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Abstract. We give a relatively simple and transparent proof for
Harnack’s inequality for certain degenerate doubly nonlinear par-
abolic equations. We consider the case where the Lebesgue mea-
sure is replaced with a doubling Borel measure which supports a
Poincaré inequality.

1. Introduction

Our purpose is to study the local behaviour of nonnegative weak solu-
tions to the doubly nonlinear parabolic equation

div(|Du|p−2Du) =
∂(up−1)

∂t
, 1 < p <∞. (1.1)

When p = 2 we have the standard heat equation. Observe that the
solutions to (1.1) can be scaled by nonnegative factors, but due to the
nonlinearity of the term (up−1)t we cannot add a constant to a solution.
As far as we know, equation (1.1) has first been studied by Trudinger
in [Tru], where he proved a Harnack inequality for nonnegative weak
solutions. The proof was based on Moser’s celebrated work [Mo1] and
used a parabolic version of the John-Nirenberg lemma. Twenty years
later the proof of the parabolic John-Nirenberg lemma was simplified
by Fabes and Garofalo, see [FaGa]. However, the parabolic BMO re-
mains to be technically demanding. Our main objective is to give a
relatively simple and transparent proof for Harnack’s inequality using
the approach of Moser in [Mo2]. In particular, the parabolic John-
Nirenberg lemma is replaced with a lemma due to Bombieri in [BoGi]
and [Bomb]. Let us point out a slightly unexpected phenomenon re-
lated to the parabolic BMO. In the case p = 2 it is known that if u is a
nonnegative solution, then log u is a subsolution to the same equation.
However, if p 6= 2, then log u is not a subsolution to equation (1.1). In-
stead it is a subsolution to an equation of the p-parabolic type studied
in [DiBe].
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To show that our proof is based on a general principle we consider
the case where the Lebesgue measure is replaced with a more general
Borel measure. The measure is assumed to be doubling and to support
a Poincaré inequality. The precise definitions will be given below. The
corresponding result in the elliptic case for measures induced by Muck-
enhoupt’s weights has been studied by Fabes, Kenig and Serapioni in
[FKS]. See also [ChFr]. The weighted theory in the parabolic case
has been studied by Chiarenza and Serapioni in [ChSe]. However, in
their approach the role of the measure is somewhat different compared
to ours. For the heat equation Grigor’yan and Saloff-Coste observed
that the doubling condition and the Poincaré inequality are not only
sufficient but also necessary conditions for a scale invariant parabolic
Harnack principle on Riemannian manifolds, see [SaCo1], [SaCo2] and
[Gri]. Our contibution is to show the sufficiency for the general p 6= 2
in a Euclidean space. It is a very interesting question whether also
the necessity holds in this case. Moreover, the doubling condition and
the Poincaré inequality are rather standard assumptions in analysis on
metric spaces, see for example [HaK] and references therein. It is well
known that Moser’s technique is essentially based on a combination of
a Sobolev and a Caccioppoli type inequalities. We take a full advatange
of a metric space result, which states that the doubling property and
the Poincaré inequality imply a Sobolev type inequality, see [BCLS],
[HaK], [SaCo1], [SaCo2].

Our argument applies to more general equations of the type

divA(x, t, u,Du) =
∂(up−1)

∂t
,

where A is a Caratheodory function and satisfies the standard struc-
tural conditions (see for example [DiBe], [DBUV], [WZYL])

A(x, t, u,Du) ·Du ≥ C0|Du|p

and
|A(x, t, u,Du)| ≤ C1|Du|p−1,

where C0 and C1 are positive constants. However, for expository pur-
poses, we only consider equation (1.1).

2. Preliminaries

In this section we describe our assumptions and results more precisely.
Let µ be a Borel measure and suppose that Ω is an open set in Rn.
The Sobolev space H1,p(Ω, µ) is defined to be the completion of C∞(Ω)
with respect to the Sobolev norm

‖u‖1,p,Ω =
( ∫

Ω

|u|p dµ
)1/p

+
( ∫

Ω

|Du|p dµ
)1/p

.
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A function belongs to the local Sobolev space H1,p
loc (Ω, µ) if it belongs

to H1,p(Ω′, µ) for every open subset Ω′ of Ω, whose closure is a compact
subset of Ω. The Sobolev space with zero boundary values H1,p

0 (Ω, µ)
is the completion of C∞

0 (Ω) with respect to the Sobolev norm. For the
basic properties of weighted Sobolev spaces we refer to [HKM].

We denote by Lp(t1, t2;H
1,p(Ω)), t1 < t2, the space of functions such

that for almost every t, t1 < t < t2, the function x 7→ u(x, t) belongs
to H1,p(Ω, µ) and

∫ t2

t1

∫

Ω

(
|u(x, t)|p + |Du(x, t)|p

)
dµ(x) dt <∞.

Notice that the time derivative ut is deliberately avoided. The defini-
tion for the space Lploc(t1, t2;H

1,p
loc (Ω, µ)) is clear.

Let t1 < t2 and 1 < p < ∞. A nonnegative function u which belongs
to Lploc(t1, t2;H

1,p
loc (Ω, µ)) is a weak solution to (1.1) in Ω × (t1, t2) if

∫ t2

t1

∫

Ω

(
|Du|p−2Du ·Dη − up−1∂η

∂t

)
dµ dt = 0 (2.1)

for all η ∈ C∞
0 (Ω×(t1, t2)). Further, we say that u is a supersolution to

(1.1), if the integral (2.1) is nonnegative for all η ∈ C∞
0 (Ω×(t1, t2)) with

η ≥ 0. If this integral is nonpositive, we say that u is a subsolution.

Let t1 < τ1 < τ2 < t2. If the test function η vanishes only on the lateral
boundary ∂Ω × (τ1, τ2), then the boundary terms

∫

Ω

u(x, τ1)
p−1η(x, τ1) dµ = lim

σ→0

1

σ

∫ τ1+σ

τ1

∫

Ω

u(x, t)p−1η(x, t) dµ dt

and∫

Ω

u(x, τ2)
p−1η(x, τ2) dµ = lim

σ→0

1

σ

∫ τ2

τ2−σ

∫

Ω

u(x, t)p−1η(x, t) dµ dt

have to be included. In the case of a supersolution to the doubly
nonlinear equation (1.1) the condition becomes∫ τ2

τ1

∫

Ω

|Du|p−2Du ·Dη dµ dt

+

[∫

Ω

up−1η dµ

]τ2

t=τ1

−
∫ τ2

τ1

∫

Ω

up−1∂η

∂t
dµ dt ≥ 0

(2.2)

for almost every τ1, τ2 with t1 < τ1 < τ2 < t2.

The measure µ is doubling, if there exists a universal constant D0 ≥ 1
such that

µ(B(z, 2R)) ≤ D0µ(B(z, R)) (2.3)

for every z ∈ Rn and R > 0. Here B(z, R) denotes the open ball with
center z and radius R. The dimension related to a doubling measure is
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defined as dµ = log2D0. Note that in the case of the Lebesgue measure
the dimension is n.

The measure is said to support a weak (1, p)-Poincaré inequality if there
exist constants P0 > 0 and τ ≥ 1 such that

∫

B(z,R)

|v − vB(z,R)| dµ ≤ P0R
(∫

B(z,τR)

|Dv|p dµ
)1/p

, (2.4)

for every v ∈ H1,p
loc (Rn, µ), z ∈ Rn and R > 0. Here we use the notation

vB(z,R) =

∫

B(z,R)

v dµ =
1

µ(B(z, R))

∫

B(z,R)

v dµ.

The word weak refers to the possibility that τ > 1. If τ = 1, the space
is said to support a (1, p)-Poincaré inequality.

From now on we assume that the measure µ is doubling and supports a
weak (1, p)-Poincaré inequality. Moreover, we assume that the measure
is nontrivial in the sense that the measure of every nonempty open set
is strictly positive and measure of every bounded set is finite.

Let 0 < σ ≤ 1, τ ∈ R and B(z, r) be a ball in Rn. We denote

U = B(z, r) × (τ − rp, τ + rp),

σU+ = B(z, σr) ×
(
τ +

1

2
rp − 1

2
(σr)p, τ +

1

2
rp +

1

2
(σr)p

)

and

σU− = B(z, σr) ×
(
τ − 1

2
rp − 1

2
(σr)p, τ − 1

2
rp +

1

2
(σr)p

)
.

We give a proof for the following scale invariant parabolic Harnack
inequality.

Theorem 2.5. Let 1 < p < ∞ and assume that the measure µ is
doubling and supports a weak (1, p)-Poincaré inequality. Let u ≥ ρ > 0
be a weak solution to (1.1) in U and let 0 < σ < 1. Then we have

ess sup
σU−

u ≤ C ess inf
σU+

u, (2.6)

where the constant C depends only on p, D0, P0 and σ.

Note carefully that the constant in (2.6) is independent of ρ. A modi-
fication of the proof shows that the technical assumption u ≥ ρ can be
removed and that the result holds for all nonnegative solutions.

The original proof with the Lebesgue measure is due to Trudinger [Tru].
For a different approach we refer to a recent work by Gianazza and
Vespri [GiVe].
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It is well-known that the local Hölder continuity of a weak solution
is a consequence of the Harnack inequality when p = 2, see [Mo1].
However, due to the nonlinearity of the term (up−1)t when p 6= 2, it
is not clear how to modify the same proof for the doubly nonlinear
equation (1.1). The local Hölder continuity of the solution has been
proved in [Ve] using a different method.

In the Euclidean space the weak (1, p)-Poincaré inequality implies the
(1, p)-Poincaré inequality, if the measure is doubling, see Theorem 3.4
in [HaK]. Thus we may assume that τ = 1 in (2.4). On the other
hand, these assumptions imply a weak (κ, p)-Sobolev-Poincaré inequal-
ity with

κ =





dµp

dµ − p
, 1 < p < dµ,

2, p ≥ dµ,
(2.7)

where dµ is the dimension related to the measure. More precisely, there
are constants C > 0 and τ ′ ≥ 1 such that

(∫

B(z,R)

|v − vB(z,R)|κ dµ
)1/κ

≤ CR
(∫

B(z,τ ′R)

|Dv|p dµ
)1/p

, (2.8)

for every z ∈ Rn and R > 0. The constant C depends only on p,
D0 and P0. For the proof, we refer to [BCLS] and [HaK]. Again, by
Theorem 3.4 in [HaK] we may take τ ′ = 1 in (2.8).

For Sobolev functions with the zero boundary values we have the follow-
ing version of Sobolev’s inequality. Suppose that v ∈ H1,p

0 (B(z, R), µ).
Then (∫

B(z,R)

|v|κ dµ
)1/κ

≤ CR
(∫

B(z,R)

|Dv|p dµ
)1/p

. (2.9)

For the proof we refer, for example, to [KS].

The following weighted Poincaré inequality is a consequence of the
doubling property (2.3) and the (1, p)-Poincaré inequality (2.4). We
refer to Theorem 5.3.4 in [SaCo1].

Theorem 2.10. Suppose that u ∈ H1,p(B(z, R), µ). Let

φ(x) =
(
1 − |x− z|

R

)θ
+
,

where θ > 0. Then there exists a constant C = C(p,D0, P0, θ) such
that for all 0 < r < R∫

B(z,r)

|u− uφ|pφ dµ ≤ Crp
∫

B(z,r)

|Du|pφ dµ,

where

uφ =

∫
B(z,r)

uφ dµ
∫
B(z,r)

φ dµ
.

5



We use the following modification of an abstract lemma originally due
to Bombieri [BoGi] and [Bomb]. Our proof follows closely [Mo2] and
Lemma 2.2.6 in [SaCo1].

Lemma 2.11. Let ν be a Borel measure and θ, A and γ be positive
constants, 0 < δ < 1 and 0 < q ≤ ∞. Let Uσ be bounded measurable
sets with Uσ′ ⊂ Uσ for 0 < δ ≤ σ′ < σ ≤ 1. Moreover, if q < ∞, we
assume that the doubling condition ν(U1) ≤ Aν(Uδ) holds. Let f be a
positive measurable function on U1 which satisfies the reverse Hölder
inequality (∫

Uσ′

f q dν
)1/q

≤
( A

(σ − σ′)θ

∫

Uσ

f s dν
)1/s

with 0 < s < q. Assume further that f satisfies

ν({x ∈ U1| log f > λ}) ≤ Aν(Uδ)

λγ

for all λ > 0. Then (∫

Uδ

f q dν
)1/q

≤ C,

where C depends only on θ, δ, γ, q and A.

Proof. We denote

ψ = ψ(σ) = log
(∫

Uσ

f q dν
)1/q

.

Hölder’s inequality gives
∫

Uσ

f s dν =
1

ν(Uσ)

∫

log f≤ψ/2
f s dν +

1

ν(Uσ)

∫

log f>ψ/2

f s dν

≤ exp(ψs/2) +
(∫

Uσ

f q dν
)s/q(ν({log f > ψ/2})

ν(Uσ)

)(q−s)/q

≤ exp(ψs/2) + exp(ψs)

(
A

(ψ/2)γ

)(q−s)/q

.

Let ψ be so large that

0 < log
(
ψγ/A2γ

)
≤ qψ.

The obtained lower bound on ψ depends on A, γ and q. We call it A1.
If we choose

s =
2

3
ψ−1 log

(
ψγ/A2γ

)
,

then 0 < s < q and we have
∫

Uσ

f s dν ≤ 2 exp(ψs/2).
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Next, we take a logarithm of the reverse Hölder inequality and use the
estimate above. This implies that

ψ(σ′) ≤1

s

(
log

( 2A

(σ − σ′)θ

)
+ ψ(σ)s/2

)

=
ψ(σ)

2

(
3 log

( 2A

(σ − σ′)θ

)
/ log

(
ψγ/A2γ

)
+ 1

)
.

Suppose that

ψγ/A2γ ≥
( 2A

(σ − σ′)θ

)6

from which it follows that

ψ ≥ A2

(σ − σ′)6θ/γ
,

where A2 depends only on A and γ. For ψ(σ) large we have

ψ(σ′) ≤ 3

4
ψ(σ).

On the other hand, if

ψ(σ) ≤ min
(
A1,

A2

(σ − σ′)6θ/γ

)
,

then the doubling condition implies that

ψ(σ′) ≤ log
( ν(Uσ)
ν(Uσ′)

)
+ ψ(σ) ≤ logA+ min

(
A1,

A2

(σ − σ′)6θ/γ

)
.

From this we conclude that here exists a constant C depending only
on A, γ and q such that

ψ(σ′) ≤ 3

4
ψ(σ) + C

(
1 +

1

(σ − σ′)6θ/γ

)
.

The claim follows by a standard iteration argument (see for example
Lemma 5.1 in [Giaq]). �

3. Estimates for super- and subsolutions

The following four Caccioppoli type estimates are essentially conse-
quences of choosing a correct test function in (2.1). There is a well-
recognized difficulty with the test functions. Namely, in proving esti-
mates we usually need a test function which depends on the solution
itself. Then we cannot avoid that the “forbidden quantity” ut shows
up in the calculation of ηt. In most cases one can easily overcome this
difficulty by using an equivalent definition in terms of Steklov averages,
as on pages 18 and 25 in [DiBe] and in Chapter 2 of [WZYL]. Alter-
natively, one can proceed using convolutions with smooth mollifiers as
on pages 199–121 in [AS]. Observe that the mollification is taken with
respect to the time variable only.
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Lemma 3.1. Suppose that u ≥ ρ > 0 is a supersolution in Ω× (t1, t2).
Then v = u−1 is a subsolution.

Proof. Let ϕ ∈ C∞
0 (Ω × (t1, t2)) with ϕ ≥ 0. Formally we choose the

test function η = u2(1−p)ϕ. Then

Dη = −2(p− 1)u1−2pϕDu+ u2(1−p)Dϕ

and
∂η

∂t
= −2(p− 1)u1−2pϕ

∂u

∂t
+ u2(1−p)∂ϕ

∂t
.

A substitution in (2.2) leads to

0 ≤− 2(p− 1)

∫ t2

t1

∫

Ω

|Du|pu1−2pϕdµ dt

+

∫ t2

t1

∫

Ω

u2(1−p)|Du|p−2Du ·Dϕ dµ dt

+ 2(p− 1)

∫ t2

t1

∫

Ω

u−pϕ
∂u

∂t
dµ dt−

∫ t2

t1

∫

Ω

u1−p∂ϕ

∂t
dµ dt.

An integration by parts gives
∫ t2

t1

∫

Ω

u−pϕ
∂u

∂t
dµ dt = − 1

p− 1

∫ t2

t1

∫

Ω

∂(u1−p)

∂t
ϕ dµ dt

=
1

p− 1

∫ t2

t1

∫

Ω

u1−p∂ϕ

∂t
dµ dt.

Therefore, we obtain

0 ≤
∫ t2

t1

∫

Ω

|Du|p−2Du ·Dϕu2(1−p) dµ dt+

∫ t2

t1

∫

Ω

u1−p∂ϕ

∂t
dµ dt

= −
∫ t2

t1

∫

Ω

(
|Dv|p−2Dv ·Dϕ− vp−1∂ϕ

∂t

)
dµ dt.

Here we used the fact that Du = −v−2Dv. �

Lemma 3.2. Suppose that u ≥ ρ > 0 is a supersolution in Ω × (t1, t2)
and let ε > 0 with ε 6= p− 1. Then there exists a constant C = C(p, ε)
such that∫ t2

t1

∫

Ω

|Du|pu−ε−1ϕp dµ dt+ ess sup
t1<t<t2

∫

Ω

up−1−εϕp dµ

≤ C

∫ t2

t1

∫

Ω

up−1−ε|Dϕ|p dµ dt+ C

∫ t2

t1

∫

Ω

up−1−εϕp−1
∣∣∣∂ϕ
∂t

∣∣∣ dµ dt

for every ϕ ∈ C∞
0 (Ω × (t1, t2)) with ϕ ≥ 0.

Proof. Formally we choose the test function η = u−εϕp so that

Dη = −εu−ε−1ϕpDu+ u−εD(ϕp)
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and
∂η

∂t
= −εu−ε−1ϕp

∂u

∂t
+ u−ε

∂(ϕp)

∂t
,

where ϕ ∈ C∞
0 (Ω × (t1, t2)) with ϕ ≥ 0. Let t1 < τ1 < τ2 < t2. We

integrate by parts and get

−
∫ τ2

τ1

∫

Ω

up−1∂η

∂t
dµ dt+

[∫

Ω

up−1η dµ

]τ2

t=τ1

=
ε

p− 1 − ε

∫ τ2

τ1

∫

Ω

∂(up−1−ε)

∂t
ϕp dµ dt−

∫ τ2

τ1

∫

Ω

up−1−ε∂(ϕ
p)

∂t
dµ dt

+

[∫

Ω

up−1−εϕp dµ

]τ2

t=τ1

≤ p(p− 1)

|p− 1 − ε|

∫ τ2

τ1

∫

Ω

up−1−ε
∣∣∣∂ϕ
∂t

∣∣∣ϕp−1 dµ dt

+
p− 1

p− 1 − ε

[∫

Ω

up−1−εϕp dµ dt

]τ2

t=τ1

.

Hence a substitution of η in (2.2) gives

0 ≤− ε

∫ τ2

τ1

∫

Ω

|Du|pu−ε−1ϕp dµ dt

+ p

∫ τ2

τ1

∫

Ω

|Du|p−1ϕp−1|Dϕ|u−ε dµ dt

+
p(p− 1)

|p− 1 − ε|

∫ τ2

τ1

∫

Ω

up−1−ε
∣∣∣∂ϕ
∂t

∣∣∣ϕp−1 dµ dt

+
p− 1

p− 1 − ε

[∫

Ω

up−1−εϕp dµ dt

]τ2

t=τ1

= − εI1 + pI2 +
p(p− 1)

|p− 1 − ε|I3 +
p− 1

p− 1 − ε
I4.

Young’s inequality implies

I2 =

∫ τ2

τ1

∫

Ω

(
|Du|ϕu−(ε+1)/p

)p−1(|Dϕ|u−ε+(ε+1)(p−1)/p
)
dµ dt

≤ γI1 + c(γ)

∫ τ2

τ1

∫

Ω

|Dϕ|pu−εp+(ε+1)(p−1) dµ dt

= γI1 + c(γ)

∫ τ2

τ1

∫

Ω

|Dϕ|pup−1−ε dµ dt,

where γ > 0. Thus we have

I1 −
2(p− 1)

ε(p− 1 − ε)
I4

≤ 2p c(ε/2)

ε

∫ τ2

τ1

∫

Ω

|Dϕ|pup−1−ε dµ dt+
2p(p− 1)

ε|p− 1 − ε|I3,
9



where we have chosen γ = ε/2p. Furthermore, if ε < p− 1 by choosing
τ2 = t2 and τ1 = τ > t1 such that∫

Ω

up−1−ε(x, τ)ϕp(x, τ) dµ ≥ 1

2
ess sup
t1<t<t2

∫

Ω

up−1−εϕp dµ

we obtain

ess sup
t1<t<t2

∫

Ω

up−1−εϕp dµ

≤ C

∫ t2

τ1

∫

Ω

|Dϕ|pup−1−ε dµ dt+ C

∫ t2

τ1

∫

Ω

up−1−ε
∣∣∣∂ϕ
∂t

∣∣∣ϕp−1 dµ dt

≤ C

∫ t2

t1

∫

Ω

|Dϕ|pup−1−ε dµ dt+ C

∫ t2

t1

∫

Ω

up−1−ε
∣∣∣∂ϕ
∂t

∣∣∣ϕp−1 dµ dt.

We conclude the same estimate for ε > p− 1, if we choose τ1 = t1 and
τ2 = τ . Now the result follows with the constant C depending on ε
and p. Remark that the constant blows up as ε tends to 0 or p− 1. �

Next, we show a corresponding result for a subsolution. Observe that
in the following lemma we may have quantities which are not a priori
finite. Nevertheless, we can make our calculations with a truncated test
function. Finally, we obtain the result by letting the level of truncation
go to infinity. In fact, this also justifies the formal calculations made
in the proof of Lemma 5.1.

Lemma 3.3. Suppose that u ≥ ρ > 0 is a subsolution in Ω × (t1, t2)
and let ε > 0. Then there exists a constant C = C(ε, p) such that

∫ t2

t1

∫

Ω

|Du|puε−1ϕp dµ dt+ ess sup
t1<t<t2

∫

Ω

up−1+εϕp dµ

≤ C

∫ t2

t1

∫

Ω

up−1+ε|Dϕ|p dµ dt+ C

∫ t2

t1

∫

Ω

up−1+εϕp−1
∣∣∣∂ϕ
∂t

∣∣∣ dµ dt

for every ϕ ∈ C∞
0 (Ω × (t1, t2)) with ϕ ≥ 0.

Proof. This time we formally choose the test function η = uεϕp. Oth-
erwise the assertion follows as in the proof of Lemma 3.2. The constant
C blows up as ε tends to 0. �

Finally, we show a Caccioppoli type estimate for the logarithm of a
supersolution.

Lemma 3.4. Suppose that u ≥ ρ > 0 is a supersolution in Ω× (t1, t2).
Then there exists a constant C = C(p) such that

∫ t2

t1

∫

Ω

|D(log u)|pϕp dµ dt+ ess sup
t1<t<t2

∣∣∣
∫

Ω

log uϕp dµ
∣∣∣

≤ C

∫ t2

t1

∫

Ω

|Dϕ|p dµ dt+ C

∫ t2

t1

∫

Ω

| log u|ϕp−1
∣∣∣∂ϕ
∂t

∣∣∣ dµ dt
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for every ϕ ∈ C∞
0 (Ω × (t1, t2)) with ϕ ≥ 0.

Proof. Let η = u1−pϕp, where ϕ ∈ C∞
0 (Ω × (t1, t2)) and ϕ ≥ 0. We

integrate by parts and obtain

−
∫ τ2

τ1

∫

Ω

up−1∂η

∂t
dµ dt+

[∫

Ω

up−1η dµ

]τ2

t=τ1

=(p− 1)

∫ τ2

τ1

∫

Ω

∂ log u

∂t
ϕp dµ dt−

∫ τ2

τ1

∫

Ω

∂(ϕp)

∂t
dµ dt

+

[∫

Ω

ϕp dµ

]τ2

t=τ1

= − p(p− 1)

∫ τ2

τ1

∫

Ω

log u ϕp−1∂ϕ

∂t
dµ dt

+ (p− 1)

[∫

Ω

log u ϕp dµ

]τ2

t=τ1

,

where t1 < τ1 < τ2 < t2. We denote v = log u and substitute η in (2.2)
and get

0 ≤−
∫ τ2

τ1

∫

Ω

|Dv|pϕp dµ dt+ p

p− 1

∫ τ2

τ1

∫

Ω

|Dv|p−1|Dϕ|ϕp−1 dµ dt

+

[∫

Ω

vϕp dµ

]τ2

t=τ1

+ p

∫ τ2

τ1

∫

Ω

|v|ϕp−1

∣∣∣∣
∂ϕ

∂t

∣∣∣∣ dµ dt.

We apply Young’s inequality for the second term on the right-hand side
and obtain

∫ τ2

τ1

∫

Ω

(|Dv|ϕ)p−1|Dϕ| dµ dt

≤ p− 1

2p

∫ τ2

τ1

∫

Ω

|Dv|pϕp dµ dt+ C

∫ τ2

τ1

∫

Ω

|Dϕ|p dµ dt.

Consequently, we have
∫ τ2

τ1

∫

Ω

|Dv|pϕp dµ dt−
[∫

Ω

vϕp dµ

]τ2

t=τ1

≤ C

∫ τ2

τ1

∫

Ω

|Dϕ|p dµ dt+ C

∫ τ2

τ1

∫

Ω

|v|ϕp−1

∣∣∣∣
∂ϕ

∂t

∣∣∣∣ dµ dt.
(3.5)

Now the claim follows in the standard way as in the proof of Lemma
3.2. �

Remark. In (3.5) the test function ϕ does not need to have a compact
support in time. We will use this fact later.
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4. Reverse Hölder inequality for a supersolution

Let 0 < σ ≤ 1, τ ∈ R, T > 0 and B(z, r) be a ball in Rn. We denote

Q = B(z, r) × (τ − Trp, τ + Trp)

and

σQ = B(z, σr) ×
(
τ − T (σr)p, τ + T (σr)p

)
.

The parameter T is going to be chosen so that the time intervals in
various lemmas are compatible.

In the following lemma our goal is to obtain a constant which is inde-
pendent of the parameter s. In the standard approach of Moser [Mo1]
only a finite iteration is needed. In that case there is no need to control
the asymptotic behaviour of the constant. In our approach the number
of iterations is not bounded and we make a geometrically convergent
partition of the cylinder Q in order to obtain a uniform bound for the
constant.

Lemma 4.1. Suppose that u ≥ ρ > 0 is a supersolution in Q and let
0 < δ < 1. Then there exist positive constants C = C(p, q,D0, P0, T, δ)
and θ = θ(p,D0) such that

(∫

σ′Q

uq dµ dt
)1/q

≤
( C

(σ − σ′)θ

)1/s(∫

σQ

us dµ dt
)1/s

for all 0 < δ ≤ σ′ < σ ≤ 1 and for all 0 < s < q < q0, where
q0 = (p− 1)(2 − p/κ) and κ > p is as in (2.7).

Proof. The proof is based on the successive use of Sobolev’s inequality
and Caccioppoli’s estimate. Let γ = 2 − p/κ. We fix σ and divide the
interval (σ′, σ) into k parts by setting

σ0 = σ, σk = σ′, σj = σ − (σ − σ′)
1 − γ−j

1 − γ−k
.

We shall fix k later. We denote Qj = σjQ = Bj × Tj. We also choose
test functions with the following properties:

supp (ϕj) ⊂ Qj,

0 ≤ ϕj ≤ 1 in Qj, ϕj = 1 in Qj+1,

|Dϕj| ≤ C
γj

r(σ − σ′)
,

∣∣∣∂ϕj
∂t

∣∣∣ ≤ C

T

( γj

r(σ − σ′)

)p
in Qj.

12



Furthermore, let α = p − 1 − ε and 0 < ε < p − 1. An application of
Hölder’s inequality yields

∫

Qj+1

uγα dµ dt

≤
∫

Tj+1

(∫

Bj+1

uαϕpj dµ
)(κ−p)/κ(∫

Bj+1

(
uα/pϕj

)κ
dµ

)p/κ
dt

≤ |Tj|µ(Bj)

|Tj+1|µ(Bj+1)

(
ess sup

Tj

∫

Bj

uαϕpj dµ
)(κ−p)/κ

×
∫

Tj

(∫

Bj

(
uα/pϕj

)κ
dµ

)p/κ
dt.

Since the measure µ is doubling and σj+1 ≥ min(δ, (γ + 1)−1)σj, the
first factor on the right hand side is bounded by a constant independent
of j, r, σ and σ′. We now use Sobolev’s inequality together with
Caccioppoli’s estimate and obtain

∫

Qj+1

uγα dµ dt

≤C
(

ess sup
Tj

∫

Bj

uαϕpj dµ
)(κ−p)/κ

rp
∫

Tj

∫

Bj

∣∣D(uα/pϕj)
∣∣p dµ dt

≤C
(

ess sup
Tj

∫

Bj

uαϕpj dµ

+
1

δT

∫

Tj

∫

Bj

αp|Du|pu−ε−1ϕpj + up−1−ε|Dϕj|p dµ dt
)γ

≤C
( ∫

Tj

∫

Bj

up−1−ε
(
|Dϕj|p +

∣∣∣∂ϕj
∂t

∣∣∣
)
dµ dt

)γ

≤C
( γjp

(σ − σ′)p

∫

Qj

uα dµ dt
)γ
.

(4.2)

Careful study of the proof of Lemma 3.2 shows that the constant C is
indeed independent of α; the term αp in the inequality above cancels
the impact of the singularity of the constant in Lemma 3.2 when ε is
close to p− 1.

The next step in the proof is to iterate (4.2). Observe that the condition
0 < α < p − 1 must be satisfied. This gives the upper bound q0 =
γ(p− 1) for q. For the iteration, we fix q and s with q > s, and k such
that sγk−1 ≤ q ≤ sγk. Let ρ0 such that ρ0 ≤ s and q = γkρ0. Denote

13



ρj = γjρ0 for j = 0, . . . , k. Then we have

(∫

Qk

uq dµ dt
)1/q

≤
( Cγk

σ − σ′

)p/ρk−1
(∫

Qk−1

uρk−1 dµ dt
)1/ρk−1

≤ ...

≤
( cprod(k)

(σ − σ′)γ∗

∫

σQ

uρ0 dµ dt
)1/ρ0

,

where

cprod(k) = Cγ∗
k−1∏

j=0

(
γj+1

)pγ−j

and

γ∗ = p

k−1∑

j=0

γ−j =
pγ

γ − 1
(1 − γ−k).

The constant C depends on q since the constant in Lemma 3.2 has a
singularity at ε = 0. Obviously cprod(k) is uniformly bounded on k.
From Hölder’s inequality we obtain

(∫

σ′Q

uq dµ dt
)1/q

≤
( C

(σ − σ′)γ∗

)1/ρ0(∫

σQ

us dµ dt
)1/s

.

Furthermore, since sγk−1 ≤ ρ0γ
k, we have ρ0 ≥ s/γ and consequently

the required estimate follows with θ = pγ2/(γ − 1). �

5. Boundedness of a subsolution

The proof of the following bound for the essential supremum is based
on the standard Moser iteration scheme.

Lemma 5.1. Suppose that u ≥ ρ > 0 is a subsolution in Q. Let
0 < δ < 1. Then there exist positive constants C = C(p,D0, P0, T, δ)
and θ = θ(p,D0), such that

ess sup
σ′Q

u ≤
( C

(σ − σ′)θ

)1/s(∫

σQ

us dµ dt
)1/s

for all 0 < δ ≤ σ′ < σ ≤ 1 and for all s > 0.

Proof. Without loss of generality we can choose T = 1. Let the choices
of test functions and σj be the same as in the proof of Lemma 4.1 with
the exception that

σj = σ − (σ − σ′)(1 − γ−j).
14



As in the proof of Lemma 4.1 we obtain from the Sobolev’s inequality
and from Lemma 3.3 that∫

Qj+1

uγα dµ dt ≤ C
( αpγjp

(σ − σ′)p

∫

Qj

uα dµ dt
)γ
, (5.2)

where
γ = 2 − p

κ
, α = p− 1 + ε, ε ≥ 1.

In Lemma 3.3 the constant is singular as ε is close to 0. We deliberately
avoid this singularity by choosing ε ≥ 1. Moreover, we choose αj = pγj,
j = 0, 1, . . . . We iterate the inequality above and obtain

(∫

Q0

up dµ dt
)1/p

≥
((σ − σ′)

C

)γ−1+γ−2+···+γ−k+1 k−1∏

j=0

γ−2j/γj
(∫

Qk

uγ
kp dµ dt

)1/γkp

.

We let k tend to infinity and get the result for s ≥ p from Hölder’s
inequality.

If s < p, then we have

ess sup
σ′Q

u ≤
( C

(σ − σ′)θ

)1/p(∫

σQ

up dµ dt
)1/p

≤
(p− s

2p
ess sup

σQ
u
)(p−s)/p( 2p

p− s

)(p−s)/p

×
( C

(σ − σ′)θ

)1/p(∫

σQ

us dµ dt
)1/p

≤ 1

2
ess sup

σQ
u+

(
(p− s)s−p

C

(σ − σ′)θ

)1/s(∫

σQ

us dµ dt
)1/s

≤ 1

2
ess sup

σQ
u+

( C

(σ − σ′)θ

)1/s(∫

σQ

us dµ dt
)1/s

,

where we used Young’s inequality. By a standard iteration argument
(see for example Lemma 5.1 in [Giaq]) we obtain the result. �

6. Logarithmic estimate for a supersolution

We already have the reverse Hölder inequalities for both super- and
subsolutions. Next we show that the condition for the logarithm in the
assumptions of Lemma 2.11 holds.

Let 0 < σ ≤ 1, τ ∈ R, T > 0 and B(z, r) be a ball in Rn. We set

Q = B(z, r) × (τ − Trp, τ + Trp),

σQ+ = B(z, σr) × (τ, τ + T (σr)p)
15



and
σQ− = B(z, σr) × (τ − T (σr)p, τ).

Let dν = dµ dt.

Lemma 6.1. Suppose that u ≥ ρ > 0 is a supersolution in Q and let

ϕ(x, t) = ϕ(x) =
(
1 − 2

|x− z|
(1 + σ)r

)
+
,

where 0 < σ < 1 and (x, t) ∈ B(z, r) × (τ − (σr)p, τ + (σr)p). Let

β =

∫

B(z,r)

log u(x, τ)ϕp(x) dµ(x).

Then there exist constants C = C(p,D0, P0, σ, T ) and C ′ = C ′(p,D0,σ,T )
such that

ν
(
{(x, t) ∈ σQ−| log u(x, t) > λ+ β + C ′}

)
≤ C

λp−1
ν(σQ−)

and

ν
(
{(x, t) ∈ σQ+| logu(x, t) < −λ + β − C ′}

)
≤ C

λp−1
ν(σQ+).

for every λ > 0.

Proof. Let

N =

∫

B(z,r)

ϕp(x) dµ(x).

Then (1 − σ

1 + σ

)p
µ(B(z, σr)) ≤ N ≤ µ(B(z, r)).

We denote

v(x, t) = log u(x, t) − β and V (t) =
1

N

∫

B(z,r)

v(x, t)ϕp(x) dµ(x).

Remark that V (τ) = 0. Since ϕ is independent of t, we obtain from
(3.5) that

∫ t2

t1

∫

B(z,r)

|Dv|pϕp dµ dt−
[∫

B(z,r)

vϕp dµ

]t2

t=t1

≤ C

∫ t2

t1

∫

B(z,r)

|Dϕ|p dµ dt,

where τ − (σr)p ≤ t1 < t2 ≤ τ + (σr)p. Furthermore, Theorem 2.10
yields ∫

B(z,r)

|Dv|pϕp dµ ≥ 1

Crp

∫

B(z,r)

|v − V (t)|pϕp dµ

≥ (1 − σ)p

Crp

∫

B(z,σr)

|v − V (t)|p dµ.
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It follows that

1

CNrp

∫ t2

t1

∫

B(z,σr)

|v − V (t)|p dµ dt+ V (t1) − V (t2)

≤ C(t2 − t1)

rp
µ(B(z, r))

N

≤ C ′ t2 − t1
T (σr)p

.

In the last inequality we used the fact that

N =

∫

B(z,r)

ϕp(x) dµ(x) ≥
∫

B(z,r/4)

ϕp(x) dµ(x)

≥ 2−pµ(B(z, r/4)) ≥ 2−pD−2
0 µ(B(z, r)).

By denoting

w(x, t) = v(x, t) + C ′ t− τ

T (σr)p
and W (t) = V (t) + C ′ t− τ

T (σr)p

we obtain

1

CNrp

∫ t2

t1

∫

B(z,r)

|w −W (t)|p dµ dt+W (t1) −W (t2) ≤ 0.

From this we conclude that W (t1) ≤ W (t2) whenever τ − (σr)p ≤ t1 <
t2 ≤ τ + (σr)p. Since W is a monotonic function it is differentiable
almost everywhere. As a consequence we have

1

CNrp

∫

B(z,r)

|w −W (t)|p dµ−W ′(t) ≤ 0 (6.2)

for almost every t with t1 < t < t2. Let

E−
λ (t) = {(x, t) ∈ σQ−|w(x, t) > λ}.

We observe that∫

B(z,σr)

|w −W (t)|p dµ ≥ (λ−W (t))pµ(E−
λ (t)) ≥ µ(E−

λ (t))λp

because W (t) ≤ W (τ) = 0 as τ > t > t− (σr)p. Thus we have

− W ′(t)

(λ−W (t))p
+ C

µ(E−
λ (t))

Nrp
≤ 0

for almost every τ > t > t − (σr)p. We integrate this inequality over
the interval (τ − (σr)p, τ) and obtain

ν(E−
λ )

Nrp
≤ C

[
(λ−W (t))−(p−1)

]τ
t=τ−(σr)p ≤ C

λp−1
.

This implies

ν
(
{(x, t) ∈ σQ−| log u(x, t) > λ+ β + C ′}

)
≤ Cν(σQ−)

λp−1
.
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Let
E+
λ (t) = {(x, t) ∈ σQ+|w(x, t) < −λ}.

As in the case of Q− we conclude that∫

σB(z,r)

|w −W (t)|p dµ ≥ µ(E+
λ (t))(λ+W (t))p ≥ µ(E−

λ (t))λp

because W (t) ≥ W (τ) = 0 as τ < t < τ + (σrp). Thus, from (6.2), we
have

− W ′(t)

(λ +W (t))p
+ C

µ(E+
λ (t))

ν(Q+)
≤ 0

for almost every τ < t < t + (σr)p. An integration over the interval
(τ, τ + (σr)p) gives

ν(E+
λ )

ν(σQ+)
≤ −C

[
(λ+W (t))−(p−1)

]τ+(σr)p

t=τ
≤ C

λp−1
.

Therefore

ν
(
{(x, t) ∈ σQ+| log u(x, t) < −λ + β − C ′ }

)
≤ Cν(σQ+)

λp−1

and the claim follows. �

7. Harnack’s inequality

First we give a proof for a weak Harnack inequality. We use the same
notation as in Theorem 2.5.

Theorem 7.1. Let u ≥ ρ > 0 be a supersolution in U . Then there
exist constants C = C(p,D0, P0, q, δ) and q0 = (p− 1)(2 − p/κ), κ > p
as in (2.7), such that

(∫

δU−
uq dµ dt

)1/q

≤ C ess inf
δU+

u,

for 0 < δ < 1 and 0 < q < q0.

Proof. We fix 0 < δ < 1. Let ϕ be as in the assumptions of Lemma
6.1 and let β and C ′ be the corresponding constants. We define

v+ = u−1 exp(β − C ′) and v− = u exp(−β − C ′).

We apply Lemma 6.1 for the function u and have

ν
(
{(x, t) ∈ 1 + δ

2
U+| log v+(x, t) > λ}

)
≤ C

λp−1
ν
(1 + δ

2
U+

)

and

ν
(
{(x, t) ∈ 1 + δ

2
U−| log v−(x, t) > λ}

)
≤ C

λp−1
ν
(1 + δ

2
U−

)
.

Here we also used a fact that

ν(B(z, σR) × (τ, τ ± (σR)p)) ≤ Cν(δU±).
18



Lemma 3.1 implies that v+ is a subsolution in U . Consequently, Lemma
5.1 gives

ess sup
σ′U+

v+ ≤
( C

(σ − σ′)θ

∫

σU+

(v+)s dµ dt
)1/s

whenever δ ≤ σ′ < σ ≤ (1 + δ)/2 and s > 0. Note that we have chosen
a suitable parameter T to match the time scales in various lemmas.
We now use Lemma 2.11 and obtain

ess sup
δU+

v+ ≤ C. (7.2)

Furthermore, we have from the corollary of Lemma 4.1 for v− that
(∫

σ′U−
(v−)q dµ dt

)1/q

≤
( C

(σ − σ′)θ

∫

σU−
(v−)s dµ dt

)1/s

when δ ≤ σ′ < σ ≤ (1 + δ)/2 and 0 < s < q < q0. From Lemma 2.11
we obtain (∫

δU−
(v−)q dµ dt

)1/q

≤ C.

Multiplying this with (7.2) gives
(∫

δU−
uq dµ dt

)1/q

≤ C ess inf
δU+

u

and the result follows. �

Now we are ready to prove the full Harnack inequality.

Proof of theorem 2.5. We apply Lemma 7.1 with δ = (1 + σ)/2.
The result follows now from Lemma 5.1. �
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