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1. Introduction

We discuss necessary and sufficient conditions for validity of the fol-
lowing multidimensional version of Hardy’s inequality. Let Ω is a open
subset of R

n and 1 < p < ∞. We say that p-Hardy’s inequality holds
in Ω, if there is a uniform constant cH such that

∫

Ω

(

|u(x)|

δ(x)

)p

dx ≤ cH

∫

Ω

|∇u(x)|p dx (1.1)

for all u ∈ W 1,p
0 (Ω), where we denote

δ(x) = dist(x, ∂Ω).

By a density argument, it is enough to consider (1.1) for compactly
supported smooth functions u ∈ C∞

0 (Ω).

Several sufficient Lipschitz and Hölder type boundary conditions for
which Hardy’s inequality holds have been given by Nečas [41], Kufner
and Opic [26], [42]. Maz’ya has given capacitary characterizations of
Hardy’s inequality in Chapter 2 of [38]. We return to this in Section 2.
Ancona [2] (for p = 2, n ≥ 2), Lewis [31], and Wannebo [49] (for p ≥ 1,
n ≥ 2) proved that Hardy’s inequality holds under the assumption that
the complement of Ω satisfies a uniform capacity density condition

capp

(

(Rn \ Ω) ∩ B(x, r), B(x, 2r)
)

≥ cT capp

(

B(x, r), B(x, 2r)
)

(1.2)

for every x ∈ R
n \ Ω and for all radii r > 0. The definition and

properties of variational capacity can be found in Chapter 2 of [38] or
Chapter 2 of [16]. If (1.2) holds we say that R

n \Ω is uniformly p-thick
(or p-fat).

The class of open sets whose complement satisfies the uniform capac-
ity density condition is relatively large. Every nonempty R

n \ Ω is
uniformly p-thick for p > n, and hence the condition is nontrivial only
when p ≤ n. In particular, this implies that when p > n Hardy’s
inequality holds for every proper open subset of R

n. Hence we only
consider the case 1 < p ≤ n here.
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The capacity density condition has several applications in the theory of
partial differential equations. It is stronger than the Wiener criterion

∫ 1

0

(

capp

(

(Rn \ Ω) ∩ B(x, r), B(x, 2r)
)

capp

(

B(x, r), B(x, 2r)
)

)1/(p−1)
dr

r
= ∞,

which characterizes regular boundary points for the Dirichlet problem
for the p-Laplace equation. The sufficiency was shown by Maz’ya in
[36], necessity for p > n − 1 by Lindqvist and Martio in [32] and for
1 < p ≤ n by Kilpeläinen and Malý in [19].

In [13] Haj lasz showed that the capacity density condition is sufficient
for a pointwise version of Hardy’s inequality in terms of the Hardy-
Littlewood maximal function. Similar result has been also obtained
in [21]. Recently in [28] Lehrbäck showed that the pointwise Hardy’s
inequality is equivalent to uniform thickness of the complement. See
also [22]. In this work we also discuss a characterization through a
boundary Poincaré inequality.

In the bordeline case p = n, there are several characterizations of
Hardy’s inequality. In this case, rather surprisingly, certain analytic,
metric and geometric conditions turn out to be equivalent. Ancona
proved in [2] that the uniform p-thickness is also necessary for the
validity of Hardy’s inequality when p = n = 2 and in [31] Lewis gen-
eralized this result for p = n ≥ 2. On the other hand, Sugawa proved
in [46] that, when p = n = 2, Hardy’s inequality is equivalent to the
uniform perfectness of the complement. Recently this result has been
generalized in [23] for other values of n. We outline the main points
of the argument in this work and discuss other characterizations of
Hardy’s inequalities in the borderline case.

The following variational problem is naturally related to p-Hardy’s in-
equality. Consider the Rayleigh quotient

λp = λp(Ω) = inf

∫

Ω

|∇u(x)|p dx

∫

Ω

(

|u(x)|

δ(x)

)p

dx

, (1.3)

where the infimum is taken over all u ∈ W 1,p
0 (Ω). Observe, that

λp(Ω) > 0 if and only if p-Hardy’s inequality holds in Ω.

This approach has obtained lot of attention, see, for example, Barbatis,
Filippas and Tertikas [3], [4], [5], Brezis, Marcus, Mizel, Pinchover and
Shafrir [7], [8], [33], [34], Davies [12], Matskewich and Sobolevskii [35],
Pichover and Tintarev [43], [44], [45] and Tidblom [47], [48].
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In the one-dimensional case, already Hardy observed that

λp =

(

1 −
1

p

)p

and that the minimum is not attained in (1.3), see [14] and [15]. In
higher dimensions, the constant λp generally depends on p and on the
domain Ω.

Note that u ∈ W 1,p
0 (Ω) is a minimizer of (1.3) if and only if it is a weak

solution to the following nonlinear eigenvalue problem

div(|∇u(x)|p−2∇u(x)) + λp
|u(x)|p−2u(x)

δ(x)p
= 0. (1.4)

In [2] Ancona charaterized Hardy’s inequality for p = 2 with superso-
lutions called strong barriers of (1.4). In this work we generalize this
characterization for other values of p.

We also consider the self-improving phenomena related to Hardy’s in-
equalities. It is not difficult to see, that if R

n \ Ω is uniformly p-thick,
then it is uniformly q-thick for every q > p as well. Lewis showed in
[31] that p-thickness has a deep self-improving property: p-thickness
implies the same condition for some smaller value of p. For another
proof, we refer to Mikkonen [40].

Hardy’s inequality is self-improving as well. Indeed, Koskela and Zhong
showed in [25] that if Hardy’s inequality holds for some value of p, then
it also holds for other values of p that are close enough. In contrast with
the capacity density condition, it may happen that Hardy’s inequality
fails for some particular values of p. Indeed, for a punctured ball p-
Hardy’s inequality holds when p 6= n and it does not hold when p = n.
More generally, it has been shown in [25] that Hardy’s inequality can-
not hold if the boundary contains (n − p)-dimensional parts. Roughly
speaking Hardy’s inequality may hold if the complement of the domain
is either large or small in the neighbourhood of each boudary point.

Many arguments related to Hardy’s inequality are based on general
principles and some of them apply even on metric measure spaces,
see Björn, MacManus and Shanmugalingam [6], Kinnunen, Kilpeläinen
and Martio [18], Korte and Shanmugalingam [23] and Korte, Lehrbäck
and Tuominen [22]. In [11] Danielli, Garofalo and Phuc studied Hardy’s
inequalities in Carnot-Carathéodory spaces. We refer to Buckley and
Koskela [9] and Chianci [10] for studies relevant to Orlicz-Sobolev
spaces.
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2. Maz’ya type characterization

In this section, we present a characterization of Hardy’s inequality in
terms of inequalities connecting measures and capacities. To be on the
safe side, we recall the definition of the variational capacity here. Let
Ω be an open subset of R

n and let K be a compact subset of Ω. The
variational p-capacity of K with respect to Ω is defined to be

capp(K, Ω) = inf

∫

Ω

|∇u(x)|p dx,

where the infimum is taken over all u ∈ C∞
0 (Ω) such that u(x) ≥ 1

for every x ∈ K. The same quantity is obtained, if instead of smooth
functions the infimum is taken, for example, over compactly supported
continuous functions in W 1,p

0 (Ω).

The proof the following result is based on an elegant truncation ar-
gument that can be found on page 110 of Maz’ya’s monograph [38].
For more information about this kind of characterizations, we refer to
Chapter 2 in [38] and [39]. For generalizatons, see [37] and [20].

Theorem 2.1. An open set Ω satisfies p-Hardy’s inequality if and only

if there is a constant cM such that

∫

K

δ(x)−p dx ≤ cM capp(K, Ω) (2.2)

for every compact subset K of Ω.

Proof. First assume that p-Hardy’s inequality holds in Ω. Let u ∈
C∞

0 (Ω) such that u(x) ≥ 1 for every x ∈ K. By (1.1), we have

∫

K

δ(x)−p dx ≤

∫

Ω

(

|u(x)|

δ(x)

)p

dx ≤ cH

∫

Ω

|∇u(x)|p dx,

and by taking infimum over all such functions u, we obtain (2.2) with
cM = cH .

Then assume that (2.2) holds. By a density argument it is enough
to prove (1.1) for compactly supported smooth functions in Ω. Let
u ∈ C∞

0 (Ω) and for k ∈ Z denote

Ek = {x ∈ Ω : |u(x)| > 2k}.
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By (2.2), we have

∫

Ω

(

|u(x)|

δ(x)

)p

dx ≤
∞
∑

k=−∞

2(k+1)p

∫

Ek\Ek+1

δ(x)−p dx

≤ cM

∞
∑

k=−∞

2(k+1)pcapp(Ek, Ω)

≤ cM2p

∞
∑

k=−∞

2(k+1)pcapp(Ek+1, Ek).

Define uk : Ω → [0, 1] by

uk(x) =















1, if |u(x)| ≥ 2k+1,
|u(x)|

2k
− 1, if 2k < |u(x)| < 2k+1,

0, if |u(x)| ≤ 2k.

Then uk ∈ W 1,p
0 (Ω) is a continuous function, uk = 1 in Ek+1 and

uk = 0 in R
n \ Ek. Therefore, we may apply it as a test function for

the capacity and obtain

capp(Ek+1, Ek) ≤

∫

Ek\Ek+1

|∇uk(x)|p dx ≤ 2−pk

∫

Ek\Ek+1

|∇u(x)|p dx.

Consequently, we arrive at

∞
∑

k=−∞

2(k+1)pcapp(Ek+1, Ek) ≤ 2p

∞
∑

k=−∞

∫

Ek\Ek+1

|∇u(x)|p dx

= 2p

∫

Ω

|∇u(x)|p dx,

and the claim follows with cH = 22pcM .

Remark 2.3. A result of Koskela and Zhong [25] shows that Hardy’s
inequality is an open ended condition in the following sense: If Hardy’s
inequality holds in Ω for some 1 < p < ∞, then there exists ε > 0 such
that Hardy’s inequality holds in Ω for every q with p−ε < q < p+ε. For
a weighted result, see [24]. This implies that the Maz’ya type condition
(2.2) is an open ended condition as well. Indeed, if (2.2) holds, then
there are c > 0 and ε > 0 for which

∫

K

δ(x)−q dx ≤ c capq(K, Ω)

for all q with p − ε < q < p + ε.
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3. The capacity density condition

In this section we consider a sufficient condition for Hardy’s inequal-
ity in terms of uniform thickness of the complement, see (1.2). The
capacity density condition has a deep self-improving property, which
is essential in many questions. The following result is due to Lewis
(Theorem 1 in [31]). See also Ancona [2] and Section 8 of Mikkonen
[40].

Theorem 3.1. If R
n \Ω is uniformly p-thick, then there is q < p such

that R
n \ Ω is uniformly q-thick.

Assume that R
n \ Ω is uniformly p-thick, let u ∈ C∞

0 (Ω) and denote

A =
{

y ∈ B(x, r) : u(y) = 0
}

.

By a capacitary version of a Poincaré type inequality, there is c =
c(n, p) such that

( 1

|B(x, r)|

∫

B(x,r)

|u(y)|p dy
)1/p

≤

(

c

capp

(

A ∩ B(x, r), B(x, 2r)
)

∫

B(x,r)

|∇u(y)|p dy

)1/p

≤ c r

(

1

|B(x, r)|

∫

B(x,r)

|∇u(y)|p dy

)1/p

.

(3.2)

For a systematic study of such inequalities we refer to Chapter 10 in
Maz’ya’s monograph [38]. See also Chapter 8 in [1]. Here we also used
the fact that

capp

(

B(x, r), B(x, 2r)
)

= c rn−p,

where c = c(n, p), see 2.2.4 in [38].

Inequality (3.2) implies the pointwise estimate

|u(x)| ≤ c δ(x)
(

MΩ(|∇u|p)(x)
)1/p

, (3.3)

for every x ∈ Ω with c = c(n, p). The restricted Hardy-Littlewood
maximal function is defined as

MΩf(x) = sup
1

|B(x, r)|

∫

B(x,r)

|f(y)| dy,

where the supremum is taken over radii r > 0 for which r ≤ 2δ(x). This
kind of pointwise Hardy’s inequalities have been considered in [13] and
[21]. See also [11] and [24]. By Theorem 3.1, we have pointwise Hardy’s
inequality (3.3) also for some q < p. Integrating this inequality over Ω
and using the maximal function theorem we arrive at
∫

Ω

(

|u(x)|

δ(x)

)p

dx ≤ c

∫

Ω

(

MΩ(|∇u|q)(x)
)p/q

dx ≤ c

∫

Ω

|∇u(x)|p dx
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for every u ∈ C∞
0 (Ω) with c = c(n, p, q).

This proof relies heavily on a rather deep Theorem 3.1. Wannebo has
given a more direct proof of Hardy’s inequality if the complement of
the domain is uniformly thick in [49]. See also [50], [51] and [52]. The
idea in Wannebo’s proof is to first use a Poincaré type inequality (3.8)
and a Whitney type covering argument to show that
∫

{x∈Ω:2−k−1<δ(x)<2−k}

|u(x)|p dx ≤ c2−kp

∫

{x∈Ω:δ(x)≤2−k+1}

|∇u(x)|p dx

for every k ∈ Z. Multiplying both sides by δ(x)−p−β, with β > 0, and
summing up over k leads to weighted Hardy’s inequality

∫

Ω

|u(x)|p

δ(x)p+β
dx ≤

c

β

∫

Ω

|∇u(x)|p

δ(x)β
dx. (3.4)

An application of this inequality to

u(x)δ(x)β/p

for β > 0 is small enough, gives unweighted p-Hardy’s inequality.
Weighted Hardy’s inequalities have also been studied in [27], [29] and
[30].

The pointwise Hardy inequality is not equivalent to Hardy’s inequality.
For example, the punctured ball satisfies pointwise Hardy’s inequality
only in the case when p > n but usual Hardy’s inequality also holds
when 1 < p < n. A recent result of Lehrbäck [28] shows that the
uniform thickness is not only sufficient but also necessary condition for
pointwise Hardy’s inequality. Before giving the statement of the result
here we recall a definition from [28]. An open set Ω in R

n satisfies
an inner boundary density condition with exponent α, if there exists a
constant c > 0 such that

Hα
∞

(

B(x, 2δ(x)) ∩ ∂Ω
)

≥ cδ(x)α

for every x ∈ Ω. Here

Hα
∞(E) =

{

∞
∑

i=1

rα
i : E ⊂

∞
⋃

i=1

B(xi, ri)

}

is the spherical Hausdorff content of the set E. Let us now formulate
the main result of [28].

Theorem 3.5. The following conditions are equivalent:

(1) The set R
n \ Ω is uniformly p-thick,

(2) the set Ω satisfies pointwise Hardy’s inequality with some q < p,
(3) there exists α with n − p < α ≤ n so that Ω satisfies the inner

boundary density condition with the exponent α.
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Observe that all these conditions have the property that if they hold
true for some parameter, then they also hold for all larger parameters.
However, Hardy’s inequality does not share this property with them.

Remark 3.6. A recent result of [22] shows that condition (2) in Theo-
rem 3.5 can be replaced with pointwise p-Hardy’s inequality. By The-
orem 3.1 we conclude that pointwise p-Hardy’s inequality implies the
pointwise q-Hardy inequality for some q < p. Hence pointwise Hardy’s
inequality is a self improving property. It would be interesting to obtain
a direct proof, without Theorem 3.1, for this self improving result.

We present yet another characterization of uniform thickness through
a boundary Poincaré inequality of type (3.2).

Theorem 3.7. The set R
n \ Ω is uniformly p-thick if and only if

∫

B(x,r)

|u(y)|p dy ≤ c rp

∫

B(x,r)

|∇u(y)|p dy (3.8)

for every x ∈ R
n \ Ω and u ∈ C∞

0 (Ω).

Proof. The uniform p-thickness implies (3.8) by the capacitary version
of the Poincaré inequality (3.2).

To prove the reverse implication, let u ∈ C∞
0 (B(x, 2r)) be such that

u(x) = 1 for every x ∈ (Rn \ Ω) ∩ B(x, r). If

1

|B(x, r/2)|

∫

B(x,r/2)

|u(y)|p dy ≥
1

2p
,

then by the standard Poincaré inequality we have

1

2p
|B(x, r/2)| ≤ c

∫

B(x,2r)

|u(y)|p dy ≤ c rp

∫

B(x,2r)

|∇u(y)|p dy,

from which it follows that
∫

B(x,2r)

|∇u(y)|p dy ≥ c rn−p.

Assume then that
1

|B(x, r/2)|

∫

B(x,r/2)

|u(y)|p dy <
1

2p
.

Clearly

|B(x, r/2)| ≤ 2p−1

(
∫

B(x,r/2)

|u(y)|p dy +

∫

B(x,r/2)

|1 − u(y)|p dy

)

and consequently
∫

B(x,r/2)

|1 − u(y)|p dy ≥ 21−p|B(x, r/2)| −

∫

B(x,r/2)

|u(y)|p dy ≥ crn.
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Let v = (1−u)ϕ, where ϕ ∈ C∞
0 (B(x, r)) is a cutoff function such that

ϕ = 1 in B(x, r/2). Then v ∈ C∞
0 (Ω) and by (3.8) we have

∫

B(x,r/2)

|1 − u(y)|p dy =

∫

B(x,r/2)

|v(y)|p dy

≤ c rp

∫

B(x,r/2)

|∇v(y)|p dy

≤ c rp

∫

B(x,2r)

|∇u(y)|p dy.

It follows that
∫

B(x,2r)

|∇u(y)|p dy ≥ c rn−p.

Taking infimum over all such functions u, we conclude that

capp

(

(Rn \ Ω) ∩ B(x, r), B(x, 2r)
)

≥ c rn−p

and hence Ω is uniformly p-thick.

Remark 3.9. Again, by Theorem 3.1 we conclude that the boundary
Poincaré inequality 3.8 implies the same inequality for some q < p.
Hence the the boundary Poincaré inequality is a self-improving prop-
erty.

4. Characterizations in the borderline case

In the borderline case when p = n there are several characterizations
available for Hardy’s inequality. We begin with the following metric
definition. The set R

n \Ω is uniformly perfect if it contains more than
one point, and there is a constant cP ≥ 1 so that for each x ∈ R

n \ Ω
and r > 0 we have

(Rn \ Ω) ∩
(

B(x, cP r) \ B(x, r)
)

6= ∅

whenever (Rn\Ω)\B(x, cP r) 6= ∅. For more information about uniform
perfectness, see [17] and [46].

Next we give four characterzations for Hardy’s inequality in the bor-
derline case. Needless to say that by Theorem 2.1, Theorem 3.5 and
Theorem 3.7 we have four more characterizations.

Theorem 4.1. The following conditions are quantitatively equivalent:

(1) Ω satisfies n-Hardy’s inequality,

(2) R
n \ Ω is uniformly perfect,

(3) R
n \ Ω is uniformly n-thick,

(4) R
n \ Ω is uniformly (n − ε)-thick for some ε > 0.
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Proof. Let us comment the architecture of the proof. Conditions (3)
and (4) are equivalent by Theorem 3.1. The fact that (3) and (4) imply
(1) can be shown as above. The equivalence of conditions (1) and (3)
has been proved by Ancona [2] for n = 2 and by Lewis [31] for n ≥ 2.
Sugawa has proved in [46] that conditions (1)–(4) are equivalent for
n = 2. Recently this result has been generalized for n ≥ 2 in [23]. We
recall the crux of the proof here.

The first step is to show that n-Hardy’s inequality implies uniform
perfectness (and unboundedness) of the complement. The method is
indirect: First, assume that R

n \ Ω is not uniformly perfect with some
large constant M > 1. This means that there exists x0 ∈ R

n \ Ω and
r0 > 0 such that B(x0,Mr0) \ B(x0, r0) is contained in Ω. The test
function

u(x) =































(

|x − x0|

r0

− 1

)

+

, if |x − x0| ≤ 2r0,

1, if 2r0 < |x − x0| <
Mr0

2
,

(

2 − 2
|x − x0|

Mr0

)

+

, if |x − x0| ≥
Mr0

2
.

shows that if Ω satisfies n-Hardy’s inequality with some constant cH ,
then cH ≥ c log M .

The following step is to show that the uniform perfectness of the com-
plement further implies a boundary density condition similar to con-
dition (3) in Theorem 3.5. More precisely, we show that there exists
α > 0 such that

Hα
∞(B(x0, r0) \ Ω) ≥ crα

0 (4.2)

for every x0 ∈ R
n \ Ω and r0 > 0. For the argument to work it is

essential that B(x0, r0) \ Ω is compact. Indeed, there are uniformly
perfect countable sets, whose Hausdorff-dimension is zero. To estimate
the Hausdorff content of the set, we take a cover F for B(x0, r0) \ Ω
with balls B(x, r). By compactness, we may choose the cover F to
be finite. We may also assume that the balls in F are centered in
B(x0, r0) \ Ω. This may increase (4.2) at most by factor 2α. Next we
reduce the number of balls in F in such a way that the sum

∑

B(x,r)∈F

rα (4.3)

does not increase: Suppose that R
n \ Ω is uniformly perfect with con-

stant M . Then, if α > 0 is small enough the elementary inequality

rα + sα ≥ (r + s + 2M min{r, s})α
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holds for all r, s > 0. Now, if there exists balls B(x, r) and B(y, s) in
F such that r ≤ 2s and

B(x,Mr) ∩ B(y, s) 6= ∅

then
B(x, r) ∪ B(y, s) ⊂ B(z, r + s + 2M min{r, s})

for some z ∈ {x, y}. Thus we can replace the original balls B(x, r)
and B(y, s) by one with larger radius so that the sum (4.3) does not
increase. We continue this replacement procedure until there are no
balls satisfying the condition left. As F is finite, the process ends after
a finite number of steps.

Now let B(x1, r1) ∈ F be the ball that contains x0. By the uniform
perfectness of R

n \ Ω, the set

A1 \ Ω =
(

B(x1,Mr1) \ B(x1, r1)
)

\ Ω

is not empty. Now there are two possibilities: Either A1 intersects
the complement of B(x0, r0) or it intersects some ball B(x2, r2) ∈ F .
In the first case r1 ≥ r0/(M + 1). In the second case we know that
r2 ≤ r1/2, since otherwise the balls B(x1, r1) and B(x2, r2) would have
been replaced by a single ball in the iteration above. We continue in
the same way: For a ball B(xk, rk), either

Ak = B(xk,Mrk) \ B(xk, rk)

intersects the complement of B(x0, r0) or some ball B(xk+1, rk+1) ∈ F
with radius rk+1 ≤ rk/2. This procedure stops when the first alterna-
tive occurs. This happens after a finite number of steps since F is finite.
Let K be the index where the iteration stops. Now since x0 ∈ B(x1, r1)
and B(xK ,MrK) intersects the complement of B(x0, r0), we have

r0 ≤
K
∑

i=1

(M + 1)ri ≤ (M + 1)
K
∑

i=1

21−ir1 ≤ 2(M + 1)r1.

Thus r1 ≥ r0/(2(M + 1)) and it follows that
∑

B(x,r)∈F

rα ≥ rα
1 ≥

rα
0

2(M + 1)
.

Since this holds for all covers of B(x0, r0) \ Ω, we have obtained a
lowerbound for its Hausdorff α-content depending only on the uniform
perfectness constant M . Uniform estimate for Hausdorff α-content
further implies uniform p-thickness for every p > n−α, see for example
Lemma 2.31 in [16]. This completes the proof.

Remark 4.4. Theorem 4.1 gives a relatively elementary proof for The-
orem 3.1 with p = n. It would be interesting to obtain an elementary
proof for other values of p as well.
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5. Eigenvalue problem

This section gives a characterization of p-Hardy’s inequality in terms of
weak supersolutions to (1.4). This generalizes Proposition 1 of Ancona
in [2], where he obtained the result for p = 2. We recall that v ∈
W 1,p

loc (Ω) is a weak solution of (1.4), if
∫

Ω

(

|∇v(x)|p−2∇v(x) · ∇ϕ(x) − λp
|v(x)|p−2v(x)

δ(x)p
ϕ(x)

)

dx = 0 (5.1)

for all ϕ ∈ C∞
0 (Ω). Moreover, the function v ∈ W 1,p

loc (Ω) is a weak
supersolution of (1.4), if the integral in (5.1) is nonnegative for ϕ ≥ 0.

Theorem 5.2. Let 1 < p < ∞. Inequality (1.1) holds with a finite

cH if and only if there is a positive eigenvalue λp = λp(Ω) > 0 and a

positive weak supersolution v ∈ W 1,p
0 (Ω) of (1.4) in Ω.

Proof. First, suppose that there exists a positive weak supersolution v
of (1.4). Take u ∈ C∞

0 (Ω). We may assume that u ≥ 0 in Ω. Let ε > 0.
We take

ϕ(x) =
u(x)p

(v(x) + ε)p−1

as a test function. It follows that

λp

∫

Ω

u(x)pv(x)p−1

δ(x)p(v(x) + ε)p−1
dx

≤

∫

Ω

|∇v(x)|p−2∇v(x) · ∇ϕ(x) dx

= (1 − p)

∫

Ω

|∇v(x)|p(v(x) + ε)−pu(x)p dx

+ p

∫

Ω

u(x)p−1(v(x) + ε)1−p|∇v(x)|p−2∇v(x) · ∇u(x) dx

≤ (1 − p)

∫

Ω

∣

∣

∣

∣

u(x)∇v(x)

v(x) + ε

∣

∣

∣

∣

p

dx + p

∫

Ω

∣

∣

∣

∣

u(x)∇v(x)

v(x) + ε

∣

∣

∣

∣

p−1

|∇u(x)| dx.

Then we use Young’s inequality to conclude that

p

∫

Ω

∣

∣

∣

∣

u(x)∇v(x)

v(x) + ε

∣

∣

∣

∣

p−1

|∇u(x)| dx

≤ (p − 1)

∫

Ω

∣

∣

∣

∣

u(x)∇v(x)

v(x) + ε

∣

∣

∣

∣

p

dx +

∫

Ω

|∇u(x)|p dx.

By combining these estimates and passing to the limit as ε → 0 with
the Lebesgue dominated convergence theorem, we obtain

∫

Ω

(

u(x)

δ(x)

)p

dx ≤
1

λp

∫

Ω

|∇u(x)|p dx.
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Thus Ω satisfies p-Hardy inequality with constant cH = 1/λp.

To prove the other direction, assume that Ω satisfies p-Hardy’s inequal-
ity with some finite constant cH . Let λp < 1/cH . We define a function
space

X = {f ∈ Lp
loc(Ω) : ∇f ∈ Lp(Ω), fδ−1 ∈ Lp(Ω)}

and

‖f‖X =
∥

∥

∥

f

δ

∥

∥

∥

Lp(Ω)
+ ‖∇f‖Lp(Ω).

Because Ω satisfies p-Hardy’s inequality, X = W 1,p
0 (Ω) and the norms

are equivalent. Therefore X is a reflexive Banach space. We define the
operator T : X → X∗ by

(Tf, g) =

∫

Ω

|∇f(x)|p−2∇f(x) ·∇g(x) dx−λp

∫

Ω

|f(x)|p−2f(x)

δ(x)p
g(x) dx,

where f, g ∈ X. We will apply the following result from functional
analysis. If T : X → X∗ satisfies the following boundedness, demicon-
tinuity and coercivity properties

(i) T is bounded;
(ii) if fj → f in X, then (Tfj, g) → (Tf, g) for all g ∈ X;

(iii) if (fj) is a sequence in X with ‖fj‖X → ∞ as j → ∞, then

(Tfj, fj)

‖fj‖X

→ ∞.

Then for every f ∈ X∗ there is v ∈ X which satisfies Tv = f .

Next we will check that these conditions are satisfied. The first condi-
tion holds, because

‖Tf‖X∗ = sup
‖g‖X≤1

(Tf, g)

= sup
‖g‖X≤1

∣

∣

∣

∣

∫

Ω

|∇f(x)|p−2∇f(x) · ∇g(x) dx

− λp

∫

Ω

|f(x)|p−2f(x)

δ(x)p
g(x) dx

∣

∣

∣

∣

≤ sup
‖g‖X≤1

[

‖∇f‖p−1
Lp(Ω)‖∇g‖Lp(Ω) + λp

∥

∥

∥

f

δ

∥

∥

∥

p−1

Lp(Ω)

∥

∥

∥

g

δ

∥

∥

∥

Lp(Ω)

]

≤ (1 + λp)‖f‖p−1
X ‖g‖X .
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Now let fj → f in X and g ∈ X. Then by Hölder’s inequality,

|(Tfj, g) − (Tf, g)|

=

∣

∣

∣

∣

∫

Ω

(|∇fj(x)|p−2∇fj(x) −∇f(x)|p−2∇f(x)) · ∇g(x) dx

− λp

∫

Ω

|fj(x)|p−2fj(x) − |f(x)|p−2f(x)

δ(x)p
g(x) dx

∣

∣

∣

∣

≤ (p − 1)‖fj − f‖X max{‖fj‖
p−2
X , ‖f‖p−2

X }‖g‖X → 0,

as fj → f in X. Thus the second condition is satisfied. Finally, let
(fj)j be a sequence in X with ‖fj‖X → ∞ as j → ∞. By Hardy’s
inequality, it follows that

(Tfj, fj) =

∫

Ω

(

|∇fj(x)|p − λp
|fj(x)|p

δ(x)p

)

dx

≥ (1 − λpcH)

∫

Ω

|∇fj(x)|p dx

≥
1 − λpcH

1 + cH

‖fj‖
p
X .

Hence
(Tfj, fj)

‖fj‖X

→ ∞, as j → ∞.

Thus also the third condition is satisfied.

We fix a function w ∈ X∗ such that w ≥ 0 and w 6≡ 0. Then there
exists v ∈ X = W 1,p

0 (Ω) such that Tv = w. This means that v is a
weak supersolution of (1.4).

Moreover, v is positive since

0 ≤ (Tv, v−) =

∫

Ω

|∇v(x)|p−2∇v(x) · ∇v−(x) dx

− λp

∫

Ω

|v(x)|p−2v(x)v−(x)δ(x)−p dx

= −

∫

Ω

|∇v−(x)|p dx + λp

∫

Ω

v−(x)pδ(x)−p dx

≤ (λp − 1/cH)

∫

Ω

v−(x)pδ(x)−p dx ≤ 0.

Here v−(x) = −min(v(x), 0) is the negative part of v. Now the strict
positivity of v follows from a weak Harnack inequality.

Remark 5.3. The eigenvalue problem (1.4) has the following stability
property: If there is a positive eigenvalue λp = λp(Ω) > 0 and a positive
weak supersolution of (1.4) in Ω, then there is ε such that for every
q with p − ε < q < p + ε there is an eigenvalue λq = λq(Ω) > 0 and

14



a positive weak supersolution of (1.4) with p relaced by q in Ω. This
follows directly from the self-improving result for Hardy’s inequality,
see Remark 2.3.

References

[1] D.R. Adams and L.I. Hedberg, Function spaces and potential theory, Springer-
Verlag, Berlin, 1996.

[2] A. Ancona, On strong barriers and an inequality of Hardy for domains in R
n,

J. London Math. Soc. (2) 34(2) (1986), 274–290.

[3] G. Barbatis, S. Filippas and A. Tertikas, Series expansion for Lp Hardy in-
equalities, Indiana Univ. Math. J. 52 (2003), no. 1, 171–190.

[4] G. Barbatis, S. Filippas and A. Tertikas, Refined geometric Lp Hardy inequal-
ities, Comm. Contemp. Math. 5 (6) (2003), 869–883.

[5] G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved Lp

Hardy inequalities with best constants, Transactions of the AMS 356 (2004),
2169–2196.

[6] J. Björn, P. MacManus, and N. Shanmugalingam, Fat sets and pointwise
boundary estimates for p-harmonic functions in metric spaces, J. Anal. Math.
85 (2001), 339–369.

[7] H. Brezis and M. Marcus, Hardy’s inequality revisited, Ann. Scuola Norm.
Sup. Pisa 25 (1997), 217–237.

[8] H. Brezis, M. Marcus and I. Shafrir, Extremal functions for Hardy’s inequality
with weight, J. Funct. Anal. 171 (2000), 177–191.

[9] S.M. Buckley and P. Koskela, Orlicz-Hardy inequalities, Illinois J. Math.
48(3)(2004), 787–802.

[10] A. Chianci, Hardy inequalities in Orlicz spaces, Trans. Amer. Math. Soc. 351
(1999), 2459-2478

[11] D. Danielli, N. Garofalo and N.C. Phuc, Inequalities of Hardy-Sobolev type
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