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THE HARDY–LITTLEWOOD MAXIMAL FUNCTION

OF A SOBOLEV FUNCTION

Juha Kinnunen

Abstract. We prove that the Hardy–Littlewood maximal operator is bounded in
the Sobolev space W 1,p(Rn) for 1 < p ≤ ∞. As an application we study a weak

type inequality for the Sobolev capacity. We also prove that the Hardy–Littlewood
maximal function of a Sobolev function is quasicontinuous.

1. Introduction. The Hardy–Littlewood maximal function Mf : Rn → [0,∞] of
a locally integrable function f : Rn → [−∞,∞] is defined by

(1.1) Mf(x) = sup
1

|B(x, r)|

∫

B(x,r)

|f(y)| dy,

where the supremum is over all radii r > 0. Here |B(x, r)| denotes the volume
of the ball B(x, r). The maximal function is a classical tool in harmonic analysis
but recently it has been successfully used in studying Sobolev functions and partial
differential equations, see [1] and [4]. The celebrated theorem of Hardy, Littlewood
and Wiener asserts that the maximal operator is bounded in Lp(Rn) for 1 < p ≤ ∞,

(1.2) ‖Mf‖p ≤ Ap‖f‖p,

where the constant Ap depends only on p and n, see [5, Theorem I.1]. This theo-
rem is one of the cornerstones of harmonic analysis but the applications to Sobolev
functions and to partial differential equations indicate that it would also be use-
ful to know how the maximal operator preserves the differentiability properties of
functions. It is easy to show that maximal function of a Lipschitz function is again
Lipschitz and hence, in that case, by Rademacher’s theorem it is differentiable al-
most everywhere. Unfortunately, the maximal function of a differentiable function
is not differentiable in general. The reason for this is twofold. First, the modu-
lus of a differentiable function is not differentiable and, even though the function
would not change signs, the supremum of differentiable functions may fail to be
differentiable. The purpose of this note is to show that, however, certain weak
differentiability properties are preserved under the maximal operator. Our main
theorem is that the Hardy–Littlewood maximal operator is bounded in the Sobolev
space W 1,p(Rn) for 1 < p ≤ ∞ and hence, in that case, it has classical partial
derivatives almost everywhere. The corresponding result for p = 1 fails because
then we don’t have the Hardy–Littlewood–Wiener theorem available.
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Recall, that the Sobolev space W 1,p(Rn), 1 ≤ p ≤ ∞ consists of functions
u ∈ Lp(Rn), whose first weak partial derivatives Diu, i = 1, 2, . . . , n, belong to
Lp(Rn). We endow W 1,p(Rn) with the norm

(1.3) ‖u‖1,p = ‖u‖p + ‖Du‖p,

where Du = (D1u, D2u, . . . , Dnu) is the weak gradient of u. For the basic properties
of Sobolev functions we refer to [3, Chapter 7]. Now we are ready to formulate our
main result.

1.4. Theorem. Let 1 < p < ∞. If u ∈ W 1,p(Rn), then Mu ∈ W 1,p(Rn) and

(1.5)
∣∣DiMu

∣∣ ≤ MDiu, i = 1, 2, . . . , n,

almost everywhere in Rn.

2. The proof of Theorem 1.4. If χB(0,r) is the characteristic function of B(0, r)
and

χr =
χB(0,r)

|B(0, r)|
,

then
1

|B(x, r)|

∫

B(x,r)

|u(y)| dy = |u| ∗ χr(x),

where ∗ denotes the convolution. Now |u| ∗ χr ∈ W 1,p(Rn) and

Di(|u| ∗ χr) = χr ∗ Di|u|, i = 1, 2, . . . , n,

almost everywhere in Rn. Let rj , j = 1, 2, . . . , be an enumeration of positive
rationals. Since u is locally integrable, we may restrict ourselves in definition (1.1)
to the positive rational radii. Hence

Mu(x) = sup
j

(|u| ∗ χrj
)(x).

We define functions vk : Rn → R, k = 1, 2, . . . , by

vk(x) = max
1≤j≤k

(|u| ∗ χrj
)(x).

Now (vk) is an increasing sequence of functions in W 1,p(Rn) [3, Lemma 7.6] which
converges to Mu pointwise and

(2.1)
|Divk| ≤ max

1≤j≤k

∣∣Di(|u| ∗ χrj
)
∣∣

= max
1≤j≤k

∣∣χrj
∗ Di|u|

∣∣ ≤ MDi|u| = MDiu,

i = 1, 2, . . . , n, almost everywhere in Rn. Here we also used the fact that
∣∣Di|u|

∣∣ =
|Diu|, i = 1, 2, . . . , n, almost everywhere. Thus

‖Dvk‖p ≤
n∑

i=1

‖Divk‖p ≤
n∑

i=1

‖MDiu‖p
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and the Hardy–Littlewood–Wiener inequality (1.2) implies

‖vk‖1,p ≤ ‖Mu‖p +
n∑

i=1

‖MDiu‖p

≤ Ap‖u‖p + Ap

n∑

i=1

‖Diu‖p ≤ c < ∞

for every k = 1, 2, . . . Hence (vk) is a bounded sequence in W 1,p(Rn) which
converges to Mu pointwise. The weak compactness of Sobolev spaces implies
Mu ∈ W 1,p(Rn), vk converges to Mu weakly in Lp(Rn) and Divk converges to
DiMu weakly in Lp(Rn). Since |Divk| ≤ MDiu almost everywhere by (2.1), the
weak convergence implies

|DiMu| ≤ MDiu, i = 1, 2, . . . , n,

almost everywhere in Rn. �

2.2. Remarks. (i) If we only want to prove that that Mu ∈ W 1,p(Rn), 1 < p < ∞,
whenever u belongs to W 1,p(Rn), there is a simple proof based on the character-
ization of W 1,p(Rn) by integrated difference quotients, see [3, 7.11]. If f : Rn →
[−∞,∞] and h ∈ Rn, h 6= 0, we denote

(2.3) fh : Rn → [−∞,∞], fh(x) = f(x + h).

The sublinearity of the maximal operator implies |M(uh)−Mu| ≤ M(uh−u) and
hence

‖(Mu)h −Mu‖p = ‖M(uh) −Mu‖p ≤ ‖M(uh − u)‖p

≤ Ap‖uh − u‖p ≤ Ap‖Du‖p|h|,

from which the claim follows using [3, Lemma 7.24]. Unfortunately, this argument
does not seem to give the pointwise inequality (1.5) for the partial derivatives.

(ii) Inequality (1.5) implies

(2.4) |DMu(x)| ≤ M|Du|(x)

almost every x ∈ Rn. To see this, let x ∈ Rn. If |DMu(x)| = 0, then the claim
is obvious. Hence we may assume that |DMu(x)| 6= 0. Now Dhu = Du · h for
every h ∈ Rn with |h| = 1, where Dh denotes the derivative to the direction h.
We choose h = DMu(x)/|DMu(x)| and rotate the coordinates so that h coincides
with some of the coordinate directions, we get

|DMu(x)| = |DhMu(x)| ≤ MDhu(x) ≤ M|Du|(x).

Now we may use the Hardy–Littlewood–Wiener theorem together with (2.4) and
obtain

‖Mu‖1,p = ‖Mu‖p + ‖DMu‖p ≤ Ap‖u‖p +
∥∥M|Du|

∥∥
p
≤ Ap‖u‖1,p,
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where Ap is the constant in (1.2).
(iii) If u ∈ W 1,∞(Rn), then a slight modification of our proof shows that Mu

belongs to W 1,∞(Rn). Moreover,

‖Mu‖1,∞ = ‖Mu‖∞ + ‖DMu‖∞ ≤ ‖u‖∞ +
∥∥M|Du|

∥∥
∞ ≤ ‖u‖1,∞.

Recall, that after a redefinition on a set of measure zero u ∈ W 1,∞(Rn) is bounded
and Lipschitz continuous. If we are not interested in pointwise estimates, there is
a simple proof of the fact that the maximal function maps bounded Lipschitz con-
tinuous functions into themselves. Indeed, suppose that u is Lipschitz continuous
with constant L, that is

|uh(x) − u(x)| ≤ L|h|
for every x, h ∈ Rn where uh is defined by (2.3). The same argument as in (i)
shows that

|(Mu)h(x) −Mu(x)| = |M(uh)(x) −Mu(x)| ≤ M(uh − u)(x)

= sup
r>0

1
|B(x, r)|

∫

B(x,r)

|uh(y) − u(y)| dy ≤ L|h|,

which means that the maximal function is Lipschitz continuous with constant L.
Observe, that this proof applies to Hölder continuous functions as well.

(iv) Finally we remark that our method applies to other maximal and maximal
singular integral operators as well.

3. A capacity inequality. We show that a weak type inequality for the Sobolev
capacity follows immediately from our Theorem 1.4. The standard proof depends
on some extension properties of Sobolev functions, see [2]. Let 1 < p < ∞. The
Sobolev p-capacity of the set E ⊂ Rn is defined by

Cp(E) = inf
u∈A(E)

∫

Rn

(
|u|p + |Du|p

)
dx,

where
A(E) =

{
u ∈ W 1,p(Rn) : u ≥ 1 on a neighbourhood of E

}
.

If A(E) = ∅, we set Cp(E) = ∞. The Sobolev p-capacity is a monotone and a
countably subadditive set function [2]. Let u ∈ W 1,p(Rn), suppose that λ > 0 and
denote

Eλ = {x ∈ Rn : Mu(x) > λ}.
Then Eλ is open and Mu/λ is admissible for Eλ. Using (2.4) we get

(3.1)

Cp

(
Eλ

)
≤ 1

λp

∫

Rn

(
|Mu|p + |DMu|p

)
dx

≤
Ap

p

λp

∫

Rn

(
|u|p + |Du|p

)
dx

≤
Ap

p

λp
‖u‖p

1,p.

This inequality can be used in studying the pointwise behaviour of Sobolev functions
by the standard methods, see [2], but we shall use it to prove that the Hardy–
Littlewood maximal function of a Sobolev function is quasicontinuous.
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4. Quasicontinuity. First we recall some terminology. A property holds p-
quasieverywhere if it holds outside a set of the Sobolev p-capacity zero. A function
u is p -quasicontinuous in Rn if for every ε > 0 there is a set F such that Cp(F ) < ε
and the restriction of u to Rn\F is continuous and finite. It is well known that each
Sobolev function has a quasicontinuous representative, see [2]. To be more precise,
for each u ∈ W 1,p(Rn) there is a p-quasicontinuous function v ∈ W 1,p(Rn) such
that v = u a.e. in Rn. Moreover, this representative is unique in the following sense:
If v and w are p-quasicontinuous and v = w a.e., then w = u p-quasieverywhere in
Rn.

4.1. Theorem. If u ∈ W 1,p(Rn), 1 < p < ∞, then Mu is p-quasicontinuous.

Proof. We begin with showing that if u ∈ C(Rn) ∩ Lp(Rn), then Mu ∈ C(Rn) ∩
Lp(Rn). Indeed, if x, h ∈ Rn and ε > 0, then there is rε < ∞ such that

1
|B(x, r)|

∫

B(x,r)

|uh(y) − u(y)| dy ≤
( 1
|B(x, r)|

∫

B(x,r)

|uh(y) − u(y)|p dy
)1/p

≤ ‖uh − u‖p

|B(x, r)|p ≤ 2‖u‖p

|B(x, r)|p < ε

whenever r > rε. On the other hand, if 0 < r ≤ rε, then there is δ > 0 such that

1
|B(x, r)|

∫

B(x,r)

|uh(y) − u(y)| dy ≤ sup
B(x,rε)

|uh − u| < ε

whenever |h| < δ. Thus M(uh − u)(x) ≤ ε for |h| < δ and

|(Mu)h(x) −Mu(x)| ≤ M(uh − u)(x) ≤ ε

whenever |h| < δ. This shows that Mu is continuous at x.
Suppose then that u ∈ W 1,p(Rn) and let (ϕi) be a sequence of functions ϕi ∈

C∞
0 (Rn), i = 1, 2, . . . , so that ϕi → u in W 1,p(Rn). By the weak type inequality

(3.1) there is a set F with Cp(F ) = 0 so that Mu is finite in Rn \ F . We choose a
subsequence, which is denoted by (ϕi), such that

‖ϕi − u‖p
1,p < (4iAp)−p.

Set Ei = {x ∈ Rn \ F : M(ϕi − u)(x) > 2−i}, i = 1, 2, . . . Then using inequality
(3.1) we get

Cp(Ei) ≤ 2ipAp
p‖ϕi − u‖p

1,p ≤ 2−ip.

If Fj =
⋃∞

i=j Ei, then by subadditivity

Cp(Fj) ≤
∞∑

i=j

2−ip < ∞

and hence limj→∞ Cp(Fj) = 0. Moreover, for x ∈ Rn \ Fj we have

|Mϕi(x) −Mu(x)| ≤ M(ϕi − u)(x) ≤ 2−i
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whenever i ≥ j, which shows that the convergence is uniform in Rn \ Fj . As a
uniform limit of continuous functions Mu is continuous in Rn \ Fj . This implies
that Mu is p-quasicontinuous. �

4.2. Remark. If p > n, then every non-empty set has a positive p−capacity and
hence the maximal function of a function u ∈ W 1,p(Rn) is continuous. In fact, by
the Sobolev imbedding theorem [3, Theorem 7.17] it is Hölder continuous,

|(Mu)h(x) −Mu(x)| ≤ c|h|1−n/p

for every x, h ∈ Rn. If p = ∞, the maximal function is Lipschitz continuous.
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