diminished; see [68,
Section. IV] where the vocal folds model is from [71]. Similarly, the viscous pressure loss
in [35, Eq. (A7)] depends only on the upstream part of glottis that ends at xs. Simplifying
assumptions on the vocal fold geometry [35, Fig. 13] are required for computing xs, and
the result is sensitive to the geometry which makes it challenging to model.

Turbulence in supraglottal space is a spatially distributed acoustic source, and it
does not provide a scalar flow velocity signal for boundary control as v0 in Eq. (10). The
supraglottal jet may even exert an additional aerodynamic force to vocal folds that would
not be part of the acoustic counter pressure pc from the acoustic resonators. Turbulence
in VT constrictions is the primary acoustic source for unvoiced fricatives, and many such
sources have been modelled separately in, e.g., [49]. Much of the turbulence noise energy
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lies above 4 kHz but Webster’s model Eq. (8) is an accurate description of VT acoustics
only below 4 kHz due to the lack of cross-modes [60, 72, 73]. This fact speaks against
the wisdom of including turbulence noise in the proposed model.

The model given in Sections 2–4 treats flow-mechanical and acoustic components us-
ing separate equations, and we conclude that this paradigm is not conducive for including
the advanced flow-mechanical features discussed above. Instead, phonation models based
on Navier–Stokes equations would be a more appropriate framework.

10. Conclusions

We have presented a model for vowel production, based on (partial) differential equa-
tions, that consists of submodels for glottal flow, vocal folds oscillations, and acoustic
responses of the VT and subglottal cavities. The model has been originally designed as a
tunable glottal pulse source for a high-resolution VT acoustics simulator that is based on
the 3D wave equation and VT geometries obtained by MRI as explained in [4, 5, 50]. The
model has found applications as a controlled source of synthetic vowels that are needed
in, e.g., developing speech processing algorithms such as the inverse filtering [7, 8].

In this article, the model was used for simulations of rising and falling vowel glides
of [A, i] in frequencies that span one octave [180 Hz, 360 Hz]. This interval contains the
lowest VT resonance R1 of [i] but not that of [A]. Perturbation events in simulated
vowel glides were observed at VT acoustic resonances, or at some of their fractions (i.e.,
subresonances) but nowhere else. The fundamental frequency f0 of the simulated vowel
was observed to lock to R1[i] but similar locking was not seen at any of the subresonances.
Such modal locking event takes place only when the acoustic feedback from VT to vocal
folds is present, and then it has a characteristic time-dependent behaviour. A large
number of simulation experiments were carried out with different parameter settings of
the model to verify the robustness and consistency of all observations.

To what extent do the simulation results validate the proposed model? The model
produces perturbations of the glottal pulse both at VT resonances and at some of the
VT subresonances. Of the former, a wide literature exists as reviewed in Section 1.
Observations on the subresonance perturbations in speech have not been reported, to
our knowledge, in experimental literature. There is a particular temporal pattern of
locking in simulated perturbations at R1[i] as explained in Fig. 6 (left panel). Such a
pattern can be seen in the speech spectrograms given in [17, Fig. 5], [16, Fig. 4], and in
vowel glide samples in the data set of the companion article [3]. The glottal flow and
area simulations in Fig. 7 are remarkably similar with the experimental data presented
in [52, Figs. 4-7], the signals produced by different numerical models [10, Figs. 14a-14c],
[40, Figs. 8 and 10], [27, Figs. 10–11], [67, Fig. 6], [74, Fig. 5], and the glottal pulse
waveforms obtained by inverse filtering in, e.g., [8, Figs. 10–13], [75, Figs. 5.3, 5.4, and
5.17], [42], and [7, Figs. 3 and 6].

In simulations, we have disregarded the neural control actions to the vocal fold struc-
tures and modifications of the VT geometry. There is also a significant control action
affecting the subglottal pressure and it has been used as a control variable in Eqs. (15)–
(16) for glide productions. In humans, neural control actions are part of feedback loops,
of which some are auditive, and some others operate directly through tissue innervation
and the central nervous system. So little is known about these feedback mechanisms
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that their explicit mathematical modelling seems hopeless. Instead, the model parame-
ters for simulations are tuned so that the simulated glottal pulse waveform corresponds
to experimental speech data.

Neglecting the role of neural control actions, we conjecture that the leading source of
discrepancy between the model and true speech biophysics in vowels is due to simplified
flow modelling for frequencies under 4 kHz. For frequencies over 4 kHz, modelling VT
acoustics by Webster’s equation (as opposed to the 3D wave equation) is insufficient.
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[26] P. Šidlof, J. Horáček, V. Řidký, Parallel CFD simulation of flow in a 3D model of vibrating human
vocal folds, Computers & Fluids 80 (2013) 290–300.
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