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Abstract. The purpose of this work is to study regularity of So-
bolev functions on metric measure spaces equipped with a doub-
ling measure and supporting a weak Poincaré inequality. We show
that every Sobolev function whose gradient is integrable to power
one has Lebesgue points outside a set of 1-capacity zero. We also
show that 1-capacity is equivalent to the Hausdorff content of codi-
mension one and study characterizations of 1-capacity in terms of
Frostman’s lemma and functions of bounded variation. As the
main technical tool, we prove a metric space version of Gustin’s
boxing inequality. Our proofs are based on covering arguments
and functions of bounded variation. Perimeter measures, isoperi-
metric inequalities and coarea formula play an essential role in our
approach.

1. Introduction

We study first order Sobolev spaces in the metric space setting. Sobolev
spaces are classically defined as pth power integrable functions whose
weak gradient is integrable to power p with 1 ≤ p < ∞. In metric
measure spaces, there are several alternative definitions available, but
in general these definitions do not give the same class of functions when
p = 1. We use a definition based on upper gradients which gives the
standard Sobolev space in the Euclidean case with Lebesgue measure
also for p = 1, see [Sh]. We use the rather standard assumptions
that the measure is doubling and the space supports a weak Poincaré
inequality.

Exceptional sets for Sobolev functions are measured in terms of the
p-capacity. The theory is relatively complete in the case 1 < p <
∞, but when p = 1, somewhat unexpected phenomena occur even in
the Euclidean case with Lebesgue measure. Indeed, when 1 < p <
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∞, the p-capacity and the Hausdorff content of codimension p are
not equivalent, see the discussion, for example, in [FZ] and [EG]. In
practice, this means that when 1 < p < ∞, we always seem to lose
information if we pass from capacitary estimates to Hausdorff type
estimates (or vice versa). However, as the 1-capacity is equivalent
by two sided estimates to the Hausdorff content of codimension one,
measure theoretic arguments are available. In the Euclidean setting
this has been obtained in [Fl], see also [Ma2] and [MSZ]. Analogous
results have been studied in the setting of weighted Euclidean case
in [Tu] and in the metric space setting by [Ma1]. Indeed, our work is
closely related to the paper [Ma1] of Malý, where similar results have
been obtained by a different method. One of our goals is to further
study this phenomenon in metric measure spaces. As our results apply
to more general sets than level sets of Sobolev functions, some readers
may find our approach interesting even in the Euclidean case with
Lebesgue measure.

Our main tool is the boxing inequality, which is originally due to
Gustin [Gu]. In the Euclidean case, the boxing inequality states that
every compact set K ⊂ Rn can be covered by balls B(xi, ri), i =
1, 2, . . . , in such a way that

∞∑

i=1

rn−1
i ≤ cHn−1(∂K),

where the constant c depends only on the dimension n. Here Hn−1

refers to the (n− 1)−dimensional Hausdorff measure. We give a proof
of a metric space version of this result, which may be of independent in-
terest. Our proof is based on a Calderón-Zygmund type decomposition
and functions of bounded variation studied by Miranda [Mi]. Peri-
meter measures, isoperimetric inequalities and coarea formula play an
essential role in our approach.

We give two applications of the boxing inequality. As the first ap-
plication, we show equivalence of the capacity and Hausdorff content
when p = 1, and then we prove that Sobolev functions have Lebesgue
points except on a set of capacity zero. This result is based on a ca-
pacitary weak type estimate for the Hardy-Littlewood maximal func-
tion. This estimate is usually proved by using the Besicovitch covering
theorem, extension results or representation formulas for Sobolev func-
tions, see [FZ] and [EG]. We do not have these tools available. When
1 < p < ∞, we may also use maximal function arguments (see [KL]),
but this approach fails as well when p = 1. Instead we apply the boxing
inequality, coarea formula and covering arguments in our proof.

We also study several characterizations of the 1-capacity in the spirit of
[FZ]. In particular, we consider connections to Frostman’s lemma and
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functions of bounded variation. In the final section, we study conditions
called p-hyperbolicity and p-parabolicity introduced by Holopainen in
[Ho]. These conditions are related to non-triviality of the variational
capacity.

2. Preliminaries

We assume that X = (X, d, µ) is a complete metric measure space
equipped with a metric d and a Borel regular outer measure µ such
that 0 < µ(B) < ∞ for all balls B = B(x, r) = {y ∈ X : d(x, y) < r}.
For τ > 0, we write τB = B(x, τr).

The measure µ is said to be doubling if there exists a constant cD ≥ 1,
called the doubling constant of µ, such that

µ(2B) ≤ cDµ(B)

for all balls B of X.

In this paper, a path in X is a rectifiable nonconstant continuous map-
ping from a compact interval to X. A path can thus be parameterized
by arc length.

We define Sobolev spaces on X using upper gradients, see Shanmuga-
lingam [Sh].

Definition 2.1. A nonnegative Borel function g on X is an upper
gradient of an extended real valued function u on X if for all paths γ
joining points x and y in X we have

|u(x) − u(y)| ≤
∫

γ

g ds, (2.2)

whenever both u(x) and u(y) are finite, and
∫

γ
g ds = ∞ otherwise.

If g is a nonnegative measurable function on X and if (2.2) holds for
p-almost every path, then g is a p-weak upper gradient of u.

By saying that (2.2) holds for p-almost every path with 1 ≤ p < ∞,
we mean that it fails only for a path family with zero p-modulus. A
family Γ of curves is of zero p-modulus if there is a non-negative Borel
measurable function ρ ∈ Lp(X) such that for all curves γ ∈ Γ, the path
integral

∫
γ
ρ ds is infinite. Note that if g is a p-weak upper gradient of

u and ρ is such a function, then g + ερ is an upper gradient of u for all
ε > 0.

Definition 2.3. Let 1 ≤ p < ∞. If u is a function that is integrable
to power p in X, let

‖u‖N1,p(X) =
( ∫

X

|u|p dµ + inf
g

∫

X

gp dµ
)1/p

,
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where the infimum is taken over all p-weak upper gradients of u. The
Newtonian space on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) < ∞}/∼,

where u ∼ v if and only if ‖u − v‖N1,p(X) = 0.

Definition 2.4. We say that X supports a weak (1, p)-Poincaré in-
equality if there exist constants cP > 0 and τ ≥ 1 such that for all
balls B of X, all locally integrable functions u on X and for all p-weak
upper gradients g of u, we have∫

B

|u − uB| dµ ≤ cPr
(∫

τB

gp dµ
)1/p

, (2.5)

where

uB =

∫

B

u dµ =
1

µ(B)

∫

B

u dµ

and r is the pre-assigned radius of the ball B.

Definition 2.6. Let 1 ≤ p < ∞. The variational p-capacity of a set
E ⊂ X is the number

capp(E) = inf ‖g‖p
Lp(X),

where the infimum is taken over all nonnegative Borel measurable func-
tions g which are p-weak upper gradients of some function u ∈ N1,p(X)
that satisfies u = 1 on E. If there are no functions which satisfy the
requirements, then we set capp(E) = ∞.

Observe that if µ(X) < ∞, then the constant function one will do as
a test function and all sets are of zero capacity.

We point out here that the functions in N1,p(X) are necessarily p-
quasicontinuous (see [BBS]) and thus the above definition of capp agrees
with the classical definition of variational capacity where the functions
are required in addition to satisfy u = 1 in a neighbourhood of E
(see [FZ] or [EG]). The classical definition is needed if X = Rn and
we replace the requirement u ∈ N1,p(Rn) with u ∈ W 1,p(Rn), because
functions in W 1,p(Rn) are not necessarily p-quasicontinuous and can be
arbitrarily perturbed on a set of Lebesgue measure zero. However, for
every function in W 1,p(Rn) there is a p-quasicontinuous representative
and the definitions coincide.

Since the norm of the upper gradient does not increase under trun-
cation, we see that the same number is obtained if we restrict to the
functions 0 ≤ u ≤ 1 for which u = 1 on E.

Throughout the paper, we assume that the measure µ is doubling,
µ(X) = ∞ and that X is proper, that is, closed and bounded sets are
compact. We recall that a metric space with a doubling measure is
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proper if and only if the space is complete. In addition, we assume
that X supports a weak (1, 1)-Poincaré inequality. It follows that the
space is quasiconvex and hence uniformly perfect, see for example [Ke].

Under these assumptions, the variational p-capacity enjoys the stand-
ard properties of capacities, see for example [EG]. In particular, the
p-capacity is a Choquet capacity and consequently for all Borel sets E
(more generally, for all analytic sets), we have

capp(E) = sup{capp(K) : K ⊂ E, K compact}.
It is essential for us that these properties hold true for all values 1 ≤
p < ∞. For this we refer to [Ch]. We mainly work with compact sets,
but since we have Choquet capacities this is not a serious restriction.

There are several definitions for capacities. The Sobolev p-capacity of
a set E ⊂ X is

Cp(E) = inf ‖u‖p
N1,p(X),

where the infimum is taken over all functions u ∈ N1,p(X) for which
u = 1 on E. As with the variational p-capacity, we do not require u = 1
in a neighbourhood of E. With our assumptions on X, the variational
p-capacity and the Sobolev p-capacity have the same null sets under the
assumption that X is p–hyperbolic, see the last section. The Sobolev
capacity is the correct gauge for distinguishing between two Newtonian
functions. We say that a property holds p-quasieverywhere if the set
of points for which the property does not hold has Sobolev p-capacity
zero. If u ∈ N1,p(X), then u ∼ v if and only if u = v p-quasieverywhere.
Moreover, Corollary 3.3 in Shanmugalingam [Sh] shows that if u, v ∈
N1,p(X) and u = v µ-a.e., then u ∼ v.

Next we recall the definition and basic properties of functions of bounded
variation on metric spaces, see Miranda [Mi].

Definition 2.7. For u ∈ L1
loc(X), we define

‖Du‖(X)

= inf
{

lim inf
i→∞

∫

X

gui
dµ : ui ∈ Liploc(X), ui → u in L1

loc(X)
}
,

where gui
is a 1-weak upper gradient of ui. We say that a function

u ∈ L1(X) is of bounded variation, u ∈ BV (X), if ‖Du‖(X) < ∞.
Moreover, a measurable set E ⊂ X is said to have finite perimeter if
‖DχE‖(X) < ∞.

Observe that in [Mi] the functions of bounded variation are defined in
terms of the local Lipschitz constant

Lip u(x) = lim inf
r→0

sup
y∈B(x,r)

|u(x) − u(y)|
d(x, y)

, (2.8)
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but we may use the 1-weak upper gradient instead. Note that if u is a
locally Lipschitz continuous function, its local Lipschitz constant is an
upper gradient of u. We observe that all results of [Mi] hold for upper
gradients as well. By replacing X with an open set U ⊂ X, we may
define ‖Du‖(U). We denote

P (E, U) = ‖DχE‖(U).

From Theorem 3.4 in [Mi], we have that ‖Du‖ is a Borel regular meas-
ure (restricted to the open sets of X) with finite mass.

If the space supports a weak (1, 1)-Poincaré inequality, then for every
u ∈ BV (X), we have∫

B

|u − uB| dµ ≤ cPr‖Du‖(τB), (2.9)

where the constant cP and the dilation factor τ ≥ 1 are the same
constants as in (2.5), and r is the pre-assigned radius of B. If we
set u = χE, where E is a set of finite perimeter, we get the relative
isoperimetric inequality

min{µ(B ∩ E), µ(B \ E)} ≤ 2cPrP (E, τB). (2.10)

The following coarea formula will be useful for us.

Theorem 2.11 (Coarea formula). If u ∈ BV (X) and A ⊂ X is a
Borel set, then

‖Du‖(A) =

∫ ∞

−∞
P ({u > λ}, A) dλ.

For a proof, see Proposition 4.2 in [Mi].

3. Equivalence of the capacity and the Hausdorff
content

In this section, we show that the variational 1-capacity is equivalent
to a Hausdorff content. Our main tool is the following metric space
version of boxing inequality.

Theorem 3.1 (Boxing inequality). Let U ⊂ X be an open set of finite
perimeter with µ(U) < ∞ and τ the dilation constant in (2.5). Then
there exists a collection of disjoint balls B(xi, τri), i = 1, 2, . . ., such
that

U ⊂
∞⋃

i=1

B(xi, 5τri),

1

2cD
<

µ(U ∩ B(xi, ri))

µ(B(xi, ri))
≤ 1

2
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for i = 1, 2, . . ., and
∞∑

i=1

µ(B(xi, 5τri))

5τri
≤ c P (U, X).

The constant c depends only on the doubling constant cD and the con-
stants in the weak (1, 1)-Poincaré inequality.

Proof. Let x ∈ U . Since U is open,

µ(U ∩ B(x, r))

µ(B(x, r))
= 1

for small radii r. Therefore, there exists rx such that

µ(U ∩ B(x, rx))

µ(B(x, rx))
= 1.

Recall that µ(X) = ∞. This implies that

lim
r→∞

µ(U ∩ B(x, r))

µ(B(x, r))
= 0,

since µ(U) < ∞. Hence, there exists k = kx such that

µ(U ∩ B(x, 2mrx))

µ(B(x, 2mrx))
>

1

2

for m = 0, 1, . . . , k − 1, and

µ(U ∩ B(x, 2krx))

µ(B(x, 2krx))
≤ 1

2
. (3.2)

Because the measure µ is doubling, we obtain

µ(U ∩ B(x, 2krx))

µ(B(x, 2krx))
≥ µ(U ∩ B(x, 2k−1rx))

cDµ(B(x, 2k−1rx))
>

1

2cD
.

Denote Rx = 2krx. Since U is measurable, we obtain by (3.2) that

µ(B(x, Rx) \ U) = µ(B(x, Rx)) − µ(B(x, Rx) ∩ U)

≥ µ(U ∩ B(x, Rx)).

This implies that

min{µ(B(x, Rx) ∩ U), µ(B(x, Rx) \ U)}

= µ(B(x, Rx) ∩ U) ≥ 1

2cD
µ(B(x, Rx)).

By the relative isoperimetric inequality (2.10) and the previous estim-
ate, we obtain

µ(B(x, Rx))

Rx
≤ c P (U, B(x, τRx)).
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We apply a covering argument to the family of balls B(x, τRx), x ∈ U ,
to obtain pairwise disjoint balls B(xi, τRi), i = 1, 2, . . ., such that

⋃

x∈U

B(x, τRx) ⊂
∞⋃

i=1

B(xi, 5τRi).

Finally, we conclude that
∞∑

i=1

µ(B(xi, 5τRi))

5τRi

≤ c
∞∑

i=1

µ(B(xi, Ri))

Ri

≤ c

∞∑

i=1

P (U, B(xi, τRi)) = c P
(
U,

∞⋃

i=1

B(xi, τRi)
)

≤ c P (U, X).

Here we also used the facts that the balls are disjoint and that P (U, ·)
is a Borel measure.

Next we define a Hausdorff content by applying the Carathéodory con-
struction to the function

h(B(x, r)) =
µ(B(x, r))

r
.

The restricted spherical Hausdorff content of codimension one on X is
defined as

Hh
R(E) = inf

{ ∞∑

i=1

h(B(xi, ri)) : E ⊂
∞⋃

i=1

B(xi, ri), ri ≤ R
}
,

where 0 < R < ∞. In the above definition, we allow for the possibility
that ri = 0 for some i, with the convention that B(xi, 0) = ∅ and
h(∅) = 0.

When R = ∞,

Hh
∞(E) = inf

{ ∞∑

i=1

h(B(xi, ri)) : E ⊂
∞⋃

i=1

B(xi, ri), ri < ∞
}

is the Hausdorff content of E. The Hausdorff measure of codimension
one of E ⊂ X is defined as

Hh(E) = lim
R→0

Hh
R(E).

Remark 3.3. (1) By examining the proof of the boxing inequality (The-
orem 3.1), we see that instead of an open set U the claim holds true
for a µ-measurable set E of finite perimeter with µ(E) < ∞. In this
case, we can cover all points x for which

sup
r>0

µ(E ∩ B(x, r))

µ(B(x, r))
≥ γ > 0
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with balls as in the boxing inequality, but now the lower bound 1/2cD

is replaced with γ/2cD, and the constant c depends on γ.

(2) The boxing inequality gives us the following useful upper bound

Hh
∞(E) ≤ c inf{P (U, X) : E ⊂ U, U is open, µ(U) < ∞}.

(3) Furthermore, if R > 0 is such that for every x ∈ E there is rx > 0
with 2rx < R such that

µ(E ∩ B(x, rx))

µ(B(x, rx))
>

1

2

and
µ(E ∩ B(x, 2rx))

µ(B(x, 2rx))
≤ 1

2
,

then the cover can be taken with the additional restriction that ri < R.
Thus we obtain estimates for Hh

R(E) rather than Hh
∞(E). In particular,

if E ⊂ B(x0, R) for some x0 ∈ X and R > 0, then

Hh
2R(E) ≤ c inf{P (U, X) : E ⊂ U ⊂ B(x0, 4R), U open}.

Our next goal is to show that the capacity of order one and the Haus-
dorff content are equivalent.

Lemma 3.4. For any set E ⊂ X, we have

cap1(E) ≤ cDHh
∞(E),

where cD is the doubling constant of µ.

Proof. If Hh
∞(E) = ∞, there is nothing to prove. Therefore, without

loss of generality, we may assume that Hh
∞(E) < ∞. Let ε > 0 and

B(xi, ri), i ∈ I ⊂ N, be a covering of E such that

Hh
∞(E) >

∑

i∈I

µ(B(xi, ri))

ri
− ε.

By setting

ui(x) =

(
1 − dist(x, B(xi, ri))

ri

)

+

,

for i ∈ I, and observing that gi = χB(xi,2ri)/ri is a weak upper gradient
of ui, we obtain the following upper bound

cap1(E) ≤
∑

i∈I

cap1(B(xi, ri))

≤
∑

i∈I

∫

X

gi dµ =
∑

i∈I

µ(B(xi, 2ri))

ri

≤ cD

∑

i∈I

µ(B(xi, ri))

ri
< cD(Hh

∞(E) + ε).
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Letting ε → 0, we obtain the desired result.

Remark 3.5. (1) The proof of Lemma 3.4 also applies when 1 < p < ∞.
In this case, we obtain

capp(E) ≤ cDHh
∞(E),

where

h(B(x, r)) =
µ(B(x, r))

rp

and Hh
∞(E) is the spherical Hausdorff content of codimension p.

(2) By a modification of the proof of Lemma 3.4, we can see that if
E ⊂ B(x0, R/2), then

C1(E) ≤ (1 + R)cDHh
R(E).

The next result gives the equivalence of the 1-capacity and the Haus-
dorff content of codimension one. We provide an argument based on
the boxing inequality.

Theorem 3.6. Let K be a compact subset of X. Then

1

c
cap1(K) ≤ Hh

∞(K) ≤ c cap1(K),

where c depends only on the doubling constant cD and the constants in
the weak (1, 1)-Poincaré inequality.

Proof. By Lemma 3.4, we have

cap1(K) ≤ cDHh
∞(K).

We now prove the other direction. Let ε > 0. By a result of [KS],
we may choose a compactly supported Lipschitz continuous function u
such that u = 1 in K, 0 ≤ u ≤ 1 and∫

X

g dµ ≤ cap1(K) + ε

for some 1-weak upper gradient g of u.

By the coarea formula (Theorem 2.11), we have
∫ 1

0

P ({u > λ}, X) dλ = ‖Du‖(X).

If
P ({u > λ}, X) > ‖Du‖(X)

for every λ with 0 < λ < 1, then we get the contradiction

‖Du‖(X) =

∫ 1

0

P ({u > λ}, X) dλ > ‖Du‖(X).
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Thus for some λ0 with 0 < λ0 < 1, we have

P ({u > λ0}, X) ≤ ‖Du‖(X) ≤
∫

X

g dµ ≤ cap1(K) + ε.

The set U = {u > λ0} is an open neighborhood of K and µ(U) < ∞.

By Remark 3.3(2), we obtain

Hh
∞(K) ≤ Hh

∞(U) ≤ c P (U, X) ≤ c (cap1(K) + ε).

Since ε is arbitrary, this completes the proof.

4. Lebesgue points

The next result shows that, under our standing assumptions, functions
in N1,1(X) have Lebesgue points outside a set of 1-capacity zero, and
that they can be obtained by taking the limit of integral averages over
small balls. Note that functions in N1,1(X) are always defined 1-quasi-
everywhere and they are 1-quasicontinuous, see Theorem 1.1 in [BBS].

Theorem 4.1. Suppose that u ∈ N1,1(X). Then there is E ⊂ X such
that cap1(E) = 0 and

lim
r→0

∫

B(x,r)

|u − u(x)| dµ = 0

for every x ∈ X \ E.

Remark 4.2. A modification of the proof of Theorem 4.1 given here will
yield the stronger result that C1(E) = 0. We will include appropriate
comments in this section to demonstrate this fact.

The corresponding result for p > 1 on metric spaces has been studied
in [KL]. The proof for p = 1 is rather straightforward adaptation of
the classical proof, see [FZ] and [EG], except for the following capa-
citary weak type estimate. In Rn, this estimate is usually proved by
Besicovitch covering theorem, extension results or representation for-
mulas, see [FZ] or Lemma 1 on page 158 of [EG]. We do not have these
tools available. The method in [KL] cannot be extended to our case
either, because it requires that the Hardy-Littlewood maximal operator
is bounded in Lp(X), which is not true for p = 1.

We recall that the Hardy-Littlewood maximal function of a locally in-
tegrable function u is defined as

Mu(x) = sup

∫

B

|u| dµ,

where the supremum is taken over all open balls B which contain x.
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Lemma 4.3. If u ∈ BV (X), then

cap1({x ∈ X : Mu(x) > λ}) ≤ c

λ
‖Du‖(X) (4.4)

for every λ > 0. The constant c depends only on the doubling constant
cD and the constants in the weak (1, 1)-Poincaré inequality.

Proof. Let uλ = u/λ. Clearly uλ ∈ BV (X) and (4.4) holds if and only
if

cap1({x ∈ X : Muλ(x) > 1}) ≤ c‖Duλ‖(X).

Thus we may assume without loss of generality that λ = 1. We may
also assume that u ≥ 0.

Let
E = {x ∈ X : Mu(x) > 1}.

We apply a covering argument to find a disjoint family of balls B(xi, τri),
i = 1, 2, . . . , such that

E ⊂
∞⋃

i=1

B(xi, 5τri)

and uB(xi,ri) > 1 for every i = 1, 2, . . . . Here τ is the dilation constant
in (2.5).

Define
Fi = {x ∈ B(xi, ri) : u(x) ≤ 1/2}

and let I be the set of indices i satisfying

µ(Fi) <
1

2
µ(B(xi, ri)). (4.5)

Let us first consider the balls B(xi, ri) with i /∈ I. Then

µ(Fi) ≥
1

2
µ(B(xi, ri))

and it follows that∫

B(xi,ri)

|u − uB(xi,ri)| dµ ≥
∫

Fi

|u − uB(xi,ri)| dµ ≥ µ(B(xi, ri))/4.

Here we also used the fact that |u − uB(xi,ri)| > 1/2 in the set Fi since
uB(xi,ri) > 1.

The doubling condition of µ and the weak (1, 1)-Poincaré inequality
(2.9) imply that

Hh
∞(B(xi, 5τri)) ≤

µ(B(xi, 5τri))

5τri
≤ c

µ(B(xi, ri))

ri

≤ c

ri

∫

B(xi,ri)

|u − uB(xi,ri)| dµ

≤ c ‖Du‖(B(xi, τri)).

(4.6)
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Next we consider the case i ∈ I, that is

µ({x ∈ B(xi, ri) : u(x) > 1/2}) >
1

2
µ(B(xi, ri)).

It follows from the doubling of the measure µ that there exists γ > 0,
depending only on cD and τ , such that

⋃

i∈I

B(xi, 5τri) ⊂
{

x ∈ X : sup
r>0

µ(B(x, r) ∩ {u > α})
µ(B(x, r))

≥ γ
}

(4.7)

for every α ∈ [1/4, 1/2]. We denote the set on the right hand side
of (4.7) by Aα.

By Theorem 3.1 and Remark 3.3(1), it follows that for every α ∈
[1/4, 1/2], there exists a covering B(yi, 5τρi), i = 1, 2, . . . , of Aα such
that

Hh
∞(Aα) ≤

∞∑

i=1

µ(B(yi, 5τρi))

5τρi
≤ cP ({u > α}, X).

As in the proof of Theorem 3.6, by the coarea formula (Theorem 2.11),
there exists α0 ∈ (1/4, 1/2) such that

P ({u > α0}, X) ≤ 4‖Du‖(X).

Thus

Hh
∞

( ⋃

i∈I

B(xi, 5τri)
)
≤ Hh

∞(Aα0) ≤ c ‖Du‖(X). (4.8)

Finally, by Lemma 3.4, (4.6) and (4.8), we conclude that

cap1(E) ≤cHh
∞({x ∈ X : Mu(x) > 1})

≤c
∑

i/∈I

Hh
∞(B(xi, 5τri)) + cHh

∞

( ⋃

i∈I

B(xi, 5τri)
)

≤c
∑

i/∈I

‖Du‖(B(xi, τri)) + c ‖Du‖(X)

≤c ‖Du‖(X).

Here we used the facts that the balls B(xi, τri) are disjoint and that
‖Du‖(·) is a Borel measure.

Remark 4.9. By a modification of the proof of Lemma 4.3, we get also
a corresponding estimate for the Sobolev capacity. Indeed,

C1({x ∈ X : MRu(x) > λ}) ≤ cR

λ
‖Du‖(X),

where MRu is the restricted version of the maximal function with balls
of radii smaller than or equal to R.
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The following well known lemma is needed in the proof of Theorem 4.1.
For the proof, we refer to the proof of Theorem 3 on page 77 of [EG]
or Lemma 4.3 in [KL].

Lemma 4.10. Let u ∈ N1,1(X) and

Λ =
{
x ∈ X : lim sup

r→0
r
‖Du‖(B(x, r))

µ(B(x, r))
> 0

}
.

Then Hh
∞(Λ) = Hh(Λ) = 0.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let u ∈ N1,1(X). By Lemmas 4.10 and 3.4, we
have cap1(Λ) = 0. According to the weak Poincaré inequality,

lim
r→0

∫

B(x,r)

|u − uB(x,r)| dµ = 0

for each x /∈ Λ. By Theorem 4.1 in [Sh], continuous functions are dense
in N1,1(X), and therefore we can choose functions ui ∈ C(X)∩N1,1(X)
such that

‖D(u − ui)‖(X) ≤ 4−i, i = 1, 2, . . . .

Set
Fi = {x ∈ X : M(u − ui) > 2−i}.

According to Lemma 4.3,

cap1(Fi) ≤ c 2i‖D(u − ui)‖(X) ≤ c 2−i.

Furthermore, since

|uB(x,r) − ui(x)| ≤
∫

B(x,r)

|u − ui| dµ +

∫

B(x,r)

|ui − ui(x)| dµ

and functions ui are continuous, the definition of Fi implies that

lim sup
r→0

|uB(x,r) − ui(x)| ≤ M(u − ui)(x) ≤ 2−i (4.11)

for every x /∈ Λ ∪ Fi. Set

Ek = Λ ∪
( ∞⋃

j=k

Fj

)
.

Then

cap1(Ek) ≤ cap1(Λ) +

∞∑

j=k

cap1(Fj) ≤ c

∞∑

j=k

2−j = c2−k.

Furthermore, if x ∈ X \ Ek, and i, j > k, then

|ui(x) − uj(x)| ≤ lim sup
r→0

|uB(x,r) − ui(x)| + lim sup
r→0

|uB(x,r) − uj(x)|

≤ 2−i + 2−j.
14



Hence, {ui}i converges uniformly on X \ Ek to a continuous function
v, and

lim sup
r→0

|v(x) − uB(x,r)| ≤ |v(x) − ui(x)| + lim sup
r→0

|ui(x) − uB(x,r)|,

so that (4.11) implies

v(x) = lim
r→0

∫

B(x,r)

u dµ

for every x ∈ X \ Ek. Now set E = ∩∞
k=1Ek. Then

cap1(E) ≤ lim
k→∞

cap1(Ek) = 0

and

v(x) = lim
r→0

∫

B(x,r)

u dµ

for each x ∈ X \ E. We observe that

lim
r→0

∫

B(x,r)

|u − v(x)| dµ

≤ lim
r→0

∫

B(x,r)

|u − uB(x,r)| dµ + lim
r→0

|uB(x,r) − v(x)| = 0

whenever x ∈ X \ E.

The function v is 1-quasicontinuous, because its restriction to X \ Ek

is continuous for every k = 1, 2, . . .. By Corollary 1.3 in [BBS], for
every ε > 0 we can find an open set Vε containing E with capacity
no more than ε. By Theorem 1.1 in [BBS], u is 1-quasicontinuous.
Hence we may also assume that the restrictions of u and v to X \ Vε

are continuous.

By Lebesgue’s differentation theorem, we have u = v µ-almost every-
where. It follows from the continuity of the functions that, if x ∈ X \Vε

and µ(B(x, r)\Vε) > 0 for every r > 0, then u(x) = v(x). Consequently

{x ∈ X \ Vε : u(x) 6= v(x)}
⊂ {x ∈ X \ Vε : µ(B(x, r) \ Vε) = 0 for some r > 0}
⊂ {x ∈ X : MχVε(x) > 1/2}
⊂ {x ∈ X : Mfε(x) > 1/2},

where fε ∈ N1,1(X) is a function satisfying fε ≥ 1 in Vε and

‖Dfε‖(X) < 2ε.

Note that {x ∈ X : Mfε(x) > 1/2} is open.

Now we can apply Lemma 4.3 to conclude that

cap1({x ∈ X : Mfε(x) > 1/2}) ≤ 2c‖Dfε‖(X) ≤ 4cε.
15



Therefore, u = v in X \ ({Mfε > 1/2} ∪ Vε) and, as ε → 0, it follows
that u = v 1-quasieverywhere. The claim follows from this.

Remark 4.12. The fact that v = u can also be proved using a result of
Kilpeläinen [Ki]. It states that if two quasicontinuous functions equal
almost everywhere, they are actually equal quasieverywhere provided
the capacity satisfies the following condition: For all open sets G ⊂ X
and all sets E ⊂ X with µ(E) = 0, we have that cap(G) = cap(G\E).
To see that cap1 satisfies this condition, note that, if v is a function
used in computing the capacity cap1(G \ E), (we may assume that
0 ≤ v ≤ 1), then the function ṽ given by

ṽ(x) =

{
1, x ∈ E ∩ G,

v(x), x /∈ E ∩ G,

has the properties that ṽ ∈ N1,1(X), ṽ is admissible for G, and any
upper gradient for v is a 1-weak upper gradient of ṽ; hence cap1(G) ≤
cap1(G\E). As G\E ⊂ G, we also have cap1(G) ≤ cap1(G\E). This
implies the claim.

Remark 4.13. By the use of Remark 4.9 instead of Lemma 4.3, Remark
3.5 instead of Lemma 3.4, and the fact that C1(Λ) ≤ Hh

∞(Λ) = 0,
we can easily modify the the above proof to conclude the stronger
statement that C1(E) = 0, where E is as in the above proof.

5. Capacity and Frostman’s lemma

Let 0 < R ≤ ∞. We consider the fractional maximal operator

MRν(x) = sup
0<r<R

r
ν(B(x, r))

µ(B(x, r))

of a Radon measure ν. We denote M∞ν = Mν.

We recall the following version of Frostman’s lemma, which applies in
metric spaces.

Theorem 5.1 (Frostman’s lemma). Let U ⊂ X be an open set and
R > 0. Then there exists a Radon measure ν on U such that

MRν ≤ 1 on X

and
Hh

10R(U) ≤ c ν(U)

with c depending only on the doubling constant cD.

For a proof, see Theorem 6.1 in [Ma1]. More information about Frost-
man’s lemma can be found, for example, in [Mat].
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Using the above Frostman’s lemma, we obtain the following character-
ization of the Hausdorff content and hence, by Theorem 3.6, of capacity
of order one.

Theorem 5.2. Let U ⊂ X be an open set. Then

Hh
∞(U) ≤ c sup{ν(U) : ‖Mν‖L∞(X) ≤ 1} ≤ cHh

∞(U),

where the supremum is taken over all Radon measures ν. Here c de-
pends only on the doubling constant cD.

Proof. Let U be an open subset of X. Then by Frostman’s lemma, we
obtain a Radon measure ν such that Mν ≤ 1 µ-almost everywhere on
X and

Hh
∞(U) ≤ c ν(U).

This implies the first inequality.

To see the second inequality, we take any cover {B(xi, ri)}i∈N of U .
Let ν be a Radon measure such that ‖Mν‖L∞(X) ≤ 1. Since Mν ≤ 1
µ-almost everywhere in X, we have

ν(U) ≤
∞∑

i=1

ν(B(xi, ri)) ≤
∞∑

i=1

µ(B(xi, ri))

ri
.

The claim follows by taking infimum over all such coverings on the
right hand side.

6. Capacity and functions of bounded variation

We may employ different classes of test functions in the definition of the
variational capacity. It is clear that we have a more sensitive capacity if
the test functions are assumed to be, in addition, continuous or locally
Lipschitz continuous. We denote the corresponding capacities with
capC,p(E) and capL,p(E), respectively. Thus we have

capp(E) ≤ capC,p(E) ≤ capL,p(E).

It has been shown by Kallunki and Shanmugalingam in [KS] that if X
is a proper quasiconvex metric measure space equipped with a doubling
measure and supporting a weak (1, p)-Poincaré inequality, then for any
compact set K ⊂ X, we have

capp(K) = capC,p(K) = capL,p(K).

They stated the result only for 1 < p < ∞, but the result holds also
when p = 1.

In this section, we give three alternate definitions for the variational ca-
pacity of order one. These definitions are based on functions of bounded
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variation and yield quantities which are equivalent by two sided estim-
ates.

Definition 6.1. Let K be a compact subset of X. Then

capCBV(K) = inf ‖Du‖(X),

where the infimum is taken over all compactly supported continuous
functions u ∈ BV (X) such that u ≥ 1 on a neighborhood of K.

Since u is assumed to be continuous, we can require u to satisfy u ≥ 1
just on K itself to obtain an equivalent definition of capCBV(K). It
is not difficult to see that we indeed obtain the same quantity. We
may also restrict ourselves to admissible functions u for which we have
0 ≤ u ≤ 1.

Theorem 6.2. Let K be a compact subset of X. Then the quantities
cap1(K), capCBV(K) and

inf{P (U, X) : K ⊂ U, U is open, µ(U) < ∞}
are equivalent by two sided estimates. The constants of comparison in
the equivalence of these quantities depend only on the doubling constant
cD and the constants in the weak (1, 1)-Poincaré inequality.

Proof. By Lemma 3.4 and the boxing inequality (Remark 3.3(2)), we
have

cap1(K) ≤ cHh
∞(K)

≤c inf{P (U, X) : K ⊂ U, U is open, µ(U) < ∞}.
Moreover, the inequality

capCBV(K) ≤ cap1(K)

is immediate, since by a result of [KS], we have

cap1(K) = inf ‖g‖L1(X),

where the infimum is taken over all compactly supported continuous
functions u ∈ N1,1(X) such that u ≥ 1 in a neighborhood of K and g
is a 1-weak upper gradient of u. Since N1,1(X) ⊂ BV (X), we have

capCBV(K) ≤ cap1(K)

≤c inf{P (U, X) : K ⊂ U, U is open, µ(U) < ∞}.
(6.3)

If capCBV(K) = ∞, we have the equivalence of the quantities by (6.3).
Thus we may assume that capCBV(K) < ∞. Let ε > 0. Choose a
compactly supported continuous function u ∈ BV (X) with 0 ≤ u ≤ 1
such that u ≥ 1 in a neighborhood of K and

‖Du‖(X) ≤ capCBV(K) + ε.
18



As in the proof of Theorem 3.6, we conclude that by the coarea formula,
there exists λ0 with 0 < λ0 < 1 such that

P ({u > λ0}, X) ≤ ‖Du‖(X).

Since u is continuous, the set {u > λ0} is open, and as λ0 < 1, we have

K ⊂ {u ≥ 1} ⊂ {u > λ0}.

Moreover, as u has compact support, µ({u > λ0}) < ∞. This implies
that

inf{P (U, X) : K ⊂ U is open, µ(U) < ∞} ≤ P ({u > λ0}, X)

≤ ‖Du‖(X) ≤ capCBV(K) + ε.

Finally letting ε → 0, we get

inf{P (U, X) : K ⊂ U, U is open, µ(U) < ∞} ≤ capCBV(K).

By (6.3) we see that the claim is true.

In the following definition, we drop the continuity assumption of the
admissible functions.

Definition 6.4. Let K be a compact subset of X. Then

capBV(K) = inf ‖Du‖(X),

where the infimum is taken over all u ∈ BV (X) such that u = 1 on
a neighborhood of K, 0 ≤ u ≤ 1 and the support of u is a compact
subset of X.

Unlike in the definition of capCBV(K) above, we cannot merely assume
that u = 1 only on K itself in the definition of capBV(K) as then all
sets of µ-measure zero will have capBV zero.

Theorem 6.5. Let K be a compact subset of X. Then

capBV(K) ≤ capCBV(K) ≤ c capBV(K),

where the constant c depends only on the doubling constant cD and the
constants in the weak (1, 1)-Poincaré inequality.

Proof. Clearly

capBV(K) ≤ capCBV(K).

We may assume that capBV(K) < ∞. Let u ∈ BV (X) such that u = 1
on a neighborhood U of K, 0 ≤ u ≤ 1, the support of u is a compact
subset of X, and

‖Du‖(X) ≤ capBV(K) + ε.

Since K is compact, we have dist(K, X \ U) = δ > 0.
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By the doubling property of the measure, for every k ∈ N, we may cover
X by countably many balls {Bi,k}i∈Ik

, Ik ⊂ N with radii 2−(k+2)δ, such
that

1

2
Bi,k ∩

1

2
Bj,k = ∅

if i 6= j, and

sup
x∈X

∑

i∈Ik

χ4τBi,k
(x) ≤ c, (6.6)

where τ ≥ 1 is the scalar in the weak (1, 1)-Poincaré inequality. Here
c is independent of k. Condition (6.6) simply means that the balls
{4τBi,k}i∈Ik

, are of bounded overlap. Let {ϕi,k}i∈Ik
be a partition of

unity subordinate to the cover {Bi,k}i∈Ik
with spt ϕi,k ⊂ 2Bi,k and ϕi,k

are c2kδ−1-Lipschitz continuous on X. We define the discrete convolu-
tion uk by

uk(x) =
∑

i∈Ik

ϕi,k(x)uBi,k
.

As the support of u is compact, so is the support of uk. Moreover, the
functions uk are locally Lipschitz continuous, since ϕi,k are Lipschitz
continuous. From this we conclude that uk ∈ BV (X)∩C(X). Further-
more 0 ≤ uk ≤ 1, and since the radius of Bi,k is at most δ/4, uk = 1
on an open neighborhood of K.

Fix x, y ∈ Bj,k. By the properties of the partition of unity, we obtain

uk(x) − uk(y) =
∑

i∈Ik

(ϕi,k(x) − ϕi,k(y))uBi,k

=
∑

i∈Ik

(ϕi,k(x) − ϕi,k(y))(uBi,k
− uBj,k

).
(6.7)

Let

Ij
k = {i ∈ Ik : 2Bi,k ∩ Bj,k 6= ∅}.

By (6.7), we have

|uk(x) − uk(y)| ≤ cδ−12kd(x, y)
∑

i∈Ij
k

|uBi,k
− uBj,k

|.

Since Bj,k ⊂ 4Bi,k when i ∈ Ij
k, we see that by the doubling property

of the measure

|uBi,k
− uBj,k

| ≤ |uBi,k
− u4Bi,k

| + |u4Bi,k
− uBj,k

|

≤ c

∫

4Bi,k

|u − u4Bi,k
| dµ + c

∫

4Bi,k

|u − u4Bi,k
| dµ

≤ c

∫

4Bi,k

|u − u4Bi,k
| dµ.
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Let us denote ν = ‖Du‖. By the weak (1, 1)-Poincaré inequality,

|uBi,k
− uBj,k

| ≤ c
δ

2k

ν(4τBi,k)

µ(4Bi,k)
,

from which it follows that

|uk(x) − uk(y)| ≤ c d(x, y)
∑

i∈Ik

ν(4τBi,k)

µ(Bi,k)
,

where the sum is taken only over those indices for which x ∈ 2Bi,k or
y ∈ 2Bi,k. From (2.8) it follows that the function

gk(x) = c
∑

i∈Ik,x∈2Bi,k

ν(4τBi,k)

µ(Bi,k)
,

is an upper gradient of uk. Thus

‖Duk‖(X) ≤ c

∫

X

∑

i∈Ik,x∈2Bi,k

ν(4τBi,k)

µ(Bi,k)
dµ(x)

≤ c
∑

j∈Ik

∫

Bj,k

∑

i∈Ij
k

ν(4τBi,k)

µ(Bi,k)
dµ

≤ c
∑

j∈Ik

∑

i∈Ij
k

∫

Bj,k

ν(4τBi,k)

µ(Bj,k)
dµ

≤ c
∑

j∈Ik

∑

i∈Ij
k

ν(4τBi,k).

Here the third inequality follows from the doubling condition and the
fact that 2Bi,k ∩ 2Bj,k 6= ∅ implies that Bi,k ⊂ 4Bj,k and Bj,k ⊂ 4Bi,k.
By (6.6) and the fact that ν = ‖Du‖ is a measure we have

‖Duk‖(X) ≤ c
∑

i∈Ik

ν(4τBi,k) ≤ c ν(X) ≤ c (capBV(K) + ε).

This implies that

capCBV(K) ≤ ‖Duk‖(X) ≤ c (capBV(K) + ε).

Letting ε → 0, we obtain the claim.

7. Non-triviality of the capacity

Let U be an open and bounded subset of X and K a compact subset
of U . The relative capacity capp(K, U), 1 ≤ p < ∞, is defined as

capp(K, U) = inf ‖g‖p
Lp(X),

where the infimum is taken over all u ∈ N1,p(X) such that u = 1 in K,
u = 0 in X \U and g is a p-weak upper gradient of u. In the same way
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as in the previous section, we can show that cap1(K, U), capCBV(K, U),
capBV(K, U),

inf{P (U ′, X) : K ⊂ U ′, U ′ is open, U ′ b U}
and Hh

2 diam(U)(K) are equivalent by two sided estimates. Here the
definitions of different relative capacities are obvious modifications of
the corresponding global capacities.

Following [Ho], we say that a metric space is p-hyperbolic if there exists
a compact set K ⊂ X so that the relative capacity capp(K, X) is
strictly positive. Here

capp(K, X) = lim
i→∞

capp(C, Ui),

where U1 ⊂ U2 ⊂ . . . is an increasing sequence of bounded open subsets
of X such that

X =
∞⋃

i=1

Ui.

If the space is not p-hyperbolic, it is said to be p-parabolic. Observe
that

capp(K, X) = capp(K).

Note that Rn endowed with the Lebesgue measure and the Euclidean
metric is p-parabolic when p ≥ n and p-hyperbolic if 1 ≤ p < n. More
generally, if the measure µ on a metric space X is Q-Ahlfors regular
for some Q ≥ 1, that is

1

c
rQ ≤ µ(B(x, r)) ≤ c rQ

for some c ≥ 1 which is independent of x ∈ X and r, 0 < r < diam(X),
then X is p-parabolic when p > Q and p-hyperbolic when 1 ≤ p < Q.
We show that this phenomenon is based on a general principle.

In this section, suppose merely that µ is doubling and that X supports
a weak (1, 1)-Poincaré inequality. Then X is connected and hence
uniformly perfect. From this we conclude that there are Q1, Q2 with
0 < Q1 ≤ Q2 < ∞ such that for all x ∈ X, 0 < r < R < ∞, and all
y ∈ B(x, R) we have

1

c

( r

R

)Q2

≤ µ(B(y, r))

µ(B(x, R))
≤ c

( r

R

)Q1

, (7.1)

where c depends only on the doubling constant cD. The lower bound
follows from the doubling property and the upper bound from the weak
Poincaré inequality.

The following two results apply even to metric spaces that do not sup-
port a weak Poincaré inequality.
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Theorem 7.2. Suppose that the lower bound in (7.1) holds with Q2 >
0. If p > Q2, then X is p-parabolic.

Proof. Fix x0 ∈ X and 0 < r < R. Then by the lower bound in (7.1),
we have

µ(B(x0, R))

RQ2
≤ c

µ(B(x0, r))

rQ2
.

If p > Q2 and R > 2r, then using the similar test function as in the
proof of Lemma 3.4 and the lower bound in (7.1), we have

capp(B(x0, r), B(x0, R)) ≤ µ(B(x0, R))

(R − r)p
≤ 2p

Rp
µ(B(x0, R))

≤ c 2p

Rp−Q2

µ(B(x0, r))

rQ2
→ 0

as R → ∞. From this we conclude that capp(B(x0, r), X) = 0 for every
r > 0, and thus X is p-parabolic.

In particular, Theorem 7.2 implies that if the measure satisfies (7.1)
with Q2 < 1, then X is 1-parabolic. Observe that when Q2 < 1, the
space does not support a weak Poincaré inequality.

The following lemma is a metric space version of Theorem 3.5.6 in [Tu].

Lemma 7.3. Let x0 ∈ X and r > 0. Then

1

c
inf

r≤R<∞

µ(B(x0, R))

R
≤ Hh

∞(B(x0, r)) ≤ inf
r≤R<∞

µ(B(x0, R))

R
,

where c depends only on the doubling constant cD.

Proof. The claimed upper bound is clear. We prove the lower bound.
By definition

Hh
∞(B(x0, r)) = inf

∑

i∈I

µ(Bi)

ri
,

where the infimum is taken over all coverings {Bi}i∈I of B(x0, r), where
Bi = B(xi, ri). Since the balls in X may have more than one center
and radius, it is understood that the cover {Bi}i∈I is chosen with preset
radii in the above definition. Thus it is possible that the same cover
could be used with a different choice of radius to obtain a different
number.

Let {Bi}i∈I be a cover of B(x0, r). Without loss of generality, we may
assume that Bi ∩ B(x0, r) 6= ∅ for every i ∈ I. Now there are two
possibilities. Assume first that there exists i0 for which ri0 ≥ r. Let
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R0 = ri0 . Then it follows that x0 ∈ 2Bi0 . It follows that B(x0, R0) ⊂
3Bi0 , and by the doubling property, we have

∑

i∈I

µ(Bi)

ri

≥ µ(Bi0)

ri0

≥ 1

c

µ(3Bi0)

R0

≥ 1

c

µ(B(x0, R0))

R0

.

As R0 ≥ r, we get

∑

i∈I

µ(Bi)

ri
≥ 1

c
inf

r≤R<∞

µ(B(x0, R))

R
. (7.4)

The other possibility is that ri < r for every i ∈ I, which implies that

∑

i∈I

µ(Bi)

ri
≥ 1

r

∑

i∈I

µ(Bi).

Since {Bi}i∈I is a cover of B(x0, r), we have

∑

i∈I

µ(Bi)

ri
≥ µ(B(x0, r))

r
≥ inf

r≤R<∞

µ(B(x0, R))

R
. (7.5)

By (7.4) and (7.5), we have the desired claim.

Theorem 7.6. Let Q1 be the power in the upper bound in (7.1). If
Q1 ≥ 1, then X is 1-hyperbolic.

Proof. By Theorem 3.6, Lemma 7.3 and the upper bound in (7.1), we
have

cap1(B(x0, r)) ≥
1

c
Hh

∞(B(x0, r)) ≥
1

c
inf

r≤R<∞

µ(B(x0, R))

R

=
1

c
inf

r≤R<∞
RQ1−1µ(B(x0, R))

RQ1

≥ 1

c
inf

r≤R<∞
RQ1−1µ(B(x0, r))

rQ1
.

If Q1 ≥ 1 we have that

cap1(B(x0, r), X) = cap1(B(x0, r)) ≥
1

c

µ(B(x0, r))

r
> 0,

and hence X is 1-hyperbolic.

Remark 7.7. It follows from Lemma 7.3 and Theorem 3.6 that X is
1-hyperbolic if and only if

lim inf
R→∞

µ(B(x0, R))

R
> 0

for some (and hence all) x0 ∈ X. Thus X is 1-hyperbolic if and only if
for all x0 ∈ X the volume µ(B(x0, R)) grows at least as fast as R.
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If the measure is Q-Ahlfors regular, then the Hausdorff content and the
Hausdorff measure have the same null sets. However, as the following
example shows, this is not true for a general doubling measure.

Example 7.8. The assumptions that µ is doubling and that X sup-
ports a (1, 1)-Poincaré inequality do not imply that X is 1-hyperbolic.
Let X = Rn equipped with the Euclidean metric and the measure µ
given by

µ(E) =

∫

E

|x|δ dx.

Since w(x) = |x|δ is a Muckenhoupt A1-weight when 0 < n + δ < 1,
the measure µ is doubling and supports a (1, 1)-Poincaré inequality.
However, if n + δ < 1, the space X is 1-parabolic, since

µ(B(0, R)) = c

∫ R

0

rδ+n−1 dr = c Rn+δ,

where c depends only on n and δ, and hence

µ(B(0, R))

R
≤ cRn+δ−1 → 0

as R → ∞. By Lemma 7.3 we have

Hh
∞(B(0, R)) ≤ c inf

R≤ρ<∞

µ(B(0, ρ))

ρ
= 0.

By Lemma 3.4 this implies that cap1(B(0, R)) = 0 for every R > 0.

Lemma 7.9. Suppose that X is 1-hyperbolic. Then Hh
∞(E) = 0 if and

only if Hh(E) = 0.

Proof. Let E ⊂ X. As Hh
∞(E) ≤ Hh(E), it is easy to see that

Hh
∞(E) = 0 whenever Hh(E) = 0.

Now suppose that Hh
∞(E) = 0. In particular, our assumptions and

Theorem 7.2 imply that (7.1) holds with Q2 ≥ 1. Without loss of
generality, we may assume that diam(E) < ∞. Since X is 1-hyperbolic,
there is a compact set K ⊂ X such that cap1(K) > 0. We choose
x0 ∈ E and R > 0 such that E ⊂ B(x0, R) and that K ⊂ B(x0, R). It
follows from Lemma 3.4 that

Hh
∞(B(x0, R)) ≥ 1

cD
cap1(B(x0, R)) ≥ 1

cD
cap1(K) > 0.

Let 0 < ε < cap1(K)/c3
D. Since Hh

∞(E) = 0, we have a cover {Bi}i∈I ,
I ⊂ N, of E such that

∑

i∈I

µ(Bi)

ri
≤ ε (7.10)
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and consequently

µ(Bi)

ri
≤ ε (7.11)

for every i ∈ I. Again, without loss of generality, we may assume that
Bi ∩ E 6= ∅ for every i ∈ I.

If there is an index i0 ∈ I such that ri0 ≥ R, then as Bi0 ∩ E 6= ∅
and E ⊂ B(x0, R), we have B(x0, ri0) ⊂ 4Bi0 . Thus by (7.11) and the
doubling property of µ, we have

ε ≥ µ(Bi0)

ri0

≥ 1

c2
D

µ(4Bi0)

ri0

≥ 1

c2
D

µ(B(x0, ri0))

ri0

≥ 1

c2
D

Hh
∞(B(x0, R)) ≥ 1

c3
D

cap1(K).

This is a contradiction, and hence ri < R for every i ∈ I.

Since Bi ∩ E 6= ∅ and ri ≤ R for every i ∈ I, we have Bi ⊂ B(x0, 4R).
By (7.1) we get

µ(Bi)

ri

≥ 1

c

µ(B(x0, 4R))

(4R)Q2
rQ2−1
i (7.12)

for every i ∈ I. If Q2 = 1, (7.12) gives for µ(Bi)/ri a lower bound that
is independent of ri. Without loss of generality, we may assume that

ε <
1

c

µ(B(x0, 4R))

(4R)Q2
.

Hence by (7.11) and (7.12), we have I = ∅.

This means that E = ∅ and Hh(E) = 0.

If Q2 > 1, it follows from (7.12) and (7.11) that

ri ≤
(

εc(4R)Q2

µ(B(x0, 4R))

) 1
Q2−1

= δε

for every i ∈ I. Hence

Hh
δε

(E) ≤
∑

i∈I

µ(Bi)

ri
≤ ε.

Because Q2 > 1, δε → 0 as ε → 0. Hence

Hh(E) = lim
ε→0

Hh
δε

(E) = 0.

This completes the proof.
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Theorem 7.13. Suppose that X is 1-hyperbolic. Then for all E ⊂ X
we have cap1(E) > 0 whenever C1(E) > 0.

Proof. It is sufficient to show that if E ⊂ X is bounded and cap1(E) =
0, then C1(E) = 0. As E is bounded, there exists x0 ∈ X and R < ∞
such that E ⊂ B(x0, R).

Because X is 1-hyperbolic, there exists c > 0 such that

lim inf
R→∞

µ(B(x0, R))

R
≥ c > 0.

It follows from the doubling of the measure µ that

µ(B(x, r))

r
≥ c

cD
(7.14)

for every x ∈ X and r > R0 such that B(x, r) ∩ B(x0, R) 6= ∅. Here
R0 > R may depend on the ball B(x0, R).

Let 0 < ε < c/cD. It follows from Theorem 3.6 that Hh
∞(E) = 0 and

hence there exists a covering {B(xi, ri)}i such that
∞∑

i=1

µ(B(xi, ri))

ri
< ε.

If follows from (7.14) that ri < R0 for every i ∈ N. By Remark 3.5(2),

C1(E) ≤ (1 + R0)cDHh
R0

(E) < (1 + R0)cDε.

Letting ε → 0, the claim follows.
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[Sj] Sjödin, T., A note on capacity and Hausdorff measure in homogeneous
spaces, Potential Anal. 6 (1997), no. 1, 87–97.

[Tu] Turesson, B.O., Nonlinear potential theory and weighted Sobolev spaces,
Lecture Notes in Mathematics 1736, Springer-Verlag, Berlin, 2000.

J.K., Department of Mathematical Sciences, P.O. Box 3000, FI-
90014 University of Oulu, Finland
juha.kinnunen@oulu.fi

R.K., Institute of Mathematics, P.O. Box 1100, FI-02015 Helsinki
University of Technology, Finland
rkorte@math.hut.fi

N.S., Department of Mathematical Sciences, P.O. Box 210025,
University of Cincinnati, Cincinnati, OH 45221-0025 U.S.A.
nages@math.uc.edu

28



H.T., Department of Mathematics and Statistics, P.O. Box 35
(MaD), FI-40014 University of Jyväskylä, Finland
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