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Abstract. This paper studies regularity of perimeter quasimin-
imizing sets in metric measure spaces with a doubling measure
and a Poincaré inequality. The main result shows that the mea-
sure theoretic boundary of a quasiminimizing set coincides with
the topological boundary. We also show that such a set has fi-
nite Minkowski content and apply the regularity theory to study
rectifiability issues related to quasiminimal sets in the strong A∞-
weighted Euclidean case.

1. Introduction

It is now a well-known fact that Euclidean sets with (locally) mini-
mal surfaces have smooth boundary apart from a set of co-dimension
2. This result is due to De Giorgi, see [DG1] and [DG2]. The anal-
ogous result for Euclidean quasiminimal surfaces is due to David and
Semmes [DS1], who showed that bounded sets with quasiminimal bound-
ary surfaces are uniformly rectifiable and are locally John domains.

The paper [DS1] considered a double obstacle problem in construct-
ing quasiminimal surfaces in Euclidean spaces; A similar problem was
considered by Caffarelli and de la Llave in [CL], where the setting is
C2-Riemannian manifolds. In [CL, Theorem 1.1] it is shown that given
a Euclidean hyperplane (and the manifold is obtained by a perturba-
tion of the Euclidean metric in a C2-fashion) there is a quasiminimal
surface in the Riemannian metric that lies close to the hyperplane.
In [KKST2] a double obstacle problem similar to the one considered
by [DS1] was studied in the setting of doubling metric measure spaces
supporting a (1, 1)-Poincaré inequality. It is therefore natural to ask
what type of regularity properties do the minimizing sets have away
from the boundaries of the obstacles.

In this paper we study the regularity properties of quasiminimal sets
or, more precisely, quasiminimal boundary surfaces in the setting of
metric measure spaces with a doubling measure that supports a (1, 1)-
Poincaré inequality. We will show, by modifying De Giorgi’s technique
using a part of the argument of David and Semmes, that such a set
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is porous and satisfies a measure density property. In particular, this
implies that the measure theoretic boundary of a quasiminimizing set
coincides with the topological boundary. We also show that such a
set has finite Minkowski content. In the metric setting the classical
definition of rectifiability may not be as widely applicable. For instance,
in the setting of Heisenberg groups there are sets of finite perimeter that
are not rectifiable [Mag]. Hence the finiteness of the Minkowski content
is the best one can hope for in this generality. Since the problem studied
in [CL] is a minimization problem and comes with an associated PDE,
the techniques used there are essentially of PDE. The problem studied
in [DS1] is a quasiminimization problem, and hence we find some of the
methods used in this paper to be more easily adaptable to the general
metric measure space setting.

In the last two sections of this paper we apply the regularity the-
ory developed in the first part of the paper to study rectifiability is-
sues related to quasiminimal sets in the strong A∞-weighted Euclidean
setting. Observe that when equipped with a strong A∞-weight, the
Euclidean space with Euclidean metric need not satisfy a 1-Poincaré
inequality. However, there is a natural metric induced by the strong
A∞-weight, and we show in Section 6 that the Euclidean space equipped
with this natural metric and weighted measure satisfy a 1-Poincaré in-
equality. Hence we are able to use the theory developed in the first
part to study rectifiability issues of the boundary of quasiminimal sets
in this modified Euclidean space. We consider this application in Sec-
tion 7 of this paper. It is known that not every strong A∞-weight is
comparable to the Jacobian of a Euclidean quasiconformal mapping; it
is therefore not possible to use (unweighted) Euclidean results about
regularity of sets with quasiminimal surfaces to study rectifiability is-
sues of boundaries of such sets in the strong A∞-weighted setting. We
were able to apply the theory developed in the general metric setting in
the first five sections of this paper to successfully address rectifiability
issues in this weighted Euclidean setting.

For related results about isoperimetric sets in the Carnot group set-
ting we refer the interested reader to [LR], where they show that isoperi-
metric sets (which are necessarily a special class of sets of quasimin-
imal boundary surfaces) are Ahlfors regular (which also now follows
from Corollary 5.3) and are porous. Regularity for Euclidean quasi-
minimizers that are asymptotic minimizers was studied by Rigot [R],
where it was shown that if the asymptotic minimality condition is suf-
ficiently controlled, then the quasiminimal surface is Hölder smooth in
big pieces. We point out that our results about the sets with quasi-
minimal boundary surfaces apply to every boundary point of the set
(of course, a modification of such a set on a measure zero subset would
still maintain quasiminimality while destroying the regularity at some
boundary point; to avoid this trivial modification we ensure, without
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loss of generality, that each point x of the boundary of the set E sat-
isfies µ(B(x, r) ∩ E) > 0 and µ(B(x, r) \ E) > 0 for all r > 0), and
hence our results are weaker than Hölder regularity of the boundary,
but are applicable to each boundary point. Hence it might well be
that the studies related to rectifiability and weak tangents of locally
minimal surfaces in the Carnot group setting would be more approach-
able using the regularity properties studied in this paper. It is a result
of Lu and Wheeden [LW] that Carnot groups are doubling and sat-
isfy a 1-Poincaré inequality, and hence the results of this paper apply
in the setting of Carnot groups (and indeed in more general Carnot-
Carathéodory spaces, which satisfy local versions of these conditions).
Nice surveys about Poincaré inequalities and isoperimetric inequalities
in the setting of Carnot groups can also be found in [J] and [Hei].

It was shown in [AKL] that a subset E of a Carnot group, with
locally finite perimeter, has vertical weak tangents for ‖DχE‖-almost
every point. Combining this with our results (in particular, the con-
sequence that every boundary point of such a set is in the measure-
theoretic boundary), we see that HQ−1-a.e. boundary point of a set of
quasiminimal boundary surface in a Carnot group has a vertical weak
tangent (Q is the homogeneous dimension of the group). The method
of [AKL] uses the group structure; it would be interesting to know
whether such results hold for other Carnot-Carathéodory spaces such
as the Grushin spaces. Note that existence of weak tangents is weaker
than rectifiability. For a different notion of rectifiability in the Carnot
group setting see [Mag, Section 3].
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2. Preliminaries

A Borel regular outer measure is doubling if there is a constant Cd >
0 such that for every ball B = B(x,R) = {y ∈ X : d(y, x) < R} of X
we have 0 < µ(B) <∞ with

µ(2B) ≤ Cdµ(B),

where λB = B(x, λR) for λ > 0.
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For such a measure µ, there is a lower mass bound exponent Q > 0;
that is, whenever x ∈ X, 0 < r ≤ R, and y ∈ B(x,R), we have

µ(B(y, r))

µ(B(x,R))
≥ 1

C

( r
R

)Q
.

Given a function u and a non-negative Borel measurable function
g on X, we say that g is an upper gradient of u if whenever γ is a
rectifiable curve in X (that is, a curve with finite length), we have

|u(y)− u(x)| ≤
∫
γ

g ds, (2.1)

where x and y denote end points of γ. Here the above inequality should
be interpreted to mean that

∫
γ
g ds =∞ whenever at least one of |u(x)|

and |u(y)| is infinite; see for example [HeiK]. The collection of all upper
gradients, together, play the roles of the modulus of the weak derivative
of a Sobolev function in the metric setting.

We say that g is a p-weak upper gradient of u if the collection Γ
of rectifiable curves for which (2.1) does not hold has zero p-modulus,
that is, there is a non-negative Borel function f ∈ Lp(X) such that for
each γ ∈ Γ, the integral

∫
γ
f ds is infinite. See [KoMc] for the fact that

p-weak upper gradients belong to the Lp-closure of the convex set of
all upper gradients in Lp(X). Indeed, more is true, for it then follows
from [KaSha] Lemma 3.1 together with the proof of this lemma given
there that the Lp(X)-closure of the set of all upper gradients in Lp(X)
is precisely the set of all p-weak upper gradients of the given function.

We consider the norm

‖u‖N1,1(X) := ‖u‖L1(X) + inf
g
‖g‖L1(X)

with the infimum taken over all upper gradients g of u. The Newton-
Sobolev space considered in this paper is the space

N1,1(X) = {u : ‖u‖N1,1(X) <∞}/∼,

where the equivalence relation ∼ is given by u ∼ v if and only if

‖u− v‖N1,1(X) = 0.

We say that X supports a (1, 1)-Poincaré inequality if there are
constants C > 0 and λ ≥ 1 such that whenever u is a function on X
with upper gradient gu and B is a ball in X, we have∫

B

|u− uB| dµ ≤ Crad(B)

∫
λB

gu dµ.

Sometimes the inequality above is called the weak (1, 1)-Poincaré in-
equality. The term weak refers to the possibility of λ > 1. For the sake
of brevity, in the rest of the paper we suppress the term weak in this
connection.
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A function u on X is said to be of bounded variation, and denoted
u ∈ BV (X), if u ∈ L1(X) and there is a sequence {un}n of functions
from N1,1(X) such that un → u in L1(X) and

lim sup
n→∞

‖un‖N1,1(X) <∞.

The BV norm of such a function u is given by

‖u‖BV (X) := inf
{un}n

lim inf
n→∞

‖un‖N1,1(X),

where the infimum is taken over all such convergent sequences. The
BV energy norm of u is given by

‖Du‖(X) := inf
{un}n

lim inf
n→∞

[
‖un‖N1,1(X) − ‖un‖L1(X)

]
.

We say that a Borel set E ⊂ X is of finite perimeter if χE ∈ BV (X).
The perimeter measure of the set E is

P (E,X) := ‖DχE‖(X).

See [Mi2] and [A] for more on BV functions and sets of finite perimeter
in the metric setting. We point out here that in the Euclidean case
with Lebesgue measure the above notion coincides with the classical
definition of BV functions; see for example [EG].

For open sets U ⊂ X and E ⊂ X, we denote by P (E,U) the quantity
P (E ∩U,U), where U is considered as a metric subspace of X playing
the role of the metric space X in this definition. It was shown in
[Mi2] that U 7→ P (E,U) extends to a Radon measure on X via the
Carathéodory extension as follows. For A ⊂ X, we set

P (E,A) := inf{P (E,U) : A ⊂ U, U open}.

Observe that for general sets A the quantity P (E,A) is not the same
as computing the perimeter measure of E ∩ A in the metric subspace
A. A similar construction also gives ‖Du‖(A) for BV functions u. The
coarea formula

‖Du‖(A) =

∫ ∞
−∞

P ({x ∈ X : u(x) > t}, A) dt

was also proven in [Mi2].
The restricted spherical Hausdorff content of codimension one on X

is

HR(E) = inf
{ ∞∑

i=1

µ(B(xi, ri))

ri
: E ⊂

∞⋃
i=1

B(xi, ri), ri ≤ R
}
,

where 0 < R < ∞. The Hausdorff measure of codimension one of
E ⊂ X is

H(E) = lim
R→0
H(E).
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A combination of [AMP, Theorems 4.4 and 4.6] gives the equivalence
of the perimeter measure and the Hausdorff measure of codimension
one for sets of finite perimeter. The measure theoretic boundary of
E, denoted by ∂∗E, is the set of points x ∈ X, where both E and its
complement have positive density, i.e.

lim sup
r→0

µ(E ∩B(x, r))

µ(B(x, r))
> 0 and lim sup

r→0

µ(B(x, r) \ E)

µ(B(x, r))
> 0.

In this paper, we assume that µ is a doubling Borel measure with
lower mass bound exponent Q > 1 and that X is complete and supports
a (1, 1)-Poincaré inequality. Note that we can increase the value of Q
as we like, and so assuming Q > 1 is not a serious restriction, and is
assumed merely for book-keeping. We point out here that if X supports
a (1, 1)-Poincaré inequality, then whenever u ∈ BV (X) and B is a ball
in X, we have ∫

B

|u− uB| dµ ≤ Crad(B) ‖Du‖(λB).

When considering the function f = χE for a set E ⊂ X, the above
inequality implies the relative isoperimetric inequality

min{µ(B ∩ E), µ(B \ E)} ≤ Crad(B)P (E, λB).

In this paper C will denote constants whose precise values are not
needed, and so the value of C might differ even within the same line.

The integral average of a function u ∈ L1(A) over a µ-measurable
set A with finite and positive measure is denoted by

uA =

∫
A

u dµ =
1

µ(A)

∫
A

u dµ.

It is well known that the Poincaré inequality implies a Sobolev-Poincaré
inequality if the measure is doubling. Indeed, by [HaKo] we have(∫

B

|u− uB|t dµ
)1/t

≤ Crad(B)

∫
2λB

gu dµ.

with t = Q/(Q − 1) for all u ∈ N1,1(X). Note that if u ∈ N1,1(2λB0)
for some ball 2λB0, then for each ε > 0 we consider the ball (1− ε)B0

and a Lipschitz function ηε which is 1 on (1 − ε)2λB0, supported in
2λB0, and apply the Sobolev-Poincaré inequality to ηεu ∈ N1,1(X) on
the ball (1 − ε)B0. Note that gηεu = ‖Du‖ on (1 − ε)2λB0. Finally,
letting ε→ 0, we see that the Sobolev-Poincaré inequality holds for all
functions in N1,1(2λB) as well.

By the definition of BV functions, we can approximate a BV func-
tion u in the L1-sense by a sequence of N1,1-functions {un}n such that

lim
n→∞

∫
λB

gun dµ = ‖Du‖(λB).
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Now an application of the Sobolev-Poincaré inequality to the functions
un , n = 1, 2, . . . , gives the Sobolev inequality

(∫
B

|u− uB|t dµ
)1/t

≤ Crad(B)
‖Du‖(2λB)

µ(2λB)

for all u ∈ BV (X). Note that if {un}n is a sequence of functions in
N1,1(2λB) converging in L1(2λB) to u with

lim sup
n→∞

∫
2λB

gun dµ <∞,

then by the Sobolev-Poincaré inequality mentioned above, the sequence
{un − (un)B}n is bounded in Lt(B). By passing to a subsequence if
necessary, we may assume in addition that uk → u pointwise µ-a.e. in
2λB as well. Hence by the uniform convexity of Lt(B) and by Mazur’s
lemma (and replacing {un}n by a convex combination subsequence if
necessary), we see that

lim
n→∞

∫
B

|un − (un)B|t dµ =

∫
B

|u− uB|t dµ.

Taking infimum over all such sequences {un}n yields the above Sobolev-
Poincaré inequality for all u ∈ BV (X).

Lemma 2.2. Let u ∈ BV (X) and A = {x ∈ B : |u(x)| > 0}. If
µ(A) ≤ γµ(B) for some 0 < γ < 1, then

(∫
B

|u|t dµ
)1/t

≤ C

1− γ1−1/t
rad(B)

‖Du‖(2λB)

µ(2λB)

with t = Q/(Q− 1).

Proof. By Minkowski’s inequality and the above-mentioned Sobolev
inequality,

(∫
B

|u|t dµ
)1/t

≤
(∫
B

|u− uB|t dµ
)1/t

+ |uB|

≤ Crad(B)
‖Du‖(2λB)

µ(2λB)
+ |uB|.

(2.3)
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By the assumption on u and Hölder’s inequality,

|uB| ≤
∫
B

|u| dµ =
1

µ(B)

∫
A

|u| dµ

≤ 1

µ(B)

(∫
A

|u|t dµ
)1/t

µ(A)1−1/t

=
1

µ(B)

(∫
B

|u|t dµ
)1/t

µ(A)1−1/t

=
(µ(A)

µ(B)

)1−1/t(∫
B

|u|t dµ
)1/t

≤ γ1−1/t
(∫
B

|u|t dµ
)1/t

.

So by (2.3),

(1− γ1−1/t)
(∫
B

|u|t dµ
)1/t

≤ C rad(B)
‖Du‖(2λB)

µ(2λB)
,

from which the lemma follows. �

Corollary 2.4. If u ∈ BV (X) such that u = 0 in X \ B and X \ 2B
is non-empty, then(∫

B

|u|t dµ
)1/t

≤ Crad(B)
‖Du‖(B)

µ(B)
.

Proof. Since X\2B is non-empty, and because by the Poincaré inequal-
ity X is path-connected, it follows that there is a point y ∈ 2B \ B
such that d(y, x) = 3r/2 where B = B(x, r). Therefore by the doubling
property of the measure µ, we have

µ(2B \B) ≥ µ(B)/C ≥ µ(2B)/C2

for some constant C > 1. Because A = {z ∈ 2B : |u(z)| > 0} is a
subset of B, it follows that

µ(A)

µ(2B)
≤ µ(B)

µ(2B)
=
µ(2B)− µ(2B \B)

µ(2B)
≤ 1− C−2 < 1.

We can take γ = 1−C−2 in Lemma 2.2 to obtain the desired inequality.
�

3. Quasiminimizing surfaces and quasiminimizers

Definition 3.1. Let E ⊂ X be a Borel set of finite perimeter and
Ω ⊂ X be an open set. We say that E is a K-quasiminimal set, or has
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a K-quasiminimal boundary surface, in Ω if for all open U b Ω and for
all Borel sets F,G b U ,

P (E,U) ≤ K P ((E ∪ F ) \G,U).

We say that a function u ∈ BV (Ω) is a K-quasiminimizer if for all
ϕ ∈ BV (Ω) with support in U b Ω,

‖Du‖(U) ≤ K ‖D(u+ ϕ)‖(U).

Lemma 3.2. If E is a K-quasiminimal set in Ω, then u = χE|Ω is a
K-quasiminimizer in Ω.

Proof. Since E is of finite perimeter, it follows that u ∈ BV (Ω). Also,
if ϕ ∈ BV (Ω) with compact support in U b Ω, then for 0 < t < 1,
when x ∈ X \ U we have (u + ϕ)(x) > t if and only if x ∈ E, and
consequently

P ({u+ ϕ > t}, U) ≥ K−1 P (E,U),

and so by the coarea formula,

‖Du‖(U) = P (E,U) =

∫ 1

0

P (E,U) dt

≤ K

∫ 1

0

P ({u+ ϕ > t}, U) dt

≤ K

∫
R
P ({u+ ϕ > t}, U) dt = K ‖D(u+ ϕ)‖(U),

which shows that u is a K-quasiminimizer. �

4. Density

The main result of this section is Theorem 4.2, where we prove a
uniform measure density estimate for quasiminimal sets. To prove the
main result, we need the following lemma. For a proof of this lemma,
we refer to [Gia, Lemma 5.1].

Lemma 4.1. Let R > 0 and f : (0, R]→ [0, 1) be a bounded function.
Suppose that there exist some α > 0, 0 ≤ θ < 1, and γ ≥ 0 such that
for all 0 < ρ < r ≤ R <∞ we have

f(ρ) ≤ γ(r − ρ)−α + θf(r).

Then there is a constant c = c(α, θ) so that for all 0 < ρ < r ≤ R,

f(ρ) ≤ cγ(r − ρ)−α.

The next result implies that every boundary point of a set of quasi-
minimal surface belongs to the measure theoretic boundary.
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Theorem 4.2. If E is a quasiminimal set in Ω, then by modifying E
on a set of measure zero if necessary, there exists γ0 > 0 such that for
all x ∈ Ω ∩ ∂E,

µ(B(x, r) ∩ E)

µ(B(x, r))
≥ γ0 and

µ(B(x, r) \ E)

µ(B(x, r))
≥ γ0

whenever 0 < r < diam(X)/3 is such that B(x, 2r) ⊂ Ω. The density
constant γ0 depends solely on the doubling constant, the constants as-
sociated with the Poincaré inequality, and the quasiminimality constant
K.

Proof. We can modify E on a set of measure zero so that µ(B(x, r) ∩
E) > 0 for all x ∈ E and r > 0, and µ(B(x, r)\E) > 0 for all x ∈ X \E
and r > 0. This is done by removing points x ∈ E for which there is
a positive number rx such that µ(B(x, rx) ∩ E) = 0 (and in doing so,
note that we remove the ball B(x, rx) from E as well since all points
in this ball also satisfy this condition) and adding into E points y for
which there is a positive number ry such that µ(B(y, ry) \E) = 0 (and
in doing so, note that we include the ball B(y, ry) back into E). By
Lebesgue differentiation theorem, such a modification is done only on
a set of µ-measure zero. This implies that for all x ∈ ∂E and r > 0,
we have

µ(B(x, r) ∩ E) > 0 and µ(B(x, r) \ E) > 0.

Let u = χE, and for z ∈ Ω let 0 < R < diam(X)/3 be such that
B(z, 2R) ⊂ Ω . For 0 < r < R let η be a 2/(R−r)-Lipschitz continuous
function such that η = 1 on B(z, r) and η has compact support in
B(z,R), with 0 ≤ η ≤ 1 on X. Set

v = u− ηu = (1− η)u.

Then v = u on X \B(z,R), and so by the quasiminimality property of
u and the product rule

‖Du‖(B(z, r)) ≤ ‖Du‖(B(z,R)) ≤ K‖Dv‖(B(z, R))

≤ K

(
‖Du‖(B(z, R) \B(z, r)) +

C

R− r

∫
B(z,R)

u dµ

)
.

Observe that η is a bounded Lipschitz function and so the product rule
is valid. By setting θ = K/(K + 1) < 1, we see that

‖Du‖(B(z, r)) ≤ θ‖Du‖(B(z, R)) +
C

R− r

∫
B(z,R)

u dµ.

Hence by Lemma 4.1, there is a constant C > 0, which is independent
of z,R and E, such that

‖Du‖(B(z, r)) ≤ C

R− r

∫
B(z,R)

u dµ =
C

R− r
µ(B(z, R) ∩ E).
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For r = 3R/4, from the above we get

‖Du‖(B(z, 3R/4)) ≤ C

R
µ(B(z, R) ∩ E). (4.3)

Let ν be a C/R–Lipschitz function such that 0 ≤ ν ≤ 1 on X, ν = 1 on
B(z,R/2), and ν = 0 on X \B(z, 3R/4). Setting ϕ = νu, the product
rule implies that

‖Dϕ‖(B(z, 3R/4)) ≤ ‖Du‖(B(z, 3R/4)) +
C

R
µ(B(z,R) ∩ E).

So by (4.3), we arrive at

‖Dϕ‖(B(z, 3R/4)) ≤ C

R
µ(B(z,R) ∩ E). (4.4)

Notice that ϕt = ϕ = χE in B(z,R/2) and therefore by Corollary 2.4
and (4.4), we obtain

(
µ(B(z, R/2) ∩ E)

µ(B(z, R/2))

)1−1/Q

=
( ∫
B(z,R/2)

ϕt dµ
)1/t

≤CR‖Dϕ‖(B(z, 3R/4))

µ(B(z, 3R/4))

≤C µ(B(z,R) ∩ E)

µ(B(z, R))
.

(4.5)

Up to now we have been using an adaptation of a part of the De
Giorgi machinery. To complete the proof we adapt the proof of [DS1,
Lemma 3.30]. Recall that by our assumption, if x ∈ Ω ∩ E and r > 0
then µ(B(x, r) ∩ E) > 0. For x ∈ Ω ∩ E and z ∈ B(x,R/4), by the
doubling property of µ, we have

µ(B(z,R/2) ∩ E)

µ(B(z, R/2))
≤ Cd

µ(B(x,R) ∩ E)

µ(B(x,R))
. (4.6)

Let γ0 = 1/(CQCd) > 0, where C is as in (4.5). Suppose that

µ(B(x,R) ∩ E)

µ(B(x,R))
= γ < γ0.
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For positive integers j we set Bj = B(z,R/2j). Then by a repeated
application of (4.5), with t = Q/(Q− 1) > 1, we obtain

µ(Bj ∩ E)

µ(Bj)
≤
(
C
µ(Bj−1 ∩ E)

µ(Bj−1)

)Q/(Q−1)

≤ CQ/(Q−1)

(
C
µ(Bj−2 ∩ E)

µ(Bj−2)

)(Q/(Q−1))2

≤ Ct+t2+···+tj−1

(
µ(B1 ∩ E)

µ(B1)

)tj−1

≤ CQtj−1

(Cdγ)t
j−1

=
(
CQCdγ

)tj−1

,

where we also used (4.6). Since CQCdγ < 1, it follows that for all
z ∈ B(x,R/4),

lim inf
r→0

µ(B(z, r) ∩ E)

µ(B(z, r))
= 0,

and the Lebesgue differentiation theorem now implies that µ(B(x,R/4)∩
E) = 0, resulting in a contradiction. Consequently, we have

µ(B(x,R) ∩ E)

µ(B(x,R))
≥ γ0.

A similar argument for X \ E also gives

µ(B(x,R) \ E)

µ(B(x,R))
≥ γ0.

This completes the proof. �

5. Porosity

By a result of David and Semmes [DS1], sets with quasiminimal
surfaces in the complement of two disjoint cubes in the Euclidean space
are uniform domains whose complements are also uniform (and indeed,
are isoperimetric sets). Whether quasiminimal surfaces must enclose
uniform domains is still open in the general metric setting, but now
that we know that such sets have each boundary point as a point of
density for both the set and its complement, we next show that these
sets are uniformly locally porous. For us, the porosity is a reasonable
weakening of the uniform domain condition.

By Theorem 4.2, without loss of generality we may assume that every
point x ∈ Ω ∩ ∂E has the property that

µ(B(x, r) ∩ E)

µ(B(x, r))
≥ γ0 and

µ(B(x, r) \ E)

µ(B(x, r))
≥ γ0

whenever 0 < r < diam(X)/3 is such that B(x, 2r) ⊂ Ω.
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Lemma 5.1. Let E be a quasiminimal set in Ω and x ∈ Ω∩∂E. Then
there exist positive real numbers r0 < diam(X)/3 and C > 0 such that

C−1 µ(B(x, r))

r
≤ P (E,B(x, r)) ≤ C

µ(B(x, r))

r
,

whenever 0 < r < r0 is such that B(x, 2r) ⊂ Ω. The constant C is
independent of x and r.

Proof. The inequality on the left-hand side follows immediately from
the density property of both E and X \ E together with the relative
isoperimetric inequality, so it suffices to prove the inequality on the
right-hand side.

By the results in [KKST1, Lemma 6.2], we have that for all 0 < r <
r0 there exists r < ρ < 2r (indeed, a positive 1-dimensional measure
amount of them) such that

P (B(x, ρ), X) ≈ µ(B(x, ρ))

ρ

and we can also choose such ρ so that P (E, S(x, ρ)) = 0, where

S(x, ρ) = {z ∈ X : d(z, x) = ρ}
is the sphere centered at x with radius ρ. Fix ε > 0. Then B(x, r) ⊂
B(x, ρ) ⊂ B(x, ρ+ ε), and so by the quasiminimizer property of E we
have

P (E,B(x, r)) ≤ P (E,B(x, ρ+ ε)) ≤ K P (E ∪B(x, ρ), B(x, ρ+ ε))

≤ K [P (B(x, ρ), B(x, ρ+ ε)) + P (E,B(x, ρ+ ε) \B(x, ρ− ε))]
= K [P (B(x, ρ), X) + P (E,B(x, ρ+ ε) \B(x, ρ− ε))] .

Since P (E, S(x, ρ)) = 0, we have that

lim
ε→0

P (E,B(x, ρ+ ε) \B(x, ρ− ε)) = 0.

It follows from the choice of ρ and the doubling property of µ that

P (E,B(x, r)) ≤ K P (B(x, ρ), X)

≈ K
µ(B(x, ρ))

ρ
≈ CK

µ(B(x, r))

r
.

�

Theorem 5.2. If E is a quasiminimal set in Ω, then E and X \E are
locally porous in Ω; that is, for every x ∈ Ω∩∂E there exists a positive
rx < diam(X)/3 and C ≥ 1 such that whenever 0 < r < rx, there are
points y ∈ B(x, r) and z ∈ B(x, r) such that

B(y, r/C) ⊂ E ∩ Ω and B(z, r/C) ⊂ X \ E.
The constant C is independent of x, r. Furthermore, rx depends on x
only so far as to have B(x, 10rx) ⊂ Ω.
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Proof. Let r0 be as in Lemma 5.1. Fix x ∈ Ω ∩ ∂E. For 0 < r <
diam(X)/3 such that such that r < r0 and B(x, 4r) ⊂ Ω, let 0 < ρ ≤ r
be such that for all y ∈ B(x, r) ∩ E the ball B(y, ρ) intersects X \ E.
Note that ρ = r would satisfy this requirement. If there is some ρ with
r/20λ < ρ < r/10λ such that the above condition fails, then there is
some y ∈ B(x, r) ∩ E such that B(y, r/20λ) ⊂ E, and the porosity
requirement is satisfied at the scale r. If not, we can choose ρ < r/10λ
so that for every y ∈ B(x, r) ∩ E, the set B(y, ρ) \ E is non-empty. In
this case, we can cover B(x, r)∩E by a family of balls {B(yi, 10λρ)}i,
such that the collection {B(yi, 2λρ)}i is pairwise disjoint. Then by
the doubling property of µ together with the density property of the
previous section,

γ0 µ(B(x, r)) ≤ µ(B(x, r) ∩ E)

≤
∑
i

µ(B(yi, 10λρ)) ≤ C
∑
i

µ(B(yi, ρ)).

Note that by the density results of the previous section,

µ(B(yi, 2ρ) ∩ E) ≥ C µ(B(yi, 2ρ))

and
µ(B(yi, 2ρ) \ E) ≥ C µ(B(yi, 2ρ)).

Hence by the relative isoperimetric inequality,

P (E,B(yi, 2λρ)) ≥ 1

C

µ(B(yi, ρ))

ρ
.

By the pairwise disjointness property, we have

P (E,B(x, 2r)) ≥
∑
i

P (E,B(yi, 2λρ))

≥
∑
i

1

C

µ(B(yi, ρ))

ρ
≥ 1

C

µ(B(x, r))

ρ
.

By Lemma 5.1, we now have

1

C

µ(B(x, r))

ρ
≤ C

µ(B(x, r))

r
,

and consequently ρ ≥ r/C. This means that there is a point y ∈
B(x, r)∩E such that B(y, r/2C) ⊂ E, thus proving the porosity of E.
A similar argument with X \E, which also is a quasiminimal set since
E is a quasiminimal set, gives the porosity of X \ E in Ω. �

The following corollary is a consequence of the porosity property
proved above. Note that in the Euclidean setting, if a set satisfies the
conclusion of the following corollary, then it is uniformly rectifiable; see
for example the discussion in [DS1]. Indeed, David and Semmes use
this fact together with the notion of tangent hyperplanes to prove that
E then has to be locally a John domain. Recall that a domain E is a
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local John domain if there exist constants C, δ > 0 such that whenever
x0 ∈ ∂E and 0 < r < δ, for all points x ∈ B(x0, r)∩E there is a point
y ∈ E ∩B(x0, Cr) with δE(y) ≥ r/C and a curve γ ⊂ E, called a John
curve, connecting x to y satisfying

`(γx,z) ≤ C δE(z)

for all z ∈ γ; here γx,z denotes a subcurve of γ with end points x and
z.

As a consequence of the following corollary together with the results
from [LT, Theorem 4.1], the Assouad dimension of ∂E is at most Q−1,
and by [LT, Theorem 4.2], the Assouad dimension of ∂E is Q−1 if the
measure µ is Ahlfors Q-regular, that is,

µ(B) ≈ rad(B)Q.

In [LT] the supremum of all such possible α is called the Aikawa
co-dimension of ∂E. We also refer to [LT] for the definition of the
Minkowski content of codimension α. Let δE(x) denote dist(x,X \E).

Corollary 5.3. If E is a quasiminimal set in a domain Ω, then Ω∩∂E
has finite Minkowski content of codimension α for 0 < α < 1, and∫

B(x0,r)∩E

1

δE(y)α
dµ(y) ≤ C

µ(B(x0, r))

rα

for all x0 ∈ ∂E and r > 0 such that r < diam(X)/3 and B(x0, 10λr) ⊂
Ω. Furthermore, if α ≥ 1 then∫

B(x0,r)∩E

1

δE(y)α
dµ(y) =∞.

Proof. By the Cavalieri principle and Theorem 4.2, we see that∫
B(x0,r)∩E

1

δE(y)α
dµ(y)

=

∫ ∞
0

µ
(
{y ∈ B(x0, r) ∩ E : δE(y)−α > t}

)
dt

≈
∫ ∞

0

µ ({y ∈ B(x0, r) ∩ E : δE(y) < τ}) dτ

τ 1+α

≈
∫ r

0

µ ({y ∈ B(x0, r) ∩ E : δE(y) < τ}) dτ

τ 1+α

+

∫ ∞
r

µ(E ∩B(x0, r))

τ 1+α
dτ

≈
∫ r

0

µ(E+
τ ∩B(x0, r))

τ 1+α
dτ + C

µ(B(x0, r))

rα
.

Here

E+
τ =

⋃
x∈∂E

B(x, τ) ∩ E.
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To compute the measure of E+
τ ∩B(x0, r), we can cover E+

τ ∩B(x0, r)
by countably many balls 5λBj with radius 5λτ , such that λBj are
pairwise disjoint. We also ensure that 5λBj has its center located in
B(x0, r) ∩ ∂E. Now we have by the relative isoperimetric inequality
and the porosity of E and Ω \ E that

µ(Bj) ≤ Cτ P (E, λBj).

Thus by the doubling property of µ we conclude that

µ(E+
τ ∩B(x0, r)) ≤

∑
j

µ(5λBj) ≤ C
∑
j

µ(Bj)

≤ Cτ
∑
j

P (E, λBj) ≤ Cτ P (E,B(x0, 2λr)).

By Lemma 5.1, we know that

P (E,B(x0, 2λr)) ≈
µ(B(x0, r))

r
.

Hence we can conclude that∫ r

0

µ(E+
τ ∩B(x0, r))

τ 1+α
dτ ≤ C

µ(B(x0, r))

r

∫ r

0

dτ

τα
,

and so ∫
B(x0,r)∩E

1

δE(y)α
dµ(y) ≤ C

µ(B(x0, r))

rα
.

To see the second part of the claim, we can use Lemma 5.1 from which
we get that µ(Bj) ≈ τ P (E,Bj). For τ < 4r/(30λ), we know that
whenever λBj contains a point in ∂E ∩ B(x0, r/(5λ)), it follows that
5λBj ⊂ B(x0, r). Since the collection {5λBj}j covers E+

τ ∩ B(x0, r),
the balls {5λBj}j for which 5λBj is contained in B(x0, r) cover ∂E ∩
B(x0, r/(5λ)). From this we conclude that

µ(E+
τ ∩B(x0, r)) ≥

1

C

∑
{j:5λBj⊂B(x0,r)}

µ(Bj)

≥ 1

C

∑
{j:5λBj⊂B(x0,r)}

µ(5λBj)

≥ τ

C

∑
{j:5λBj⊂B(x0,r)}

P (E, 5λBj)

≥ τ

C
P
(
E,

⋃
{j:5λBj⊂B(x0,r)}

5λBj

)
≥ τ

C
P (E,B(x0, r/(5λ))).

This implies that∫
B(x0,r)∩E

1

δE(y)α
dµ(y) ≥ 1

C
P (E,B(x0, r/(5λ)))

∫ 4r/(30λ)

0

dτ

τα
=∞
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when α ≥ 1. �

Remark 5.4. The above proof also indicates that

C−1τ P (E,B(x0, r/(5λ))) ≤ µ(E+
τ ∩B(x0, r)) ≤ Cτ P (E,B(x0, 2λr))

whenever x0 ∈ ∂E and B(x0, 10λr) ⊂ Ω with r < diam(X)/3.

Because of the porosity (Theorem 5.2), given every x ∈ ∂E, for
sufficiently small r > 0 we have yr ∈ int(E) with d(yr, x) < r. Similarly
we also have zr ∈ int(Ω \ E) such that d(zr, x) < r. Therefore ∂E ⊂
∂int(E). Because we always have ∂int(E) ⊂ ∂E, we have E = int(E),
and so we can replace E with its interior int(E). Since H is a σ-
finite measure on ∂E = ∂∗E, it follows that µ(∂E) = 0. Hence if
int(E) ⊂ F ⊂ E, then the perimeter measure of F and the perimeter
measure of E are the same, and so F is also a quasiminimal set.

We conclude this section with the following open question: if E
is a domain of locally quasiminimal surface, then is it true that E
is a local John domain? In the Euclidean setting this question was
answered in the affirmative by David and Semmes [DS1]. The crucial
part of the proof of [DS1] is to show that the boundary of a set of
quasiminimal surface lies locally close to a hyperplane; in the setting
of metric measure spaces one does not have such a structure, and the
challenge is to construct an alternative approach.

6. Support of Poincaré inequality in (Rn, d, µ).

A non-negative measurable function ω on Rn is a weight on Rn if ω
is positive almost everywhere. A weight ω is a strong A∞-weight on
Rn if there is a metric d on Rn and a constant C ≥ 1 such that, with
the measure µ on Rn defined by the density condition

dµ(x) = ω(x) dLn(x),

whenever x, y ∈ Rn and

Bx,y = B((x+ y)/2, |x− y|/2)

is the smallest Euclidean ball in Rn containing x and y in the closure,
then

1

C
µ(Bx,y)

1/n ≤ d(x, y) ≤ Cµ(Bx,y)
1/n.

Since strong A∞-weights are A∞-weights, ω is a Muckenhoupt Ap-
weight for some p. It follows that µ is a doubling measure with respect
to the Euclidean metric. Hence, we have a constant C ≥ 1 such that
whenever x, y ∈ Rn,

1

C
µ(B(x, |x− y|)) ≤ d(x, y)n ≤ Cµ(B(x, |x− y|)). (6.1)

For properties of strong A∞-weights, we refer the interested reader to
[DS2].
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The metric space we consider here is (Rn, d, µ). Balls in this metric
are denoted with the superscript d in order to distinguish them from
the Euclidean balls. So

Bd(x, r) = {y ∈ Rn : d(x, y) < r},
while

B(x, r) = {y ∈ Rn : |x− y| < r}.
We note that the topology generated by the metric d is the same one
as the Euclidean topology.

In this section we show that when the measure µ on Rn is given by a
strong A∞-weight, then the space (Rn, d, µ) is an Ahlfors regular space
supporting a (1, 1)-Poincaré inequality. We do not know whether every
strong A∞-weight supports a (1,1)-Poincaré inequality with respect to
the Euclidean metric (though it does support a (1,p)-Poincaré inequal-
ity for some 1 ≤ p < ∞), and so in general the weighted Euclidean
space (Rn, | · |, µ) perhaps may not support a (1,1)-Poincaré inequal-
ity. For more discussion on Poincaré inequalities satisfied by strong
A∞-weights, see [Bj]. The next result states that (Rn, d, µ) is Ahlfors
n-regular.

Lemma 6.2. There is a constant C ≥ 1 such that whenever x ∈ Rn

and r > 0, we have

1

C
rn ≤ µ(Bd(x, r)) ≤ Crn.

Proof. Let y ∈ ∂Bd(x, r) be such that

|x− y| = sup{|x− z| : z ∈ ∂Bd(x, r)}.

Note that as B
d
(x, r) is compact, such y exists. Then Bd(x, r) ⊂

B(x, |x− y|), and so by (6.1), we have

µ(Bd(x, r)) ≤ µ(B(x, |x− y|)) ≤ Cd(x, y)n = Crn.

Next, let z ∈ ∂Bd(x, r) be such that

|x− z| = inf{|x− z| : z ∈ ∂Bd(x, r)}.
Then B(x, |x− z|) ⊂ Bd(x, r), and so again by (6.1) we have

µ(Bd(x, r)) ≥ µ(B(x, |x− z|)) ≥ 1

C
d(x, z)n =

rn

C
,

completing the proof. �

We point out that ds represents the arc length measure with respect
to the Euclidean metric in this section.

Lemma 6.3. There is a Borel set F ⊂ Rn with |F | = 0 such that when-
ever γ is a curve in Rn which is rectifiable with respect to the Euclidean
metric, it is rectifiable with respect to the metric d if

∫
γ
(∞χF +ω1/n) ds
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is finite. In this case we also have that the length of γ with respect to
the metric d, denoted `d(γ), satisfies

`d(γ) ≈
∫
γ

ω1/n ds.

Proof. Fix x ∈ Rn. Then for y ∈ Rn, by (6.1) we have

d(x, y)

|x− y|
≈ µ(B(x, |x− y|))1/n

|x− y|

≈ 1

|B(x, |x− y|)|1/n

(∫
B(x,|x−y|)

ω(z) dz

)1/n

=

(
1

|B(x, |x− y|)|

∫
B(x,|x−y|)

ω(z) dz

)1/n

.

Denote

ρ(x) = lim inf
y→x

d(x, y)

|x− y|
and ρ(x) = lim sup

y→x

d(x, y)

|x− y|
.

Since ω ∈ L1
loc(Rn) (the integrals being taken with respect to the

Lebesgue measure), we see by the Lebesgue differentiation theorem
that for almost every x ∈ Rn,

ω(x)1/n = lim
y→x

(
1

|B(x, |x− y|)|

∫
B(x,|x−y|)

ω(z) dz

)1/n

≤ Cρ(x) ≤ Cρ(x)

≤ C2 lim
y→x

(
1

|B(x, |x− y|)|

∫
B(x,|x−y|)

ω(z) dz

)1/n

= C2ω(x)1/n.

Let F be the set of all non-Lebesgue points of ω; then µ(F ) = |F | = 0.
Let γ be a Euclidean rectifiable curve with

∫
γ
(∞χF + ω1/n) ds < ∞.

Then H1(γ−1(γ ∩ F )) = 0, and in addition we have∫
γ

ρ ds ≤ `d(γ) ≤
∫
γ

ρ ds,

where `d(γ) is the length of γ in the metric d. It follows that∫
γ

ω1/n ds ≤ C`d(γ) ≤ C2

∫
γ

ω1/n ds. �

Lemma 6.4. If u is Lipschitz continuous with respect to the metric d,
then u ∈ W 1,n

loc (Rn).

Proof. Let h ∈ R, and let ej, j = 1, . . . , n, denote the standard or-
thonormal basis for Rn. Since u is Lipschitz with respect to the metric
d, we see by (6.1) that

|u(x+ hej)− u(x)| ≤ Cd(x, x+ hej) ≤ Cµ(B(x, |h|))1/n.
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Thus, for a ∈ Rn, R > 0 and |h| ≤ R, by Fubini’s theorem we see that∫
B(a,R)

|u(x+ hej)− u(x)|n dx ≤ C

∫
B(a,R)

µ(B(x, |h|)) dx

= C

∫
B(a,R)

∫
B(a,2R)

χB(x,|h|)(y) dµ(y) dx

= C

∫
Rn

∫
Rn

χB(a,R)(x)χB(x,|h|)(y) dµ(y) dx

= C

∫
Rn

∫
Rn

χB(a,R)(x)χB(y,|h|)(x) dx dµ(y)

≤ C|h|n
∫
B(a,2R)

dµ(y) = C|h|n µ(B(a, 2R)).

So whenever Ω b Rn is an open set and Ω′ b Ω, we can cover Ω′ by
a countable collection {Bi} of balls of radius R = dist(Ω′,Rn \ Ω)/2
centered at points in Ω′ and with bounded overlap of the balls {2Bi},
to obtain that∫

Ω′

|u(x+ hej)− u(x)|n

|h|n
dx ≤

∑
i

∫
Bi

|u(x+ hej)− u(x)|n

|h|n
dx

≤ C
∑
i

µ(2Bi) ≤ Cµ(Ω) <∞.

So by [GT, Lemma 7.24], we see that u ∈ W 1,n
loc (Rn). �

By Lemma 6.4 we know that if u is Lipschitz continuous with respect
to the metric d, then it is in the Euclidean Sobolev class W 1,n

loc (Rn); it
then follows that |∇u| is a 1-weak upper gradient (in the Euclidean
metric) of u, see [BB].

In order to prove that (Rn, d, µ) supports a (1, 1)-Poincaré inequality,
it suffices to prove the inequality for Lipschitz functions with respect
to d and their continuous upper gradients in the metric d; see for
example [Ke]. Let u be a Lipschitz function with continuous upper
gradient g in (Rn, d, µ).

Lemma 6.5. There is a constant C > 0 which is independent of u and
g such that

|∇u(x)| ≤ Cω(x)1/ng(x)

for almost every x ∈ Rn.

Proof. In this proof, Mod1 denotes the 1-modulus with respect to the
Euclidean metric and Lebesgue measure. As in the proof of Lemma 6.4,
we let ej, j = 1, . . . , n, denote the canonical orthonormal basis of Rn.
For each j = 1, . . . , n, we consider the collection Γj of all line segments
parallel to the direction of ej. From [V, Section 7.2, page 21], we know
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that whenever Γ ⊂ Γj satisfies Mod1(Γ) = 0, we have∣∣∣ ⋃
γ∈Γ

∪z∈γz
∣∣∣ = 0.

Here the 1-modulus is taken with respect to the Euclidean metric.
Let Γa denote the collection of all compact line segments in Γj for

which ∫
γ

(∞χF + ω1/n) ds =∞

(with F as in Lemma 6.3). Since by Hölder’s inequality we know that
ω1/n ∈ L1

loc(Rn), it follows that Mod1(Γa) = 0; see for example [KoMc].
Observe that the 1-modulus is taken with respect to the Euclidean
metric.

Since u is Lipschitz continuous with respect to d and the topology
induced by d and the Euclidean topology coincide, we see that u is
continuous in the Euclidean space Rn. By Lemma 6.4 we also know
that u ∈ W 1,1

loc (Rn). It follows from the discussion in [V] that u is
absolutely continuous on Mod1-almost every compact Euclidean rec-
tifiable curve in Rn. Let Γb denote the collection of all line segments
γ in Γj along which (u, |∇u|) does not support the upper gradient in-
equality (2.1); that is, there is some sub-segment β of γ for which the
inequality (2.1) fails. Since |∇u| is a 1-weak upper gradient of u with
respect to the Euclidean metric and Lebesgue measure on Rn, it fol-
lows that Mod1(Γb) = 0. Furthermore, let Γc denote the collection of all
segments γ ∈ Γj for which

∫
γ
|∇u| ds is infinite. Then Mod1(Γc) = 0.

Because g is an upper gradient of u in the metric d, by Lemma 6.3
we know that whenever γ ∈ Γj \Γa, for all sub-segments β of γ we have

|u(xβ)− u(yβ)| ≤ C

∫
β

ω1/ng ds.

Here xβ and yβ denote the two end points of β. It follows that if
γ 6∈ Γb ∪ Γc as well, then for H1-almost every point x ∈ β,

|∂ju(x)| ≤ Cω1/n(x)g(x).

Note that Modp(Γa ∪ Γb ∪ Γc) = 0. Hence by the use of [V] again, we
see that for almost every x ∈ Rn we have

|∂ju(x)| ≤ Cω1/n(x)g(x).

Now the conclusion follows by summing up over j = 1, . . . , n. �

We next compare Euclidean balls with balls in the metric d.

Lemma 6.6. There is a constant C > 0 such that whenever x ∈ Rn

and r > 0, there exist positive numbers λrx and τ rx such that

B(x, λrx r) ⊂ Bd(x, r) ⊂ B(x,Cλrx r) (6.7)
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and

Bd(x, τ rx r) ⊂ B(x, r) ⊂ Bd(x,Cτ rx r). (6.8)

Proof. Since µ is a doubling measure on the Euclidean space Rn and
Rn is uniformly perfect, there is a constant Q1 > 0 such that whenever
0 < r < R,

µ(B(x, r))

µ(B(x,R))
≤ C

( r
R

)Q1

. (6.9)

Let zrx, y
r
x ∈ ∂Bd(x, r) such that for y ∈ ∂Bd(x, r) we have |x − zrx| ≤

|x− y| ≤ |x− yrx|. Then set

λrx =
|x− zrx|

r
.

We have

B(x, |x− zrx|) = B(x, λrx r) ⊂ Bd(x, r) ⊂ B(x, |x− yrx|).

Because of the upper mass bound (6.9), by the twice-repeated use
of (6.1),

1

C
≤ µ(B(x, |x− zrx|))
µ(B(x, |x− yrx|))

≤ C

(
|x− zrx|
|x− yrx|

)Q1

,

and so it follows that |x − yrx| ≤ C|x − zrx|, whence we obtain that
B(x, |x− yrx|) ⊂ B(x,C|x− zrx|), and this proves (6.7).

To prove (6.8), we consider wrx ∈ ∂B(x, r) such that d(x,wrx) ≤
d(x, y) whenever y ∈ ∂B(x, r), and set

τ rx =
d(x,wrx)

r
.

As in the previous argument, we consider also arx ∈ ∂B(x, r) such
that d(x, arx) ≥ d(x, y) for all y ∈ ∂B(x, r), and obtain by the use of
Lemma 6.2 that

µ(Bd(x, d(x,wrx)))

µ(Bd(x, d(x, arx)))
≈
(
d(x,wrx)

d(x, arx)

)n
,

and from (6.1) we also see that

µ(Bd(x, d(x,wrx))) ≈ d(x,wrx)
n ≈ µ(B(x, |x− wrx|)) = µ(B(x, r)).

A similar argument as above also shows that

µ(Bd(x, d(x, arx))) ≈ µ(B(x, r)).

It follows that (
d(x,wrx)

d(x, arx)

)n
≥ 1

C
,

that is, d(x, arx) ≤ C d(x,wrx). From this (6.8) follows. �
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Now we are ready to prove the main result of this section. The
paper [DS2] proved that (Rn, | · |, ωdx), where | · | the Euclidean metric,
satisfies a two-weightedversion of a (1,1)-Poincaré inequality; see the
proof of the following proposition. We will prove here that the metric
measure space (Rn, d, ωdx) also satisfies a (1,1)-Poincaré inequality. As
far as we know, the validity of (1,1)-Poincaré inequality with respect
to the metric d has not appeared in the literature so far.

Proposition 6.10. The metric measure space (Rn, d, µ) is an Ahlfors
n-regular space supporting a (1, 1)-Poincaré inequality.

Proof. As pointed out by [Ke], it suffices to prove the inequality for
functions u that are Lipschitz continuous on (Rn, d) with continuous
upper gradient g. By [DS2, Inequality (1.10)], we know that when
x ∈ Rn and r > 0, the following two-weighted version of a (1,1)-
Poincaré inequality on Euclidean balls holds:

∫
B(x,Cλrxr)

∫
B(x,Cλrxr)

|u(x)− u(y)| dµ(x) dµ(y)

≤ Cµ(B(x,Cλrx r))
1/n

∫
B(x,2Cλrx r)

ω(x)−1/n |∇u(x)| dµ(x).

By the doubling property of µ on the Euclidean Rn, Lemma 6.5, Lemma 6.2,
and Lemma 6.6, we see that

∫
B(x,Cλrx r)

∫
B(x,Cλrxr)

|u(x)− u(y)| dµ(x) dµ(y)

≤ Cµ(B(x,Cλrxr))
1/n

∫
B(x,2Cλrxr)

g(x) dµ(x)

≤ Cµ(B(x, λrxr))
1/n

∫
B(x,2Cλrxr)

g(x) dµ(x)

≤ Cµ(Bd(x, r))1/n

∫
B(x,2Cλrxr)

g(x) dµ(x)

≤ Cr

∫
B(x,2Cλrxr)

g(x) dµ(x).
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Hence,

inf
c∈R

∫
Bd(x,r)

|u− c| dµ ≤
∫
Bd(x,r)

|u− uB(x,Cλrxr)| dµ

≤
∫
B(x,Cλrxr)

|u− uB(x,Cλrxr)| dµ

≤ C

∫
B(x,Cλrx r)

∫
B(x,Cλrxr)

|u(x)− u(y)| dµ(x) dµ(y)

≤ Cr

∫
B(x,2Cλrxr)

g(x) dµ(x).

By Lemma 6.6 we have

B(x, 2Cλrxr) ⊂ Bd(x, 2C2τ 2Cλrxr
x λrxr).

Note that Bd(x, τ
2Cλrxr
x 2Cλrx r) is the largest metric ball centered at

x that fits inside the Euclidean ball B(x, 2Cλrxr). Let ρ > 0 be such
that Bd(x, ρ) is the largest metric ball centered at x and contained in
the Euclidean ball B(x, λrxr), and let y1 ∈ ∂Bd(x, ρ) ∩ ∂B(x, λrxr), and
correspondingly let

y2 ∈ ∂Bd(x, τ 2Cλrxr
x 2Cλrxr) ∩ ∂B(x, 2Cλrxr).

Then by (6.1),

ρ = d(x, y1) ≈ µ(B(x, λrxr))
1/n

and again by (6.1),

τ 2Cλrxr
x 2Cλrxr = d(x, y2) ≈ µ(B(x, 2Cλrxr))

1/n.

By the doubling property of µ in the Euclidean space Rn, we see that

µ(B(x, λrxr)) ≈ µ(B(x, 2Cλrxr)).

It follows that ρ ≈ τ
2Cλrxr
x 2Cλrxr. On the other hand, since Bd(x, ρ) is

the largest metric ball centered at x and fitting inside the Euclidean
ball B(x, λrxr), and by the construction of λrx from Lemma 6.6 we know
that B(x, λrxr) ⊂ Bd(x, r), we can conclude that ρ ≤ r. Hence

τ 2Cλrxr
x 2Cλrxr ≤ Cρ ≤ Cr.

Thus we have

B(x, 2Cλrxr) ⊂ Bd(x, 2C2τ 2Cλrxr
x λrxr) ⊂ Bd(x,C2r),

from which we conclude that

inf
c∈R

∫
Bd(x,r)

|u− c| dµ ≤ Cr

∫
B(x,2Cλrxr)

g(x) dµ(x)

≤ Cr

∫
Bd(x,C2r)

g dµ,

which is equivalent to the (1, 1)-Poincaré inequality on (Rn, d, µ) be-
cause the constants C, C2 are independent of x, r, u, g. �
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7. Rectifiability of quasiminimal surfaces in Euclidean
spaces with strong A∞ weights

In this section we apply the results from the earlier part of this paper
(Sections 4 and 5) to the setting of weighted Euclidean spaces where
the weight ω is a strong A∞-weight.

If ω is an A1-weight, then the space (Rn, | · |, µ) is a doubling metric
measure space supporting a (1, 1)-Poincaré inequality. However, not all
strongA∞-weights areA1-weights, but as shown in the previous section,
the metric measure space (Rn, d, µ) is also an Ahlfors n-regular space
supporting a (1, 1)-Poincaré inequality. In this section we will prove
that a set E ⊂ Rn that has a locally quasiminimal boundary surface in
(Rn, d, µ) will have a rectifiable boundary. Here of course, the notion of
rectifiability is in terms of the Euclidean metric. As in [Mat, page 204,
Definition 15.3], we say that a set A ⊂ Rn is m-rectifiable if there is
a countable collection {fi} of Euclidean Lipschitz maps fi : Rm → Rn

such that
Hm

Euc(A \
⋃
i

fi(Rm)) = 0.

In this section, we consider the issue of whether the boundary ∂E of
the set with quasiminimal boundary surface in (Rn, d, µ) is (n − 1)-
rectifiable in the above sense (with respect to the Euclidean metric).
We also recall that a set K ⊂ Rn is purely m-unrectifiable if whenever
A ⊂ Rn is m-rectifiable, we have Hm

Euc(K ∩ A) = 0.
Let E ⊂ Ω ⊂ Rn be a set of finite perimeter with locally quasimin-

imal boundary surface with respect to the metric d and measure µ.
Then the results obtained in the previous sections of this note apply
to E. So we may assume that E = int(E).

If n = 1, then the fact that we can choose E = int(E) tells us that
E is a pairwise disjoint union of countably many open intervals in R.
Thus it is immediate that E is Euclidean rectifiable in R. Therefore,
in the rest of the section we will assume that n ≥ 2.

Lemma 7.1. Let Λ > 0 and

AΛ =

{
x ∈ ∂E : lim sup

r→0

µ(B(x, r))

rn
≥ Λ

}
.

Then

Hn−1
Euc (AΛ) ≤ C

Λ(n−1)/n
P (E,Ω).

Note that in the above limes supremum condition, if we replace
B(x, r) with Bd(x, r), then by Lemma 6.2 we have AΛ = ∅ whenever
Λ > C.

Proof. Fix 0 < δ < Λ; then by the condition imposed on AΛ, for every
x ∈ AΛ we can find 0 < rx < δ/5 such that

µ(B(x, rx)) ≥ (Λ− δ)rnx .
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Note also that if x ∈ AΛ and r > 0 such that

µ(B(x, r)) ≥ (Λ− δ)rn,
then for any y ∈ ∂B(x, r) we have that

(Λ− δ)rn ≤ µ(B(x, r)) = µ(B(x, |x− y|)) ≤ Cd(x, y)n,

and so we have d(x, y) ≥ C (Λ− δ)1/n r. It follows that

Bd(x, (Λ−δ)1/n
C

r) ⊂ B(x, r).

The family

Bd(x, (Λ−δ)1/n
5C

rx), x ∈ AΛ,

forms a cover of AΛ, and hence we can find a pairwise disjoint countable
subfamily {

Bd(xi,
(Λ−δ)1/n

5C
ri)
}
i

such that

AΛ ⊂
⋃
i

Bd(xi,
(Λ−δ)1/n

C
ri).

Hence by Lemma 6.2 and the fact that the balls {B(xi, ri)}i therefore
also form a cover of AΛ by Euclidean balls,

Hn−1
Euc,δ(AΛ) ≤

∑
i

(ri)
n−1 =

∑
i

rni
ri

≤ C

Λ− δ
∑
i

µ(Bd(xi,
(Λ−δ)1/n

C
ri))

ri

≤ C

Λ− δ
∑
i

µ(Bd(xi,
(Λ−δ)1/n

5C
ri))

ri

≤ C

(Λ− δ)1− 1
n

∑
i

µ(Bd(xi,
(Λ−δ)1/n

5C
ri))

(Λ−δ)1/n
5C

ri
.

By Lemma 5.1, we now have

Hn−1
Euc,δ(AΛ) ≤ C

(Λ− δ)1− 1
n

∑
i

P
(
E,Bd(xi,

(Λ−δ)1/n
5C

ri)
)
.

Since the balls are pairwise disjoint, we see that

Hn−1
Euc,δ(AΛ) ≤ C

(Λ− δ)1−1/n
P (E,Ω).

Letting δ → 0 completes the proof. �

Lemma 7.2. For Hn−1
Euc -almost every x ∈ ∂E we have

lim sup
r→0

µ(B(x, r))

rn
<∞.
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Proof. By Lemma 7.1, we know that

Hn−1
Euc (AΛ) ≤ C Λ−(n−1)/nP (E,Ω).

Since n ≥ 2, and the set of all points x ∈ ∂E for which

lim sup
r→0

µ(B(x, r))

rn
=∞

is the set
⋂

Λ>0AΛ, we see that the claim of the lemma holds true. �

We set F0 to be the collection of all points x ∈ ∂E for which

lim sup
r→0

µ(B(x, r))

rn
= 0.

Let Z =
⋂

Λ>0AΛ; from the above discussion we know that Hn−1
Euc (Z) is

zero.

Lemma 7.3. We have that F∞ =
⋃
k∈N(A1/k\Z) is σ-finite with respect

to the measure Hn−1
Euc , and

∂E = Z ∪ F0 ∪ F∞.

Proof. By Lemma 7.1, we know that Hn−1
Euc (A1/k) < ∞. Thus we see

that F∞ is σ-finite with respect to the measure Hn−1
Euc . �

Lemma 7.4. Either H(F0) = 0 or Hn−1
Euc (F0) =∞. Furthermore, with

Kε =

{
x ∈ ∂E : lim sup

r→0

µ(B(x, r))

rn
< ε

}
,

we have

H (Kε) ≤ C ε(n−1)/nHn−1
Euc (Kε) .

Note that here H is the codimension 1 Hausdorff measure with
respect to the metric d and measure µ, while Hn−1

Euc is the (n − 1)-
dimensional Hausdorff measure with respect to the Lebesgue measure
and Euclidean metric.

Proof. Suppose H(F0) > 0. We will show that then Hn−1
Euc (F0) = ∞.

To this end, fix ε > 0. For each x ∈ F0 there is a positive number δx
such that whenever 0 < r < δx we have µ(B(x, r)) ≤ 2εrn. For each
j ∈ N let

Fj = {x ∈ F0 : δx ≥ 1/j}.
Note that for large j we have Fj non-empty since F0 =

⋃
j Fj is non-

empty. Furthermore, because H(F0) > 0 we have that H(Fj) > 0 for
sufficiently large j. Let 0 < δ < 1/j, and for each x ∈ Fj, whenever
r < δ, we have that µ(B(x, r)) ≤ 2εrn. For y ∈ ∂B(x, r), we see by
(6.1) that

2ε rn ≥ µ(B(x, r)) = µ(B(x, |x− y|)) ≥ 1

C
d(x, y)n.
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It follows that d(x, y) ≤ Cε1/n r whenever y ∈ ∂B(x, r). Therefore
B(x, r) ⊂ Bd(x,Cε1/nr). Now we choose a countable cover of Fj by
balls B(xi, ri) with ri < δ and

Hn−1
Euc (Fj) + δ ≥

∑
i

rn−1
i .

But then by Lemma 6.2 we have

Hn−1
Euc (Fj) + δ ≥ 1

Cε

∑
i

µ(Bd(xi, Cε
1/nri))

ri

≥ 1

Cε1−1/n

∑
i

µ(Bd(xi, Cε
1/nri))

Cε1/nri

≥ 1

Cε1−1/n
HCε1/nδ(Fj).

Now letting δ → 0, we can conclude that

Hn−1
Euc (F0) ≥ Hn−1

Euc (Fj) ≥
1

Cε1−1/n
H(Fj).

Because E is of finite perimeter and E satisfies the density conditions
discussed in the previous sections, we know by the result in [AMP] that
H(F0) ≤ H(∂E) <∞. Indeed, if a set K has finite perimeter, then the
codimension one Hausdorff measure of the measure theoretic boundary
of K is finite and is comparable to the perimeter measure of K, see
[AMP]. By the density conditions of the set E discussed in Theorem
4.2, the boundary of E is the measure-theoretic boundary of E, and
so H(∂E) is finite. Hence H(F0) is also finite. Also, if j1 > j2 then
Fj1 ⊃ Fj2 . Therefore we have

H(F0) = lim
j→∞
H(Fj).

Therefore

Hn−1
Euc (F0) ≥ 1

Cε(n−1)/n
H(F0),

and now the desired conclusion that Hn−1
Euc (F0) = ∞ follows by taking

ε → 0 and using the fact that n ≥ 2. The proof of the second claim
of the lemma follows from an argument similar to the first part of the
proof above. �

Recall that

F0 :=

{
x ∈ ∂E : lim sup

r→0

µ(B(x,r))
rn

= 0

}
.

Theorem 7.5. With

D∞ :=

{
x ∈ ∂E : lim sup

r→0

Hn−1
Euc (∂E ∩B(x, r))

rn−1
=∞

}
,

the set ∂E\(F0 ∪D∞) is (n− 1)-rectifiable.
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Proof. Suppose not. Then combining Lemma 7.1 with [Mat, Theo-
rem 15.6], we know that there is a purely (n − 1)-unrectifiable set
K ⊂ ∂E\(F0 ∪ D∞) with Hn−1

Euc (K) > 0. Since K ∩ D∞ is empty, it
follows that Hn−1

Euc (∂E ∩B) is finite for balls B centered at points in K
with sufficiently small radii. Fix such a ball B. Then the restriction of
Hn−1

Euc to ∂E ∩B is a Radon measure. Thus there is a density point x0

of K with respect to the restriction of the measure Hn−1
Euc to ∂E. By

Lemma 7.2 we can assume without loss of generality that

Q := lim sup
r→0

µ(B(x0, r))

rn
<∞.

Since x0 /∈ F0,

∞ > Q = lim sup
r→0

µ(B(x0, r))

rn
> 0.

Furthermore, because x0 /∈ D∞, we have

M = lim sup
r→0

Hn−1
Euc (∂E ∩B(x0, r))

rn−1
<∞.

Let ε be some small number to be determined later; by the choice of
x0, for sufficiently small r0 > 0, for all 0 < r < r0 by the fact that x0

is a density point of K with respect to the restriction of Hn−1
Euc to ∂E ,

we have
Hn−1

Euc ((∂E\K) ∩B(x0, r))

Hn−1
Euc (∂E ∩B(x0, r))

<
ε

2M + ε
. (7.6)

Since x0 6∈ D∞, by the definition of M , for sufficiently small r we also
have

Hn−1
Euc (∂E ∩B(x0, r)) ≤ (M + ε)rn−1.

Therefore, by (7.6), for sufficiently small r > 0,

Hn−1
Euc ((∂E\K) ∩B(x0, r)) < εrn−1. (7.7)

We can find a small positive number r > 0 that satisfies the above
requirements and in addition satisfies

2Qrn ≥ µ(B(x0, r)) ≥
Q

2
rn.

By inequality (6.1),

Bd(x0, C
−1µ(B(x0, r))

1/n) ⊂ B(x0, r) ⊂ Bd(x0, Cµ(B(x0, r))
1/n).

So in particular, by the definition of Q and the choice of r, we have
that Bd(x0, cQ

1/nr) ⊂ B(x0, r) for c = C−1 2−1/n.
Now by Theorem 5.2, we can find y0 ∈ E and y1 ∈ Ec such that

Bd(y0, c1Q
1/nr) ⊂ E ∩Bd(x0, cQ

1/nr) ⊂ B(x0, r)

and

Bd(y1, c1Q
1/nr) ⊂ Bd(x0, cQ

1/nr) \ E ⊂ B(x0, r).
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For i = 0, 1 let

γi = inf
{
h > 0 : Bd(yi, c1Q

1/nr) ⊂ B(yi, h)
}
,

that is, B(yi, γi) is the smallest Euclidean ball containing the metric
ball Bd(yi, c1Q

1/nr). Note that by Lemma 6.2,

µ(B(yi, γi)) ≥ µ(Bd(yi, c1Q
1/nr)) ≥ c2Qr

n.

Because Bd(yi, c1Q
1/nr) ⊂ B(x0, r), it follows that Bd(yi, c1Q

1/nr) ⊂
B(yi, 2r), and so γi ≤ 2r.

By the choice of r, we also have that µ(B(x0, r)) ≤ 2Qrn. Since
B(yi, 2r) ⊂ B(x0, 3r), we have by the doubling property of µ with
respect to the Euclidean metric that µ(B(yi, 2r)) ≤ CQrn. So by (6.9),

c2Qr
n

CQrn
≤ µ(B(yi, γi))

µ(B(yi, 2r))
≤ C

( γi
2r

)Q1

,

and so γi ≥ cr with c independent of r, yi. As with C, the symbol c here
will denote a constant that is independent of the relevant quantities,
but whose value might change even within the same line. By the right
inclusion of (6.7) and the definition of γi, we know that

γi ≤ C λc1Q
1/nr

yi
c1Q

1/nr = C c1Q
1/n λc1Q

1/nr
yi

r,

that is,

λc1Q
1/nr

yi
≥ γi
Cc1Q1/nr

≥ cr

Cc1Q1/nr
.

Now an application of the left inclusion of (6.7),

B(yi, λ
c1Q1/nr
yi

c1Q
1/nr) ⊂ Bd(yi, c1Q

1/nr).

An application of the previous inequality above now gives

B(yi, cr/C) ⊂ Bd(yi, c1Q
1/nr).

Since c, C are independent of yi, r, and in this paper we do not keep
track of specific values of the constants, we denote c/C by c from now
on, and so get

B(yi, cr) ⊂ Bd(yi, c1Q
1/nr).

As K is purely unrectifiable, by the Besicovich-Federer Projection
theorem, Theorem 18.1(2) of [Mat], for i = 0, 1 there must exist points
ỹi ∈ B(yi, c r/4) such that for v = (ỹ1 − ỹ2)/|ỹ1 − ỹ2| we have

Hn−1
Euc (Pv⊥(K)) = 0.

Here Pv⊥ is the projection to the (n − 1)-dimensional hyperplane or-
thogonal to the vector v and passing through the point ỹ0.

Let ξ1 = v; then we can find unit vectors ξ2, ξ3, . . . , ξn such that
{ξ1, ξ2, . . . , ξn} forms an orthonormal basis for the vector space Rn.
For any z ∈ Rn and β > 0 let Qβ(z) denote the cube whose faces are
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normal to the vectors {ξ1, ξ2, . . . , ξn}, with Euclidean side length β,
and center located at z. Note

Q c r
8n1/2

(ỹ0) ⊂ E and Q c r
8n1/2

(ỹ1) ⊂ Rn \ E.

Consider the following cross-section of the cube Q c r
8n1/2

(ỹ0),

Π := Q c r
8n1/2

(ỹ0) ∩
(
v⊥ + ỹ0

)
,

where v⊥ is the (n−1)-dimensional hyperplane orthogonal to the vector
v. For each z ∈ Π let

ez = P−1
v⊥

(Pv⊥(z)) ∩Q c r
8n1/2

(ỹ1) ∩
(
v⊥ + ỹ1

)
,

that is, ez is the point in the region

Q cr
8n1/2

(ỹ1) ∩
(
v⊥ + ỹ1

)
= Π + ỹ1 − ỹ0

corresponding to z ∈ Π such that z − ez = ỹ0 − ỹ1.
Let

Π′ =
{
z ∈ Π : Q cr

8n1/2
∩ P−1

v⊥
(Pv⊥(z)) ∩K = ∅

}
,

that is, Π′ is the collection of all points z ∈ Π such that the line segment
[z, ez] connecting z to ez does not intersect the purely unrectifiable set
K. By the choice of ỹi, i = 0, 1, we know that

Hn−1
Euc (Π \ Π′) = 0,

since the points z ∈ Π that are not in Π′ belong to Pv⊥K. However,
for any z ∈ Π′ we know that z ∈ E and ez ∈ Ec so we must have
the line segment [z, ez] intersecting ∂E\K. So for each z ∈ Π′ we can
pick a point bz ∈ (∂E\K) ∩ [z, ez]. On the other hand, as orthogonal
projections do not increase the measure Hn−1

Euc ,

Hn−1
Euc ((∂E \K) ∩B(x0, r))

≥ Hn−1
Euc

(⋃
z∈Π′

bz

)
≥ Hn−1

Euc

(
Pv⊥

(⋃
z∈Π′

bz

))

= Hn−1
Euc (Π′) =

(
c r

8
√
n

)n−1

=

(
c

8
√
n

)n−1

rn−1.

This contradicts (7.7) when we choose 0 < ε < (c/(8
√
n))n−1. �

Corollary 7.8. Suppose that there is a positive number α such that
ω(x) ≥ α for Ln-almost every x in a neighborhood of E. Then ∂E has
Hn−1

Euc finite measure and is (n− 1)-rectifiable.

Proof. By Lemma 7.3, we have ∂E = Z ∪ F∞ ∪ F0, with Hn−1
Euc (Z) = 0

and Hn−1
Euc being σ-finite on F∞. It follows from the assumption ω ≥ α

almost everywhere that for all x ∈ ∂E we have

lim inf
r→0

µ(B(x, r))

rn
≥ Cn α > 0,
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that is, F0 is empty.
Now we look at

F∞ =
⋃
k∈N

A1/k \ Z.

Because of the assumption that ω ≥ α almost everywhere, we know
that F∞ = A1/k0 \Z where k0 ∈ N is large enough so that 1/k0 < Cn α.
So by Lemma 7.1 we have that

Hn−1
Euc (∂E) = Hn−1

Euc (F∞) <∞.

Thus an application of [Mat, Theorem 6.2] gives Hn−1
Euc (D∞) = 0, and

so ∂E is rectifiable by Theorem 7.5. �
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