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Abstract

In this paper we introduce a Riccati equation theory for (a class of) well posed
(I/O-stable) discrete time linear systems Φ as presented in [9].

We tie together three different notions: The first notion is the general question
under which conditions it is possible to solve a minimax control problem associated
to Φ by static state feedback. The second notion concerns the existence of a certain
spectral factorization of the I/O-map of Φ. The third notion is about a particular
(stabilizing) solution of a Riccati equation system associated with Φ.

We show that these three notions are in fact equivalent under fairly mild stability
assumptions of Φ, namely input-output stability. Furthermore, this equivalence does
not require any finite dimensional structure in any of the operators of the system.

AMS Subject Classification 93B52, 49J35, 93B36.

Keywords Discrete time, feedback control, infinite dimensional, input-output stable,
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1 Introduction

This paper, together with [9], presents a Riccati equation theory for a class of discrete
time linear systems (DLS’s) Φ with H∞ transfer functions. Complete and detailed proofs
of the important results are given.

We study certain feedback properties of such linear systems. We show that the following
three notions are equivalent:

(i) The (critical) control input giving the minimax output for Φ can be realized by a
state feedback with a bounded feedback operator Kcrit,

(ii) The transfer function D(z) of Φ has a (J, S)-inner-outer factorization as defined in
Definition 18,

(iii) There is a sesquilinear form P ( , ) satisfying the Riccati equation of Definition 33
and certain additional conditions as listed in (iii) of Theorem 40.

For the precise statement of the results, see Theorem 40. For a brief presentation, see
[8] which is a shorter version of this paper.

The results of this paper do not require any finite dimensional structure in any of the
spaces. The cost functional in the output space Φ can be non-standard—i.e. also negative
cost is allowed (see Definition 1). We use fairly weak stability conditions: The transfer
function D(z) of the open loop system is in H∞, and the critical (one step) feedback
operator Kcrit (see Definition 7) is assumed to be bounded. The latter condition is trivially
satisfied if the system is output stable, or if the input space U is finite dimensional. The
controllability and observability maps of Φ may be unbounded. For this reason, the
Riccati equation in Definition 33 is not stated in terms of a bounded self-adjoint Riccati
operator but in terms of densely defined sesquilinear forms in the space H ×H , where H
is the state space of the system.

Let us give a short review of related material with emphasis on discrete time systems.
Early papers about spectral factorization techniques, feedback control and stabilizing
solutions of Riccati equations are [5], [12] and [16] for discrete time, and [11] and [13] for
continuous time.

Equivalence results of type (ii) ⇔ (iii) are given in [6] for finite dimensional systems
both in continuous and discrete time. Also the notion of the extended Hamiltonian pencil
(EHP) is introduced, and the equivalence of the feedback problem to an invariant subspace
structure of EHP is studied (see also [15]). Discrete time EHP in the infinite dimensional
setting is studied in [14] and existence results for (power) a stabilizing solution of the
Riccati equation are given.

The monograph [4] contains a Riccati equation theory for exponentially (power) stable
time-varying discrete time systems. The power stabilizing solution to the Riccati equation,
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minimax cost problems and factorizations of the transfer function are studied in terms of
Kalman-Szegö-Popov-Yakubovich systems. The main emphasis is on the Riccati equation
arising from the disturbance attenuation problem. A comprehensive reference for the
classical finite dimensional case with positive cost functional [7] . Both continuous and
discrete time systems are extensively treated from the Riccati equation point of view.
The finite dimensional discrete time H∞-control problem is studied in [25] in terms of the
Riccati equation and the (power) stabilizing solution. Some infinite dimensional discrete
time Riccati equation theory is presented in [2].

The litterature for the continuous time case is considerably richer. Recent continuous
time papers, somewhat parallelling our work, are [1], [6], [19], [21], [22], [24], [20], [29],
[10]. The papers [1], [6] contain also short reviews of the history and development of
the theories connecting the spectral factorization and feedback control; the latter for the
discrete time systems, too.

The general organization of this paper is as follows. A crash course in discrete time linear
systems (DLS’s) is given in section 2. In section 3 we define and prove basic facts about a
minimax control problem of I/O-stable DLS’s. Section 4 is devoted to the study of (J, S)-
inner-outer factorizations of the I/O-map D and S-spectral factorizations of the Popov
operator. In section 5 we show that the minimax problem can be solved in feedback
form if and only if D has a (J, S)-inner-outer factorization (see Theorem 27). Under the
same conditions it is true that the sesquilinear form describing the critical cost satisfies a
Riccati equation of Definition 33; this is shown in section 6. The converse result is given
in section 7: the existence of a particular solution of the same Riccati equation implies the
equivalent conditions of Theorem 27. Finally, in section 8, the three equivalent conditions
are collected in our main Theorem 40 and some existence results for the (J, S)-inner-outer
factorizations are discussed.

2 A short review of DLS’s

We review the structure and notations of [9] that will be used throughout this paper.

The following notations are used throughout the paper: Z is the set of integers. Z+ :=
{j ∈ Z | j ≥ 0}. Z− := {j ∈ Z | j < 0}. The unit circle of the complex plane is
T, and D is the open unit disk. If H is a Hilbert space, then L(H) denotes the bounded
linear operators in H . Elements of a Hilbert space are denoted by lower case letters; for
example u ∈ U . Sequences in Hilbert spaces are denoted by ũ = {ui}i∈I ⊂ U , where I is
the index set. Usually I = Z or I = Z+. Given a Hilbert space Z, we define the sequence
spaces

Seq(Z) :=
{

{zi}i∈Z : zi ∈ Z and ∃I ∈ Z ∀i ≤ I : zi = 0
}

,

Seq+(Z) :=
{

{zi}i∈Z : zi ∈ Z and ∀i < 0 : zi = 0
}

,

Seq−(Z) :=
{

{zi}i∈Z ∈ Seq(Z) : zi ∈ Z and ∀i ≥ 0 : zi = 0
}

,

ℓ2(Z; Z) :=
{

{zi}i∈I ⊂ Z :
∑

i∈I

||zi||
2
Z < ∞

}

, where I = Z,Z+, or Z−,
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where the last are Hilbert spaces with obvious inner products. The following linear oper-
ators are defined in Seq(Z) and ℓ2(Z; Z):

• the interval projections for j, k ∈ Z

π[j,k]z̃ := {wj}; wi = zi for j ≤ i ≤ k, 0 otherwise;

πj := π[j,j],

• the future and past projections

π+ := π[1,∞], π− := π[−∞,−1],

• the composite projections

π̄+ := π0 + π+, π̄− := π0 + π−,

• the bilateral forward time shift τ and its (formal) adjoint, then backward time shift
τ ∗

τ ũ := {wj} where wj = uj−1,

τ ∗ũ := {wj} where wj = uj+1.

The above projections are orthogonal in ℓ2(Z; Z). The bilateral shift τ is unitary in
ℓ2(Z; Z). The following identifications are used throughout this paper: ℓ2(Z+; Z) =
π̄+ℓ2(Z; Z), ℓ2(Z−; Z) = π−ℓ2(Z; Z). Z = πjℓ

2(Z; Z) for j ∈ Z. Other notations are
introduced when they are needed.

Our basic setting is a fixed realization of the transfer function that is neither assumed
to be input nor output stable. The realization we are working with is regarded as the
given data, no matter how (topologically) uncomfortable it is; i.e. we work with the given
operators in the original topologies. We call this realization a discrete time linear system
(DLS). It is given by a system of difference equations

{

xj+1 = Axj + Buj,

yj = Cxj + Duj, j ≥ 0,
(1)

where uj ∈ U , xj ∈ H , yj ∈ Y , and A, B, C and D are bounded linear operators between
appropriate Hilbert spaces. We call the ordered quadruple φ = ( A B

C D ) a DLS in difference
equation form. The three Hilbert spaces are as follows: U is the input space, H is the
state space and Y is the output space of φ.

There is also another equivalent form for DLS, called DLS in I/O-form (see [9, Theorem
11]). It consists of four linear operators in the ordered quadruple

(2) Φ :=

[

Aj Bτ ∗j

C D

]

.
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Note that φ stands for the DLS in difference equation form, and the capital Φ is the same
DLS written in I/O-form. The operator A ∈ L(H) is called the semi-group generator, and
the family {Aj}j≥0 is called the semi-group of Φ. It is the same operator A that appears
in the corresponding DLS φ in difference equation form. B : Seq−(U) → H is called
the controllability map that maps the past input into present state. C : H → Seq+(Y ) is
called the observability map that maps the present state into future outputs. The operator
D : Seq(U) → Seq(Y ) in (2) is called the I/O-map that maps the input into output in a
causal and shift invariant way. The operators in Φ and φ are connected by straightforward
algebraic relations (see [9, Lemma 7 and Definition 9]):

• B : Seq−(U) → H , C : H → Seq+(Y ) and D : Seq(U) → Seq(Y ).

• D, B and C are causal; i.e. they satisfy

π−Dπ̄+ = 0, Bπ̄+ = 0, π−C = 0.

• B satisfies

Bτ ∗ = AB + Bτ ∗π0,

Bτ ∗j ũ = Aj Bũ +

j−1
∑

i=0

AiBuj−i−1,

B = Bπ−1 ∈ L(U, H),

where U is identified with range (π−1) on Seq(U) in the natural way.

• C satisfies

π̄+τ ∗C = CA,

C = π0C ∈ L(H, Y ),

where Y is identified with range (π0) on Seq(Y ) in the natural way.

• D satisfies

π̄+Dπ− = CB,

Dτ = τD, Dτ ∗ = τ ∗D

D = π0Dπ0 ∈ L(U, Y ),

where U , Y are identified with range (π0) in the natural way.

For the input, output and state sequences the following notation is used:

• The state of φ at time j ≥ 0 is denoted by xj(x0, ũ), and it is defined by

(3) xj(x0, ũ) := Ajx0 +

j−1
∑

i=0

AiBuj−i = Ajx0 + Bφτ
∗j ũ.
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• The output sequence ỹ(x0, ũ) := {yj(x0, ũ)}j∈Z+
of φ is defined by

(4) yj(x0, ũ) := CAjx0 +

j−1
∑

i=0

CAiBuj−i + Duj = πj(Cφx0 + Dφũ),

where x0 ∈ H denotes the initial state at time j = 0, and ũ ∈ Seq+(U) is an input
sequence.

In this paper our main emphasis is upon I/O-stable DLS’s; this means that the Toeplitz
operator Dπ̄+ : ℓ2(Z+; U) → ℓ2(Z+; Y ) is a bounded. Then the Toeplitz operator has a
bounded extension to the whole of ℓ2(Z; U), also denoted by D. In the frequency domain,
the action of D is the multiplication by the H∞-transfer function of the system.

For the study of the operators B and C, a suitable definition is needed for their domains
([9, Definition 24]). We define dom (B) := Seq−(U), equipped with the ℓ2(Z; U)-inner
product. The domain of C is given by

(5) dom (C) := {x0 ∈ H | Cx0 ∈ ℓ2(Z+; Y )},

equipped with the inner product topology of H . Neither of the operators B, C are assumed
to be bounded in their domains, but C is closed (see [9, Lemma 27]). If they are bounded,
we say that Φ is input stable or output stable, respectively.

The stability notions associated to the semi-group generator A of the DLS Φ are the
following (see [9, Definition 21])

• A is power (or exponentially) stable, if ρ(A) < 1,

• A is strongly stable, if Ajx0 → 0 as j → ∞,

• A is power bounded, if supj≥0 ||A
j||H < ∞.

We say that Φ is stable if it is I/O-stable, input stable, output stable and its A semi-
group generator is power bounded. If Φ is stable and A is strongly stable, then Φ is
strongly stable.The relations between various stability condition are discussed in [9, Section
6]. We note that the I/O-stability implies that range (B) ⊂ dom (C); this is known as
the compatibility condition in [9, Lemma 39]). We assume throughout this paper that
dom (C) = H . In Lemma 39 and Theorem 40 we assume further that range (B) = H .

The notion of state feedback is central in this work. In difference equation form, we realize
the state feedback by first adding still another equation uj = Kxj +Fuj to equations (1),
where K ∈ L(U). This gives us an extended DLS φext. We get the closed loop DLS φext

⋄

in difference equation form by simple manipulation. However, in this paper we need the
same structure written in I/O-form.

In I/O-form, the new output signal given by K provides a new output ṽ ∈ ℓ2(Z+; U) to Φ,
thus giving an (open loop) extended DLS Φext := [Φ, [K,F ]]. This is a cartesian product
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of two DLS’s with the same input and semi-group structure, as presented in the following
picture:

Aj Bτ ∗j

(

C
K

) (

D
F

)

?
x0

�xj(x0, ũ)
�ỹ(x0, ũ)
�ṽ(x0, ũ)

6
ũ

The ordered pair of operators [K,F ] is called a feedback pair of Φ. Here K is a valid
observability map and F is a valid I/O-map for the system with semi-group generator A
and controllability map B; the operator (I − F)−1 : Seq(U) → Seq(U) is required to be
causal and shift invariant. From an I/O-stable feedback pair we require that dom (C) ⊂
dom (K), and both F and (I − F)−1 are bounded in the ℓ2-topology. If, in addition,
K : H → ℓ2(Z+; U) is bounded, then we say that [K,F ] is stable. The closed loop
extended DLS Φext

⋄ is the DLS that we obtain when we close the following state feedback
connection:

Aj Bτ ∗j

(

C
K

) (

D
F

)

?
x0

�xj(x0, ũ)
�ỹ(x0, ũ)

�ṽ(x0, ũ)
r

-
+

b
6� ũ

The formulae for the closed loop system in terms of the open loop operators can be easily
calculated (see [9, Definition 18]). Thus we have two different notions of state feedback;
one for DLS’s in difference equation form, the other for DLS’s in I/O-form. It follows that
these feedback notions are equivalent in the same way than the two notions of the DLS
are equivalent (see [9, Section 5]). The stability properties of the open and closed loop
feedback systems are discussed in [9, Section 9].

We remark that the structure described above is closely related to the concept of a (con-
tinuous time) stable well-posed linear system in [19], [27] and [28]. The notation of this
paper and [9] is a discrete time variant of that used in the continuous time papers [19],
[21] and [20].

The introduction of two different but equivalent forms of DLS’s may first seem superfluous—
even more so because of the fact that the I/O -stable (H∞) systems we can use the transfer
function representation (see [17, Theorem 1.15B]). However, operator theoretic study of
these systems become notationally very clumsy, if the basic operators are always stated
as multiplications by transfer functions. We remark that in [17] the basic objects are
unilateral shift operators together with Toeplitz operators, and the complex analysis re-
sults are presented more or less as an important application. From the control theoretic
point of view, the interaction between controllability, observability and I/O -maps can be
conveniently described in our formalism because these operators are the basic building
blocks of the DLS in I/O -form. Also the generalizations to non-linear theories can be
done easily with this notation.
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3 Nonstandard cost and minimax control of DLS’s

We consider a minimax control problem associated to a DLS Φ =
[

Aj Bτ∗j

C D

]

and a possibly
non-definite cost functional measuring the outputs of Φ. Basic definitions are given and
facts proved in this section.

We start with picking a self-adjoint operator J ∈ L(Y ) which induces a nonstandard
(i.e. not necessarily positive definite) inner product on the output space of Φ. The cost
functional is defined as follows:

Definition 1. Let Φ =
[

Aj Bτ∗j

C D

]

be a DLS, and let J ∈ L(Y ), R ∈ L(U) be self-adjoint.
Then the nonstandard cost for the output ỹ of Φ is

(6) J(x0, ũ) :=
∑

j≥0

[
(

yj(x0, ũ), Jyj(x0, ũ)
)

Y
+
(

uj, Ruj

)

U
],

where ũ ∈ ℓ2(Z+; U) is an input and x0 ∈ dom (C) is the initial state of the system at time
j = 0.

It is a known fact that the control ũ can always be thought to be “free of charge” (no cost
on the input), because the input can be made visible in the output. Then the cost for the
control can always be included in the cost for the output. Technically this is accomplished
by replacing the DLS ( A B

C D ) by an extended system φ′ = ( A B
C′ D′ ), where C ′ ∈ L(U, Y ×U),

D′ ∈ L(H, Y × U), and J by J ′ ∈ L(Y × U, Y × U) defined by

C ′ =

(

C
0

)

, D′ =

(

D
I

)

, J ′ =

(

J 0
0 R

)

.

Then, if zk(x0, ũ) := C ′xk + D′uk is the output of Φ′, we get

(7)
(

yj(x0, ũ), Jyj(x0, ũ)
)

Y
+
(

uj , Ruj

)

U
=
(

zk(x0, ũ), J ′zk(x0, ũ)
)

Y ×X
.

Thus there is no loss of generality in setting R = 0 in formula (6), and this is what we
always do. In this case equation (6) takes the form

(8) J(x0, ũ) = 〈Cx0 + Dũ, J(Cx0 + Dũ)〉ℓ2(Z+;Y ) .

Note that we use the same letter J for both the self-adjoint operator and for the associated
cost functional. To avoid trivialities, we see that the inner product in equation (8) is finite
for those x0 and ũ that we use.

Proposition 2. Let J ∈ L(Y ) and Φ be an I/O-stable DLS. Then |J(x0, ũ)| < ∞ for all
x0 ∈ dom (C) and ũ ∈ ℓ2(Z+; U).

Proof. If x0 ∈ dom (C) and ũ ∈ ℓ2(Z+; U), then by the definition of dom (C) and I/O-
stability, Cx0 + Dũ ∈ ℓ2(Z+; Y ). The claim immediately follows.
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If J is positive, then one would immediately be tempted to find the optimal control that
minimizes the cost. With the nonstandard case, the cost could be made as large or small
as we please, just by choosing a suitable input ũ. So there is not much sense in speaking
about minimal or maximal cost. We look for certain control sequences, called critical
controls ũcrit(x0), that are saddle points of the cost functional J(x0, ũ) as a mapping from
ℓ2(Z+; U) onto R.

Definition 3. Let Φ =
[

Aj Bτ∗j

C D

]

be a DLS, and let x0 ∈ dom (C) be an initial state.

(i) The control ũcrit(x0) ∈ Seq+(U) is critical if the Frechet derivative of the cost
J(x0, ũ) with respect to ũ vanishes.

(ii) The corresponding critical state sequence {xcrit
j (x0)}j≥0 is defined by

xcrit
j (x0) = xj(x0, ũ

crit(x0)).

(iii) The corresponding critical output ỹcrit(x0) is defined by

ỹcrit(x0) = Cx0 + Dũcrit(x0).

Let us first calculate a necessary and sufficient condition for a control to be critical,
without worrying about existence and uniqueness questions of the critical control.

Lemma 4. Let Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable DLS, and let x0 ∈ dom (C) be an initial
state. Then the control ũcrit(x0) ∈ ℓ2(Z+, U) is critical if and only if

(9) π̄+D
∗JC x0 = −π̄+D

∗JDũcrit(x0).

Furthermore, the corresponding critical output ỹcrit(x0) satisfies

(10) π̄+D
∗Jỹcrit(x0) = 0.

Proof. We have for ũ ∈ ℓ2(Z+; U)

(11) J(x0, ũ) = 〈Cx0 + Dũ, J (Cx0 + Dũ)〉ℓ2(Z+;Y ) .

The critical control is found by requiring the real derivative d
dǫ

J(x0, ũ + ǫw̃) = 0 at ǫ = 0
for all w̃ ∈ ℓ2(Z+; U). This gives

d

dǫ
J(x0, ũ + ǫw̃)|ǫ=0

= 2Re
〈

w̃, π̄+D
∗JCx0 + π̄+D

∗JD̃ũcrit(x0)
〉

ℓ2(Z+;Y )
= 0,

which gives equations (9) and (10).

The Toeplitz operator π̄+D∗JDπ̄+ is called the Popov operator (see [6]) or the power
spectrum operator (see [5]) of the DLS. The following definition gives us the basic notion
of this paper, namely J-coercivity. It serves as a sufficient condition for the existence of
the unique control.
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Definition 5. The DLS Φ =
[

Aj Bτ∗j

C D

]

is J-coercive, if the Toeplitz operator
π̄+D∗JDπ̄+ has a bounded inverse in ℓ2(Z+; U).

Proposition 6. Let Φ be an I/O-stable and J-coercive DLS. Then Dπ̄+ is coercive. In
particular, range (Dπ̄+) is closed.

Proof. To show coercivity, assume for contradiction that there is a sequence {ũj} ⊂
ℓ2(Z+; U), ||ũj||ℓ2(Z+;U) = 1 such that Dπ̄+ũj → 0 as j → 0. Because D is bounded by
I/O-stability, so is π̄+D∗J . But then π̄+D∗JDπ̄+ũj → 0 as j → 0. This is a contradiction
against the J-coercivity of Φ.

Now equation (9) immediately calls for the following definition and lemma:

Definition 7. Let Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable and J-coercive DLS. Then

(i) the the densely defined linear operator Kcrit : H ⊃ dom (Kcrit) → ℓ2(Z+; U), defined
by

(12) Kcrit := −(π̄+D
∗JDπ̄+)−1π̄+D

∗JC

is called the critical (closed loop) feedback operator, where dom (Kcrit) := {x0 ∈
H | Kcritx0 ∈ ℓ2(Z+; Y )},

(ii) the the densely defined linear operator Kcrit : H ⊃ dom (Kcrit) → ℓ2(Z+; U), defined
by

(13) Kcrit := π0K
crit

(the spaces range (π0) and U have been identified) is called the critical (closed loop)
one step feedback operator, where dom (Kcrit) := dom (Kcrit),

(iii) the densely defined linear operator Ccrit : H ⊃ dom (Ccrit) → ℓ2(Z+; Y ), defined by

Ccrit := C + DKcrit,

is called the critical (closed loop) observability map, where dom (Ccrit) := {x0 ∈
H | Ccritx0 ∈ ℓ2(Z+; Y )}.

It is easy to see that the above operators are well defined in their domains. This requires
checking that all the presented operator products make sense. For I/O-stable and J-
coercive DLS’s, clearly dom (C) ⊂ dom (Kcrit) and dom (C) ⊂ dom (Ccrit). If Kcrit is
bounded, we can identify it with its continuous extension to the whole of H . By a simple
manipulation, we see that

Ccrit = (π̄+ − π̄+D(π̄+D
∗JDπ̄+)−1π̄+D

∗J) C =: Π C,

where Π is a bounded projection (by I/O-stability and J-coercivity) in ℓ2(Z+; U) com-
muting with J .
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Lemma 8. Assume that the DLS Φ =
[

Aj Bτ∗j

C D

]

is I/O-stable and J-coercive. Then

(i) for each x0 ∈ dom (C) there is a unique critical control ũcrit(x0) satisfying formula
(9),

(ii) the critical control satisfies
ũcrit(x0) = Kcritx0,

the critical output satisfies
ỹcrit(x0) = Ccritx0,

and the critical trajectory satisfies

xcrit
j (x0) = Acrit(j)x0.

Proof. Use Definitions 5, 7, Lemma 4 and basic properties of DLS’s.

The family of operators {Acrit(j)}j≥0) is in fact a semi-group of linear operators defined
in dom (C). This is the subject of the following lemma.

Lemma 9. Assume that the DLS Φ =
[

Aj Bτ∗j

C D

]

is I/O-stable and J-coercive. Then

(i) the linear operators Acrit(j) := Aj + Cτ ∗jKcrit : dom (C) → H for j ≥ 1 satisfy

Acrit(j)dom (C) ⊂ dom (C) ,

(ii) the family {Acrit(j)}j≥0 of linear operators defined in dom (C) is a semi-group

(14) Acrit(j) = (Acrit)j

for all j ∈ Z+, where Acrit := Acrit(1) is a linear operator on dom (C), called the
critical semi-group generator,

(iii) the critical trajectory {xcrit
j (x0)}j≥0 associated to the initial value x0 ∈ dom (C) is

given by

(15) xcrit
j (x0) = (Acrit)jx0.

Proof. The proof of claim (i) is a consequence of the fact that Φ, as an I/O-stable sys-
tem, satisfies range (B) ⊂ dom (C) (see [9, Lemma 40] ). Because always π−τ ∗jKcritx0 ∈
dom (B) by the definition of dom (B), claim (i) immediately follows.

To prove (ii) we use a same kind of approach as in the proof of Lemma 4. Fix x0 ∈
dom (Kcrit) = dom (C), j ≥ 1. Let ǫ > 0 and w̃ ∈ ℓ2(Z+; U) be arbitrary. Then we have

J(x0, ũ
crit(x0) + ǫτ jw̃)(16)

=
〈

π[0,j−1][Cx0 + Dũcrit(x0)], J(−, ,−)
〉

ℓ2(Z+;Y )

+
〈

π[j,∞][Cx0 + D(ũcrit(x0) + ǫτ jw̃)], J(−, ,−)
〉

ℓ2(Z+;Y )
,
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because π[0,j−1]D(ǫτ jw̃) = π[0,j−1]τ
j(D(ǫw̃)) = 0 as a consequence of the causality of D.

A simple calculation, together with Definition 7, allows us to continue

J(x0, ũ
crit(x0) + ǫτ jw̃)(17)

=
〈

π[0,j−1]C
critx0, J(−, ,−)

〉

ℓ2(Z+;Y )
+
〈

π[j,∞][C
critx0 + ǫτ jDw̃], J(−, ,−)

〉

ℓ2(Z+;Y )

=
〈

Ccritx0, JC
crit
〉

ℓ2(Z+;Y )
+ 2ǫ Re

〈

π[j,∞]C
critx0, Jτ jDw̃

〉

ℓ2(Z+;Y )

+ ǫ2 〈D∗JDw̃, w̃〉ℓ2(Z+;Y )

Now because ũcrit(x0) is critical, we must have d
dǫ

J(x0, ũ
crit(x0) + ǫτ jw̃)) = 0 at ǫ = 0 for

all w̃ ∈ ℓ2(Z; U), j ≥ 0. It follows that Re
〈

π[j,∞]Ccritx0, Jτ jDw̃
〉

ℓ2(Z+;Y )
= 0 for all w̃, and

then immediately for all j ≥ 0

π̄+D
∗Jπ̄+τ ∗jCcritx0 = π̄+D

∗Jπ̄+τ ∗j(C + DKcrit)x0 = 0

and

π̄+D
∗Jπ̄+τ ∗jCx0 = π̄+D

∗JCAjx0 = −π̄+D
∗Jπ̄+Dτ ∗jKcritx0

= −(π̄+D
∗JDπ̄+)τ ∗jKcritx0 − π̄+D

∗J(π̄+Dπ+)τ ∗jKcritx0.

Using π̄+Dπ− = CB, gives π̄+D∗JC(Aj + Bτ ∗jKcrit)x0 = −(π̄+D∗JDπ̄+)τ ∗jKcritx0 for
x0 ∈ dom (C) j ≥ 1. This implies by Definition 7

(18) π̄+τ ∗jKcritx0 = KcritAcrit(j)x0.

The rest of the proof is now a calculation. For k ≥ 0, j ≥ 1 we have by Lemma 8

Acrit(k)Acrit(j)x0 = Akxcrit
j (x0) + Bτ ∗kKcritAcrit(j)x0(19)

= Akxcrit
j (x0) + Bτ ∗kπ̄+τ ∗jKcritx0,

where the last equality is by equation (18). The former part in the right of (19) can be
decomposed as

Akxcrit
j (x0) = Ak+jx0 + AkBτ ∗jKcritx0(20)

=Ak+jx0 + Bτ ∗(k+j)π[0,j−1]K
critx0.

The latter part in the right of (19) can be decomposed as

(21) Bτ ∗kπ̄+τ ∗jKcritx0 = Bτ ∗(k+j)Kcritx0 − Bτ ∗(k+j)π[0,j−1]K
critx0.

Formulae (19), (20) and (21) together show that Acrit(k)Acrit(j)x0 = Acrit(k + j)x0 for all
x0 ∈ dom (C), thus completing the proof of claim (ii). Also claim (iii) is now quite clear.

Definition 10. The densely defined linear operator Acrit : H ⊃ dom (C) → H, defined
by Acrit = Acrit(1) is called the critical (closed loop) semi-group generator. The family of
operators {(Acrit)j}j≥0 is called the critical (closed loop) semi-group.

The following lemma describes the common algebraic structure of operators Acrit, Ccrit

and Kcrit.
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Lemma 11. Let Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable J-coercive DLS. Then the following
equations are valid in dom (C):

(22) CcritAcrit = π̄+τ ∗Ccrit

(23) KcritAcrit = π̄+τ ∗Kcrit.

Proof. See the proof of Lemma 9.

Until now we have only given algebraic properties of operators Acrit, Ccrit and Kcrit as
possibly unbounded linear mappings on dom (C). We remark that Ccrit and Kcrit are
valid observability maps for a DLS whose semi-group generator is Acrit and state space
dom (C) = H , provided that certain continuity requirements of these operator are satisfied.
In particular, Acrit should be continuous in the norm of H . Generally this is not the case.

Basic stability conditions for closed loop semi-group generator Acrit are given in the fol-
lowing lemma. The proof is quite similar to [9, Theorem 50].

Lemma 12. Assume that the DLS Φ =
[

Aj Bτ∗j

C D

]

is I/O-stable and J-coercive. Then the
following is true:

(i) Φ is output stable ⇒ Kcrit ∈ L(H ; ℓ2(Z+; U)) ⇒ Kcrit := π0Kcrit ∈ L(H ; U) ⇒
BKcrit ∈ L(U) ⇔ Acrit ∈ L(H).

(ii) If Φ is stable, then {Acrit(j)}j≥0 ⊂ L(H) and there is a constant C < ∞ such that

||(Acrit)j ||L(H) ≤ C ∀j ≥ 1,

i.e. Acrit is power bounded.

(iii) If Φ is strongly stable, then

(Acrit)jx0 → 0 ∀x0 ∈ H,

i.e. Acrit is strongly stable.

Proof. The only not completely trivial part of (i) is the equivalence. This is proved by

Acrit = A + Bτ ∗Kcrit = A + Bπ−τ ∗π̄+K
crit = A + Bπ0K

crit,

where range (π0) and U have been identified.

In order to prove claim (ii), we write

||(Acrit)j||L(H) = ||Aj + Bτ ∗jKcrit||L(H)

≤ ||Aj||L(H) + ||B||ℓ2(Z+;U)→H ||Kcrit||H→ℓ2(Z+;U) ≤ C < ∞,

14



because τ is unitary and A is power bounded by assumption. This proves (ii).

The proof of claim (iii) is somewhat similar. Now we estimate for all x0 ∈ H

||(Acrit)jx0||H ≤ ||Ajx0||H + ||Bτ ∗jKcritx0||H.

Here Ajx0 → 0 by the assumed strong stability of Φ. The claim follows once we prove
Bτ ∗jKcritx0 → 0 for all x0 ∈ H . Fix x0 ∈ H . We have for all j, J > 0

||Bτ ∗jKcritx0||H(24)

< ||Bτ ∗jπ[0,J ]K
critx0||H + ||Bτ ∗jπ[J+1,∞]K

critx0||H.

The second term on the right of equation (24) gets small by increasing J , because Kcritx0 ∈
ℓ2(Z+; U) and B is bounded. Also the first term gets small, as shown by the following
inequality, implied by the basic properties of the observability map. For j > J

||Bτ ∗jπ[0,J ]ũ||H ≤ ||AjBπ[0,J ]ũ||H + ||

j−1
∑

i=0

AiB(π[0,J ]ũ)j−i−1||H

= ||Aj−J−1

(

J
∑

i=0

AiBuJ−i

)

||H → 0, for all ũ ∈ ℓ2(Z+; U),

where the limit follows because
∑J

i=0 AiBuJ−i ∈ H and A is strongly stable. The proof
of the lemma is completed.

The requirement that Kcrit ∈ L(H ; U) is central in this work. It is sufficient but not
necessary to make Acrit bounded. On the other hand, it is necessary for the DLS Φext of
equation (35) to be a DLS, because the input operator of DLS is assumed to be bounded.
Two simple sufficient conditions for this conditions are given below:

Proposition 13. Sufficient conditions for Kcrit ∈ L(H ; U) are

(i) JC ∈ L(H, ℓ2(Z+; Y )),

(ii) the input space U is finite dimensional.

Proof. The first claim is trivial. The second follows because then Kcrit = π0Kcrit would
be a finite dimensional operator.

We end this section by introducing a conjugate symmetric sesquilinear form in dom (C)×
dom (C) ⊂ H ×H , whose diagonal values give the critical cost. The sesquilinear forms of
this kind are basic objects in the Riccati equation system theory of Sections 6 and 7.

Definition 14. Let J ∈ L(Y ) be self-adjoint and Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable J-
coercive DLS. The conjugate symmetric sesquilinear form P crit( , ) in dom (C) × dom (C)
given by

P crit(x0, x1) :=
〈

Ccritx0, J Ccritx1

〉

ℓ2(Z+;Y )

is called the critical sesquilinear form associated to Φ and J .
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The I/O-stability of Φ has an effect to the limit behaviour of P crit( , ):

Proposition 15. Let J ∈ L(Y ) be self-adjoint and Φ be an I/O-stable and J-coercive
DLS. Then for all x0 ∈ dom (C), ũ ∈ ℓ2(Z+; U)

P crit(xj(x0, ũ), xj(x0, ũ)) → 0 as j → ∞.

Proof. Fix ũ ∈ ℓ2(Z+; U) and x0 ∈ dom (C). We first remark that

|P crit(xj(x0, ũ), xj(x0, ũ))| ≤ ||J || · ||Ccritxj(x0, ũ)||2 ≤ ||J || · ||Π||2 · ||Cxj(x0, ũ)||2,

where Π is the bounded projection introduced just after Definition 7. So it suffices to
show that Cxj(x0, ũ) → 0. We have

(25) Cxj(x0, ũ) = π̄+τ ∗jCx0 + CBτ ∗j π̄+ũ = π̄+τ ∗jCx0 + π̄+Dπ−τ ∗j π̄+ũ.

The first part of equation (25) approaches zero, because Cx0 ∈ ℓ2(Z+; Y ). For the second
part, write

(π̄+Dπ−τ ∗j) π̄+ũ = (π̄+Dπ−τ ∗j)π[0,J ]ũ + (π̄+Dπ−τ ∗j)π[J+1,∞]ũ.

Let ǫ > 0 be arbitrary. Choose J so large that ||π[J+1,∞]ũ||ℓ2(Z+;U) < ǫ/(2||D||ℓ2(Z+;U)→ℓ2(Z+;Y )

which gives immediately ||(π̄+Dπ−τ ∗j)π[J+1,∞]ũ|| < ǫ/2. For j > J write

π̄+Dπ−τ ∗jπ[0,J ]ũ = (π̄+τ ∗j)Dπ[0,J ]ũ.

By I/O-stability, Dπ[0,J ] ∈ ℓ2(Z+; Y ) and the above expression can be made less that ǫ/2
by increasing j. So the second term in (25) approaches zero as j increases. This completes
the proof.

In the following proposition, the last one of this section, we separate the cost of input into
two parts, the first of which does not depend on the control ũ we are applying, but only
on the initial value x0. The second part of the cost depends only on the deviation from
the criticality of the applied input ũ.

Proposition 16. Let J ∈ L(Y ) be self-adjoint and Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable J-
coercive DLS. Then the cost functional can be separated in the following way:

(26) J(x0, ũ) = J(x0, ũ
crit(x0)) + J(0, ũ − ũcrit(x0))

for all input functions w̃ ∈ ℓ2(Z; U). Moreover, we have

(27) P crit(x0, x0) = J(x0, ũ
crit(x0)),

where P ( , ) is defined in Definition 14.

Proof. Define w̃ := ũ − ũcrit(x0) ∈ ℓ2(Z+; Y ). Then quite easily

J(x0, ũ) = J(x0, ũ
crit(x0) + w̃)(28)

= J(x0, u
crit(x0)) + 2Re

〈

π̄+D
∗ J Cx0 + π̄+D

∗JDũcrit(x0), w̃
〉

ℓ2(Z+;Y )
+ J(0, w)

But now the middle term in the left of (28) vanishes, because the critical cost satisfies
formula (9). This immediately proves (26). Equation (27) is immediate from the definition
of Ccrit.

16



4 Factorization of the I/O-map

and the Popov operator

In this section we consider certain factorizations of I/O-map of an I/O-stable DLS. The
approach is similar to that given in [20], [22]. The following definitions give us the basic
tools needed in the factorization of the Popov operator π̄+D∗JDπ̄+ . We note that the
operator J of this section will ultimately appear be the same J as in formula (8) defining
the cost functional. We shall frequently use the notion of “bounded causal shift invariant
operator”. This can always be regarded as an I/O-map of an I/O-stable DLS (see [9,
Lemma 8]).

Definition 17. Let J ∈ L(Y ) be self-adjoint, and let S ∈ L(U) self-adjoint and invertible.
Let D be the I/O-map of an I/O-stable DLS.

(i) The operator E ∈ L(U) is S-unitary, if it is boundedly invertible and E∗SE = S.

(ii) The causal shift invariant operator N ∈ L(ℓ2(Z; U), ℓ2(Z; Y )) is (J, S)-inner, if
N ∗JN = S.

(iii) The causal shift invariant operator X ∈ L(ℓ2(Z; U)) is outer, if range (X π̄+) =
ℓ2(Z+; U).

(iv) The causal shift invariant operator X ∈ L(ℓ2(Z+; U)) is S-spectral factor of D∗JD, if
X has a bounded causal shift invariant inverse X−1 in ℓ2(Z; U) and D∗JD = X ∗SX .

The following special factorization of an I/O-stable I/O-map is necessary:

Definition 18. Let J ∈ L(Y ) be self-adjoint, and let S ∈ L(U) be self-adjoint and
invertible. Let D be the I/O-map of an I/O-stable DLS. Then the pair of operators (N ,X )
is an (J, S)-inner-outer factorization of D, if the following conditions hold:

(i) N ∈ L(ℓ2(Z; U), ℓ2(Z; Y )) and X ∈ L(ℓ2(Z; U)) are causal shift invariant operators,

(ii) N is (J, S)-inner,

(iii) X is outer,

(iv) D = NX .

If, in addition X is injective and range (X π̄+) = ℓ2(Z+; U), we say that the outer part X
of the factorization (N ,X ) has a bounded inverse.

The latter is equivalent with saying that the outer Toeplitz operator X π̄+ is coercive and
has a bounded inverse.

We start with proving a simple and frequently used proposition:
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Proposition 19. Let D be the I/O-map of an I/O-stable DLS. Let (N ,X ) is an (J, S)-
inner-outer factorization of D, such that the outer part X of the factorization has a
bounded inverse. Define the static part of the outer factor by X = π0Xπ0 ∈ L(U), with
the identification of spaces range (π0) and U . Then X−1 ∈ L(U) and X−1 = π0X−1π0.

Proof. We can write by the causality π0 = π0(X π̄+)−1(X π̄+)π0 = π0(X π̄+)−1π0 · π0Xπ0

and similarly π0 = π0Xπ0 · π0(X π̄+)−1π0. Identifying π0 with the identity operator in
L(U), we see that X is a bounded bijection on U . It thus has a bounded inverse as
claimed.

S is called the sensitivity operator of the factorization in [24]. There is a strong link
between S-spectral factorizations of D∗JD and (J, S) -inner-outer factorizations of D:

Proposition 20. Let D be the I/O-map of an I/O-stable DLS. Then the following are
equivalent:

(i) (N ,X ) is an (J, S)-inner-outer factorization of D, with the outer part X having a
bounded inverse,

(ii) X is a spectral factor of D∗JD, and N = DX−1.

Proof. Let us first show that (i) implies (ii). Assume that (N ,X ) is a (J, S)-inner-outer
factorization of D = NX−1. Then

D∗JD = X ∗
(

N ∗JN
)

(X ) = X ∗SX .

Because X−1 is causal and shift invariant, X is a S-spectral factor if X−1 is bounded. We
conclude this the fact that the Toeplitz operator X π̄+ has a bounded inverse.

By the causality of both X and X−1, (X π̄+)−1 = X−1π̄+, which is now bounded. We can
extend X−1π̄+ uniquely to ℓ2(Z; U)∩Seq(U) by the shift invariance, and then uniquely to
ℓ2(Z; U) = ℓ2(Z; U) ∩ Seq(U) by the continuity. This bounded extension coincides with
X−1 in the range of X , proving that X−1 is bounded. The first part of the proposition
now follows.

To show that (ii) implies (i), assume that we have the spectral factorization D∗JD =
X ∗SX . Define N := DX−1. Then N is a bounded causal and shift invariant operator,
satisfying D = NX . The factor N satisfies

N ∗JN = (X−1)∗
(

D∗JD
)

(X−1) = (X−1)∗
(

X ∗SX
)

(X−1) = S,

which proves that N is (J, S)-inner. It follows that (N ,X ) is a (J, S)-inner-outer factor-
ization of D, with X having a bounded inverse. The remaining part of the proposition is
thus proved.
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Not all operators of form D∗JD have S-spectral factorization for any S. Those that have
the factorization are more interesting to us. If we know one (J, S)-inner-outer factorization
of D for some S, then we know them all. This is because all the (J, S)-inner-outer
factorization can be parameterized by the set of all S-unitary operators.

Proposition 21. Let J ∈ L(Y ) be self-adjoint and D be the I/O-map of an I/O-stable
DLS. Let (N ,X ) be a (J, S) -inner-outer factorization of D for some S ∈ L(U) with X
having a bounded inverse. Then the set of all possible (J, SE)-inner-outer factorizations
(NE,XE) of D can be parameterized by

NE = NE, XE = E−1X , SE = E∗SE,

where E ranges over the set all boundedly invertible operators in L(U). In particular, if
we in addition require that SE = S, the E is allowed to range over the set of all S-unitary
operators E ∈ L(U).

Proof. We first show that for each invertible E we have the factorization as claimed. So
let E ∈ L(U) be boundedly invertible and (N ,X ) be a (J, S)-inner-outer factorization of
D for some S ∈ L(U). Trivially D = NX = NEXE. Also NE, XE and X−1

E are bounded
causal shift invariant operators. Because

(29) N ∗
EJNE = (NE)∗J(NE) = E∗N ∗JNE = E∗SE =: SE ,

NE is (J, SE)-inner.

In order to prove the remaining part, we must show that if there is another (J, S ′)-inner-
outer factorization (N ′,X ′), then it is of form (NE,XE) for some boundedly invertible
E ∈ L(U). Both (N ′,X ′), (N ,X ) satisfy

D = NX = N ′X ′

Because both X and X ′ together with their inverses are bounded, causal and shift in-
variant, both the operators U := X ′X−1 and U−1 := X (X ′)−1 are bounded causal shift
invariant operators. We have then

(30) N = N ′U .

Now, because N is (J, S)-inner and N ′ is (J, S ′)-inner

S = N ∗JN = (N ′U)∗J(N ′U) = U∗(N
′∗JN ′)U = U∗S ′U ,

which implies immediately

(31) SU−1 = U∗S ′.

Both S and S ′ are static operators. U∗ is anti-causal and U−1 causal. The the right side
of equation (31) is causal and the left side is anti-causal. So the both sides of equation
(31) are static, and thus U−1 must be equal to a multiplication by some E ∈ L(U) with
bounded inverse. This together with equation (30) implies N ′ = NE = NE and also by
the definition of U we obtain X ′ = E−1X = XE . Finally (31) gives S ′ = E∗SE = SE.
The statement about the S-unitary parameterizations is trivial, and the proof of the
proposition is now completed.
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The existence of (J, S)-inner-outer factorization of D will provide us with useful informa-
tion about the properties of the the Toeplitz operator π̄+D∗JDπ̄+. The following lemma
is the main result of this section:

Lemma 22. Let Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable DLS. Let J ∈ L(Y ) be self-adjoint and
S ∈ L(U) self adjoint with bounded inverse. If D has a (J, S)-inner-outer factorization
(N ,X ) with X having a bounded inverse, then the following holds:

(i) Φ is J-coercive.

(ii) The inverse of the Popov operator operator π̄+D∗JDπ̄+ satisfies

(π̄+D
∗JDπ̄+)−1 = (π̄+X

−1π̄+) S−1(π̄+(X ∗)−1π̄+).

(iii) The critical operators Acrit, Ccrit and Kcrit can be written in forms

Acrit = A − BX−1τ ∗S−1π̄+N
∗JC,

Ccrit = C − NS−1π̄+N
∗JC,

Kcrit = −X−1S−1π̄+N
∗JC.

Proof. We prove parts (i) and (ii) at the same time. Given π̄+f̃ ∈ ℓ2(Z+; U), we try to
solve the equation

(32) π̄+D
∗JDπ̄+ũ = π̄+f̃

for π̄+ũ. Replace D by NX and use the fact that N is (J, S)-inner to get

π̄+f̃ = π̄+X
∗SX π̄+ũ

Applying S−1π̄+(X ∗)−1 to this equation, and using the anti-causality of X ∗ and causality
of M−1 gives

(S−1π̄+(X ∗)−1)π̄+f̃ = (S−1π̄+(X ∗)−1) (π̄+X
∗SX π̄+)ũ

= S−1(π̄+(X ∗)−1π̄+ · π̄+X
∗π̄+)SX π̄+ũ = S−1(π̄+(X ∗)−1X ∗π̄+)SX π̄+ũ = X π̄+ũ,(33)

which is equivalent to

(34) π̄+ũ = X−1S−1π̄+(X ∗)−1π̄+f̃ .

This π̄+ũ is the only possible solution to equation (32), and accordingly π̄+D∗JDπ̄+ is
injective in ℓ2(Z+; U).

To check that this really is a solution, it suffices to compute

(π̄+D
∗JDπ̄+)X−1S−1π̄+(X ∗)−1π̄+f̃ = π̄+D

∗J(DX−1)S−1π̄+(X ∗)−1π̄+f̃

= π̄+X
∗(NJNS−1)π̄+(X ∗)−1π̄+f̃ = (π̄+X

∗S(X ∗)−1π̄+) π̄+f̃ = π̄+f̃ .

So there is a solution for each π̄+f̃ ∈ ℓ2(Z+; U), and it follows that π̄+D∗JDπ̄+ is surjective.
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Thus π̄+D
∗JDπ̄+ is a bounded bijection between two Hilbert spaces. It follows that

π̄+D∗JDπ̄+ must have a bounded inverse; i.e. Φ is J-coercive. The inverse is given
by formula (34). This proves the first two claims of the lemma. In order to prove the
remaining claim (iii), is is sufficient to apply the formula of claim (ii) to the formulae of
Definition 7. This completes the proof of the lemma.

Corollary 23. Assume that D is an I/O-map of an I/O-stable DLS Φ having a (J, S)-
inner-outer factorization (N ,X ). Then X π̄+ has a bounded inverse if and only if Φ is
J-coercive. When the equivalence holds, then S−1 ∈ L(U).

Proof. The “if” part is proved as follows. For a (J, S)-inner-outer factorization (N ,X )
we have π̄+D∗JDπ̄+ = π̄+X ∗SX π̄+. The bounded, causal and shift invariant oper-
ator X is an I/O-map of an I/O-stable DLS. From J-coercivity of Φ it follows fur-
ther that this DLS is S-coercive, too. Now range (X π̄+) is closed, by Proposition 6.
The “only if” part is claim (i) of Lemma 22. The remaining claim follows by writing
S = ((X π̄+)∗)−1(π̄+D∗JDπ̄+)(X π̄∗

+)−1. So the (static) operator S has a bounded inverse
in L(ℓ2(Z+; U)) and immediately also in L(U) (see [22, Lemma 14]).

5 The critical control in feedback form

In this section we give necessary and sufficient conditions for a class of critical control
problems to be of the feedback form as defined below. This class is associated to I/O-
stable and J-coercive DLS’s, with the additional requirement that the critical one step
feedback operator Kcrit = π0Kcrit is bounded. We remark that this latter requirement is
imposed on the common structure of Φ and J , and not on these objects separately. The
exact formulations and proofs of the results are divided into two Lemmas 25 and 26, and
then stated in Theorems 27 and 28.

Let Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable and J-coercive DLS, with Kcrit bounded. We have
seen in Lemma 11 that the closed loop feedback map Kcrit is a valid observability map for
a DLS having the critical semi-group generator Acrit as its semi-group generator, provided
that no trouble emerges with the right hand column of the DLS in question. This gives
us a reason to ask the following question: Is there an I/O-stable feedback pair [K,F ] for
the original DLS Φ such that the extended system

(35) Φext :=
[

Φ, [K,F ]
]

=





Aj Bτ ∗j

[

C
K

] [

D
F

]





has the following properties:
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(i) Both the extended DLS Φext and the closed loop extended DLS

Φext
⋄ :=

[

Φ, [K,F ]
]

⋄
:=





Aj
⋄ B⋄τ

∗j

[

C⋄
K⋄

] [

D⋄

F⋄

]





=





Aj + Bτ ∗j(I − F)−1K Bτ ∗j(I −F)−1
[

C + D(I − F)−1K
(I − F)−1K

] [

D(I − F)−1

(I − F)−1 − I

]



(36)

are I/O-stable.

(ii) With initial value x0 ∈ dom (C) and zero input, Φext
⋄ outputs the critical state

sequence {xcrit
j (x0)}j≥0, critical output ỹcrit(x0) and critical control ũcrit(x0) of the

original system Φ.

For a fairly thorough exposition of the feedback DLS’s and their stability properties, see
[9]. The feedback connection and signals of the closed loop system Φext

⋄ are illustrated in
the following figure:

A B
(

C
K

) (

D
F

)

?
x0

�xcrit
j (x0)

�ỹcrit(x0)

�ũcrit(x0)r

6

We give a name for this situation:

Definition 24. Let J ∈ L(Y ) be self-adjoint and Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable J-
coercive DLS. If its critical states, outputs and controls are of the form described above,
we say that the critical control of Φ is the of feedback form. The feedback pair [K,F ] is
called a critical feedback for Φ.
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Now we have made enough preparations to attack the first part of our problem.

Lemma 25. Let Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable DLS and J ∈ L(Y ) self-adjoint. Assume
that the following holds:

(i) Kcrit = π0Kcrit is bounded,

(ii) D has a (J, S)-inner-outer factorization (N ,X ) such the outer part X has a bounded
inverse.

Then the following holds:

(i) Φ is J-coercive.

(ii) [K,F ] is an I/O-stable feedback pair for Φ, where the operators K, F are defined by

K := −S−1π̄+N
∗JC,(37)

F := I − X .

(iii) The critical control of Φ is of the feedback form with the critical feedback pair [K,F ].

(iv) If, in addition, Φ is output stable, then [K,F ] is a stable feedback pair for Φ; i.e. K
is bounded.

Proof. Claim (i) follows directly from Corollary 23. In order to prove claim (ii) we show
that

[

Aj Bτ∗j

K F

]

is an I/O-stable DLS. We have

KA = −S−1π̄+N
∗JCA = −S−1π̄+N

∗π̄+τ ∗JC = −S−1π̄+N
∗τ ∗JC

= −S−1π̄+τ ∗N ∗JC = −π̄+τ ∗(S−1π̄+N
∗JC) = π̄+τ ∗K,

where we used the fact that N ∗ is anti-causal and shift invariant, and S is a static operator.
Furthermore, a similar calculation yields

KB = −S−1π̄+N
∗JCB = −S−1π̄+N

∗(π̄+JDπ−)

= −S−1π̄+N
∗JDπ− = −S−1π̄+(N ∗JN )Xπ−

= −π̄+S−1SXπ− = −π̄+Xπ− = −π̄+(I − F)π− = π̄+Fπ−.

So the pair [K,F ] interacts in the expected way with A and B.

By Proposition 19, π0(I − F)−1π0 = π0X−1π0 = X−1, where X, X−1 ∈ L(U). Now we
obtain

Kcrit = π0K
crit = π0(I − F)−1K = π0(I − F)−1π0K = X−1 π0K.

Because π0Kcrit is bounded by assumption, so is π0K. Now we have proved that
[

Aj Bτ∗j

K F

]

is an I/O-stable DLS, if we just note that F = I − X is a bounded operator, because X
is.
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It follows directly from equation (37) that dom (C) ⊂ {x0 ∈ H | Kx0 ∈ ℓ2(Z+; U)} =
dom (K) because all the other operators S−1, N ∗ and J are bounded operators between
appropriate spaces. Finally we see that I − F = X has a bounded causal and shift
invariant inverse. So the pair [K,F ] is an I/O-stable feedback pair for Φ, by [9, Definition
18]. This proves claim (ii).

The proof of claim (iii) is rather straightforward. First we note that because D has a (J, S)-
inner-outer factorization with the outer part having a bounded inverse, it is by Lemma
22 J-coercive. From [9, Lemma 18] we get the formula for the closed loop extended DLS
Φext

⋄ :=
[

Φ, [K,F ]
]

⋄

Φext
⋄ =





Aj + Bτ ∗j(I −F)−1K Bτ ∗j(I − F)−1
[

C + D(I −F)−1K
(I − F)−1K

] [

D(I − F)−1

(I − F)−1 − I

]



 .

By using the definitions of K, F , and the fact that D = NX , we obtain from the previous

Φext
⋄ =





Aj − BX−1τ ∗jS−1π̄+N
∗JC BX−1τ ∗j

[

C − NS−1π̄+N ∗JC
−X−1S−1π̄+N ∗JC

] [

N
X−1 − I

]



(38)

=





(Acrit)j BX−1τ ∗j

[

Ccrit

Kcrit

] [

N
X−1 − I

]



 ,

where the latter equality follows from Definition 7, claim (ii) of Lemma 8, claim (iii)
of Lemma 22 and I/O-stability of Φ. It is now clear, that this DLS outputs the critical
signals with zero input, as desired. The I/O-stability of Φext

⋄ follows from the boundedness
of N , X−1 by Definition (18). Claim (iii) is now proved. The proof of the last part (iv)
is trivial. This completes the proof of the lemma.

We remark that Proposition 21 gives a parameterization for the critical feedback pairs.
In fact, all the critical feedback pairs are parameterized this way, because the previous
lemma has the following converse:

Lemma 26. Let Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable DLS, and J ∈ L(Y ) be self-adjoint. Let
[K,F ] be an I/O-stable feedback pair for Φ. Assume the following:

(i) Φ is J-coercive.

(ii) The critical control of Φ is of the feedback form with the I/O-stable feedback pair
[K,F ].

Then the following holds:

(i) There exists a boundedly invertible S ∈ L(U) such that (N ,X ) is a (J, S)-inner-
outer factorization of D, where

(39) X := I − F ,
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(40) N := DX−1,

where X has bounded inverse.

(ii) The critical one step feedback operator satisfies Kcrit ∈ L(H, U).

Proof. The main part of this proof lies in showing that claim (i) holds. Define N , X as
in equations (39) and (40). By using the closed loop formula for Φext

⋄ :=
[

Φ, [K,F ]
]

⋄
and

the fact that D = NX−1 in ℓ2(Z+; U), we obtain

Φext
⋄ =





Aj − BX−1τ ∗jK BX−1τ ∗j

[

C + DX−1K
X−1K

] [

N
X−1 − I

]



(41)

=





(Acrit)j BX−1τ ∗j

[

Ccrit

Kcrit

] [

N
X−1 − I

]



 ,

where the latter equality follows from the assumption that the critical control of Φ is
of the feedback form with the I/O-stable feedback pair [K,F ]. See Definition 7 for the
definitions of Kcrit and Ccrit, and Lemma 8 for their basic properties.

We show now that (N ,X ) is a (J, S)-inner-outer factorization of D for some S ∈ L(U).
By the definition of the operators N , X we have D = NX . Because Φ is I/O-stable and
J-coercive, it is by Proposition 20 sufficient to show that X := I − F is a S-spectral
factor of D∗JD for some S ∈ L(U). For this aim we try to find an invertible S ∈ L(U)
satisfying

(42) D∗JD = X ∗SX .

Let the operator Z be given by

D∗JN = D∗JDX−1 = X ∗S =: Z∗.

We show that Z∗ := D∗JN is anti-causal; i.e. π̄+X ∗π− = 0.

Let ũ ∈ dom (B) = ℓ2(Z−; U) ∩ Seq(U) be arbitrary. Then π−X−1π−ũ ∈ dom (B) by
causality, and we can set x0 = Bπ−X−1π−ũ = BX−1π−ũ. We have range (B) ⊂ dom (C),
by [9, Lemma 39] and I/O-stability of Φ, and consequently x0 ∈ dom (C) ⊂ dom (Ccrit).
We can write for the critical control for DLS Φ

(43) ỹcrit(x0) = Ccritx0 = Ccrit(BX−1) = π̄+Nπ−ũ;

this holds because Φext
⋄ is the I/O-stable DLS of formula (41) outputting the critical

control for Φ with zero control, and the fact that Ccrit is the observability map and BX−1

is the controllability map for Φext
⋄ .

Because x0 ∈ dom (C), we have by formula (10) of Lemma 4

(44) π̄+D
∗Jỹcrit(x0) = 0.
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Now the equations (43) and (44) together give π̄+D
∗JNπ−ũ = π̄+Z

∗π−ũ = 0 for all
ũ ∈ dom (B). Because dom (B) is dense in ℓ2(Z−; U), and X ∗ is bounded, it follows that
Z∗ is anti-causal.

Because D∗JD is self-adjoint, we have

D∗JD = Z∗X = X ∗Z,

or equivalently,

(45) (X ∗)−1D∗JDX−1 = (ZX−1)∗ = ZX−1.

Because (ZX−1)∗ is anti-causal and (ZX−1) is causal, it follows that (X ∗)−1D∗JDX−1

is a static operator. Thus it is a multiplication by a self-adjoint operator S ∈ L(U).
Clearly S has a bounded inverse, because both X−1 and Z have; the latter requires the
J-coercivity of D∗JD. So the existence of the required S in equation (42) is established,
and (N ,X ) is a (J, S)-inner-outer factorization of D. This completes the proof of claim
(i).

The remaining claim (ii) follows directly from the definition of the I/O-stable feedback
pair, because Kcrit = (I − F)−1K, by the closed loop formula (41). This completes the
proof.

Now we are ready to present one of the main results of this paper. The next theorem
tells us that under certain conditions, the spectral factorization problem of an I/O-map
is equivalent with the problem of writing the critical minimax control of a DLS in the
feedback form.

Theorem 27. Let Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable DLS, and J ∈ L(Y ) be self-adjoint.
Then the following conditions (i) and (ii) are equivalent:

(i) a) Φ is J-coercive,

b) There is an I/O-stable feedback pair [K,F ] for Φ such that the critical control
of Φ is of the feedback form with the critical feedback pair equaling [K,F ].

(ii) a) There is a boundedly invertible operator S ∈ L(U) such that D has a (J, S)-
inner-outer factorization (N ,X ), with the outer factor X having a bounded
inverse,

b) π0N ∗JC ∈ L(H ; U).

Furthermore, if the above conditions hold, then both Φext :=
[

Φ, [K,F ]
]

and Φext
⋄ are

I/O-stable.

Proof. (i) ⇒ (ii) is a direct consequence of Lemma 26. In order to prove (ii) ⇒ (i) we first
note that if (N ′,X ′) is a (J, S ′)-inner-outer factorization of D then by Proposition 21 there
is a (J, S)-inner-outer factorization of D such that the static part satisfies π0X−1π0 = I.
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Next we prove that Kcrit = π0K
crit ∈ L(H, U). By claim (iii) of Lemma 22 and causality

of X−1 we have
Kcrit = π0K

crit = −π0X
−1π0 · π0N

∗JC

Now π0X−1π0 is bounded with bounded inverse, by Proposition 19. It follows that Kcrit

is boundedly invertible if and only if π0N ∗JC is, giving part b) of (ii). Now an application
of Lemma 25 completes the proof of the implication (ii) ⇒ (i).

The following theorem states how the stabilities of the open and closed loop critical
systems relate to each other. We remark that the output stability of an I/O-stable J-
coercive Φ is a sufficient condition for the stability of the critical feedback pair [K,F ].

Theorem 28. Let Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable DLS, and let the feedback pair [K,F ]
be stable. Then:

(i) Φext
⋄ is input stable if and only if Φ is.

(ii) Φext
⋄ is output stable if and only if Φ is.

(iii) Φext
⋄ is stable if and only if Φ is.

(iv) Φext
⋄ is strongly stable if Φ is.

Proof. See [9, Theorem 51].

6 The Riccati equation system

In the rest of this paper, a Riccati equation theory is developed for the minimax control
problem introduced in Section 3. In the final Section 8, an equivalence result is given;
we shall link together the Riccati equation theory of this section and Section 7, and the
critical feedback theory of the previous sections.

Let J ∈ L(Y ) be self-adjoint and Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable J-coercive DLS. We
show that the critical cost sesquilinear form P crit( , ), introduced in Definition 14, satisfies
a Riccati equation system, provided that D has a (J, S)-inner-outer factorization. A
converse result to this is given in section 7.

Definition 29. Let J ∈ L(Y ) be self-adjoint and φ = ( A B
C D ) be an I/O-stable DLS.

Let P ( , ) denote a conjugate symmetric sesquilinear form, P ( , ) : H × H ⊃ dom (C) ×
dom (C) → C. Then the conjugate symmetric sesquilinear form ΛP ( , ) on U × U defined
by

ΛP (u0, u1) := 〈Du0, JDu1〉Y + P (Bu0, Bu1)

is called an indicator of the sesquilinear form P ( , ) (associated to Φ and J).
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The indicator ΛP ( , ) is well defined on the whole of U × U . The possible problem would
arise if we had to go outside the domain dom (C) × dom (C) of P ( , ) for some u0 ∈ U .
However, by I/O-stability of Φ, BU ⊂ dom (C) (see [9, Definition 37 and Lemma 40]).
For the particular sesquilinear form P crit( , ) more can be said:

Proposition 30. Let J ∈ L(Y ) be self-adjoint and Φ = ( A B
C D ) be an I/O-stable J-coercive

DLS. By P crit( , ) denote the critical cost quadratic form as defined in Definition 14. Then
there exists a unique self adjoint operator Λcrit

P ∈ L(U) such that the indicator ΛP crit( , )
satisfies

ΛP crit(u0, u1) =
〈

Λcrit
P u0, u1

〉

U
,

where
Λcrit

P := D∗JD + (CcritB)∗J(CcritB)

Proof. The claim immediately follows, once we remember that by I/O-stability CB ∈
L(U, H). Then KcritB is bounded by the definition of Kcrit, and so is
CcritB = (Ccrit + DKcrit)B. This makes it possible to speak about (CcritB)∗ as an ad-
joint of a bounded operator. The self-adjointness and uniqueness of Λcrit

P is clear.

In the following lemma we couple P crit( , ), the indicator Λcrit
P and the critical one step

feedback operator Kcrit := π0Kcrit together .

Lemma 31. Let J ∈ L(Y ) be self-adjoint, and Φ = ( A B
C D ) be an I/O-stable J-coercive

DLS, such that Kcrit is bounded. Then P crit( , ) satisfies the equations

(46) P crit(Acritx0, Bw0) +
〈

Ccritx0, JDw0

〉

Y
= 0

(47) P crit(Ax0, Bw0) +
〈

(Λcrit
P Kcrit + D∗JC)x0, w0

〉

U
= 0

(48) Λcrit
P Kcritx0 = −

(

(CcritB)∗JCcritA − D∗JC
)

x0

for all x0 ∈ dom (C) and w0 ∈ U , and

(49) P crit(Ax0, Ax1) − P crit(x0, x1) =
〈

((Kcrit)∗Λcrit
P Kcrit − C∗JC)x0, x1

〉

H

for all x0, x1 ∈ dom (C), where Kcrit := π0Kcrit as in Definition 7, Acrit := A + BKcrit as
in Definition 10 and Ccrit := C + DKcrit.

Proof. In order to establish equation (46), we start with Frechet differentiating the identity

J(x0,K
critx0 + ǫ(π0w̃ + τKcritBw0))

= J(x0, (π0(ũ
crit(x0) + ǫw̃) + τ ũcrit(Ax0 + B(ucrit

0 (x0) + ǫw0))))

=
〈

Ccritx0 + ǫDw0, J(−, ,−)
〉

Y
+ P crit(Ax0 + B(ucrit

0 (x0) + ǫw0), (−, ,−))

with respect to ǫ at ǫ = 0, where w̃ := {wj}j≥0. This derivative must equal zero, by the
definition of Kcrit. We obtain the equality

Re
(

P crit(Acritx0, Bw0) +
〈

Ccritx0, JDw0

〉

Y

)

= 0.
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This is as well true for the imaginary part, too. Equation (46) now follows.

The proof of equation (47) is based upon equation (46). We have by a straightforward
calculation starting from the definition of ΛP crit

ΛP crit(Kcritx0, w0) := P crit(BKcritx0, Bw0) +
〈

DKcritx0, JDw0

〉

Y

= P crit(Acritx0, Bw0) +
〈

Ccritx0, JDw0

〉

Y

− P crit(Ax0, Bw0) − 〈D∗JCx0, w0〉Y .

This proves that equation (47) is equivalent to equation (46).

Equation (48) follows immediately from equation (47) and the definition of P crit( , ). The
proof of equation (49) is based on Lemma 11 and the first part of this lemma. Lemma 11
implies

P crit(Acritx0, A
critx1) =

〈

CcritAcritx0, JC
critAcritx1

〉

ℓ2(Z+;Y )

=
〈

π̄+τ ∗Ccritx0, π̄+τ ∗JCcritx1

〉

ℓ2(Z+;Y )

=
〈

Ccritx0, JC
critx1

〉

ℓ2(Z+;Y )
−
〈

Ccritx0, JCcritx1

〉

Y

= P crit(x0, x1) −
〈

Ccritx0, JCcritx1

〉

Y
.

A straightforward calculation, using Acrit := A + BKcrit and Ccrit := C + DKcrit, gives

P crit(Ax0, Ax1) − P crit(x0, x1) + 〈C∗JCx0, x1〉H
= −P crit(BKcritx0, Ax1) −

〈

DKcritx0, JCx1

〉

Y

− P crit(Ax0, BKcritx1) −
〈

JCx0, DKcritx1

〉

Y

− P crit(BKcritx0, BKcritx1) −
〈

DKcritx0, JDKcritx1

〉

Y

= −
[

P crit(BKcritx0, A
critx1) +

〈

DKcritx0, JCcritx1

〉

Y

]

+
[

P crit(BKcritx0, BKcritx1) +
〈

DKcritx0, JDKcritx1

〉

Y

]

−
[

P crit(Acritx0, BKcritx1) +
〈

JCcritx0, DKcritx1

〉

Y

]

+
[

P (BKcritx0, BKcritx1) −
〈

DKcritx0, JDKcritx1

〉

Y

]

− ΛP crit(Kcritx0, K
critx1)

= −
[

P crit(BKcritx0, A
critx1) +

〈

DKcritx0, JCcritx1

〉

Y

]

[

P crit(Acritx0, BKcritx1) +
〈

JCcritx0, DKcritx1

〉

Y

]

+ ΛP crit(Kcritx0, K
critx1) + ΛP crit(Kcritx0, K

critx1) − ΛP crit(Kcritx0, K
critx1)

Now an application of equation (46) with Kcritx0, Kcritx1 in place for w0 completes the
proof.

Under certain conditions, the indicator operator Λcrit
P has a bounded inverse. At the

same time we get a connection between the (J, S)-inner-outer factorization of D and the
indicator. This is the contents of the following lemma.

Lemma 32. Let J ∈ L(Y ) be self-adjoint and Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable J-coercive
DLS such that Kcrit is bounded. By P crit( , ) denote the critical cost sesquilinear form.
Assume that the conditions of Theorem 27 are satisfied. Then Λcrit

P ∈ L(U) has a bounded
inverse.
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Proof. Proving the case u0 = u1 in sufficient. Choose any ũ = π0ũ. Let Φext
⋄ be the critical

closed loop DLS given by equation (41) of Theorem 27. Then

(50)

(

N
X−1 − I

)

ũ =

(

N
X−1 − I

)

π0ũ + τ

(

Ccrit

Kcrit

)

BX−1u0

by the basic properties of the Φext
⋄ , where u0 = π0ũ with the identification of spaces

range (π0) and U . Here N := π0Nπ0 and X−1 := π0X−1π0, where X, X−1 ∈ L(U), by
Proposition 19.

Equation (50) implies

(X−1 − I)ũ = (X−1 − I)π0ũ + τ(KcritB)X−1u0(51)

⇔ X−1π0ũ = X−1π0ũ + τKcritBX−1u0

for all ũ = π0ũ. By taking into consideration the assumed spectral factorization D∗JD =
X ∗SX (see Proposition 20), equation (51) implies

J(0, X−1π0ũ + ũcrit(BX−1u0))(52)

=
〈

D∗JD(X−1π0ũ + τ ũcrit(BX−1u0)), (−, ,−)
〉

ℓ2(Z+;U)

=
〈

SX (X−1π0ũ + τ ũcrit(BX−1u0)),X (−, ,−)
〉

ℓ2(Z+;U)

=
〈

SX (X−1π0ũ),X (X−1π0ũ)
〉

ℓ2(Z+;U)
= 〈Su0, u0〉U

On the other hand, for all ũ = π0ũ we have

J(0, X−1π0ũ + ũcrit(BX−1u0))(53)

=
〈

DX−1u0, JDX−1u0

〉

Y
+ P crit(BX−1u0, BX−1u0) =: ΛP crit(X−1u0, X

−1u0).

Now the combination of equations (52) and (53) gives

〈Su0, u0〉U = ΛP crit(X−1u0, X
−1u0) = ((X∗)−1Λcrit

P X−1u0, u0)

for all u0 ∈ U , where S ∈ L(U) is self-adjoint with bounded inverse. The last equality is by
Proposition 30. Polarization ([18, Theorem 12.7]) implies now that S = (X∗)−1Λcrit

P X−1.
The claim of the lemma now follows, with Λcrit

P := X∗SX.

Now we have made sufficient preparations to approach the main result of this section,
Lemma 35. We show that the P crit( , ) satisfies a Riccati equation system of the following
type:

Definition 33. Let J ∈ L(Y ) be self-adjoint, and Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable DLS.
We say that the sesquilinear form P ( , ) satisfies the Riccati equation system (associated
to J and Φ), if

P (Ax0, Ax1) − P (x0, x1) + (C∗JCx0, x1)H(54)

=
〈

Q∗
P Λ−1

P QP x0, x1

〉

H

(55) 〈ΛP u0, u1〉 = 〈D∗JDu0, u1〉U + P (Bu0, Bu1)

(56) 〈QP x1, u2〉 = −〈D∗JCx1, u2〉U − P (Ax1, Bu2)

for all u0, u1, u2 ∈ U and x0, x1, x2 ∈ dom (C), where the linear operators satisfy ΛP , Λ−1
P ∈

L(U) and QP ∈ L(H ; U).

30



Given a self-adjoint J ∈ L(Y ) and an I/O-stable Φ =
[

Aj Bτ∗j

C D

]

, the Riccati equation
system (54)—(56) in general has a plenty of solutions, of which only few are control
theoretically interesting. In the following definition we give a tool that can be used to
separate the interesting solutions from the non-interesting ones.

Definition 34. Let J ∈ L(Y ) be self-adjoint, and Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable DLS.
Let P ( , ) be any conjugate symmetric solution of the Riccati equation system (54)—(56).
Then the DLS

(57) φP :=

(

A B
−QP ΛP

)

is called the indicator DLS (associated to J and Φ) of the sesquilinear form P ( , ), where
the bounded linear operators QP , ΛP are as in Definition 33.

Now the main result of this section:

Lemma 35. Let J ∈ L(Y ) be self-adjoint, and Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable DLS.
Moreover, assume that the equivalent conditions of Theorem 27 are satisfied. Then the
following holds:

(i) P crit( , ) satisfies the Riccati equation system (54)—(56) of Definition 33.

(ii) For all x0 ∈ dom (C), ũ ∈ ℓ2(Z+; U): P crit(xk(x0, ũ), xk(x0, ũ), ) → 0 as k → ∞.

(iii) The indicator DLS φP crit is both I/O-stable and outer with bounded inverse.

To say that φP is outer means that the I/O-map of φP crit is outer in the sense of Definition
18.

Proof. Let us first look at the solutions of equations (55) and (56) if we have P crit( , ) =
P ( , ). By Definition 29, Proposition 30 and Lemma 32 there is an unique self-adjoint
boundedly invertible operator, the critical indicator Λcrit

P , solving equation (55) with
P crit( , ) in the place of P ( , ). Equation (47) of Lemma 31 implies that QP crit := Λcrit

P Kcrit

satisfies equation (56). By the conditions of Theorem 27, Kcrit is bounded and so is QP crit.

Now that we know what the operators ΛP crit and QP crit are, we still have to check that
equation (54) holds with P crit( , ) in the place of P ( , ). This follows from equation 49 of
Lemma 31. This completes the proof of claim (i).

Claim (ii) is a direct consequence of Proposition 15. It remains to show claim (iii) stating
that the indicator DLS φP crit =

(

A B
−Q

Pcrit Λ
Pcrit

)

is both I/O-stable and outer with bounded

inverse. Equivalently, we must show that
(

A B
Kcrit −I

)

is both I/O-stable and outer with
bounded inverse, because (ΛP crit)−1 = (Λcrit

P )−1 is bounded by Lemma 32, and Kcrit =
(Λcrit

P )−1QP crit.

Because the conditions of Theorem 27 hold, we have a (J, S)-inner-outer factorization
(N ,X ) of D for some S. By Proposition 21, we can find another (J, S)-inner-outer

31



factorization, say (N ′,X ′), such that π0X
′π0 = I. Use this factorization to construct a

critical I/O-stable feedback pair [K,F ] in I/O-form by formulae (37).

Now we have π0Fπ0 = 0 because X = I − F . When writing [K,F ] in the difference
equation form, we obtain (Kcrit, 0). But then the I/O-map of φP crit =

(

A B
Kcrit −I

)

equals
F − I. It follows that φP crit is I/O-stable and outer with a bounded inverse because
both the operators I − F and (I − F)−1 are bounded, causal and shift invariant, by the
definition of the I/O-stable feedback pair [K,F ]. This completes the proof.

7 Solution of the Riccati equation system

In this section we give a converse for Lemma 31. We show that if the Riccati equation
system (54)—(56) of Definition 33 has a solution of a special kind, then the conditions
of Theorem 27 are satisfied. The speciality of the solution is in the requirement that the
indicator DLS φP , must be both I/O-stable and outer with a bounded inverse. We start
with a fairly technical preliminary proposition.

Proposition 36. Let Φ be an I/O-stable DLS. Let P ( , ) be a solution of Riccati equation
system (54)— (56). Let ũ ∈ ℓ2(Z+; U), x0 ∈ dom (C) be arbitrary. Then

(i) for uk = uk(x0, ũ) and xk = xk(x0, ũ) we have

P (xk, xk) − P (xk+1, xk+1)(58)

= 〈J(Cxk + Duk), (−, ,−)〉Y −
〈

Λ−1
P (−QP xk + ΛPuk), (−, ,−)

〉

U
,

and for all n ≥ 1

P (x0, x0) − P (xn+1, xn+1)(59)

=

n
∑

k=0

〈J(Cxk + Duk), (−, ,−)〉Y

−
n
∑

k=0

〈

Λ−1
P (−QP xk + ΛPuk), (−, ,−)

〉

U
.

(ii) If, in addition, P (xk(x0, ũ), xk(x0, ũ)) → 0 as k → ∞ for all ũ ∈ ℓ2(Z+; U) and
x0 ∈ dom (C), then

(60) J(x0, ũ) = P (x0, x0) +

∞
∑

k=0

〈

Λ−1
P (−QP xk + ΛPuk), (−, ,−)

〉

U
,

where the sum converges.

(iii) If, in addition, φP is I/O-stable, and P (xk(x0, ũ), xk(x0, ũ)) → 0 as k → ∞ for all
ũ ∈ ℓ2(Z+; U) and x0 ∈ dom (C), then

(61) J(x0, ũ) = P (x0, x0) +
〈

Λ−1
P (CφP

x0 + DφP
ũ), (−, ,−)

〉

ℓ2(Z+;U)

for all x0 ∈ dom (C) ∩ dom (CφP
).
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Proof. Claim (i) is proved calculating

P (xk, xk) − P (xk+1, xk+1) = P (xk, xk) − P (Axk + Buk, Axk + Buk)

= P (xk, xk) − P (Axk, Axk) − P (Axk, Buk) − P (Buk, Axk) − P (Buk, Buk).

Because P ( , ) satisfies the Riccati equation system (54)—(56), the previous equals:

=
〈

(C∗JC − Q∗
P Λ−1

P QP )xk, xk

〉

H

+ 〈(QP + D∗JC)xk, uk〉U + 〈uk, (QP + D∗JC)xk〉U
+ 〈(D∗JD − ΛP )uk, uk〉U
= [〈C∗JCxk, xk〉H + 〈D∗JCxk, uk〉U + 〈uk, D

∗JCxk〉U + 〈D∗JDuk, uk〉U ]

+
[〈

−Q∗
P Λ−1

P QP xk, xk

〉

H
+ 〈QP xk, uk〉U + 〈uk, QPxk〉U − 〈ΛPuk, uk〉U

]

= 〈J(Cxk + Duk), (−, ,−)〉Y −
〈

Λ−1
P (−QP xk + ΛPuk), (−, ,−)

〉

U

where the last equality is obtained simply by grouping terms. This proves equation (58).
Equation (59) is now an immediate consequence.

Claim (ii) is proved by inspection of equation (59). We have for each n ≥ 1

n
∑

k=0

〈

Λ−1
P (−QP xk + ΛPuk), (−, ,−)

〉

U

= −P (x0, x0) + P (xn+1, xn+1) +

n
∑

k=0

〈J(Cxk + Duk), (−, ,−)〉Y

Now the sum in the right hand side converges absolutely as n → ∞, because Φ is I/O-
stable, x0 ∈ dom (C) and ũ ∈ ℓ2(Z+; U). By assumption, also P (xn+1, xn+1) → 0 as
n → ∞. It follows that limn→∞

∑n

k=0

〈

Λ−1
P (−QP xk + ΛP uk), (−, ,−)

〉

U
exists and satisfies

(60).

In order to prove the final claim (iii), note that the I/O-stability of φP implies that
the sequence {−QP xk + ΛP uk}k≥0 = CφP

x0 + DφP
ũ ∈ ℓ2(Z+; U), if x0 ∈ dom (CφP

) and
ũ ∈ ℓ2(Z+; U). Then the sum in (60) represents an inner product of two ℓ2(Z+; U)-
sequences, and thus converges absolutely.

Note that the intersection dom (C)∩ dom (CφP
) in claim (iii) of Proposition 36 is far from

empty for I/O-stable Φ, φP . In particular, because B = BφP
, and for I/O-stable systems

always range (B) ⊂ dom (C), it follows that range (B) ⊂ dom (C) ∩ dom (CφP
). A crucial

connection between a solution of Riccati equation system and a certain factorization of
the Popov operator is given below.

Lemma 37. Let J ∈ L(Y ) be self-adjoint, and Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable DLS. Let
P ( , ) be the solution of the Riccati equation system (54)—(56) of Definition 33 such that
the indicator DLS φP is I/O-stable and P (xk(x0, ũ), xk(x0, ũ)) → 0 as k → ∞ for all
ũ ∈ ℓ2(Z+; U) and x0 ∈ dom (C). Then there is a factorization

(62) D∗JD = D∗
φP

Λ−1
P DφP

.

33



Proof. The both sides of (62) are bounded, causal and shift invariant operators. We prove
that their Toeplitz operators are equal. For all ũ ∈ ℓ2(Z+; U) we have

(63) J(0, ũ) = 〈D∗JDũ, ũ〉ℓ2(Z+;U) .

By linearity of P (x0, x1) in x0 we get P (0, 0) = 0. Then by claim (iii) of Proposition 36
we have for all ũ ∈ ℓ2(Z+; U)

(64) J(0, ũ) =
〈

D∗
φP

Λ−1
P DφP

ũ, ũ
〉

ℓ2(Z+;U)
.

By combining equations (63) and (64), and noting that π̄+(D∗JD − D∗
φP

Λ−1
P DφP

)π̄+ is
self-adjoint, we conclude equation (62) from

〈

(D∗JD −D∗
φP

Λ−1
P DφP

)ũ, ũ
〉

ℓ2(Z+;U)
= 0,

because ũ ∈ ℓ2(Z+; U) was arbitrary. This completes the proof.

If P ( , ) has the special property such that the indicator DLS φP is, in addition, outer
with bounded inverse, the the factorization of Lemma 37 can be put in a more familiar
form:

Corollary 38. Let J ∈ L(Y ) be self-adjoint, and Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable DLS.
Let P ( , ) be the solution of the Riccati equation system (54)—(56) of Definition 33
such that the indicator DLS φP is I/O-stable and outer with a bounded inverse, and
P crit(xk(x0, ũ), xk(x0, ũ), ) → 0 as k → ∞ for all x0 ∈ dom (C), ũ ∈ ℓ2(Z+; U). Then D
has a (J, ΛP )-inner-outer factorization (NP ,XP )

NP := DD−1
φP

ΛP

XP := Λ−1
P DφP

,

where the outer part XP has a bounded inverse.

Proof. The claim trivially follows from equation (62).

Note that the I/O-map of the indicator DLS φP is a spectral factor of D, when the
conditions of Corollary 38 are met. The previous results are collected in the following
lemma, the main result of this section. It is the converse for Lemma 31.

Lemma 39. Let J ∈ L(Y ) be self-adjoint, and Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable DLS

satisfying range (B) = H. Assume the following:

(i) The sesquilinear form P ( , ) satisfies the Riccati equation system (54)—(56) of Def-
inition 33.

(ii) For all x0 ∈ dom (C), ũ ∈ ℓ2(Z+; U) P crit(xk(x0, ũ), xk(x0, ũ)) → 0 as k → ∞.

(iii) The indicator DLS φP is both I/O-stable and outer with a bounded inverse.
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Then the conditions of Theorem 27 are satisfied.

Proof. We construct a critical I/O-stable feedback pair from the factorization (NP ,XP )
of Corollary 38. We start with writing the indicator DLS φP in I/O-form

(65) φP =

(

A B
−QP ΛP

)

=

[

Aj Bτ ∗j

KP I − FP

]

.

This defines the operators KP and FP . Because φP is I/O-stable and outer with a bounded
inverse, it follows that [KP ,FP ] is an I/O-stable feedback pair for Φ. We need one more
operator

K′
P := −π̄+N

∗
PJC.

K′ is a linear operator from dom (C) → ℓ2(Z+; U). A similar calculation as in the proof
of Lemma 25 implies that K′

P A = π̄+τ ∗K′
P in dom (C), and K′

PB = π̄+(I − FP )π− in
dom (B). If we can show that K ′

P := π0K′
P : dom (C) → U is bounded, we can extend it

continuously to the whole of H , because dom (C) = H . This would make the system

(66)

[

Aj Bτ ∗j

K′
P I − FP

]

an I/O-stable DLS whose I/O-map is outer with a bounded inverse. Furthermore,

(67) Kcrit = (I − FP )−1K′
P ,

which is proved by applying the (J, ΛP )-inner-outer factorization (NP ,XP ) on the formula
for Kcrit in claim (iii) of Lemma 22, and noting that I − FP = ΛPXP .

The systems in equations (65) and (66) are remarkably similar. We know that [KP ,FP ]
is an I/O-stable feedback pair for Φ but we do not know whether it is critical. We do not
know that [K′

P ,FP ] is a feedback pair but if it is, then it is critical, by equation (67). We
complete the proof by showing that the operators π0K′

P , π0KP coincide.

Because the I/O-maps of the systems (65) and (66) are equal, we can write for each
ũ ∈ dom (B)

π0KP (Bũ) = π0(I − FP )π−ũ = π0K
′
P (Bũ).

Because the operator π0KP = −QP is bounded in the topology of H by Definition 33,
and range (B) = H , it follows that also K ′

P = π0K′
P : range (B) → U is densely defined

and bounded in H . K ′
P can now be identified with its bounded extension to the whole of

H . This proves that the system (66) is a DLS and furthermore KP = K′
P . This completes

the proof.

8 Equivalence results for I/O-stable DLS’s

The main theorem of this paper is a conclusion of Theorem 27 and Lemmas 31, 39.
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Theorem 40. Let Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable DLS, and J ∈ L(Y ) be self-adjoint.

Assume that range (B) = H. Then the following conditions (i), (ii) and (iii) are equiva-
lent:

(i) a) Φ is J-coercive.

b) There is an I/O-stable feedback pair [K,F ] for Φ such that the critical control
of Φ is of feedback form with the critical feedback pair [K,F ].

(ii) a) There is a boundedly invertible operator S ∈ L(U) such that D has a (J, S)-
inner-outer factorization (N ,X ) with the outer part X having a bounded in-
verse.

b) π0N ∗JC ∈ L(H ; U).

(iii) There is a solution P ( , ) = P crit( , ) of the Riccati equation system (54)—(56)
satisfying

a) The indicator DLS φP is both I/O-stable and outer with a bounded inverse.

b) P (xk(x0, ũ), xk(x0, ũ)) → 0 as k → ∞ for all trajectories of Φ with x0 ∈
dom (C) and ũ ∈ ℓ2(Z+; U).

When the equivalent conditions (i), (ii) and (iii) hold, then

• the corresponding [K,F ] and (N ,X ) are related by formulae (37), (39) and (40),

• the corresponding (N ,X ) and P ( , ) are related by Definition 34 and Corollary 38,

• the corresponding P ( , ) and [K,F ] are related as in the proof of Lemma 39.

In the light of claim (iii) of Theorem 40, conditions for the I/O-stability of φP in terms of
P ( , ) would be useful. We remind that for I/O-stable and J-coercive Φ,
P crit(xk(x0, ũ), xk(x0, ũ)) → 0 for x0 ∈ dom (C), ũ ∈ ℓ2(Z+; U), by Proposition 15. An
additional speed estimate for this convergence speed is the key observation.

Proposition 41. Let Φ be an I/O-stable DLS. Let P ( , ) be a solution of Riccati equation
system (54)—(56) such that P (xk(x0, ũ), xk(x0, ũ)) → 0 for all ũ ∈ ℓ2(Z+; U) and x0 ∈
dom (C). Then φP is I/O-stable if and only if

(68)

∞
∑

k=0

|P (xk, xk) − P (xk+1, xk+1)| < ∞

for all ũ ∈ ℓ2(Z+; U) and x0 ∈ dom (C), where xk = xk(x0, ũ).

Proof. For any self-adjoint, boundedly invertible operator T in a Hilbert space, the fol-
lowing estimate holds:

||T−1||−1 〈x, x〉 ≤ | 〈Tx, x〉 | ≤ ||T || 〈x, x〉
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Applying this with T = Λ−1
P gives the equivalence:

(69)

∞
∑

k=0

|
〈

Λ−1
P (−QP xk + ΛPuk), (−, ,−)

〉

U
| < ∞

if and only if

∞
∑

k=0

| 〈(−QP xk + ΛPuk), (−, ,−)〉U | = ||{−QPxk + ΛP uk}||
2
ℓ2(Z+;U) < ∞.

We first show that first (69) is equivalent with the boundedness of DφP
π̄+; i.e. I/O-

stability of φP . Now let ũ ∈ ℓ2(Z+; U) be arbitrary and xk = xk(0, ũ) = BφP
τ ∗j ũ = Bτ ∗j ũ.

Then {−QP xk + ΛPuk}k≥0 = DφP
π̄+ũ. It follows that (69) holds for all ũ ∈ ℓ2(Z+; U) if

and only if DφP
π̄+ℓ2(Z+; U) ⊂ ℓ2(Z+; U) if and only if dom (DφP

π̄+) = ℓ2(Z+; U), where

dom (DφP
π̄+) := {ũ ∈ ℓ2(Z+; U) | DφP

π̄+ũ ∈ ℓ2(Z+; U)}.

DφP
π̄+ is closed (see [9, Lemma 27]). It follows from the Closed Graph Theorem [3,

Theorem II.I.9] that DφP
π̄+ is bounded because its domain is complete. Conversely, a

domain of a closed operator is complete only if the operator is bounded, by [3, Remark
II.I.3].

So it remains to prove that the conditions of (68) and (69) are equivalent. By I/O-
stability of Φ, the sequence {〈J(Cxk + Duk), (−, ,−)〉Y }k≥0 in equation (58) is absolutely
summable. But then {

〈

Λ−1
P (−QP xk + ΛP uk), (−, ,−)

〉

U
}k≥0 is absolutely summable if

and only if {|P (xk, xk) − P (xk+1, xk+1)|}k≥0 is absolutely summable, just by looking at
equation (58). This completes the proof.

So by Proposition 41, only the condition in claim (iii) of Theorem 40 that φP should
be outer with bounded inverse remains less concrete. It is easy to see that for power
stable systems this follows from the familiar requirement that P ( , ) should be a (power)
stabilizing solution of the Riccati equation: if both ρ(A) < 1 and ρ(A + BKP ) < 1 then
φP is both I/O-stable and outer (see [12], [13]). For infinite dimensional power stable
result we refer to e.g. [4], [14].

Let us briefly reiterate from [17] the classical results for the existence of outer factorizations
in the case when the Popov operator π̄+D∗JDπ̄+ is positive (and the input space U is
separable). It is well known that such Popov operators arise e.g. in the study of linear
quadratic optimal control problems and in the factorization versions of Bounded and
Positive Real Lemmas (see [23, Section 8]).

By [17, Theorem 3.4], a positive self-adjoint Toeplitz operator π̄+T π̄+ has a factorization
π̄+T π̄+ = π̄+X ∗X π̄+ with outer X if and only if it has a factorization π̄+T π̄+ = π̄+A∗Aπ̄+

where A is some bounded, causal and shift invariant operator. Such an operator always
exists if the Toeplitz operator is coercive: π̄+T π̄+ > ǫI for ǫ > 0 by [17, Theorem 3.7].
See also [22, Lemma 11] and [26, Proposition 4.2., p.201 and Remark, p.204 ].

If we have π̄+T π̄+ = π̄+D∗JDπ̄+ >> 0 (i.e. positive and coercive), then the existence of
a bounded outer factor X follows. A trivial sufficient condition is for the positive cost
functional J >> 0 with Φ J-coercive.
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