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Abstract Applications of the Hardy–Littlewood maximal functions in the
modern theory of partial differential equations are considered. In particular,
we discuss the behavior of maximal functions in Sobolev spaces, Hardy in-
equalities, and approximation and pointwise behavior of Sobolev functions.
We also study the corresponding questions on metric measure spaces.

1 Introduction

The centered Hardy–Littlewood maximal function Mf : Rn → [0,∞] of a
locally integrable function f : Rn → [−∞,∞] is defined by

Mf(x) = sup
∫

B(x,r)

|f(y)| dy,

where the supremum is taken over all radii r > 0. Here
∫

B(x,r)

|f(y)| dy =
1

|B(x, r)|
∫

B(x,r)

|f(y)| dy

denotes the integral average and |B(x, r)| is the volume of the ball B(x, r).
There are several variations of the definition in the literature, for example,
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depending on the requirement whether x is at the center of the ball or not.
These definitions give maximal functions that are equivalent with two-sided
estimates.

The maximal function theorem of Hardy, Littlewood, and Wiener asserts
that the maximal operator is bounded in Lp(Rn) for 1 < p 6 ∞,

‖Mf‖p 6 c‖f‖p, (1.1)

where c = c(n, p) is a constant. The case p = ∞ follows immediately from
the definition of the maximal function. It can be shown that for the centered
maximal function the constant depends only on p, but we do not need this
fact here. For p = 1 we have the weak type estimate

|{x ∈ Rn : Mf(x) > λ}| 6 cλ−1‖f‖1
for every λ > 0 with c = c(n) (see [64]).

The maximal functions are classical tools in harmonic analysis. They are
usually used to estimate absolute size, and their connections to regularity
properties are often neglected. The purpose of this exposition is to focus on
this issue. Indeed, applications to Sobolev functions and to partial differen-
tial equations indicate that it is useful to know how the maximal operator
preserves the smoothness of functions.

There are two competing phenomena in the definition of the maximal func-
tion. The integral average is smoothing but the supremum seems to reduce
the smoothness. The maximal function is always lower semicontinuous and
preserves the continuity of the function provided that the maximal function is
not identically infinity. In fact, if the maximal function is finite at one point,
then it is finite almost everywhere. A result of Coifman and Rochberg states
that the maximal function raised to a power which is strictly between zero
and one is a Muckenhoupt weight. This is a clear evidence of the fact that the
maximal operator may have somewhat unexpected smoothness properties.

It is easy to show that the maximal function of a Lipschitz function is again
Lipschitz and hence, by the Rademacher theorem is differentiable almost
everywhere. The question about differentiability in general is a more delicate
one.

Simple one-dimensional examples show that the maximal function of a
differentiable function is not differentiable in general. Nevertheless, certain
weak differentiability properties are preserved under the maximal operator.
Indeed, the Hardy–Littlewood maximal operator preserves the first order
Sobolev spaces W 1,p(Rn) with 1 < p 6 ∞, and hence it can be used as a test
function in the theory of partial differential equations. More precisely, the
maximal operator is bounded in the Sobolev space and for every 1 < p 6 ∞
we have

‖Mu‖1,p 6 c‖u‖1,p

with c = c(n, p). We discuss different aspects related to this result.
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The maximal functions can also be used to study the smoothness of the
original function. Indeed, there are pointwise estimates for the function in
terms of the maximal function of the gradient. If u ∈ W 1,p(Rn), 1 6 p 6 ∞,
then there is a set E of measure zero such that

|u(x)− u(y)| 6 c|x− y|(M |Du|(x) + M |Du|(y)
)

for all x, y ∈ Rn\E. If 1 < p 6 ∞, then the maximal function theorem implies
that M |Du| ∈ Lp(Rn). This observation has fundamental consequences in
the theory of partial differential equations. Roughly speaking, the oscillation
of the function is small on the good set where the maximal function of the
gradient is bounded. The size of the bad set can be estimated by the maximal
function theorem. This can also be used to define Sobolev type spaces in a
very general context of metric measure spaces. To show that our arguments
are based on a general principle, we also consider the smoothness of the
maximal function in this case. The results can be used to study the pointwise
behavior of Sobolev functions.

2 Maximal Function Defined on the Whole Space

Recall that the Sobolev space W 1,p(Rn), 1 6 p 6 ∞, consists of functions
u ∈ Lp(Rn) whose weak first order partial derivatives Diu, i = 1, 2, . . . , n,
belong to Lp(Rn). We endow W 1,p(Rn) with the norm

‖u‖1,p = ‖u‖p + ‖Du‖p,

where Du = (D1u,D2u, . . . , Dnu) is the weak gradient of u. Equivalently, if
1 6 p < ∞, the Sobolev space can be defined as the completion of smooth
functions with respect to the norm above. For basic properties of Sobolev
functions we refer to [17].

2.1 Boundedness in Sobolev spaces

Suppose that u is Lipschitz continuous with constant L, i.e.,

|uh(y)− u(y)| = |u(y + h)− u(y)| 6 L|h|

for all y, h ∈ Rn, where uh(y) = u(y + h). Since the maximal function com-
mutes with translations and the maximal operator is sublinear, we have
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|(Mu)h(x)−Mu(x)| = |M(uh)(x)−Mu(x)| 6 M(uh − u)(x)

= sup
r>0

1
|B(x, r)|

∫

B(x,r)

|uh(y)− u(y)| dy 6 L|h|. (2.1)

This means that the maximal function is Lipschitz continuous with the same
constant as the original function provided that Mu is not identically infin-
ity [19]. Observe that this proof applies to Hölder continuous functions as
well [14].

It is shown in [33] that the Hardy–Littlewood maximal operator is bounded
in the Sobolev space W 1,p(Rn) for 1 < p 6 ∞ and hence, in that case, it has
classical partial derivatives almost everywhere. Indeed, there is a simple proof
based on the characterization of W 1,p(Rn) with 1 < p < ∞ by integrated
difference quotients according to which u ∈ Lp(Rn) belongs to W 1,p(Rn) if
and only if there is a constant c for which

‖uh − u‖p 6 c‖Du‖p|h|

for every h ∈ Rn. As in (2.1), we have

|M(uh)−Mu| 6 M(uh − u)

and, by the Hardy–Littlewood–Wiener maximal function theorem, we con-
clude that

‖(Mu)h −Mu‖p = ‖M(uh)−Mu‖p 6 ‖M(uh − u)‖p

6 c‖uh − u‖p 6 c‖Du‖p|h|

for every h ∈ Rn, from which the claim follows. A more careful analysis gives
even a pointwise estimate for the partial derivatives. The following simple
proposition is used several times in the sequel. If fj → f and gj → g weakly
in Lp(Ω) and fj(x) 6 gj(x), j = 1, 2, . . . , almost everywhere in Ω, then
f(x) 6 g(x) almost everywhere in Ω. Together with some basic properties of
the first order Sobolev spaces, this implies that the maximal function semi-
commutes with weak derivatives. This is the content of the following result
which was first proved in [33], but we recall the simple argument here (see
also [40, 41]).

Theorem 2.2. Let 1 < p < ∞. If u ∈ W 1,p(Rn), then Mu ∈ W 1,p(Rn) and

|DiMu| 6 MDiu, i = 1, 2, . . . , n, (2.3)

almost everywhere in Rn.

Proof. If χB(0,r) is the characteristic function of B(0, r) and
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χr =
χB(0,r)

|B(0, r)| ,

then
1

|B(x, r)|
∫

B(x,r)

|u(y)| dy = |u| ∗ χr(x),

where ∗ denotes convolution. Now |u| ∗ χr ∈ W 1,p(Rn) and

Di(|u| ∗ χr) = χr ∗Di|u|, i = 1, 2, . . . , n,

almost everywhere in Rn.
Let rj , j = 1, 2, . . . , be an enumeration of the positive rational numbers.

Since u is locally integrable, we may restrict ourselves to positive rational
radii in the definition of the maximal function. Hence

Mu(x) = sup
j

(|u| ∗ χrj
)(x).

We define functions vk : Rn → R, k = 1, 2, . . . , by

vk(x) = max
16j6k

(|u| ∗ χrj )(x).

Now (vk) is an increasing sequence of functions in W 1,p(Rn) which converges
to Mu pointwise and

|Divk| 6 max
16j6k

|Di(|u| ∗ χrj )| = max
16j6k

|χrj ∗Di|u||

6 MDi|u| = MDiu,

i = 1, 2, . . . , n, almost everywhere in Rn. Here we also used the fact that
|Di|u|| = |Diu|, i = 1, 2, . . . , n, almost everywhere. Thus,

‖Dvk‖p 6
n∑

i=1

‖Divk‖p 6
n∑

i=1

‖MDiu‖p

and the maximal function theorem implies

‖vk‖1,p 6 ‖Mu‖p +
n∑

i=1

‖MDiu‖p

6 c‖u‖p + c

n∑

i=1

‖Diu‖p 6 c < ∞

for every k = 1, 2, . . . . Hence (vk) is a bounded sequence in W 1,p(Rn) which
converges to Mu pointwise. By the weak compactness of Sobolev spaces,
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Mu ∈ W 1,p(Rn), vk converges to Mu weakly in Lp(Rn), and Divk converges
to DiMu weakly in Lp(Rn). Since |Divk| 6 MDiu almost everywhere, the
weak convergence implies

|DiMu| 6 MDiu, i = 1, 2, . . . , n,

almost everywhere in Rn. ut
Remark 2.4. (i) The case p = 1 is excluded in the theorem because our argu-
ments fail in that case. However, Tanaka [66] proved, in the one-dimensional
case, that if u ∈ W 1,1(R), then the noncentered maximal function is differ-
entiable almost everywhere and

‖DMu‖1 6 2‖Du‖1.

For extensions of Tanaka’s result to functions of bounded variation in the one-
dimensional case we refer to [3] and [4]. The question about the counterpart
of Tanaka’s result remains open in higher dimensions (see also discussion in
[26]). Observe that

‖u‖n/n−1 6 c‖Du‖1
by the Sobolev embedding theorem and Mu ∈ Ln/(n−1)(Rn) by the maxi-
mal function theorem. However, the behavior of the derivatives is not well
understood in this case.

(ii) The inequality (2.3) implies that

|DMu(x)| 6 M |Du|(x) (2.5)

for almost all x ∈ Rn. Fix a point at which the gradient DMu(x) exists.
If |DMu(x)| = 0, then the claim is obvious. Hence we may assume that
|DMu(x)| 6= 0. Let

e =
DMu(x)
|DMu(x)| .

Rotating the coordinates in the proof of the theorem so that e coincides with
some of the coordinate directions, we get

|DMu(x)| = |DeMu(x)| 6 MDhu(x) 6 M |Du|(x),

where Deu = Du · e is the derivative to the direction of the unit vector e.

(iii) Using the maximal function theorem together with (2.3), we find

‖Mu‖1,p = ‖Mu‖p + ‖DMu‖p

6 c‖u‖p + ‖M |Du|‖p 6 c‖u‖1,p, (2.6)

where c is the constant in (1.1). Hence



Maximal Functions in Sobolev Spaces 31

M : W 1,p(Rn) → W 1,p(Rn)

is a bounded operator, where 1 < p < ∞.

(iv) If u ∈ W 1,∞(Rn), then a slight modification of our proof shows that
Mu belongs to W 1,∞(Rn). Moreover,

‖Mu‖1,∞ = ‖Mu‖∞ + ‖DMu‖∞
6 ‖u‖∞ + ‖M |Du|‖∞ 6 ‖u‖1,∞.

Hence, in this case, the maximal operator is bounded with constant one.
Recall that, after a redefinition on a set of measure zero, u ∈ W 1,∞(Rn) is a
bounded and Lipschitz continuous function.

(v) A recent result of Luiro [53] shows that

M : W 1,p(Rn) → W 1,p(Rn)

is a continuous operator. Observe that bounded nonlinear operators are not
continuous in general. Luiro employs the structure of the maximal operator.
He also obtained an interesting formula for the weak derivatives of the max-
imal function. Indeed, if u ∈ W 1,p(R), 1 < p < ∞, and R(x) denotes the set
of radii r > 0 for which

Mu(x) = lim sup
ri→r

∫

B(x,ri)

|u| dy

for some sequence (ri) with ri > 0, then for almost all x ∈ Rn we have

DiMu(x) =
∫

B(x,r)

Di|u| dy

for every strictly positive r ∈ R(x) and

DiMu(x) = Di|u|(x)

if 0 ∈ R(x). For this is a sharpening of (2.3) we refer to [53, Theorem 3.1]
(see also [55]).

(vi) Let 0 6 α 6 n. The fractional maximal function of a locally integrable
function f : Rn → [−∞,∞] is defined by

Mαf(x) = sup
r>0

rα

∫

B(x,r)

|f(y)| dy.

For α = 0 we obtain the Hardy–Littlewood maximal function.
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Theorem 2.2 can be easily extended to fractional maximal functions. In-
deed, suppose that 1 < p < ∞. Let 0 6 α < n/p. If u ∈ W 1,p(Rn), then
Mαu ∈ W 1,q(Rn) with q = np/(n− αp) and

|DiMαu| 6 MαDiu, i = 1, 2, . . . , n,

almost everywhere in Rn. Moreover, there is c = c(n, p, α) such that

‖Mαu‖1,q 6 c ‖u‖1,p.

The main result of [39] shows that the fractional maximal operator is smooth-
ing in the sense that it maps Lp-spaces into certain first order Sobolev spaces.

2.2 A capacitary weak type estimate

As an application, we show that a weak type inequality for the Sobolev
capacity follows immediately from Theorem 2.2. The standard proofs seem
to depend, for example, on certain extension properties of Sobolev functions
(see [17]). Let 1 < p < ∞. The Sobolev p-capacity of the set E ⊂ Rn is
defined by

capp(E) = inf
u∈A(E)

∫

Rn

(|u|p + |Du|p) dx,

where

A(E) =
{
u ∈ W 1,p(Rn) : u > 1 on a neighborhood of E

}
.

If A(E) = ∅, we set capp(E) = ∞. The Sobolev p-capacity is a monotone
and countably subadditive set function. Let u ∈ W 1,p(Rn). Suppose that
λ > 0 and denote

Eλ = {x ∈ Rn : Mu(x) > λ}.
Then Eλ is open and Mu/λ ∈ A(Eλ). Using (2.6), we get

capp

(
Eλ

)
6 1

λp

∫

Rn

(|Mu|p + |DMu|p) dx

6 c

λp

∫

Rn

(|u|p + |Du|p) dx 6 c

λp
‖u‖p

1,p.

This inequality can be used in the study of the pointwise behavior of Sobolev
functions by standard methods. We recall that x ∈ Rn is a Lebesgue point
for u if the limit
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u∗(x) = lim
r→0

∫

B(x,r)

u dy

exists and
lim
r→0

∫

B(x,r)

|u(y)− u∗(x)| dy = 0.

The Lebesgue theorem states that almost all points of a L1
loc(R

n) function
are Lebesgue points. If a function belongs to W 1,p(Rn), then, using the ca-
pacitary weak type estimate, we can prove that the complement of the set of
Lebesgue points has zero p-capacity (see [17]).

3 Maximal Function Defined on a Subdomain

Let Ω be an open set in the Euclidean space Rn. For a locally integrable
function f : Ω → [−∞,∞] we define the Hardy–Littlewood maximal function
MΩf : Ω → [0,∞] as

MΩf(x) = sup
∫

B(x,r)

|f(y)| dy,

where the supremum is taken over all radii 0 < r < δ(x), where

δ(x) = dist(x, ∂Ω).

In this section, we make the standing assumption that Ω 6= Rn so that
δ(x) is finite. Observe that the maximal function depends on Ω. The maximal
function theorem implies that the maximal operator is bounded in Lp(Ω) for
1 < p 6 ∞, i.e.,

‖MΩf‖p,Ω 6 c‖f‖p,Ω . (3.1)

This follows directly from (1.1) by considering the zero extension to the
complement. The Sobolev space W 1,p(Ω), 1 6 p 6 ∞, consists of those
functions u which, together with their weak first order partial derivatives
Du = (D1u, . . . , Dnu), belong to Lp(Ω). When 1 6 p < ∞, we may define
W 1,p(Ω) as the completion of smooth functions with respect to the Sobolev
norm.

3.1 Boundedness in Sobolev spaces

We consider the counterpart of Theorem 2.2 for the maximal operator MΩ .
It turns out that the arguments in the previous section do not apply mainly
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because the maximal operator MΩ does not commute with translations. The
following result was proved in [35]. We also refer to [26] for an alternative
approach.

Theorem 3.2. Let 1 < p 6 ∞. If u ∈ W 1,p(Ω), then MΩu ∈ W 1,p(Ω) and

|DMΩu| 6 2MΩ |Du|

almost everywhere in Ω.

Observe that the result holds for every open set and, in particular, we
do not make any regularity assumption on the boundary. The functions ut :
Ω → [−∞,∞], 0 < t < 1, defined by

ut(x) =
∫

B(x,tδ(x))

|u(y)| dy,

will play a crucial role in the proof of Theorem 3.2 because

MΩu(x) = sup
0<t<1

ut(x)

for every x ∈ Ω. We begin with an auxiliary result which may be of indepen-
dent interest.

Lemma 3.3. Let Ω be an open set in Rn, and let 1 < p 6 ∞. Suppose that
u ∈ W 1,p(Ω). Then for every 0 < t < 1 we have ut ∈ W 1,p(Ω) and

|Dut(x)| 6 2MΩ |Du|(x) (3.4)

for almost all x ∈ Ω.

Proof. Since |u| ∈ W 1,p(Ω) and |D|u|| = |Du| almost everywhere in Ω, we
may assume that u is nonnegative. Suppose first that u ∈ C∞(Ω). Let t,
0 < t < 1, be fixed. According to the Rademacher theorem, as a Lipschitz
function δ is differentiable almost everywhere in Ω. Moreover, |Dδ(x)| = 1
for almost all x ∈ Ω. The Leibnitz rule gives

Diut(x) =Di

( 1
ωn(tδ(x))n

)
·

∫

B(x,tδ(x))

u(y) dy

+
1

ωn(tδ(x))n
·Di

∫

B(x,tδ(x))

u(y) dy

for almost all x ∈ Ω, and, by the chain rule,
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Di

∫

B(x,tδ(x))

u(y) dy =
∫

B(x,tδ(x))

Diu(y) dy

+ t

∫

∂B(x,tδ(x))

u(y) dHn−1(y) ·Diδ(x)

for almost all x ∈ Ω. Here we also used the fact that

∂

∂r

∫

B(x,r)

u(y) dy =
∫

∂B(x,r)

u(y) dy.

Collecting terms, we obtain

Diut(x) = n
Diδ(x)
δ(x)

( ∫

∂B(x,tδ(x))

u(y) dHn−1(y)

−
∫

B(x,tδ(x))

u(y) dy
)

+
∫

B(x,tδ(x))

Diu(y) dy (3.5)

for almost all x ∈ Ω and every i = 1, 2, . . . , n.
In order to estimate the difference of the two integrals in the parentheses in

(3.5), we have to take into account a cancellation effect. To this end, suppose
that B(x, R) ⊂ Ω. We use the first Green identity

∫

∂B(x,R)

u(y)
∂v

∂ν
(y) dHn−1(y)

=
∫

B(x,R)

(
u(y)∆v(y) + Du(y) ·Dv(y)

)
dy,

where ν(y) = (y − x)/R is the unit outer normal of B(x,R), and we choose

v(y) =
|y − x|2

2
.

With these choices the Green formula reads
∫

∂B(x,R)

u(y) dHn−1(y)−
∫

B(x,R)

u(y) dy
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=
1
n

∫

B(x,R)

Du(y) · (y − x) dy.

We estimate the right-hand side of the previous equality by
∣∣∣∣

∫

B(x,R)

Du(y) · (y − x) dy

∣∣∣∣ 6 R

∫

B(x,R)

|Du(y)| dy

6 RMΩ |Du|(x).

Finally, we conclude that
∣∣∣∣

∫

∂B(x,R)

u(y) dHn−1(y)−
∫

B(x,R)

u(y) dy

∣∣∣∣ 6 R

n
MΩ |Du|(x). (3.6)

Let e be a unit vector. Using (3.5), (3.6) with R = tδ(x), and the Schwarz
inequality, we find

|Dut(x) · e|

6 n
|e ·Dδ(x)|

δ(x)
· tδ(x)

n
M |Du|(x) +

∣∣∣∣
∫

B(x,tδ(x))

e ·Du(y) dy

∣∣∣∣

6 tM |Du|(x) +
∫

B(x,tδ(x))

|Du(y)| dy

6 (t + 1)MΩ |Du|(x)

for almost all x ∈ Ω. Since t 6 1 and e is arbitrary, (3.4) is proved for
nonnegative smooth functions.

The case u ∈ W 1,p(Ω) with 1 < p < ∞ follows from an approximation
argument. Indeed, suppose that u ∈ W 1,p(Ω) for some p with 1 < p < ∞.
Then there is a sequence (ϕj) of functions in W 1,p(Ω) ∩ C∞(Ω) such that
ϕj → u in W 1,p(Ω) as j →∞.

Fix t with 0 < t < 1. We see that

ut(x) = lim
j→∞

(ϕj)t(x)

if x ∈ Ω. It is clear that

(ϕj)t(x) =
∫

B(x,tδ(x))

|ϕj(y)| dy 6 MΩϕj(x)
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for every x ∈ Ω. By (3.4), for smooth functions we have

|D(ϕj)t(x)| 6 2MΩ |Dϕj |(x) (3.7)

for almost all x ∈ Ω and every j = 1, 2 . . . . These inequalities and the
maximal function theorem imply that

‖(ϕj)t‖1,p,Ω = ‖(ϕj)t‖p,Ω + ‖D(ϕj)t‖p,Ω

6 c
(‖ϕj‖p,Ω + ‖Dϕj‖p,Ω

)
= c‖ϕj‖1,p,Ω .

Thus, ((ϕj)t)∞j=1 is a bounded sequence in W 1,p(Ω) and, since it converges
to ut pointwise, we conclude that the Sobolev derivative Dut exists and
D(ϕj)t → Dut weakly in Lp(Ω) as j → ∞. This is a standard argument
which gives the desired conclusion that ut belongs to W 1,p(Ω). To establish
the inequality (3.4), we want to proceed to the limit in (3.7) as j →∞. Using
the sublinearity of the maximal operator and the maximal function theorem
once more, we arrive at

‖MΩ |Dϕj | −MΩ |Du|‖p,Ω 6 ‖MΩ(|Dϕj | − |Du|)‖p,Ω

6 c‖|Dϕj | − |Du|‖p,Ω .

Hence MΩ |Dϕj | → MΩ |Du| in Lp(Ω) as j →∞. To complete the proof, we
apply the proposition mentioned before Theorem 2.2 to (3.7).

Finally, we consider the case p = ∞. Slightly modifying the above proof,
we see that ut ∈ W 1,p

loc (Ω) for every 1 < p < ∞ and the estimate (2.3) holds
for the gradient. The claim follows from the maximal function theorem. This
completes the proof. ut

The proof of Theorem 3.2 follows now easily since the hard work has
been done in the proof of Lemma 3.3. Suppose that u ∈ W 1,p(Ω) for some
1 < p < ∞. Then |u| ∈ W 1,p(Ω). Let tj , j = 1, 2, . . . , be an enumeration
of the rational numbers between 0 and 1. Denote uj = utj . By the previous
lemma, we see that uj ∈ W 1,p(Ω) for every j = 1, 2, . . . and (3.4) gives us
the estimate

|Duj(x)| 6 2MΩ |Du|(x)

for almost all x ∈ Ω and every j = 1, 2, . . . . We define vk : Ω → [−∞,∞],
k = 1, 2, . . . , as

vk(x) = max
16j6k

uj(x).

Using the fact that the maximum of two Sobolev functions belongs to the
Sobolev space, we see that (vk) is an increasing sequence of functions in
W 1,p(Ω) converging to MΩu pointwise and

|Dvk(x)| = |D max
16j6k

uj(x)| 6 max
16j6k

|Duj(x)| 6 2MΩ |Du|(x) (3.8)
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for almost all x ∈ Ω and every j = 1, 2, . . . . On the other hand,

vk(x) 6 MΩu(x)

for all x ∈ Ω and k = 1, 2, . . . . The rest of the proof goes along the lines of
the final part of the proof of Theorem 2.2. By the maximal function theorem,

‖vk‖1,p,Ω = ‖vk‖p,Ω + ‖Dvk‖p,Ω

6 ‖MΩu‖p,Ω + 2‖MΩ |Du|‖p,Ω 6 c‖u‖1,p,Ω .

Hence (vk) is a bounded sequence in W 1,p(Ω) such that vk → MΩu ev-
erywhere in Ω as k → ∞. A weak compactness argument shows that
MΩu ∈ W 1,p(Ω), vk → MΩu, and Dvk → DMΩu weakly in Lp(Ω) as k →∞.
Again, we may proceed to the weak limit in (3.8), using the proposition men-
tioned before Theorem 2.2.

Let us briefly consider the case p = ∞. Using the above argument, it is
easy to see that MΩu ∈ W 1,p

loc (Ω) and the claim follows from the maximal
function theorem.

Remark 3.9. Again, it follows immediately that

MΩ : W 1,p(Ω) → W 1,p(Ω)

is a bounded operator. Luiro [54] shows that it is also a continuous operator
for every open set Ω, with 1 < p 6 ∞. In [55], he gives examples of natural
maximal operators which are not continuous on Sobolev spaces.

3.2 Sobolev boundary values

We have shown that the local Hardy–Littlewood maximal operator preserves
the Sobolev spaces W 1,p(Ω) provided that 1 < p 6 ∞. Next we show that the
maximal operator also preserves the boundary values in the Sobolev sense.
Recall that the Sobolev space with zero boundary values, denoted by W 1,p

0 (Ω)
with 1 6 p < ∞, is defined as the completion of C∞0 (Ω) with respect to the
Sobolev norm.

We begin with some useful condition which guarantees that a Sobolev
function has zero boundary values in the Sobolev sense. The following result
was proved in [36], but we present a very simple proof by Zhong [70, Theorem
1.9]. With a different argument this result also holds in metric measure spaces
[32, Theorem 5.1].

Lemma 3.10. Let Ω 6= Rn be an open set. Suppose that u ∈ W 1,p(Ω). If
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∫

Ω

( |u(x)|
dist(x, ∂Ω)

)p

dx < ∞,

then u ∈ W 1,p
0 (Ω).

Proof. For λ > 0 we define uλ : Ω → [0,∞] by

uλ(x) = min(|u(x)|, λ dist(x, ∂Ω)).

We see that uλ ∈ W 1,p
0 (Ω) for every λ > 0.

Then we show that (uλ) is a uniformly bounded family of functions in
W 1,p

0 (Ω). Clearly, uλ 6 |u| and hence
∫

Ω

up
λ dx 6

∫

Ω

|u|p dx.

For the gradient estimate we define

Fλ = {x ∈ Ω : |u(x)| > λ dist(x, ∂Ω)},

where λ > 0. Then
∫

Ω

|Duλ|p dx =
∫

Ω\Fλ

|Du|p dx + λp

∫

Fλ

|D dist(x, ∂Ω)|p dx

6
∫

Ω

|Du|p dx + λp|Fλ|,

where, by assumption,

λp|Fλ| 6
∫

Ω

( |u(x)|
dist(x, ∂Ω)

)p

dx < ∞

for every λ > 0. Here we again used the fact that |D dist(x, ∂Ω)| = 1 for
almost all x ∈ Ω. This implies that (uλ) is a uniformly bounded family of
functions in W 1,p

0 (Ω).
Since |Fλ| → 0 as λ →∞ and uλ = |u| in Ω \Fλ, we have uλ → |u| almost

everywhere in Ω. A similar weak compactness argument that was used in the
proofs of Theorems 2.2 and 3.2 shows that |u| ∈ W 1,p

0 (Ω). ut
Remark 3.11. The proof shows that, instead of u/δ ∈ Lp(Ω), it is enough
to assume that u/δ belongs to the weak Lp(Ω). Boundary behavior of the
maximal function was studied in [37, 35]

Theorem 3.12. Let Ω ⊂ Rn be an open set. Suppose that u ∈ W 1,p(Ω) with
p > 1. Then
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|u| −MΩu ∈ W 1,p
0 (Ω).

Remark 3.13. In particular, if u ∈ W 1,p
0 (Ω), then MΩu ∈ W 1,p

0 (Ω). Observe
that this holds for every open subset Ω.

Proof. Fix 0 < t < 1. A standard telescoping argument (see Lemma 4.1)
gives

∣∣|u(x)| − ut(x)
∣∣ =

∣∣∣∣∣∣∣
|u(x)| −

∫

B(x,tδ(x))

|u(y)| dy

∣∣∣∣∣∣∣

6 ct dist(x, ∂Ω)MΩ |Du|(x).

For every x ∈ Ω there is a sequence tj , j = 1, 2, . . . , such that

MΩu(x) = lim
j→∞

utj (x).

This implies that
∣∣|u(x)| −MΩu(x)

∣∣ = lim
j→∞

∣∣|u(x)| − utj (x)
∣∣

6 c dist(x, ∂Ω)MΩ |Du|(x).

By the maximal function theorem, we conclude that

∫

Ω

(∣∣|u(x)| −MΩu(x)
∣∣

dist(x, ∂Ω)

)p

dx 6 c

∫

Ω

(MΩ |Du|(x))p dx

6 c

∫

Ω

|Du(x)|p dx.

This implies that
|u(x)| −MΩu(x)

dist(x, ∂Ω)
∈ Lp(Ω).

By Theorem 3.2, we have MΩu ∈ W 1,p(Ω), and from Lemma 3.10 we con-
clude that |u| −MΩu ∈ W 1,p

0 (Ω). ut
Remark 3.14. We observe that the maximal operator preserves nonnegative
superharmonic functions; see [37]. (For superharmonic functions that change
signs, we may consider the maximal function without absolute values.) Sup-
pose that u : Ω → [0,∞] is a measurable function which is not identically ∞
on any component of Ω. Then it is easy to show that

MΩu(x) = u(x)
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for every x ∈ Ω if and only if u is superharmonic.
The least superharmonic majorant can be constructed by iterating the

maximal function. For short we write

M
(k)
Ω u(x) = MΩ ◦MΩ ◦ · · · ◦MΩu(x), k = 1, 2, . . . .

Since M
(k)
Ω u, k = 1, 2, . . . , are lower semicontinuous, we see that

M
(k)
Ω u(x) 6 M

(k+1)
Ω u(x), k = 1, 2, . . . ,

for every x ∈ Ω. Hence (M (k)
Ω u(x)) is an increasing sequence of functions and

it converges for every x ∈ Ω (the limit may be ∞). We denote

M
(∞)
Ω u(x) = lim

k→∞
M

(k)
Ω u(x)

for every x ∈ Ω. If M
(∞)
Ω u is not identically infinity on any component of Ω,

then it is the smallest superharmonic function with the property that

M
(∞)
Ω u(x) > u(x)

for almost all x ∈ Ω. If u ∈ W 1,p(Ω), then the obtained smallest superhar-
monic function has the same boundary values as u in the Sobolev sense by
Theorem 3.12.

Fiorenza [18] observed that nonnegative functions of one or two variables
cannot be invariant under the maximal operator unless they are constant.
This is consistent with the fact that on the line there are no other concave
functions and in the plane there are no other superharmonic functions but
constants that are bounded from below (see also [42]).

4 Pointwise Inequalities

The following estimates are based on a well-known telescoping argument (see
[28] and [16]). The proofs are based on a general principle and they apply
in a metric measure space equipped with a doubling measure (see [25]). This
fact will be useful below.

Let 0 < β < ∞ and R > 0. The fractional sharp maximal function of a
locally integrable function f is defined by

f#
β,R(x) = sup

0<r<R
r−β

∫

B(x,r)

|f − fB(x,r)| dy,

If R = ∞ we simply write f#
β (x).
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Lemma 4.1. Suppose that f is locally integrable. Let 0 < β < ∞. Then there
is a constant c = c(β, n) and a set E with |E| = 0 such that

|f(x)− f(y)| 6 c|x− y|β(
f#

β,4|x−y|(x) + f#
β,4|x−y|(y)

)
(4.2)

for all x, y ∈ Rn \ E.

Proof. Let E be the complement of the set of Lebesgue points of f . By
the Lebesgue theorem, |E| = 0. Fix x ∈ Rn \ E, 0 < r < ∞ and denote
Bi = B(x, 2−ir), i = 0, 1, . . . . Then

|f(x)− fB(x,r)| 6
∞∑

i=0

|fBi+1 − fBi
|

6
∞∑

i=0

µ(Bi)
µ(Bi+1)

∫

Bi

|f − fBi
| dy

6 c

∞∑

i=0

(2−ir)β(2−ir)−β

∫

Bi

|f − fBi | dy

6 crβf#
β,r(x).

Let y ∈ B(x, r) \ E. Then B(x, r) ⊂ B(y, 2r) and we obtain

|f(y)− fB(x,r)| 6 |f(y)− fB(y,2r)|+ |fB(y,2r) − fB(x,r)|

6 crβf#
β,2r(y) +

∫

B(x,r)

|f − fB(y,2r)| dz

6 crβf#
β,2r(y) + c

∫

B(y,2r)

|f − fB(y,2r)| dz

6 crβf#
β,2r(y).

Let x, y ∈ Rn \ E, x 6= y and r = 2|x− y|. Then x, y ∈ B(x, r) and hence

|f(x)− f(y)| 6 |f(x)− fB(x,r)|+ |f(y)− fB(x,r)|

6 c|x− y|β(
f#

β,4|x−y|(x) + f#
β,4|x−y|(y)

)
.

This completes the proof. ut
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Let 0 6 α < 1 and R > 0. The fractional maximal function of a locally
integrable function f is defined by

Mα,Rf(x) = sup
0<r<R

rα

∫

B(x,r)

|f | dy,

For R = ∞, we write Mα,∞ = Mα. If α = 0, we obtain the Hardy–Littlewood
maximal function and write M0 = M .

If u ∈ W 1,1
loc (Rn), then, by the Poincaré inequality, there is a constant

c = c(n) such that
∫

B(x,r)

|u− uB(x,r)| dy 6 cr

∫

B(x,r)

|Du| dy

for every ball B(x, r) ⊂ Rn. It follows that

rα−1

∫

B(x,r)

|u− uB(x,r)| dy 6 crα

∫

B(x,r)

|Du| dy

and, consequently,
u#

1−α,R(x) 6 cMα,R|Du|(x)

for every x ∈ Rn and R > 0. Thus, we have proved the following useful
inequality.

Corollary 4.3. Let u ∈ W 1,1
loc (Rn) and 0 6 α < 1. Then there is a constant

c = c(n, α) and a set E ⊂ Rn with |E| = 0 such that

|u(x)− u(y)| 6 c|x− y|1−α
(
Mα,4|x−y||Du|(x) + Mα,4|x−y||Du|(y)

)

for all x, y ∈ Rn \ E.

If u ∈ W 1,p(Rn), 1 6 p 6 ∞, then

|u(x)− u(y)| 6 c|x− y|(M |Du|(x) + M |Du|(y)
)

for all x, y ∈ Rn \ E. If 1 < p 6 ∞, then the maximal function theorem
implies that g = M |Du| ∈ Lp(Rn) and, by the previous inequality, we have

|u(x)− u(y)| 6 c|x− y|(g(x) + g(y)
)

for all x, y ∈ Rn \E with |E| = 0. The following result shows that this gives
a characterization of W 1,p(Rn) for 1 < p 6 ∞. This characterization can
be used as a definition of the first order Sobolev spaces on metric measure
spaces (see [21, 24, 25]).

Theorem 4.4. Let 1 < p 6 ∞. Then the following four conditions are
equivalent.
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(i) u ∈ W 1,p(Rn).

(ii) u ∈ Lp(Rn) and there is g ∈ Lp(Rn), g > 0, such that

|u(x)− u(y)| 6 |x− y|(g(x) + g(y))

for all x, y ∈ Rn \ E with |E| = 0.

(iii) u ∈ Lp(Rn) and there is g ∈ Lp(Rn), g > 0, such that the Poincaré
inequality holds,

∫

B(x,r)

|u− uB(x,r)| dy 6 c r

∫

B(x,r)

g dy

for all x ∈ Rn and r > 0.

(iv) u ∈ Lp(Rn) and u#
1 ∈ Lp(Rn).

Proof. We have already seen that (i) implies (ii). To prove that (ii) implies
(iii), we integrate the pointwise inequality twice over the ball B(x, r). After
the first integration we obtain

|u(y)− uB(x,r)| =

∣∣∣∣∣∣∣
u(y)−

∫

B(x,r)

u(z) dz

∣∣∣∣∣∣∣

6
∫

B(x,r)

|u(y)− u(z)| dz

6 2r


g(y) +

∫

B(x,r)

g(z) dz


 ,

which implies

∫

B(x,r)

|u(y)− uB(x,r)| dy 6 2r




∫

B(x,r)

g(y) dy +
∫

B(x,r)

g(z) dz




6 4r

∫

B(x,r)

g(y) dy.

To show that (iii) implies (iv), we observe that
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u#
1 (x) = sup

r>0

1
r

∫

B(x,r)

|u− uB(x,r)| dy 6 c sup
r>0

∫

B(x,r)

g dy = cMg(x).

Then we show that (iv) implies (i). By Theorem 4.1,

|u(x)− u(y)| 6 c|x− y|(u#
1 (x) + u#

1 (y))

for all x, y ∈ Rn \ E with |E| = 0. If we denote g = cu#
1 , then g ∈ Lp(Rn)

and
|u(x)− u(y)| 6 |x− y|(g(x) + g(y))

for all x, y ∈ Rn \ E with |E| = 0. Then we use the characterization of
Sobolev spaces W 1,p(Rn), 1 < p < ∞, with integrated difference quotients.
Let h ∈ Rn. Then

|uh(x)− u(x)| = |u(x + h)− u(x)| 6 |h|(gh(x) + g(x)),

from which we conclude that

‖uh − u‖p 6 |h|(‖gh‖p + ‖g‖p) = 2|h|‖g‖p,

which implies the claim. ut
Remark 4.5. HajÃlasz [22] showed that u ∈ W 1,1(Rn) if and only if u ∈
L1(Rn) and there is a nonnegative function g ∈ L1(Rn) and σ > 1 such that

|u(x)− u(y)| 6 |x− y|(Mσ|x−y|g(x) + Mσ|x−y|g(y))

for all x, y ∈ Rn \ E with |E| = 0. Moreover, if this inequality holds, then
|Du| 6 c(n, σ)g almost everywhere.

4.1 Lusin type approximation of Sobolev functions

Approximations of Sobolev functions were studied, for example, in [2, 10, 11,
13, 20, 25, 52, 56, 58, 60, 69].

Let u ∈ W 1,p(Rn) and 0 6 α < 1. By Corollary (4.3),

|u(x)− u(y)| 6 c|x− y|1−α
(
Mα|Du|(x) + Mα|Du|(y)

)

for all x, y ∈ Rn \ E with |E| = 0. For p > n the Hölder inequality implies

Mn/p|Du|(x) 6 cMn|Du|p(x)1/p 6 c‖Du‖p

for every x ∈ Rn \ E with c = c(n, p). Hence
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|u(x)− u(y)| 6 c‖Du‖p|x− y|1−n/p

for all x, y ∈ Rn \ E and u is Hölder continuous with the exponent 1− n/p
after a possible redefinition on a set of measure zero. The same argument
implies that if Mα|Du| is bounded, then u ∈ C1−α(Rn). Even if Mα|Du| is
unbounded, then

|u(x)− u(y)| 6 cλ|x− y|1−α

for all x, y ∈ Rn \ Eλ, where

Eλ = {x ∈ Rn : Mα|Du|(x) > λ}

for λ > 0. This means that the restriction of u ∈ W 1,p(Rn) to the set Rn\Eλ

is Hölder continuous after a redefinition on a set of measure zero.
Recall that the (spherical) Hausdorff s-content, 0 < s < ∞, of E ⊂ Rn is

defined by

Hs
∞(E) = inf

{ ∞∑

i=1

rs
i : E ⊂

∞⋃

i=1

B(xi, ri)
}

.

The standard Vitali covering argument gives the following estimate for the
size of the set Rn \ Eλ. There is a constant c = c(n, p, α) such that

Hn−αp
∞ (Eλ) 6 cλ−p

∫

Rn

|Du|p dx (4.6)

for every λ > 0.

Theorem 4.7. Let u ∈ W 1,p(Rn), and let 0 6 α < 1. Then for every λ > 0
there is an open set Eλ and a function uλ such that u(x) = uλ(x) for every
x ∈ Rn \ Eλ, uλ ∈ W 1,p(Rn), uλ is Hölder continuous with the exponent
1− α, ‖u− uλ‖W 1,p(Rn) → 0 as λ →∞, and Hn−αp

∞ (Eλ) → 0 as λ →∞.

Remark 4.8. (i) If α = 0, then the theorem says that every function in the
Sobolev space coincides with a Lipschitz function outside a set of arbitrarily
small Lebesgue measure. The obtained Lipschitz function approximates the
original Sobolev function also in the Sobolev norm.

(ii) Since
capαp(Eλ) 6 cHn−αp

∞ (Eλ),

the size of the exceptional set can also be expressed in terms of capacity.

Proof. The set Eλ is open since Mα is lower semicontinuous. From (4.6) we
conclude that

Hn−αp
∞ (Eλ) 6 cλ−p ‖Du‖p

p

for every λ > 0 with c = c(n, p, α).
We already showed that u|Rn\Eλ

is (1 − α)-Hölder continuous with the
constant c(n)λ.
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Let Qi, i = 1, 2, . . ., be a Whitney decomposition of Eλ with the following
properties: each Qi is open, the cubes Qi, i = 1, 2, . . ., are disjoint, Eλ =⋃∞

i=1 Qi, 4Qi ⊂ Eλ, i = 1, 2, . . .,

∞∑

i=1

χ2Qi
6 N < ∞,

and
c1 dist(Qi,Rn \ Eλ) 6 diam(Qi) 6 c2 dist(Qi,Rn \ Eλ)

for some constants c1 and c2.
Then we construct a partition of unity associated with the covering 2Qi,

i = 1, 2, . . . . This can be done in two steps. First, let ϕ̃i ∈ C∞0 (2Qi) be such
that 0 6 ϕ̃i 6 1, ϕ̃i = 1 in Qi and

|Dϕ̃i| 6 c

diam(Qi)

for i = 1, 2, . . . . Then we define

ϕi(x) =
ϕ̃i(x)
∞∑

j=1

ϕ̃j(x)

for every i = 1, 2, . . .. Observe that the sum is taken over finitely many terms
only since ϕi ∈ C∞0 (2Qi) and the cubes 2Qi, i = 1, 2, . . ., are of bounded
overlap. The functions ϕi have the property

∞∑

i=1

ϕi(x) = χEλ
(x)

for every x ∈ Rn.
Then we define the function uλ by

uλ(x) =





u(x), x ∈ Rn \ Eλ,
∞∑

i=1

ϕi(x)u2Qi , x ∈ Eλ.

The function uλ is a Whitney type extension of u|Rn\Eλ
to the set Eλ.

First we claim that

‖uλ‖W 1,p(Eλ) 6 c‖u‖W 1,p(Eλ). (4.9)

Since the cubes 2Qi, i = 1, 2, . . ., are of bounded overlap, we have



48 Daniel Aalto and Juha Kinnunen

∫

Eλ

|uλ|p dx =
∫

Eλ

∣∣∣
∞∑

i=1

ϕi(x)u2Qi

∣∣∣
p

dx 6 c

∞∑

i=1

∫

2Qi

|u2Qi
|p dx

6 c

∞∑

i=1

|2Qi|
∫

2Qi

|u|p dx 6 c

∫

Eλ

|u|p dx.

Then we estimate the gradient. We recall that

Φ(x) =
∞∑

i=1

ϕi(x) = 1

for every x ∈ Eλ. Since the cubes 2Qi, i = 1, 2, . . ., are of bounded overlap,
we see that Φ ∈ C∞(Eλ) and

DjΦ(x) =
∞∑

i=1

Djϕi(x) = 0, j = 1, 2, . . . , n,

for every x ∈ Eλ. Hence we obtain

|Djuλ(x)| =
∣∣∣
∞∑

i=1

Djϕi(x)u2Qi

∣∣∣ =
∣∣∣
∞∑

i=1

Djϕi(x)(u(x)− u2Qi)
∣∣∣

6 c

∞∑

i=1

diam(Qi)−1|u(x)− u2Qi |χ2Qi(x)

and, consequently,

|Djuλ(x)| 6 c

∞∑

i=1

diam(Qi)−p|u(x)− u2Qi |pχ2Qi(x).

Here we again used the fact that the cubes 2Qi, i = 1, 2, . . ., are of bounded
overlap.

This implies that for every j = 1, 2, . . . , n

∫

Eλ

|Djuλ| dx 6 c

∫

Eλ

( ∞∑

i=1

diam(Qi)−p|u− u2Qi |pχ2Qi

)
dx

6
∞∑

i=1

∫

2Qi

diam(Qi)−p|u− u2Qi |p dx
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6 c

∞∑

i=1

∫

2Qi

|Du|p dx 6 c

∫

Eλ

|Du|p dx.

Then we show that uλ ∈ W 1,p(Rn). We know that uλ belongs to W 1,p(Eλ)
and is Hölder continuous in Rn. Moreover, u ∈ W 1,p(Rn) and u = uλ in
Rn \ Eλ by (i). This implies that w = u − uλ ∈ W 1,p(Eλ) and w = 0 in
Rn \ Eλ. By the ACL-property, u is absolutely continuous on almost every
line segment parallel to the coordinate axes. Take any such a line. Now w is
absolutely continuous on the part of the line segment which intersects Eλ.
On the other hand, w = 0 in the complement of Eλ. Hence the continuity of
w in the line segment implies that w is absolutely continuous on the whole
line segment.

We have

‖u− uλ‖W 1,p(Rn) = ‖u− uλ‖W 1,p(Eλ)

6 ‖u‖W 1,p(Eλ) + ‖uλ‖W 1,p(Eλ) 6 c‖u‖W 1,p(Eλ).

We leave it as an exercise for the interested reader to show that the function
uλ is Hölder continuous with the exponent 1 − α (or see, for example, [27]
for details). ut

5 Hardy Inequality

In this section, we consider the Hardy inequality, which was originally studied
by Hardy in the one-dimensional case. In the higher dimensional case, the
Hardy inequality was studied, for example, in [5, 46, 51, 59, 67, 68]. Our
approach is mainly based on more recent works [23, 36, 44, 47, 48, 61].

Suppose first that p > n, n < q < p, 0 6 α < q, and Ω 6= Rn is an open
set. Let u ∈ C∞0 (Ω). Consider the zero extension to Rn \Ω. Fix x ∈ Ω and
take x0 ∈ ∂Ω such that

|x− x0| = dist(x, ∂Ω) = δ(x) = R.

Denote χ = χB(x0,2R). By Corollary 4.3,

|u(x)| = |u(x)− u(x0)|
6 c|x− x0|1−n/q(Mn/q(|Du|χ)(x) + Mn/q(|Du|χ)(x0)),

where
Mn/q(|Du|χ)(x) 6 cMn(|Du|qχ)(x)1/q 6 ‖Duχ‖q,

and, by the same argument,
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Mn/q(|Du|χ)(x0) 6 ‖Duχ‖q.

This implies that

|u(x)| 6 c|x− x0|1−n/q




∫

B(x0,2R)

|Du|q dy




1/q

6 cR1−α/q


Rα−n

∫

B(x,4R)

|Du|q dy




1/q

6 c dist(x, ∂Ω)1−α/q
(
Mα,4δ(x)|Du|q(x)

)1/q (5.1)

for every x ∈ Rn with c = c(n, q). This is a pointwise Hardy inequality. For
u ∈ W 1,p

0 (Ω) this inequality holds almost everywhere. Integrating (5.1) with
α = 0 over Ω and using the maximal function theorem, we arrive at

∫

Ω

( |u(x)|
dist(x, ∂Ω)

)p

dx 6 c

∫

Ω

(
M |Du|q(x)

)p/q
dx

6 c

∫

Ω

|Du(x)|p dx (5.2)

for every u ∈ W 1,p
0 (Ω) with c = c(n, p, q). This is a version of the Hardy

inequality which is valid for every open sets with nonempty complement if
n < p < ∞. The case 1 < p 6 n is more involved since then extra conditions
must be imposed on Ω (see [51, Theorem 3]). However, there is a sufficient
condition in terms of capacity density of the complement.

A closed set E ⊂ Rn is uniformly p−fat, 1 < p < ∞, if there is a constant
γ > 0 such that

capp

(
E ∩B(x, r), B(x, 2r)

)
> γ capp

(
B(x, r), B(x, 2r)

)
(5.3)

for all x ∈ E and r > 0. Here capp(K, Ω) denotes the variational p−capacity

capp(K,Ω) = inf
∫

Ω

|Du(x)|p dx,

where the infimum is taken over all u ∈ C∞0 (Ω) such that u(x) > 1 for every
x ∈ K. Here Ω is an open subset of Ω and K is a compact subset of Ω. We
recall that

capp(B(x, r), B(x, 2r)) = crn−p,
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where c = c(n, p).
If p > n, then all nonempty closed sets are uniformly p-fat. If there is a

constant γ > 0 such that E satisfies the measure thickness condition

|B(x, r) ∩ E| > γ|B(x, r)|

for all x ∈ E and r > 0, then E is uniformly p-fat for every p with 1 < p < ∞.
If E is uniformly p-fat for some p, then it is uniformly q-fat for every q > p.

The fundamental property of uniformly fat sets is the following self improving
result due to Lewis [51, Theorem 1]. For another proof see [61, Theorem 8.2].

Theorem 5.4. Let E ⊂ Rn be a closed uniformly p−fat set. Then there is
1 < q < p such that E is uniformly q−fat.

In the case where Ω ⊂ Rn is an open set such that Rn \ Ω is uniformly
p−fat, Lewis [51, Theorem 2] proved that the Hardy inequality holds. We have
already seen that the Hardy inequality follows from pointwise inequalities
involving the Hardy–Littlewood maximal function if p > n. We show that
this is also the case 1 < p 6 n.

Theorem 5.5. Let 1 < p 6 n, 0 6 α < p, and let Ω ⊂ Rn be an open set
such that Rn \ Ω is uniformly p−fat. Suppose that u ∈ C∞0 (Ω). Then there
are constants c = c(n, p, γ) and σ > 1 such that

|u(x)| 6 c dist(x, ∂Ω)1−α/p
(
Mα,σδ(x)|Du|p(x)

)1/p (5.6)

for every x ∈ Ω.

Proof. Let x ∈ Ω. Choose x0 ∈ ∂Ω such that

|x− x0| = dist(x, ∂Ω) = δ(x) = R.

Then
|u(x)− uB(x0,2R)| 6 cR1−α/p

(
Mα,R|Du|p(x)

)1/p

for every x ∈ B(x0, 2R) with c = c(n, p), and hence

|u(x)| 6 |u(x)− uB(x0,2R)|+ |uB(x0,2R)|

6 cR1−α/p
(
Mα,δ(x)|Du|p(x)

)1/p + |u|B(x0,2R)

for every x ∈ B(x0, 2R). Denote A = {x ∈ Rn : u(x) = 0}. Using a capacitary
version of the Poincaré inequality, we arrive at

1
|B(x0, 2R)|

∫

B(x0,2R)

|u| dy
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6 c


capp

(
A ∩B(x0, 2R), B(x0, 4R)

)−1
∫

B(x0,4R)

|Du|p dy




1/p

6 c
(
capp

(
(Rn \Ω) ∩B(x0, 2R), B(x0, 4R)

)−1
∫

B(x0,4R)

|Du|p dy
)1/p

6 c


Rp−n

∫

B(x,8R)

|Du|p dy




1/p

6 cR1−α/p
(
Mα,8δ(x)|Du|p(x)

)1/p
,

where c = c(n, p, γ). ut
If Rn\Ω is p−fat, then, by Theorem 5.4, it is q−fat for some 1 < q < p 6 n.

Using (5.6) with α = 0, we get the pointwise q-Hardy inequality

|u(x)| 6 c dist(x, ∂Ω)
(
Mσδ(x)|Du|q(x)

)1/q

for every x ∈ Ω with c = c(n, q). Integrating and using the maximal function
theorem exactly in the same way as in (5.2), we also prove the Hardy inequal-
ity in the case 1 < p 6 n. Again, a density argument shows that the Hardy
inequality holds for every u ∈ W 1,p

0 (Ω). Thus, we have proved the following
assertion.

Corollary 5.7. Let 1 < p < ∞. Suppose that Ω ⊂ Rn is an open set such
that Rn \ Ω is uniformly p−fat. If u ∈ W 1,p

0 (Ω), then there is a constant
c = c(n, p, γ) such that

∫

Ω

( |u(x)|
dist(x, ∂Ω)

)p

dx 6 c

∫

Ω

|Du(x)|p dx.

In particular, if p > n, then the inequality holds for every Ω 6= Rn.

Remark 5.8. The pointwise Hardy inequality is not equivalent to the Hardy
inequality since there are open sets for which the Hardy inequality holds for
some p, but the pointwise Hardy inequality fails. For example, the punctured
ball B(0, 1) \ {0} satisfies the pointwise Hardy inequality only in the case
p > n, but the usual Hardy inequality also holds when 1 < p < n. When
p = n, the Hardy inequality fails for this set. This example also shows that
the uniform fatness of the complement is not a necessary condition for an
open set to satisfy the Hardy inequality since the complement of B(0, 1)\{0}
is not uniformly p-fat when 1 < p < n. If p = n, then the Hardy inequality is
equivalent to the fact that Rn \Ω is uniformly p-fat (see [51, Theorem 3]).

A recent result of Lehrbäck [47] shows that the uniform fatness is not only
sufficient, but also necessary condition for the pointwise Hardy inequality
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(see also [50, 48, 49]). When n = p = 2, Sugawa [65] proved that the Hardy
inequality is also equivalent to the uniform perfectness of the complement of
the domain. Recently this result was generalized in [43] for other values of
p. The arguments of [43] are very general. It is also possible to study Hardy
inequalities on metric measure spaces (see [9, 32, 43]).

Theorem 5.4 shows that the p-fatness is a self improving result. Next we
give a proof of an elegant result of Koskela and Zhong [45] which states that
the Hardy inequality is self improving.

Theorem 5.9. Suppose that the Hardy inequality holds in Ω for some 1 <
p < ∞. Then there exists ε > 0 such that the Hardy inequality holds in Ω for
every q with p− ε < q 6 p.

Proof. Let u be a Lipschitz continuous function that vanishes in Rn \Ω. For
λ > 0 denote

Fλ = {x ∈ Ω : |u(x)| 6 λ dist(x, ∂Ω) and M |Du|(x) 6 λ}.

We claim that the restriction of u to Fλ ∪ (Rn \ Ω) is Lipschitz continuous
with a constant cλ, where c = c(n). If x, y ∈ Fλ, then

|u(x)− u(y)| 6 c|x− y|(M |Du|(x) + M |Du|(y)) 6 cλ|x− y|

by Corollary 4.3. If x ∈ Fλ and y ∈ Rn \Ω, then

|u(x)− u(y)| = |u(x)| 6 λ dist(x, ∂Ω) 6 λ|x− y|.

This implies that u|Fλ∪(Rn\Ω) is Lipschitz continuous with the constant cλ.
We extend the function to the entire space Rn, for example, with the classical
McShane extension

v(x) = inf{u(y) + cλ|x− y| : y ∈ Fλ ∪ (Rn \Ω)}.

The function v is Lipschitz continuous in Rn with the same constant cλ as
u|Fλ∪(Rn\Ω). Let

Gλ = {x ∈ Ω : |u(x)| 6 λ dist(x, ∂Ω)}

and
Eλ = {x ∈ Ω : M |Du|(x) 6 λ}.

Then Fλ = Gλ ∩ Eλ, and we note that

|Dv(x)| 6 |Du(x)|χFλ
(x) + cλχΩ\Fλ

(x)

for almost all x ∈ Rn. By the Hardy inequality,
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∫

Fλ

( |v(x)|
dist(x, ∂Ω)

)p

dx 6 c

∫

Fλ

|Du(x)|p dx + cλp|Ω \ Fλ|

and, consequently,
∫

Gλ

( |u(x)|
dist(x, ∂Ω)

)p

dx

6 c

∫

Fλ

|Du(x)|p dx + cλp|Ω \ Fλ|+
∫

Gλ\Eλ

( |u(x)|
dist(x, ∂Ω)

)p

dx

6 c

∫

Eλ

|Du(x)|p dx + cλp(|Ω \Gλ|+ |Ω \ Eλ|).

From this we obtain

1
ε

∫

Ω

( |u(x)|
dist(x, ∂Ω)

)p−ε

dx =

∞∫

0

λ−ε−1

∫

Gλ

( |u(x)|
dist(x, ∂Ω)

)p

dx dλ

6 c

∞∫

0

λ−ε−1

∫

Eλ

|Du(x)|p dx dλ

+ c

∞∫

0

λp−ε−1|Ω \Gλ| dλ + c

∞∫

0

λp−ε−1|Ω \ Eλ| dλ

6 c

ε

∫

Ω

|Du(x)|p−ε dx +
1

p− ε

∫

Ω

( |u(x)|
dist(x, ∂Ω)

)p−ε

dx

+
c

p− ε

∫

Ω

(M |Du|(x))p−ε dx.

The claim follows from this by using the maximal function theorem, choosing
ε > 0 small enough, and absorbing the terms on the left-hand side. ut

6 Maximal Functions on Metric Measure Spaces

In this section, we show that most of the results that we have discussed so
far are based on a general principle and our arguments apply in the context
of metric measure spaces.
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6.1 Sobolev spaces on metric measure spaces

Let X = (X, d, µ) be a complete metric space endowed with a metric d and
a Borel regular measure µ such that 0 < µ(B(x, r)) < ∞ for all open balls

B(x, r) = {y ∈ X : d(y, x) < r}

with r > 0.
The measure µ is said to be doubling if there exists a constant cµ > 1,

called the doubling constant of µ, such that

µ(B(x, 2r)) 6 cµµ(B(x, r))

for all x ∈ X and r > 0. Note that an iteration of the doubling property
implies that, if B(x,R) is a ball in X, y ∈ B(x,R), and 0 < r 6 R < ∞,
then

µ(B(y, r))
µ(B(x, R))

> c
( r

R

)Q

(6.1)

for some c = c(cµ) and Q = log cµ/ log 2. The exponent Q serves as a coun-
terpart of dimension related to the measure.

A nonnegative Borel function g on X is said to be an upper gradient of a
function u : X → [−∞,∞] if for all rectifiable paths γ joining points x and
y in X we have

|u(x)− u(y)| 6
∫

γ

g ds, (6.2)

whenever both u(x) and u(y) are finite, and
∫
γ

g ds = ∞ otherwise. The

assumption that g is a Borel function is needed in the definition of the path
integral. If g is merely a µ-measurable function and (6.2) holds for p-almost
every path (i.e., it fails only for a path family with zero p-modulus), then
g is said to be a p-weak upper gradient of u. If we redefine a p-weak upper
gradient on a set of measure zero we obtain a p-weak upper gradient of the
same function. In particular, this implies that, after a possible redefinition
on a set of measure zero, we obtain a Borel function. If g is a p-weak upper
gradient of u, then there is a sequence gi, i = 1, 2, . . . , of the upper gradients
of u such that ∫

X

|gi − g|p dµ → 0

as i →∞. Hence every p-weak upper gradient can be approximated by upper
gradients in the Lp(X)-norm. If u has an upper gradient that belongs to
Lp(X), then it has a minimal p-weak upper gradient gu in the sense that for
every p-weak upper gradient g of u, gu 6 g µ-almost everywhere.

We define Sobolev spaces on the metric space X using the p-weak upper
gradients. For u ∈ Lp(X) we set
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‖u‖N1,p(X) =
( ∫

X

|u|p dµ + inf
g

∫

X

gp dµ
)1/p

,

where the infimum is taken over all p-weak upper gradients of u. The Sobolev
space (sometimes called the Newtonian space) on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) < ∞}/∼,

where u ∼ v if and only if ‖u− v‖N1,p(X) = 0. The notion of a p-weak upper
gradient is used to prove that N1,p(X) is a Banach space. For properties of
Sobolev spaces on metric measure spaces we refer to [30, 29, 62, 63, 6].

The p-capacity of a set E ⊂ X is the number

capp(E) = inf ‖u‖p
N1,p(X),

where the infimum is taken over all u ∈ N1,p(X) such that u = 1 on E
[38]. We say that a property regarding points in X holds p-quasieverywhere
(p-q.e.) if the set of points for which the property does not hold has capacity
zero. If u ∈ N1,p(X), then u ∼ v if and only if u = v p-q.e. Moreover, if
u, v ∈ N1,p(X) and u = v µ-a.e., then u ∼ v. Hence the capacity is the
correct gauge for distinguishing between two Newtonian functions (see [8]).

To be able to compare the boundary values of Sobolev functions, we need
a Sobolev space with zero boundary values. Let E be a measurable subset of
X. The Sobolev space with zero boundary values is the space

N1,p
0 (E) = {u|E : u ∈ N1,p(X) and u = 0 p-q.e. in X \ E}.

The space N1,p
0 (E) equipped with the norm inherited from N1,p(X) is a

Banach space.
We say that X supports a weak (1, p)-Poincaré inequality if there exist

constants c > 0 and λ > 1 such that for all balls B(x, r) ⊂ X, all locally
integrable functions u on X and for all p-weak upper gradients g of u,

∫

B(x,r)

|u− uB(x,r)| dµ 6 cr
( ∫

B(x,λr)

gp dµ
)1/p

, (6.3)

where
uB(x,r) =

∫

B(x,r)

u dµ =
1

µ(B(x, r))

∫

B(x,r)

u dµ.

Since the p-weak upper gradients can be approximated by upper gradients in
the Lp(X)-norm, we could require the Poincaré inequality for upper gradients
as well.

By the Hölder inequality, it is easy to see that if X supports a weak (1, p)-
Poincaré inequality, then it supports a weak (1, q)-Poincaré inequality for
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every q > p. If X is complete and µ doubling then it is shown in [31] that a
weak (1, p)-Poincaré inequality implies a weak (1, q)-Poincaré inequality for
some q < p. Hence the (1, p)-Poincaré inequality is a self improving condition.
For simplicity, we assume throughout that X supports a weak (1, 1)-Poincaré
inequality, although, by using the results of [31], it would be enough to assume
that X supports a weak (1, p)-Poincaré inequality. We leave the extensions
to the interested reader. In addition, we assume that X is complete and µ
is doubling. This implies, for example, that Lipschitz functions are dense in
N1,p(X) and the Sobolev embedding theorem holds.

6.2 Maximal function defined on the whole space

The standard centered Hardy–Littlewood maximal function on a metric mea-
sure space X is defined as

Mu(x) = sup
r>0

∫

B(x,r)

|u| dµ.

By the Hardy–Littlewood maximal function theorem for doubling measures
(see [15]), we see that the Hardy–Littlewood maximal operator is bounded on
Lp(X) when 1 < p 6 ∞ and maps L1(X) into the weak L1(X). However, the
standard Hardy–Littlewood maximal function does not seem to preserve the
smoothness of the functions as examples by Buckley [12] clearly indicate. In
order to have a maximal function which preserves, for example, the Sobolev
spaces on metric measure spaces, we construct a maximal function based on
a discrete convolution.

Let r > 0. We begin by constructing a family of balls which cover the
space and are of bounded overlap. Indeed, there is a family of balls B(xi, r),
i = 1, 2, . . . , such that

X =
∞⋃

i=1

B(xi, r)

and ∞∑

i=1

χB(xi,6r) 6 c < ∞.

This means that the dilated balls B(xi, 6r) are of bounded overlap. The
constant c depends only on the doubling constant and, in particular, is inde-
pendent of r. These balls play the role of Whitney cubes in a metric measure
space.

Then we construct a partition of unity subordinate to the cover B(xi, r),
i = 1, 2, . . . , of X. Indeed, there is a family of functions ϕi, i = 1, 2, . . . , such
that 0 6 ϕi 6 1, ϕi = 0 on X \B(xi, 6r), ϕi > c on B(xi, 3r), ϕi is Lipschitz
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with constant c/ri with c depending only on the doubling constant, and

∞∑

i=1

ϕi = 1

in X. The partition of unity can be constructed by first choosing auxiliary
cutoff functions ϕ̃i so that 0 6 ϕ̃i 6 1, ϕ̃i = 0 on X \ B(xi, 6r), ϕ̃i = 1 on
B(xi, 3r) and each ϕ̃i is Lipschitz with constant c/r. We can, for example,
take

ϕ̃i(x) =





1, x ∈ B(xi, 3r),

2− d(x, xi)
3r

, x ∈ B(xi, 6r) \B(xi, 3r),

0, x ∈ X \B(xi, 6r).

Then we can define the functions ϕi, i = 1, 2, . . . , in the partition of unity by

ϕi(x) =
ϕ̃i(x)
∞∑

j=1

ϕ̃j(x)
.

It is not difficult to see that the defined functions satisfy the required prop-
erties.

Now we are ready to define the approximation of u at the scale of 3r by
setting

ur(x) =
∞∑

i=1

ϕi(x)uB(xi,3r)

for every x ∈ X. The function ur is called the discrete convolution of u. The
partition of unity and the discrete convolution are standard tools in harmonic
analysis on homogeneous spaces (see, for example, [15] and [57]).

Let rj , j = 1, 2, . . . , be an enumeration of the positive rational numbers.
For every radius rj we choose balls B(xi, rj), i = 1, 2, . . . , of X as above.
Observe that for each radius there are many possible choices for the covering,
but we simply take one of those. We define the discrete maximal function
related to the coverings B(xi, rj), i, j = 1, 2, . . . , by

M∗u(x) = sup
j
|u|rj (x)

for every x ∈ X. We emphasize the fact that the defined maximal operator
depends on the chosen coverings. This is not a serious matter since we obtain
estimates which are independent of the chosen coverings.

As the supremum of continuous functions, the discrete maximal function
is lower semicontinuous and hence measurable. The following result shows
that the discrete maximal function is equivalent with two-sided estimates to
the standard Hardy–Littlewood maximal function.
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Lemma 6.4. There is a constant c > 1, which depends only on the doubling
constant, such that

c−1Mu(x) 6 M∗u(x) 6 cMu(x)

for every x ∈ X.

Proof. We begin by proving the second inequality. Let x ∈ X, and let rj be
a positive rational number. Since ϕi = 0 on X \ B(xi, 6rj) and B(xi, 3rj) ⊂
B(x, 9rj) for every x ∈ B(xi, 6rj), we have, by the doubling condition,

|u|rj (x) =
∞∑

i=1

ϕi(x)|u|B(xi,3rj)

6
∞∑

i=1

ϕi(x)
µ(B(x, 9rj))
µ(B(xi, 3rj))

∫

B(x,9rj)

|u| dµ 6 cMu(x),

where c depends only on the doubling constant cµ. The second inequality
follows by taking the supremum on the left-hand side.

To prove the first inequality, we observe that for each x ∈ X there exists
i = ix such that x ∈ B(xi, rj). This implies that B(x, rj) ⊂ B(xi, 2rj) and
hence

∫

B(x,rj)

|u| dµ 6 c

∫

B(xi,3rj)

|u| dµ

6 cϕi(x)
∫

B(xi,3rj)

|u| dµ 6 cM∗u(x).

In the second inequality, we used the fact that ϕi > c on B(xi, rj). Again,
the claim follows by taking the supremum on the left-hand side. ut

Since the maximal operators are comparable, we conclude that the max-
imal function theorem holds for the discrete maximal operator as well. Our
goal is to show that the operator M∗ preserves the smoothness of the function
in the sense that it is a bounded operator in N1,p(X). We begin by proving
the corresponding result for the discrete convolution in a fixed scale.

Lemma 6.5. Suppose that u ∈ N1,p(X) with p > 1. Let r > 0. Then
|u|r ∈ N1,p(X) and there is a constant c, which depends only on the dou-
bling constant, such that cM∗gu is a p-weak upper gradient of |u|r whenever
gu is a p-weak upper gradient of u.

Proof. By Lemma 6.4, we have |u|r 6 cMu. By the maximal function theorem
with p > 1, we conclude that |u|r ∈ Lp(X).
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Then we consider the upper gradient. We have

|u|r(x) =
∞∑

i=1

ϕi(x)|u|B(xi,3r)

= |u(x)|+
∞∑

i=1

ϕi(x)
(|u|B(xi,3r) − |u(x)|).

Observe that, at each point, the sum is taken only over finitely many balls so
that the convergence of the series is clear. Let g|u| be a p-weak upper gradient
of |u|. Then

g|u| +
∞∑

i=1

gϕi(|u|B(xi,3r)−|u|)

is a p-weak upper gradient of |u|r. On the other hand,
( c

r

∣∣|u| − |u|B(xi,3r)

∣∣ + g|u|
)
χB(xi,6r)

is a p-weak upper gradient of ϕi(|u|B(xi,3r) − |u|). Let

gr = gu +
∞∑

i=1

( c

r

∣∣|u| − |u|B(xi,3r)

∣∣ + gu

)
χB(xi,6r).

Then gr is a p-weak upper gradient of |u|r. Here we used the fact that every
p-weak upper gradient of u will do as a p-weak upper gradient of |u| as well.

Then we show that gr ∈ Lp(X). Let x ∈ B(xi, 6r). Then B(xi, 3r) ⊂
B(x, 9r) and

∣∣|u(x)| − |u|B(xi,3r)

∣∣ 6
∣∣|u(x)| − |u|B(x,9r)

∣∣ +
∣∣|u|B(x,9r) − |u|B(xi,3r)

∣∣.

We estimate the second term on the right-hand side by the Poincaré inequality
and the doubling condition as

∣∣|u|B(x,9r) − |u|B(xi,3r)

∣∣ 6
∫

B(xi,3r)

∣∣|u| − |u|B(x,9r)

∣∣ dµ

6 c

∫

B(x,9r)

∣∣|u| − |u|B(x,9r)

∣∣ dµ 6 cr

∫

B(x,9r)

gu dµ.

The first term on the right-hand side is estimated by a standard telescoping
argument. Since µ-almost every point is a Lebesgue point for u, we have

∣∣|u(x)| − |u|B(x,9r)

∣∣ 6
∞∑

j=0

∣∣|u|B(x,32−jr) − |u|B(x,31−jr)

∣∣



Maximal Functions in Sobolev Spaces 61

6 c

∞∑

j=0

∫

B(x,32−jr)

∣∣|u| − |u|B(x,32−jr)

∣∣ dµ

6 c

∞∑

j=0

32−jr

∫

B(x,32−jr)

gu dµ 6 crMgu(x)

for µ-almost all x ∈ X. Here we used the Poincaré inequality and the doubling
condition again. Hence we have

∣∣|u(x)| − |u|B(xi,3r)

∣∣ 6 cr

∫

B(x,9r)

gu dµ + crMgu(x) 6 crMgu(x)

for µ-almost all x ∈ X. From this we conclude that

gr = gu +
∞∑

i=1

( c

r

∣∣|u| − |u|B(xi,3r)

∣∣ + gu

)
χB(xi,6r) 6 cMgu(x)

for µ-almost all x ∈ X. Here c depends only on the doubling constant. This
implies that cMgu is a p-weak upper gradient of ur. The maximal function
theorem shows that gr ∈ Lp(X) since p > 1. ut

Now we are ready to conclude that the discrete maximal operator preserves
Newtonian spaces. We use the following simple fact in the proof. Suppose that
ui, i = 1, 2, . . . , are functions and gi, i = 1, 2, . . . , are p-weak upper gradients
of ui respectively. Let u = supi ui, and let g = supi gi. If u < ∞ µ−almost
everywhere, then g is a p-weak upper gradient of u. For the proof, we refer to
[6]. The following result is a counterpart of Theorem 2.2 in metric measure
spaces.

Theorem 6.6. If u ∈ N1,p(X) with p > 1, then M∗u ∈ N1,p(X). In addi-
tion, the function cM∗gu is a p-weak upper gradient of M∗u whenever gu is
a p-weak upper gradient of u. The constant c depends only on the doubling
constant.

Proof. By the maximal function theorem, we see that M∗u ∈ Lp(X) and, in
particular, M∗u < ∞ µ-almost everywhere. Since

M∗u(x) = sup
j
|u|rj (x)

and cM∗gu is an upper gradient of |u|rj for every j, we conclude that it is an
upper gradient of M∗u as well. The claim follows from the maximal function
theorem. ut
Remark 6.7. (i) By Theorem 6.6 and the Hardy–Littlewood maximal the-
orem, we conclude that the discrete maximal operator M∗ is bounded in
N1,p(X).
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(ii) The fact that the maximal operator is bounded in N1,p(X) can be
used to prove a capacitary weak type estimate in metric spaces. This implies
that u ∈ N1,p(X) has Lebesgue points outside a set of p-capacity zero (see
[7] and [34]).

6.3 Maximal function defined on a subdomain

This subsection is based on [1]. We recall the following Whitney type covering
theorem (see [15] and [57]).

Lemma 6.8. Let Ω ⊂ X be an open set with a nonempty complement. Then
for every 0 < t < 1 there are balls B(xi, ri) ⊂ Ω, i = 1, 2, . . . , such that

∞⋃

i=1

B(xi, ri) = Ω,

for every x ∈ B(xi, 6ri), i = 1, 2, . . . , we have

c1ri 6 t dist(x,X \Ω) 6 c2ri

and the balls B(xi, 6ri), i = 1, 2, . . . , are of bounded overlap. Here the con-
stants c1 and c2 depend only on the doubling constant. In particular, the
bound for the overlap is independent of the scale t.

Let 0 < t < 1 be a rational number. We consider a Whitney type decompo-
sition of Ω. We construct a partition of unity and discrete convolution related
to the Whitney balls exactly in the same way as before. Let tj , j = 1, 2, . . . ,
be an enumeration of the positive rational numbers. of the interval (0, 1). For
every scale tj we choose a Whitney covering as in Lemma 6.8 and construct
a discrete convolution |u|tj . Observe that for each scale there are many pos-
sible choices for the covering, but we simply take one of those. We define the
discrete maximal function related to the discrete convolution |u|tj by

M∗
Ωu(x) = supj |u|tj (x)

for every x ∈ X. Again, the defined maximal operator depends on the chosen
coverings, but this is not a serious matter for the same reason as above. It
can be shown that there is a constant c > 1, depending only on the doubling
constant, such that

M∗
Ωu(x) 6 cMΩu(x)

for every x ∈ Ω.
Here,

MΩu(x) = sup
∫

B(x,r)

|u| dµ
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is the standard maximal function related to the open subset Ω ⊂ X and the
supremum is taken over all balls B(x, r) contained in Ω. There is also an
inequality to the reverse direction, but then we have to restrict ourselves in
the definition of the maximal function to such balls that B(x, σr) is contained
in Ω for some σ large enough. The pointwise inequality implies that the
maximal function theorem holds for M∗

Ω as well.
Using a similar argument as above, we can show that, if the measure µ is

doubling and the space supports a weak (1,1)-Poincaré inequality, then the
maximal operator M∗

Ω preserves the Sobolev spaces N1,p(Ω) for every open
Ω ⊂ X when p > 1. Moreover,

M∗
Ω : N1,p(Ω) → N1,p(Ω)

is a bounded operator when p > 1. It is an interesting open question to study
the continuity of the operator and the borderline case p = 1.

Then we consider the Sobolev boundary values. The following assertion is
a counterpart of Theorem 3.12 in metric measure spaces.

Theorem 6.9. Let Ω ⊂ X be an open set. Assume that u ∈ N1,p(Ω) with
p > 1. Then

|u| −M∗
Ωu ∈ N1,p

0 (Ω).

Proof. Let 0 < t < 1. Consider the discrete convolution |u|t. Let x ∈ Ω with
x ∈ B(xi, ri). Using the same telescoping argument as in the proof of Lemma
4.1 and the properties of the Whitney balls we have

∣∣|u|B(xi,3ri) − |u(x)|
∣∣ 6 criMΩgu(x) 6 ct dist(x, ∂Ω)MΩgu(x).

It follows that

∣∣|u|t(x)− |u(x)|∣∣ =
∣∣∣
∞∑

i=1

ψi(x)
(|u|B(xi,3ri) − |u(x)|)

∣∣∣

6
∞∑

i=1

ψi(x)
∣∣|u|B(xi,3ri) − |u(x)|

∣∣

6 ct dist(x, ∂Ω)MΩgu(x).

For every x ∈ Ω there is a sequence tj , j = 1, 2, . . . , of scales such that

M∗
Ωu(x) = lim

j→∞
|u|tj (x)

This implies that
∣∣|u(x)| −M∗

Ωu(x)
∣∣ = lim

j→∞
||u(x)− |u|tj (x)||

6 c dist(x, ∂Ω)MΩgu(x),
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where we used the fact that tj 6 1. Hence, by the maximal function theorem,
we conclude that

∫

Ω

(∣∣|u(x)| −M∗
Ωu(x)

∣∣
dist(x, ∂Ω)

)p

dµ(x) 6 c

∫

Ω

(MΩgu(x))p dµ(x)

6 c

∫

Ω

|gu(x)|p dµ(x).

This implies that
|u(x)| −M∗

Ωu(x)
dist(x, ∂Ω)

∈ Lp(Ω)

and from Theorem 5.1 in [32] we conclude that |u| −M∗
Ωu ∈ N1,p

0 (Ω). ut

6.4 Pointwise estimates and Lusin type approximation

Let u be a locally integrable function in X, let 0 6 α < 1, and let β = 1−α.
From the proof of Lemma 4.1 it follows that

|u(x)− u(y)| 6 c d(x, y)β
(
u#

β,4d(x,y)(x) + u#
β,4d(x,y)(y)

)

for every x 6= y. By the weak Poincaré inequality,

u#
β,4d(x,y)(x) 6 cMα,4λd(x,y)gu(x)

for every x ∈ X. Denote

Eλ = {x ∈ X : Mαgu(x) > λ},

where λ > 0. We see that u|X\Eλ
is Hölder continuous with the exponent

β. We can extend this function to a Hölder continuous function on X by
using a Whitney type extension. The Whitney type covering lemma (Lemma
6.8) enables us to construct a partition of unity as above. Let B(xi, ri),
i = 1, 2, . . . , be the Whitney covering of the open set Eλ. Then there are
nonnegative functions ϕi, i = 1, 2, . . ., such that ϕi = 0 in X \ B(xi, 6ri),
0 6 ϕi(x) 6 1 for every x ∈ X, every ϕi is Lipschitz with the constant c/ri

and ∞∑

i=1

ϕi(x) = χEλ
(x)

for every x ∈ X. We define the Whitney smoothing of u by
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uλ(x) =





u(x), x ∈ X \ Eλ,

∞∑
i=1

ϕi(x)uB(xi,3ri), x ∈ Eλ.

We obtain the following result by similar arguments as above. The exponent
Q refers to the dimension given by (6.1).

Theorem 6.10. Suppose that u ∈ N1,p(X), 1 < p 6 Q. Let 0 6 α < 1.
Then for every λ > 0 there is a function uλ and an open set Eλ such that
u = uλ everywhere in X \ Eλ, uλ ∈ N1,p(X), and uλ is Hölder continuous
with the exponent 1 − α on every bounded set in X, ‖u − uλ‖N1,p(X) → 0,
and Hn−αp

∞ (Eλ) → 0 as λ →∞.
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Homogènes. Lect. Notes Math. 242, Springer-Verlag (1971)

16. DeVore, R., Sharpley, R.C.: Maximal functions measuring smoothness. Mem. Am.
Math. Soc. no. 293 (1984)



66 Daniel Aalto and Juha Kinnunen

17. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC
Press (1992)

18. Fiorenza, A.: A note on the spherical maximal function. Rend. Accad. Sci. Fis. Mat.
Napoli (4) 54, 77–83 (1987)

19. Fiorenza, A., Krbec, M.: On the domain and range of the maximal operator. Nagoya
Math. J. 158, 43-61 (2000)

20. Gutiérrez, S.: Lusin approximation of Sobolev functions by Hölder continuous func-
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nent Sobolev spaces. J. Inequal. Appl. (2007) doi:10.1155/2007/32324.

28. Hedberg, L.I.: On certain convolution inequalities. Proc. Am. Math. Soc. 36, 505–510
(1972)
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31. Keith, S., Zhong, X.: The Poincaré inequality is an open ended condition. Ann. Math.
[To appear]
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58. Malý, J.: Hölder type quasicontinuity. Potential Anal. 2, 249–254 (1993)

59. Maz’ja, V.G.: Sobolev Spaces. Springer-Verlag, Berlin (1985)

60. Michael, J.H., Ziemer, W.P.: A Lusin type approximation of Sobolev functions by
smooth functions. In: Classical Real Analysis (Madison, Wis., 1982), pp. 135–167.
Contemp. Math. 42. Am. Math. Soc., Providence, RI (1985)

61. Mikkonen, P.: On the Wolff potential and quasilinear elliptic equations involving mea-
sures. Ann. Acad. Sci. Fenn. Ser. A I Math. Diss. 104 (1996)

62. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric
measure spaces. Rev. Mat. Iberoam. 16, no. 2, 243–279 (2000)

63. Shanmugalingam, N.: Harmonic functions on metric spaces. Ill. J. Math. 45, 1021–1050
(2001)

64. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton
Univ. Press, Princeton, NJ (1970)

65. Sugawa, T.: Uniformly perfect sets: analytic and geometric aspects. Sugaku Exposi-
tions 16, no. 2, 225–242 (2003)

66. Tanaka, H.: A remark on the derivative of the one-dimensional Hardy–Littlewood
maximal function. Bull. Austral. Math. Soc. 65, 253–258 (2002)

67. Wannebo, A.: Hardy inequalities. Proc. Am. Math. Soc. 109, no. 1, 85–95 (1990)

68. Wannebo, A.: Hardy inequalities and imbeddings in domains generalizing C0,λ do-
mains. Proc. Am. Math. Soc. 122, no. 4, 1181–1190 (1994)

69. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets.
Trans. Am. Math. Soc. 36, no. 1, 63–89 (1934)

70. Zhong, X.: On homogeneous quasilinear elliptic equations. Ann. Acad. Sci. Fenn. Math.
Diss. 117 (1998)


