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Abstract. Our main objective is to study regularity of Sobolev functions
on metric measure spaces equipped with a doubling measure. We show
that every Sobolev function, whose gradient is integrable to power one, has
Lebesgue points outside a set of capacity zero. We also show that every
such function coincides with a Hölder continuous Sobolev function outside
a set of small Hausdorff content. Our proofs are based on Sobolev space
estimates for the maximal functions.

1. Introduction

If the gradient of a function is locally integrable to a power which is higher
than the dimension of the underlying space, then by the Sobolev embedding
theorem the function is locally Hölder continuous. It is a more delicate ques-
tion to study the pointwise behaviour of a Sobolev function if the gradient is
integrable to a power which is smaller than the dimension. Indeed, in this case
a Sobolev function may be discontinuous everywhere. In this paper we focus
on two basic questions: Lebesgue points and Hölder quasicontinuity. The ad-
vantage of our approach is that it applies in the limiting case when the gradient
is integrable to the power one in the context of metric measure spaces.

The case when the gradient is locally integrable to a power which is smaller
than the dimension and strictly bigger than one has been studied, for example,
in [4], [7], [10], [14], [18]. The purpose of this work is to deal with the case when
the gradient is integrable to the power one. In this case we have new challenges
and new phenomena. The basic problem is that the Hardy-Littlewood max-
imal function is not bounded on L1. We overcome this problem by restricting
ourselves to the Sobolev space introduced by Haj lasz in [5] and using appro-
priate versions of Sobolev-Poincaré inequalities. For the exponents which are
strictly greater than one this space coincides with the standard Sobolev space
W 1,p(Rn), but for the exponent one we have a strictly smaller class of func-
tions. We show that functions which belong to Haj lasz type Sobolev space
with the exponent one have Lebesgue points outside a set of capacity zero and
that they coincide with Hölder continuous Sobolev functions outside a set of
small Hausdorff content.
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Our proofs are based on maximal function arguments. More precisely, when
studying the existence of Lebesgue points, we use a maximal function which
is related to discrete convolution approximations of the function. The discrete
maximal function is comparable by two-sided pointwise estimates with the
Hardy-Littlewood maximal function, but it is smoother than the standard
maximal function. Thus it can be used as a test function for the capacity.
Indeed, we show that the discrete maximal function is bounded in the Haj lasz
type Sobolev space also with the exponent one. This is somewhat unexpected,
since the discrete maximal function is not bounded on L1. The corresponding
result in the Euclidean space for exponents which are strictly bigger than one
has been studied in [13], see also [14] for the metric case. As far as we know,
the corresponding question for the Hardy-Littlewood maximal function in the
standard Euclidean Sobolev space with the exponent one is open. Our result
applies only for the Haj lasz type Sobolev space with the exponent one and
it is not clear to us how to obtain the corresponding result for the standard
Sobolev space.

In the last section we prove a Hölder type quasicontinuity result. Again the
proof is based on maximal functions. Some parts of the proof are similar to
the proof of the case when the exponent in strictly greater than one in [7],
but since the proof is rather involved and the modifications are not completely
obvious, we decided to present full details here.

2. Notation and preliminaries

2.1. Basic assumptions. Throughout the paper, X is a metric measure space
equipped with a metric d and a Borel regular outer measure µ. We assume
that µ is doubling, that is, there is a fixed constant Cµ > 0, a doubling constant
of µ, such that

µ
(
B(x, 2r)

)
≤ Cµµ

(
B(x, r)

)

for each x ∈ X, and all r > 0. Here B(x, r) = {y ∈ X : d(y, x) < r} is the
open ball of radius r centered at x. If 0 < t < ∞ and B = B(x, r) is a ball
in X, then tB = B(x, tr). We also assume that the measure of every open
set is positive, and that the measure of each bounded set is finite. Recall that
the doubling condition of µ implies that there exists a constant C0 > 0 such
that whenever B0 = B(x0, r0) and B = B(x, r) are balls with x ∈ B0 and
0 < r ≤ r0, then

(2.1)
µ(B)

µ(B0)
≥ C0

( r

r0

)s

,

where s = log2Cµ, (see for example [8, Lemma 14.6]). In this paper, s de-
notes the smallest exponent for which (2.1) holds and it is called the doubling
dimension of µ.
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The integral average of a function u ∈ L1(A) over a µ-measurable set A with
finite and positive measure is

uA =

∫

A

u dµ =
1

µ(A)

∫

A

u dµ.

We say that a function u belongs to the local space Lp
loc(X) if it belongs to

Lp(B) for each ball B ⊂ X.
We continue by recalling the definitions of two maximal functions. Let

0 ≤ α < ∞, 0 < β < ∞, R > 0, and u ∈ L1
loc(X). The (restricted) fractional

maximal function of u is

Mα,R u(x) = sup
0<r≤R

rα

∫

B(x,r)

|u| dµ.

If R = ∞, then there is no restriction for the radii and we denote Mα,∞ u =
Mα u. If α = 0 and R = ∞, then we obtain the usual Hardy-Littlewood
maximal function and write M0,∞ u = Mu.

The (restricted) fractional sharp maximal function of u is

u#
β,Ru(x) = sup

0<r≤R
r−β

∫

B(x,r)

|u− uB(x,r)| dµ.

Again, if R = ∞, we denote u#
β,∞ = u#

β .

The Hausdorff t-content of a set E is the number Ht
∞(E) = inf

∑
i r

t
i, where

the infimum is taken over all countable coverings {Bi} of E by balls Bi of
radius ri.

By χE, we denote the characteristic function of a set E ⊂ X. In general, C
will denote a positive constant whose value is not necessarily the same at each
occurrence. By writing C = C(τ, λ), we indicate that the constant depends
only on τ and λ. If there is a positive constant C1 such that the two-sided
estimate C−1

1 u ≤ v ≤ C1u holds, we write u ≈ v, and say that u and v are
comparable.

2.2. Sobolev spaces M1,p(X) and Poincaré inequalities. We recall the
definition of the Sobolev space M1,p(X), 1 ≤ p < ∞, in a metric measure
space defined by Haj lasz in [5]. A measurable function g ≥ 0 is a generalized
gradient of a measurable function u in X, g ∈ D(u), if there is a set E ⊂ X
with µ(E) = 0 such that

(2.2) |u(x) − u(y)| ≤ d(x, y)
(
g(x) + g(y)

)

for all x, y ∈ X \ E. A function u ∈ Lp(X) belongs to M1,p(X) if there exists
a function g ∈ Lp(X) ∩ D(u). The space M1,p(X), equipped with the norm

(2.3) ‖u‖M1,p(X) = ‖u‖Lp(X) + inf ‖g‖Lp(X),

where the infimum is taken over all functions g ∈ Lp(X) ∩ D(u), is a Banach
space [6, Theorem 8.3]. The space M1,p(X) can be defined for all 0 < p <∞,
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but (2.3) is a norm only when p ≥ 1. By [6, Theorem 8.4], Lipschitz functions
are dense in M1,p(X) if p ≥ 1.

A pair u ∈ L1
loc(X) and a measurable function g ≥ 0 satisfies a (1, p)-

Poincaré inequality in X, p > 0, if there exist constants C > 0 and τ ≥ 1 such
that

(2.4)

∫

B

|u− uB| dµ ≤ Cr
(∫

τB

gp dµ
)1/p

for each ball B = B(x, r) in X.
Each pair u ∈ M1,p(X), g ∈ D(u), satisfies a (1, q)-Poincaré inequality for all

q ≥ 1; this follows by integrating inequality (2.2) twice and using the Hölder
inequality as in [5, Lemma 2]. For the case p ≤ 1, see Section 3 and [6].

2.3. Sobolev capacity. The Sobolev capacity in M1,p(X) for 1 < p <∞ has
been studied [15]. The definition of [15] extends for all 1 ≤ p <∞ in a natural
way. The p-capacity with 1 ≤ p <∞ of the set E ⊂ X is defined by setting

(2.5) Cp(E) = inf
{
‖u‖p

M1,p(X) : u ∈ A(E)
}
,

where

A(E) =
{
u ∈M1,p(X) : u ≥ 1 in an open neighborhood of E

}

is the set of admissible functions (test functions) for Cp(E). If A(E) = ∅, then
we set Cp(E) = ∞. Carefully reading the proofs of [15], we note that most
properties of p-capacity hold also for p = 1. In particular, the p-capacity is an
outer measure [15, Theorem 3.2] and an outer capacity [15, Remark 3.3], that
is,

Cp(E) = inf
{
Cp(U) : E ⊂ U, U open

}
.

It is easy to see that µ(E) ≤ Cp(E), in particular, sets of zero p-capacity are of
zero measure, see [15, Lemma 4.1]. The doubling property of µ gives an upper
bound for the p-capacity of a ball B of radius 0 < r ≤ 1,

(2.6) Cp(B) ≤ Cr−pµ(B),

where the constant C depends only on the doubling constant of µ and p. For
the proof, we observe that 1/r-Lipschitz function with support in 2B is a
suitable test function also for 1-capacity, see [15, Theorem 4.6].

A function u : X → R is p-quasicontinuous if for every ε > 0, there is a set
E ⊂ X such that Cp(E) < ε and the restriction of u to X \E is continuous.

By the definition, functions of M1,1(X) are defined only up to sets of measure
zero. However, it was shown in [15, Corollary 3.7] that each Sobolev function
u ∈ M1,p(X) has a p-quasicontinuous representative, that is, there is a p-
quasicontinuous function u∗ ∈M1,p(X) such that u = u∗ µ-almost everywhere
in X. The proof remains valid also for p = 1 because continuous functions are
dense in M1,1(X) and M1,1(X) is complete.
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Since the p-capacity is an outer capacity, and the norm of M1,p(X) does
not see sets of zero measure, a result of Kilpeläinen [12] implies that the p-
quasicontinuous representative u∗ of u ∈ M1,p(X), 1 ≤ p < ∞, is unique.
Indeed, if two p-quasicontinuous functions f and g coincide µ-almost every-
where, then the p-capacity of the set where f 6= g is zero.

3. Basic tools

In this section, we recall without proofs some results needed in the later
sections. We begin by recalling a Sobolev-Poincaré inequality from [6]. Below,
the Sobolev exponent p∗ = sp/(s − p) for p < s, where s is the doubling
dimension of µ.

Theorem 3.1. [6, Theorem 8.7] Let B be a ball of radius r, σ > 1, and let
s/(s+ 1) ≤ p < s. If u ∈ M1,p(σB) and g ∈ D(u), then u ∈ Lp∗(B) and there
is a constant C = C(p, Cµ, σ) such that

(3.1)
(∫

B

|u− uB|p
∗
dµ

)1/p∗

≤ Cr
(∫

σB

gp dµ
)1/p

.

Note that if u ∈ M1,q(X), g ∈ D(u), and s/(s + 1) ≤ q < 1, then u ∈
M1,s/(s+1)(σB) for each ball. Since (s/(s+1))∗ = 1, inequality (3.1) above and
the Hölder inequality imply that

(3.2)

∫

B

|u− uB| dµ ≤ Cr
(∫

σB

gs/(s+1) dµ
)(s+1)/s

≤ Cr
(∫

σB

gq dµ
)1/q

for all balls B = B(x, r) in X. In particular, the pair u, g satisfies a (1, p)-
Poincaré inequality for all p ≥ s/(s + 1) (cf. [6, Theorem 9.2]). We will
frequently use (q∗, q)- and (1, q)-Poincaré inequalities for u ∈ M1,1(X) and
s/s+ 1 ≤ q < 1 in the proofs of Lemmas 4.4 and 4.5.

The following well-known lemma, which is proved using the Lebesgue dif-
ferentiation theorem ([2]) and a telescoping argument, provides a pointwise
estimate for the oscillation of an integrable function via the fractional sharp
maximal function, see [3], [7, Lemma 3.6], [16].

Lemma 3.2. Let u ∈ L1
loc(X) and 0 < β < ∞. Then there is a constant

C = C(β, Cµ) > 0 such that

(3.3) |u(x) − u(y)| ≤ C d(x, y)β
(
u#

β,4d(x,y)(x) + u#
β,4d(x,y)(y)

)

for almost all x, y ∈ X.

Next result is a a weak type inequality for the fractional maximal function.

Lemma 3.3. [1, Lemma 3.2], [7, Lemma 2.6] Let Y ⊂ X be a bounded set
with µ(Y ) > 0 and let 0 ≤ α < s. Then for all u ∈ L1(X) and for every λ > 0,
we have

Hs−α
∞

(
{x ∈ Y : Mα,diam Y u(x) > λ}

)
≤ Cλ−1

∫

X

|u| dµ,
5



where C = 5s−α(2 diamY )sµ(Y )−1.

We continue with two lemmas for generalized gradients. The proofs for
p = 1 are similar to those for p > 1. The first lemma is a version of the Leibniz
differentiation rule.

Lemma 3.4. [7, Lemma 5.20] Let u ∈ M1,p(X), 1 ≤ p < ∞, and let ϕ be
a bounded L-Lipschitz function. Then uϕ belongs to M1,p(X). Moreover, if
E ⊂ X such that ϕ = 0 in X \ E, then

g =
(
gu‖ϕ‖∞ + L|u|

)
χE

belongs to D(uϕ) ∩ Lp(X) whenever gu ∈ D(u) ∩ Lp(X).

The next lemma shows that generalized gradients behave nicely with respect
to the increasing convergence.

Lemma 3.5. [14, Lemma 2.6] Let (ui) be a sequence of measurable functions
with a corresponding sequence of generalized gradients (gi), and let u = supi ui,
g = supi gi. If u is finite almost everywhere, then g ∈ D(u).

We close this section by recalling a Whitney type covering lemma for an
open set U 6= X of a doubling metric measure space X, see [2, Theorem
III.1.3], [17, Lemma 2.9]. In Lemma 3.6, the usual assumption that the set U
is bounded is not necessary, see [2, the footnote of Theorem III.1.3]. Namely,
in the original proof of Coifman and Weiss boundedness is used only in their
version of the 5r-covering theorem [2, Theorem III.1.2]. In our case, where X
is a metric measure space with a doubling measure, the 5r-covering theorem
holds for all subsets of X; for every family B of balls of uniformly bounded
radius, there is a countable subfamily {Bi} ⊂ B of pairwise disjoint balls such
that ∪B∈BB ⊂ ∪i5Bi, see [19, Theorem 2.1], [11, Theorem 1.2].

Lemma 3.6. Let U ⊂ X be an open set, CW ≥ 1, let r(x) = d(x,X \
U)/(2CW ). There is M ∈ N and a sequence (xi) of points in U with ri = r(xi),
such that

(1) the balls B(xi, ri/5) are pairwise disjoint,
(2) U = ∪iB(xi, ri),
(3) B(xi, CWri) ⊂ U ,
(4) if x ∈ B(xi, CWri), then CWri ≤ d(x,X \ U) ≤ 3CWri,
(5) there is x∗i ∈ X \ U such that d(xi, x

∗
i ) < 3CWri, and

(6)
∑∞

i=1
χB(xi,CW ri)(x) ≤ M for all x ∈ U .

We need the following technical lemma in the proof of Theorem 5.3. We
omit the proof which consists of simple calculations using the properties of the
Whitney covering and the doubling property of µ. All constants depend only
on the constants of the Whitney covering, on the doubling constant Cµ, or the
doubling dimension of µ.
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Lemma 3.7. Let B = {Bi} be a Whitney covering of an open set U ⊂ X, and
let x ∈ Bi0 , y ∈ Bi1 , where Bi0 , Bi1 ∈ B.

(1) If x ∈ 2Bi, then 2/3ri ≤ ri0 ≤ 3/2ri and 1/5ri0 ≤ d(x,X \ U) ≤ 15ri0.
Moreover, if x̄ ∈ X \ U is such that d(x, x̄) ≤ 2 d(x,X \ U), then
2Bi ⊂ B(x̄, 34ri).

(2) Denote δ = 1/4 max{d(x,X \ U), d(y,X \ U)}. Assume that y ∈ 2Bi

and d(x, y) ≤ δ. If d(y,X \ U) ≤ d(x,X \ U), then y ∈ 6Bi0 and
1/2ri ≤ ri0 ≤ 3ri. If d(x,X \ U) ≤ d(y,X \ U), then x ∈ 6Bi1,
2/3ri ≤ ri1 ≤ 3/2ri, and 1/2ri0 ≤ ri1 ≤ 3ri0 . In both cases, ri ≈ ri0 ≈
d(x,X \ U).

(3) If x or y is in 2Bi and d(x, y) ≤ δ, then

2Bi ⊂ B(x, 28ri) ⊂ B(x, 140ri0) ⊂ B(x, 700 d(x,X \ U))

and d(x, y) ≤ 12ri. Moreover, 2Bi ⊂ B(x∗i0 , 80ri), where x∗i0 is the
closest point of xi0 in X \ U from Lemma 3.6(5).

4. Lebesgue points

One of our main results shows that the 1-quasicontinuous representative of
an M1,1-function u is obtained as a limit of integral averages of u over small
balls. This result implies that almost every point, in the 1-capacity sense, is a
Lebesgue point of u.

Theorem 4.1. Let u ∈ M1,1(X). Then there is a set E ⊂ X with C1(E) = 0
such that

(4.1) lim
r→0

∫

B(x,r)

u dµ = u∗(x)

for all x ∈ X \ E, where u∗ is the 1-quasicontinuous representative of u.

The proof is presented in the end of this section.

Remark 4.2. By using Theorem 4.1 for functions u− qk, where u ∈M1,1(X)
and (qk) is an enumeration of rational numbers, and basic properties of capa-
city, we see that if u ∈M1,1(X), then

lim
r→0

∫

B(x,r)

|u− u∗(x)| dµ = 0

for all x ∈ X \ F with C1(F ) = 0. Hence 1-quasi every point is a Lebesgue
point of u, see [10, Remark 2.8(2)].

Using Sobolev-Poincaré inequality (3.1) we obtain a stronger result which
corresponds the second part of [14, Theorem 4.5].
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Theorem 4.3. Let u ∈M1,1(X) with the 1-quasicontinuous representative u∗,
and let 0 < q ≤ s/(s − 1). Then there is a set F ⊂ X with C1(F ) = 0 such
that

(4.2) lim
r→0

∫

B(x,r)

|u− u∗(x)|q dµ = 0

for all x ∈ X \ F .

4.1. The discrete maximal operator. To prove Theorem 4.1, we will use
the maximal operator for a discrete convolution approximation, defined in [14].
We begin with a covering of X and a corresponding partition of unity, see also
[2], [11], [19]. For r > 0, let {Bi} be a covering of X by balls Bi = B(xi, r) such
that the enlarged balls 6Bi have bounded overlap, that is, there is a constant
N = N(Cµ) ∈ N such that

∑∞
i=1

χ6Bi
(x) ≤ N for all x ∈ X. Let then (ϕi) be

a partition of unity related to the covering {Bi} such that
∑

i ϕi(x) = 1 for
all x ∈ X, 0 ≤ ϕi ≤ 1 in X, ϕi ≥ C in 3Bi, suppϕi ⊂ 6Bi, and that each
ϕi is L/r-Lipschitz. Here the constants C > 0 and L > 0 depend only on the
doubling constant of µ.

We define ur, the discrete convolution of u, by setting

ur(x) =

∞∑

i=1

ϕi(x)u3Bi
, x ∈ X.

For the definition of the discrete maximal operator, we numerate the positive
rationals and choose for each radius rj a covering consisting of balls Bj

i =
B(xi, rj) and a corresponding partition of unity as above. Then we define the

discrete maximal function of u ∈ L1
loc(X) related to coverings {Bj

i } by

(4.3) M∗ u(x) = sup
j

|u|rj
(x), x ∈ X.

The maximal operator M∗ depends on the covering. However, the estimates
for M∗ are independent on the covering. The operator M∗ has the useful
property of being comparable with the usual Hardy-Littlewood maximal op-
erator,

(4.4) C−1 Mu(x) ≤ M∗ u(x) ≤ CM u(x)

for each u ∈ L1
loc(X) and all x ∈ X, where C = C(Cµ), see [14, Lemma 3.1].

This means that for almost all practical purposes we may use the discrete
maximal function instead of the Hardy-Littlewood maximal function. If p > 1,
then (4.4) together with the boundedness of the maximal operator M (see [2])
imply that there is a constant C = C(Cµ, p) such that

‖M∗ u‖Lp(X) ≤ C‖Mu‖Lp(X) ≤ C‖u‖Lp(X)

for all u ∈ Lp(X).
In Lemmas 4.4 and 4.5 below, we will show that if u ∈M1,1(X), then both

ur and M∗ u are in M1,1(X), in particular, the discrete operator is bounded
8



in M1,1(X). Since the Hardy-Littlewood maximal operator is not bounded in
L1(X), the case p = 1 requires a different proof than the case p > 1. We will
follow the proofs of [14, Lemma 3.3, Theorem 3.6] and use ideas from [9] and
the Sobolev-Poincaré inequality to overcome the difficulties caused by the case
p = 1.

The constants C in Lemmas 4.4 and 4.5 depend only on the doubling con-
stant of µ and on the constants of the Sobolev-Poincaré inequality (3.1).

Lemma 4.4. Let u ∈M1,1(X), g ∈ D(u)∩L1(X), r > 0, and s/(s+ 1) ≤ q <
1. Then ur ∈ M1,1(X) and there is a constant C such that C(g + (M gq)1/q)
belongs to D(ur) ∩ L1(X). Moreover, there is a constant C such that

‖ur‖M1,1(X) ≤ C‖u‖M1,1(X).

Proof. Let u ∈M1,1(X) and g ∈ D(u)∩L1(X). Fix 1 < σ < 2 for the Sobolev-
Poincaré inequality (3.1). The proof consists of two steps. First we will find
a generalized gradient for ur, and then we will show that both ur and the
gradient are in L1(X).
Generalized gradient of ur: For each x ∈ X we have, since

∑
i ϕi(x) = 1,

that

ur(x) =
∞∑

i=1

ϕi(x)u3Bi
= u(x) +

∞∑

i=1

ϕi(x)(u3Bi
− u(x)),

where the sum is over finitely many terms only by the bounded overlap of the
balls 6Bi. Hence, by the definition of generalized gradient, the function

g +
∞∑

i=1

gi ∈ D(ur),

where gi is a generalized gradient of ϕi(u3Bi
− u). To find suitable gradients

gi, we first note that by Lemma 3.4 and the properties of the functions ϕi, the
function (Lr−1|u− u3Bi

| + g)χ6Bi
belongs to D(ϕi(u3Bi

− u)).
To estimate |u− u3Bi

|, let x ∈ 6Bi. Then 3Bi ⊂ B(x, 9r) ⊂ 15Bi, and

(4.5) |u(x) − u3Bi
| ≤ |u(x) − uB(x,9r)| + |uB(x,9r) − u3Bi

|.

The first term in the right-hand side of (4.5) is estimated by a standard tele-
scoping argument. We use the doubling property of µ and the (1, q)-Poincaré
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inequality (3.2) for the pair u, g, and obtain
(4.6)

|u(x) − uB(x,9r)| ≤
∞∑

j=0

|uB(x,32−jr) − uB(x,31−jr)|

≤ C

∞∑

j=0

∫

B(x,32−jr)

|u− uB(x,32−jr)| dµ

≤ Cr

∞∑

j=0

32−j
(∫

B(x,σ32−jr)

gq dµ
)1/q

≤ Cr
(
M gq(x)

)1/q

whenever x is a Lebesgue point of u. For the second term, we use the doubling
property of µ, and the (1, q)-Poincaré inequality, and obtain

(4.7)
|uB(x,9r) − u3Bi

| ≤ C

∫

B(x,9r)

|u− uB(x,9r)| dµ ≤ Cr
(∫

σB(x,9r)

gq dµ
)1/q

≤ Cr
(
M gq(x)

)1/q
.

By (4.5) - (4.7) we have that

|u(x) − u3Bi
| ≤ Cr

(
M gq(x)

)1/q

for all Lebesgue points of u, and hence for almost all x ∈ X. Hence we can
select gi = (C(M gq)1/q + g)χ6Bi

. Using the bounded overlap of the balls 6Bi,
we conclude that the function

gur = C
(
g + (M gq)1/q

)

belongs to D(ur).

Integrability of ur and gur : By the properties ϕi = 0 in X \ 6Bi, 0 ≤
ϕi ≤ 1, the bounded overlap of the balls 6Bi, and the doubling property of µ,
we have that

(4.8)

∫

X

|ur| dµ ≤
∫

X

∞∑

i=1

ϕi|u|3Bi
dµ =

∞∑

i=1

∫

X

ϕi|u|3Bi
dµ

=

∞∑

i=1

∫

6Bi

|u|3Bi
dµ ≤ C

∞∑

i=1

∫

3Bi

|u| dµ ≤ C

∫

X

|u| dµ,

and hence ur ∈ L1(X).
For the integrability of gur , it suffices to show that (M gq)1/q ∈ L1(X). Since

g ∈ L1(X) we have gq ∈ L1/q(X). The boundedness of the maximal operator
for 1/q > 1 implies that M gq ∈ L1/q(X) and

(4.9)

∫

X

(M gq)1/q dµ ≤ C

∫

X

(gq)1/q dµ = C

∫

X

g dµ,
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and hence gur ∈ L1(X) with ‖gur‖L1(X) ≤ C‖g‖L1(X). By choosing the gener-
alized gradient g of u so that ‖g‖L1(X) ≤ 2‖u‖M1,1(X) and combining estimates
(4.8) and (4.9), the claim ‖ur‖M1,1(X) ≤ C‖u‖M1,1(X) follows. �

Lemma 4.5. Let u ∈ M1,1(X), g ∈ D(u) ∩ L1(X) and s/(s + 1) < q < 1.
Then M∗ u ∈ M1,1(X) and there is a constant C such that C(g + (M gq)1/q)
belongs to D(M u∗) ∩ L1(X). Moreover, there is a constant C such that

‖M∗ u‖M1,1(X) ≤ C‖u‖M1,1(X).

Proof. We begin with the integrability of M∗ u. By (4.4), it is enough to show
that M u ∈ L1(X). Fix 1 < σ < 2 for the Sobolev-Poincaré inequality (3.1).

Step 1: We show that Mu ∈ L1(B) for all balls B:
Let B be a ball of radius rB. Using the (q∗, q)-Poincaré inequality (3.1) for

u and g in B we have that
(4.10)(∫

B

|u|q∗ dµ
)1/q∗

≤
(∫

B

|u− uB|q
∗
dµ

)1/q∗

+
(∫

B

|u|q
∗

B dµ
)1/q∗

≤ CrB

(∫

σB

gq dµ
)1/q

µ(B)1/q∗ + µ(B)1/q∗−1

∫

B

|u| dµ.

Since q < 1 and g ∈ L1(X), g is in Lq(σB). As also u ∈ L1(X), (4.10) shows
that u ∈ Lq∗(B). By the assumption q > s/(s+ 1), we have that q∗ > 1, and
hence Mu ∈ Lq∗(B) with

∫

B

(M u)q∗ dµ ≤ C

∫

B

|u|q∗ dµ.

Using the Hölder inequality, (4.10) and the doubling property of µ, we obtain

(4.11)

∫

B

Mu dµ ≤
(∫

B

(Mu)q∗ dµ
)1/q∗

µ(B)1−1/q∗

≤ CrB

(∫

σB

gq dµ
)1/q

µ(B) + C

∫

B

|u| dµ

≤ CrB

∫

σB

g dµ+ C

∫

B

|u| dµ,

and conclude that Mu ∈ L1(B).

Step 2: Mu ∈ L1(X):
We cover X by balls of radius 1/5, and use the 5r-covering theorem to

obtain balls B(yi, 1) such that the balls B(yi, 1) cover X, the balls B(yi, 1/5)
are pairwise disjoint, and that there is a constant N = N(Cµ) such that∑

i
χB(yi,2)(x) ≤ N for all x ∈ X. Using (4.11), the bounded overlap of the

11



balls B(yi, 2), and the assumption 1 < σ < 2, we have that

(4.12)

∫

X

Mu dµ ≤
∞∑

i=1

∫

B(yi,1)

Mu dµ

≤ C

∞∑

i=1

(∫

B(yi,σ)

g dµ+

∫

B(yi,1)

|u| dµ
)

≤ C
(∫

X

g dµ+

∫

X

|u| dµ
)
,

which shows that Mu is in L1(X).
Now M∗ u is in L1(X) by (4.12) and (4.4), and hence it is finite almost

everywhere in X. Since the function C(g + (M gq)1/q) ∈ L1(X) belongs to
D(urj

) ⊂ D(|u|rj
) for all j ∈ N, the claim that M∗ u ∈ M1,1(X) with general-

ized gradient C(g + (M gq)1/q) follows from Lemmas 3.5 and 4.4.
As in the proof of Lemma 4.4, we obtain the desired norm estimate by

choosing the generalized gradient g of u so that ‖g‖L1(X) ≤ 2‖u‖M1,1(X), and
combining estimates (4.12), (4.4), and (4.9). �

Remark 4.6. Note that ur ≤ CMu almost everywhere in X by (4.4). Hence
the integrability of ur follows also from 4.12. Note also that by a similar
arguments as in the proof of Lemma 4.4, we see that ur(x) → u(x) as r → 0
for almost every x ∈ X, and that ur → u in L1(X). Namely,

(4.13)

|ur(x) − u(x)| ≤
∞∑

i=1

ϕi(x)|u(x) − u3Bi
|

≤
∑

i′

|u(x) − u3Bi
| ≤ Cr

(
M gq(x)

)1/q
,

where the last sum is taken over all indices i′ for which x ∈ 6Bi. The right-
hand side of (4.13) tends to zero as r → 0 for almost every x ∈ X because
(M gq)1/q ∈ L1(X).

In [10, Theorem 2.11] the first author and Harjulehto gave several equivalent
conditions for a differentiation basis, which give the validity of (4.1) for u ∈
M1,p(X) p-quasi everywhere. We will use part of this result in the proof of
Theorem 4.1 below.

Proof of Theorem 4.1. By [10, Theorem 2.11], the claim follows if we manage
to show that there is a constant C > 0 such that

C1

({
x ∈ X : lim sup

r→0

∫

B(x,r)

|u| dµ > λ
})

≤ Cλ−1‖u‖M1,1(X)

for all λ > 0 and every u ∈M1,1(X) (note that the proof of [10, Theorem 2.11
(ii) ⇒ (i)] holds also for p = 1).

12



Since

lim sup
r→0

∫

B(x,r)

|u| dµ ≤ Mu(x)

for all x ∈ X, it suffices to show that

(4.14) C1

({
x ∈ X : Mu(x) > λ

})
≤ Cλ−1‖u‖M1,1(X).

To show that the weak type estimate (4.14) holds, we proceed as in the proof
of [14, Lemma 4.4]. Let u ∈ M1,1(X), λ > 0, and let M∗ u be the discrete
maximal function of u. By (4.4), {x ∈ X : M u(x) > λ} ⊂ Eλ, where

Eλ = {x ∈ X : CM∗ u(x) > λ}.
The set Eλ is open by the lower semicontinuity of M∗ u, and the function
Cλ−1 M∗ u is a test function for C1(Eλ). Hence, using the definition of the
p-capacity and Lemma 4.5, we have that

C1(Eλ) ≤ ‖Cλ−1 M∗ u‖M1,1(X)

= Cλ−1‖M∗ u‖M1,1(X) ≤ Cλ−1‖u‖M1,1(X),

from which (4.14) follows by the monotonicity of the capacity. �
Note that instead of using the sufficient condition for the existence of the

differentiation basis that differentiates M1,1(X), we could have followed the
proof of [14, Theorem 4.5]. Namely, the main tools used in the proof; density
of continuous functions in M1,1(X), (4.14), and the basic properties of the
p-capacity, hold also in our case.

Proof of Theorem 4.3. Let u ∈M1,1(X), g ∈ D(u) ∩ L1(X), and let u∗ be the
1-quasicontinuous representative of u. By Theorem 4.1, there is a set E ⊂ X
with C1(E) = 0 such that uB(x,r) → u∗(x) as r → 0 whenever x ∈ X \E. Since
g ≥ 0 is in L1(X), the proof of [14, Lemma 4.3], which uses the 5r-covering
theorem, the subadditivity of capacity, the doubling condition of µ, estimate
(2.6), and the absolutely continuity of the integral, implies that the set

D =
{
x ∈ X : lim sup

r→0
r

∫

B(x,r)

g dµ > 0
}

has zero 1-capacity.
Let B = B(x, r) be a ball in X, and let 0 < q ≤ 1∗, where 1∗ = s/(s − 1).

By the Hölder inequality and the Sobolev-Poincaré inequality (3.1), we have
that

(∫

B

|u− uB|q dµ
)1/q

≤
(∫

B

|u− uB|1
∗
dµ

)1/1∗

≤ Cr

∫

σB

g dµ.

Hence

lim
r→0

∫

B(x,r)

|u− uB|q dµ = 0

whenever x ∈ X \D.
13



The subadditivity of the 1-capacity implies that C1(E ∪D) = 0. For x ∈
X \ (E ∪D) we have that

(4.15)

(∫

B(x,r)

|u− u∗(x)|q dµ
)1/q

≤
(∫

B(x,r)

|u− uB(x,r)|q dµ
)1/q

+ |uB(x,r) − u∗(x)|.

By the selection of the sets E and D, the limit as r → 0 of the right-hand side
of (4.15) is zero, and hence the claim follows for F = E ∪D. �

5. Hölder quasicontinuity

In this section, we show that Hölder continuous functions are dense in
M1,1(X) both in norm and Lusin sense, see Theorem 5.3. This is a gener-
alization of the main result of [7] to the case p = 1.

The first theorem provides a characterization of M1,1(X) using a Poincaré
inequality or fractional sharp maximal function, see [7, Theorem 3.4] for the
case p > 1.

Theorem 5.1. Let u ∈ L1(X). The following three conditions are equivalent:

(1) u ∈M1,1(X),
(2) there is a function g ∈ L1(X), g ≥ 0, and 0 < q < 1 such that the pair

u, g satisfies a (1, q)-Poincaré inequality,

(3) u#
1 ∈ L1(X).

Proof. If u ∈ M1,1(X), then a (1, q)-Poincaré inequality for s/(s + 1) ≤ q < 1
follows from the Sobolev-Poincaré inequality (3.2).

Suppose that (2) holds for u and g. Then for B = B(x, r),

r−1

∫

B

|u− uB| dµ ≤ C
(∫

σB

gq dµ
)1/q

,

and hence u#
1 (x) ≤ C(M gq(x))1/q. Since g ∈ L1(X), the function gq belongs

to L1/q(X). The assumption 0 < q < 1 together with the boundedness of
the Hardy-Littlewood maximal operator implies that M gq ∈ L1/q(X). Thus

(M gq)1/q, and hence also u#
1 is in L1(X).

Suppose then that u#
1 ∈ L1(X). Then u ∈ M1,1(X) by (3.3) and the

definition of M1,1(X). Hence (1) follows. �

The next result is a useful tool in the proof of Theorem 5.3, see [7, Corollary
3.10] for the case p > 1.

Corollary 5.2. Let u ∈ M1,1(X), g ∈ L1(X) ∩ D(u), 0 ≤ α < 1, R > 0,
σ > 1, and s/(s+ 1) ≤ q < 1. Then

u#
1−α,R(x) ≤ C

(
Mαq,σR g

q(x)
)1/q
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for all x ∈ X.

Proof. Let x ∈ X, 0 < r < R, and B = B(x, r). By the Sobolev-Poincaré
inequality (3.2) we have that

rα−1

∫

B

|u− uB| dµ ≤ Crα−1+1
(∫

σB

gq dµ
)1/q

= C
(
rαq

∫

σB

gq dµ
)1/q

≤ C
(
Mαq,σR g

q(x)
)1/q

.

The claim follows by taking supremum over r. �

As in [7, Section 5], we define ũ by setting

(5.1) ũ(x) = lim sup
r→0

∫

B(x,r)

u dµ

for a function u of M1,1(X). By Theorem 4.1, the limit of the right-hand side
of (5.1) exists and equals u∗, the quasicontinuous representative of u, except
on a set of 1-capacity zero. In this section, we use the representative ũ for u,
and denote it by u. Then, by the proof of (3.3) ([7, Lemma 3.6]), the inequality

(5.2) |u(x) − u(y)| ≤ C d(x, y)β
(
u#

β,4d(x,y)(x) + u#
β,4d(x,y)(y)

)

holds for every x, y ∈ X and for all 0 < β ≤ 1, see [7] for the discussion
on infinite values of u. Hence u is Hölder continuous with exponent β if
‖u#

β ‖∞ <∞.

Theorem 5.3. Let u ∈ M1,1(X) be defined pointwise by (5.1), and let 0 <
β ≤ 1. Then for each ε > 0, there is a function v and an open set O such that

(1) u = v in X \O,
(2) v ∈ M1,1(X) and it is Hölder continuous with exponent β on every

bounded set of X,
(3) ‖u− v‖M1,1(X) < ε,

(4) Hs−(1−β)
∞ (O) < ε.

Since the Hardy-Littlewood maximal function is not bounded in L1, the case
p = 1 requires a different proof than the case p > 1. When showing that the
approximation of u has a generalized gradient, we use the Sobolev-Poincaré
inequality of Theorem 3.1. In the proof we first assume that u vanishes outside
a ball. The general case follows by using a localization argument as in [7,
Theorem 5.3].

Proof. Let u ∈ M1,1(X) and g ∈ L1(X) ∩ D(u). Let also s/(s + 1) ≤ q < 1
and 1 < σ < 2, and recall from Theorem 3.1 that a (1, q)-Poincaré inequality
holds for the pair u, g. This will be an important tool for us.

Step 1: Suppose that the support of u is in B(x0, 1) for some x0 ∈ X.
15



Let λ > 0, and denote

Eλ =
{
x ∈ X : u#

β (x) > λ
}
.

The set Eλ is open, and by (5.2), u is Hölder continuous with exponent β in
X \ Eλ.

We will correct the values of u in the bad set Eλ using discrete convolution.
For that, let B = {Bi}, Bi = B(xi, ri), be the covering of Eλ by Whitney balls
from Lemma 3.6 with CW = 5. Let (ϕi) be a partition of unity corresponding
to the collection B such that suppϕi ⊂ 2Bi, 0 ≤ ϕi ≤ 1, each ϕi is K/ri-
Lipschitz, and that

∑∞
i=1 ϕi(x) = χEλ

(x), see for example [17, Lemma 2.16].
For each xi, let x∗i be the “closest” point in X \ Eλ given by Lemma 3.6(5).

Before proving (1)-(4), we study the properties of the set Eλ.

Claim 1: There is λ0 > 0 such that Eλ ⊂ B(x0, 2) for λ > λ0.

Proof. We will show that there is λ0 > 0 such that

(5.3) r−β

∫

B(x,r)

|u− uB(x,r)| dµ < λ0

for all x ∈ X and r > 1. Namely, if B = B(x, r) is a ball in X with r > 1, and

r−β

∫

B

|u− uB| dµ = a > 0,

then ∫

B

|u− uB| dµ > aµ(B)

and, by the assumption that supp u ⊂ B(x0, 1), B ∩B(x0, 1) 6= ∅.
By the doubling property of µ and the assumption r > 1, we have that

µ(B(x0, 1)) ≤ Cµµ(B) and that

r−β

∫

B

|u− uB| dµ ≤ 2Cµµ(B(x0, 1))−1

∫

B

|u| dµ,

and hence we may choose λ0 = 2Cµµ(B(x0, 1))−1‖u‖L1(X).
Claim 1 follows now from (5.3) and the assumption supp u ⊂ B(x0, 1). �

Claim 2: µ(Eλ) → 0 as λ→ ∞.

Proof. Since 0 < q < 1, the Hölder inequality implies that for all R > 0 and
α ≥ 0, (

rαq

∫

B(x,r)

gq dµ
)1/q

≤ rα

∫

B(x,r)

g dµ ≤ Mα,R g(x)

whenever x ∈ X and r ≤ R. Hence (Mαq,R g
q(x))1/q ≤ Mα,R g(x). Moreover,

if α ≤ 1 and R ≥ 1, then

Mα,R g(x) ≤ RM g(x).
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By Claim 1, Corollary 5.2, and the estimate above, we have for x ∈ Eλ,
λ > λ0, that

(5.4)
u#

β (x) = u#
β,1(x) ≤ C

(
M(1−β)q,σ g

q(x)
)1/q

≤ CM1−β,σ g(x) ≤ CM g(x).

By (5.4) and the weak type estimate for the maximal operator M, we have
that

(5.5) µ(Eλ) ≤ µ
({
x ∈ X : M g(x) > Cλ

})
≤ Cλ−1

∫

X

g dµ.

Claim 2 follows because g ∈ L1(X) and the right-hand side of (5.5) tends to
zero as λ→ ∞. �

Now we define the function v = vλ as a Whitney type extension of u to the
set Eλ by setting

v(x) =

{
u(x), if x ∈ X \Eλ,∑∞

i=1 ϕi(x)u2Bi
, if x ∈ Eλ.

We will select the open set O to be Eλ for sufficiently large λ > λ0. Hence
the claim (1) of Theorem 5.3 follows from the definition of v. Since supp u ⊂
B(x0, 1) and Eλ ⊂ B(x0, 2) for λ > λ0, the support of v is in B(x0, 2).

Proof of (2) - the Hölder continuity of v. We begin by proving an estimate for
|v(x)−v(x̄)|, where x ∈ Eλ and x̄ ∈ X\Eλ is such that d(x, x̄) ≤ 2 d(x,X\Eλ).

Denote Bx = {Bi ∈ B : x ∈ 2Bi}. By the bounded overlap of the balls
2Bi, there is a bounded number of balls in Bx. By the definition of v and the
properties of the functions ϕi, we have

(5.6) |v(x) − v(x̄)| =
∣∣

∞∑

i=1

ϕi(x)(u(x̄) − u2Bi
)
∣∣ ≤

∑

Bx

|u(x̄) − u2Bi
|.

Now

(5.7) |u(x̄) − u2Bi
| ≤ |u(x̄) − uB(x̄,34ri)| + |uB(x̄,34ri) − u2Bi

|,

where, by Lemma 3.7(1), 2Bi ⊂ B(x̄, 34ri). For the first term on the right-
hand size we use a telescoping argument as in (4.6) and the doubling property
of µ to obtain

(5.8) |u(x̄) − uB(x̄,34ri)| ≤ Crβ
i u

#
β,34ri

(x̄).

Since B(x̄, 34ri) ⊂ 66Bi and µ is doubling, we have that

(5.9) |uB(x̄,34ri) − u2Bi
| ≤ C

∫

B(x̄,34ri)

|u− uB(x̄,34ri)| dµ ≤ Crβ
i u

#
β,34ri

(x̄).
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There is a bounded number of balls in Bx and ri ≈ d(x,X \ Eλ) by Lemma
3.7(1). Hence (5.6)-(5.9) show that

(5.10) |v(x) − v(x̄)| ≤ C d(x,X \ Eλ)βu#
β (x̄) ≤ C d(x,X \ Eλ)βλ,

where the last inequality follows because x̄ ∈ X \ Eλ.
Let then x, y ∈ X. Our aim is to show that

(5.11) |v(x) − v(y)| ≤ Cλ d(x, y)β.

We will consider four cases that depend on the location of x and y.
(i) If x, y ∈ X \ Eλ, then (5.11) follows from (5.2) and the definition of Eλ.
(ii) Let x, y ∈ Eλ and d(x, y) ≥ δ, where

δ = 1
4

max
{

d(x,X \ Eλ), d(y,X \ Eλ)
}
.

Let x̄, ȳ ∈ X \ Eλ be like x̄ in the beginning of the proof of (2). Then, by
(5.10),

|v(x) − v(y)| ≤ |v(x) − v(x̄)| + |v(x̄) − v(ȳ)| + |v(y) − v(ȳ)|
≤ Cλ d(x,X \ Eλ)β + |v(x̄) − v(ȳ)| + Cλ d(y,X \ Eλ)β,

where |v(x̄) − v(ȳ)| ≤ Cλ d(x̄, ȳ)β by (5.2) and the fact that x̄, ȳ ∈ X \ Eλ.
Since d(x, y) ≥ δ and

d(x̄, ȳ) ≤ d(x̄, x) + d(x, y) + d(ȳ, y)

≤ 2 d(x,X \ Eλ) + d(x, y) + 2 d(y,X \ Eλ) ≤ 17 d(x, y),

we have that |v(x) − v(y)| ≤ Cλ d(x, y)β.
(iii) Let then x, y ∈ Eλ and d(x, y) ≤ δ. Similarly as Bx above, we denote
By = {Bi ∈ B : y ∈ 2Bi}. Let Bi0 = B(xi0 , ri0) be a Whitney ball such that
x ∈ Bi0 , and let x∗i0 be the closest point of xi0 in X \ Eλ given by Lemma
3.6(5). By the properties of the functions ϕi, we have that

(5.12)

|v(x) − v(y)| =
∣∣

∞∑

i=1

(
ϕi(x) − ϕi(y)

)(
u(x∗i0) − u2Bi

)∣∣

≤ C d(x, y)
∑

Bx∪By

r−1
i |u(x∗i0) − u2Bi

|.

We continue as in (5.7)-(5.9); by Lemma 3.7 we have that ri ≈ ri0 and that
2Bi ⊂ B(x∗i0 , 80ri), and obtain

(5.13) |u(x∗i0) − u2Bi
| ≤ Crβ

i u
#
β (x∗i0) ≤ Crβ

i λ.

Now (5.12) and (5.13) show that

|v(x) − v(y)| ≤ Cλ d(x, y)β
∑

Bx∪By

d(x, y)1−β

r1−β
i

.

The desired estimate follows because d(x, y) ≤ 12ri by Lemma 3.7(3).
18



(iv) Finally, let x ∈ Eλ with x̄ as above and y ∈ X \ Eλ. Then v(y) = u(y),
and using (5.10) and (5.2) we have that

|v(x) − v(y)| = |v(x) − u(y)| ≤ |v(x) − v(x̄)| + |u(x̄) − u(y)|
≤ Cλ d(x,X \ Eλ)β + Cλ d(y, x̄)β ≤ Cλ d(x, y)β.

The last inequality follows from the selection of x̄, and the fact that d(x,X \
Eλ) ≤ d(x, y).

The Hölder continuity of v with estimate (5.11) follows from the four cases
above. �

Proof of (2) - v ∈M1,1(X). We have to show that v ∈ L1(X), and that it has
an integrable generalized gradient.

Since v = u in X \ Eλ, to show the integrability of v, it suffices to estimate∫
Eλ

|v| dµ. By the properties of the functions ϕi, the bounded overlap of the
balls 2Bi ⊂ Eλ, and the doubling property of µ, we have that

(5.14)

∫

Eλ

|v| dµ ≤
∞∑

i=1

∫

2Bi

|u|2Bi
dµ ≤ C

∞∑

i=1

∫

2Bi

|u| dµ ≤ C

∫

Eλ

|u| dµ,

and hence v ∈ L1(X) with ‖v‖L1(X) ≤ C‖u‖L1(X).
Concerning the gradient, we will show that the function gv,

(5.15) gv(x) = C
(
g(x) + (M gq(x))1/q

)
, x ∈ X

belongs to D(v)∩L1(X). As in the proof of the Hölder continuity, we consider
four cases.
(i) We begin with the easiest case

|v(x) − v(y)| = |u(x) − u(y)| ≤ d(x, y)(g(x) + g(y)) ≤ d(x, y)(gv(x) + gv(y))

for almost all x, y ∈ X \ Eλ because g ∈ D(u).
(ii) If x, y ∈ Eλ and d(x, y) ≤ δ, then similar calculation as in (5.12) shows
that

(5.16) |v(x) − v(y)| ≤ C d(x, y)
∑

Bx∪By

r−1
i |u(x) − u2Bi

|,

where

(5.17) |u(x) − u2Bi
| ≤ |u(x) − uB(x,28ri)| + |uB(x,28ri) − u2Bi

|.
Since 2Bi ⊂ B(x, 28ri) by Lemma 3.7, the (1, q)-Poincaré inequality holds for
u and g, and µ is doubling, we have that

|uB(x,28ri) − u2Bi
| ≤ C

∫

B(x,28ri)

|u− uB(x,28ri)| dµ

≤ Cri

(∫

B(x,28σri)

gq dµ
)1/q

.
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This together with the telescoping argument

|u(x) − uB(x,28ri)| ≤
∞∑

j=0

|uBj+1 − uBj | ≤
∞∑

j=0

∫

Bj

|u− uBj | dµ

≤ Cri

∞∑

j=0

2−j
(∫

σBj

gq dµ
)1/q

,

where Bj = 2−jB(x, 28ri) for j = 0, 1, . . . , shows that

(5.18) |u(x) − u2Bi
| ≤ Cri

(
M gq(x)

)1/q

for almost all x. Since the cardinality of Bx ∪ By is bounded, the estimates
(5.16)-(5.18) show that

|v(x) − v(y)| ≤ C d(x, y)
(
M gq(x)

)1/q ≤ C d(x, y)(gv(x) + gv(y))

for almost all x, y ∈ Eλ with d(x, y) ≤ δ.
(iii) Let x, y ∈ Eλ with d(x, y) ≥ δ. Using the properties of the functions ϕi,
the fact that g ∈ D(u), similar estimates for |u(x) − u2Bi

| and |u(y)− u2Bi
| as

in the previous case, and Lemma 3.7 to conclude that ri ≈ d(x,X \Eλ) for all
Bi ∈ Bx (and similarly for By), we have that

|v(x) − v(y)| ≤
∑

Bx

|u(x) − u2Bi
| +

∑

By

|u(y) − u2Bi
| + |u(x) − u(y)|,

≤ C d(x,X \Eλ)
(
M gq(x)

)1/q
+ C d(y,X \ Eλ)

(
M gq(y)

)1/q

+ d(x, y)
(
g(x) + g(y)

)

≤ c d(x, y)
(
gv(x) + gv(y)

)
.

(iv) If y ∈ Eλ and x ∈ X \ Eλ, then

(5.19)

|v(x) − v(y)| = |u(x) − v(y)| =
∣∣

∞∑

i=1

ϕi(y)(u(x) − u2Bi
)
∣∣

≤
∑

By

|u(x) − u2Bi
|,

where, by the assumption that g ∈ D(u), and by a similar calculation as for
(5.17), we have

(5.20)
|u(x) − u2Bi

| ≤ |u(x) − u(y)| + |u(y) − u2Bi
|

≤ d(x, y)
(
g(x) + g(y)

)
+ Cri

(
M gq(y)

)1/q
.

20



Since for Bi ∈ By, ri ≈ d(y,X \ Eλ) and d(y,X \ Eλ) ≤ d(x, y), (5.19) and
(5.20) show that

|v(x) − v(y)| ≤ C d(x, y)
(
g(x) + g(y) +

(
M gq(y)

)1/q)

≤ C d(x, y)
(
gv(x) + gv(y)

)

for almost all y ∈ Eλ and x ∈ X \ Eλ.
We conclude that the function gv is a generalized gradient of v. The integ-

rability of gv follows similarly as that of gur in the proof of Lemma 4.4; it suffices
to show that (M gq)1/q ∈ L1(X). Since g ∈ L1(X), gq is in L1/q(X), and hence,
by the boundedness of the maximal operator for 1/q > 1, M gq ∈ L1/q(X) with

(5.21)

∫

X

(M gq)1/q dµ ≤ C

∫

X

(gq)1/q dµ = C

∫

X

g dµ.

Hence gv ∈ L1(X) with ‖gv‖L1(X) ≤ C‖g‖L1(X). By choosing the generalized
gradient g of u so that ‖g‖L1(X) ≤ 2‖u‖M1,1(X) and combining estimates (5.14)
and (5.21), we have that ‖v‖M1,1(X) ≤ C‖u‖M1,1(X). �

Proof of (3) - Approximation in norm. We will show that v → u in M1,1(X)
as λ→ ∞. Using the fact that v = u in X \Eλ and (5.14), we have that

∫

X

|u− v| dµ =

∫

Eλ

|u− v| dµ ≤ C

∫

Eλ

|u| dµ,

which tends to 0 as λ→ ∞ because µ(Eλ) → 0 as λ→ ∞ by Claim 2. Hence
v → u in L1(X) as λ→ ∞.

Next we have to find a generalized gradient gλ of u−v for which ‖gλ‖L1(X) →
0 as λ→ ∞. We claim that the function

gλ = gvχEλ
= C

(
g +

(
M gq

)1/q)χEλ

is in D(u − v), that is, the inequality (2.2) holds for u − v and gλ almost
everywhere in X. If x, y ∈ X \ Eλ, then u − v = 0 and (2.2) holds trivially.
Inequality (2.2) for almost all x, y ∈ Eλ follows because g ∈ D(u) and gv ∈
D(v). If x ∈ Eλ and y ∈ X \ Eλ, then (u− v)(y) = 0 and gλ(y) = 0. Similar
arguments as in (5.17) show that

|u(x) − v(x)| ≤
∑

Bx

|u(x) − u2Bi
| ≤ C

∑

Bx

ri

(
M gq(x)

)1/q

≤ C d(x,X \Eλ)
(
M gq(x)

)1/q ≤ C d(x, y)
(
M gq(x)

)1/q
.

Hence gλ ∈ D(u − v). Since gv is in L1(X), so is gλ, too. Moreover, as
µ(Eλ) → 0 as λ → ∞ by Claim 2, we have that ‖gλ‖L1(X), and hence also
‖u− v‖M1,1(X) tends to 0 as λ→ ∞. �

Proof of (4) - Hausdorff content of Eλ. Recall that

Eλ = {x ∈ X : u#
β (x) > λ}.

21



Using Claim 1, a similar estimate as in (5.4), and Corollary 5.2, we see that
for λ > λ0 we have

Eλ ⊂
{
x ∈ B(x0, 2) :

(
M(1−β)q,σ g

q(x)
)1/q

> Cλ
}

⊂
{
x ∈ B(x0, 2) : M(1−β),σ g(x) > Cλ

}
,

and hence, by Lemma 3.3, we conclude that

Hs−(1−β)
∞ (Eλ) ≤ Cλ−1

∫

X

g dµ,

which tends to 0 as λ→ ∞. �

Step 2: General case.
Let ε > 0. We cover X by balls of radius 1/10, and use the 5r-covering

theorem to obtain pairwise disjoint balls B(aj, 1/10) from this covering such
that X ⊂ ∪∞

j=1B(aj, 1/2) and that the balls B(aj, 2) have bounded overlap.
Let (ψj) be a partition of unity for this covering such that

∑∞
j=1 ψj(x) = 1 for

all x ∈ X, each ψj is L-Lipschitz, 0 ≤ ψj ≤ 1, and suppψj ⊂ B(aj, 1) for all
j ∈ N.

For u ∈M1,1(X) with g ∈ D(u) ∩ L1(X), we have

(5.22) u(x) =
∞∑

j=1

uj(x),

where uj = uψj, for all x ∈ X. By Lemma 3.4, each uj is in M1,1(X) and

gj = (g + L|u|)χB(aj ,1)

is a generalized gradient of uj. Since supp uj ⊂ B(aj, 1), the first step of the
proof shows there are functions vj ∈ M1,1(X) and open sets Oj ⊂ B(aj, 2)
such that

(i) vj = uj in X \Oj, supp vj ⊂ B(aj, 2),
(ii) vj is Hölder continuous with exponent β,

(iii) ‖uj − vj‖M1,1(X) < 2−jε,

(iv) Hs−(1−β)
∞ (Oj) < 2−jε,

(v) hj = C(gj + (M gq
j )1/q) is a generalized gradient of vj.

We define O = ∪∞
j=1Oj, and claim that the function v =

∑∞
j=1 vj together with

the open set O satisfy requirements (1)-(4).
For (1), let x ∈ X \O. Then, by (i) and (5.22), we obtain

v(x) =
∞∑

j=1

vj(x) =
∞∑

j=1

uj(x) = u(x).

The Hausdorff content estimate (4) for O follows from (iv) using the subad-

ditivity of Hs−(1−β)
∞ .
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By (5.11), we have

|vj(x) − vj(y)| ≤ Cλj d(x, y)β

for all x, y ∈ X. Since, by the proof above, the constant λj depends on ε and
on j, (5.11) and the fact that supp vj ⊂ B(aj, 2) give Hölder continuity of v
only in bounded subsets of X.

To prove the first part of (2) and (3), we have to show that v ∈ M1,1(X)
and that ‖u− v‖M1,1(X) < ε. By (iii), we have

(5.23)
∞∑

j=1

‖uj − vj‖M1,1(X) <
∞∑

j=1

2−jε = ε,

that is, the series
∑∞

j=1(uj − vj) convergences absolutely, and hence converges

in the Banach space M1,1(X). Since u =
∑∞

j=1 uj is in M1,1(X), also
∑∞

j=1 vj

converges in M1,1(X). Moreover, by (5.23) we have that

‖u− v‖M1,1(X) ≤
∞∑

j=1

‖uj − vj‖M1,1(X) < ε.

This completes the proof of Theorem 5.3. �

Remark 5.4. Note that
∑∞

j=1 hj, where hj is as in (v) above, is a generalized
gradient of v but it is not necessarily integrable. If we would like to construct an
integrable gv ∈ D(v), we need a cut-off function for each j; let Φj : X → [0, 1]
be a Lipschitz-function that equals 1 in B(aj, 2) and vanishes outside B(aj, 3).
Since the support of vj is in B(aj, 2), vjΦj = vj in X. Moreover, the function

gvj
= (hj + C|vj|)χB(aj ,3)

is in D(vj) by Lemma 3.4. This together with the fact that supp vj ⊂ B(aj, 2)
and the bounded overlap of the balls B(aj, 2) shows that the function

gv =
∞∑

j=1

gvj

is a generalized gradient of w. Integrability of v and gv follow since supp vj ⊂
B(aj, 2), supp gvj

⊂ B(aj, 3) and the balls B(aj, 3) have bounded overlap,
using integral estimates from the first part of the proof.
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[12] T. Kilpeläinen: On the uniqueness of quasi continuous function - Ann. Acad. Sci. Fenn.
Math. 23 (1998), no.1, 261–262.

[13] J. Kinnunen: The Hardy-Littlewood maximal function of a Sobolev function - Israel J.
Math. 100 (1997), 117–124.

[14] J. Kinnunen and V. Latvala: Lebesgue points for Sobolev functions on metric spaces -
Rev. Mat. Iberoamericana, 18 (2002), 685–700.

[15] J. Kinnunen and O. Martio: The Sobolev capacity on metric spaces - Ann. Acad. Sci.
Fenn. Math. 21 (1996), no.2, 367–382.
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[18] J. Malý: Hölder type quasicontinuity - Potential Anal. 2 (1993), 249-254.
[19] P. Mattila: Geometry of sets and measures in Euclidean spaces Fractals and rectifiab-

ility - Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press,
Cambridge, 1995.

Department of Mathematical Sciences, P.O. Box 3000, FIN-90014 University
of Oulu

E-mail address : juha.kinnunen@oulu.fi

Department of Mathematics and Statistics P.O. Box 35 (MaD), FIN-40014
University of Jyväskylä
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