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Abstract. We show that the gradient of a solution to a parabolic system of

p-Laplacian type in Rn satisfies a reverse Hölder inequality provided p > 2n/(n+2).

In particular, this implies the local higher integrability of the gradient.

1. Introduction

In this work we study regularity of solutions to second order parabolic systems

(1.1)
∂ui

∂t
= divAi(x, t,∇u) + Bi(x, t,∇u), i = 1, . . . , N.

In particular, we are interested in systems of p-Laplacian type. We present more
precise structural assumptions later, but the principal prototype that we have in
mind is the p-parabolic system

∂ui

∂t
= div(|∇u|p−2∇ui), i = 1, . . . , N,

with 1 < p < ∞. As usual, solutions to (1.1) are taken in a weak sense and they are
assumed to belong to a parabolic Sobolev space. A good source for the regularity
theory is [D].

In the elliptic case when the system is

(1.2) divAi(x, t,∇u) + Bi(x, t,∇u) = 0, i = 1, . . . , N,

it is known that solutions locally belong to a slightly higher Sobolev space than
assumed a priori. This self improving property was first observed by Elcrat and
Meyers in [ME] (see also [Gi] and [Str]). Their argument is based on reverse Hölder
inequalities and a modification of Gehring’s lemma [Ge] which originally was devel-
oped to study the higher integrability of the Jacobian of a quasiconformal mapping.
In the elliptic case higher integrabilty results play a decisive role in studying the
regularity of solutions, see [GM] and [Gi].

The purpose of this work is to obtain higher integrablity results in the p-parabolic
setting. We prove that the gradient of a weak solution to (1.1) satisfies a reverse
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Hölder inequality for p > 2n/(n+ 2). The critical exponent 2n/(n+ 2) occurs also
in parabolic regularity theory, see [D]. We note that reverse Hölder inequalities and
the local higher integrability for weak solutions were already proved for p = 2 by
[GS] (see also [C]). Our result appears to be new even in the scalar case if p 6= 2.

One of the difficulties in proving our main result is that a solution does not
remain a solution under multiplication by a constant which is not 0 nor 1. Since
reverse Hölder inequalities are invariant under multiplication by a constant, we
have to choose a class of cylinders whose side lengths depend on the size of the
function in order to obtain a reverse Hölder inequality as in [Ge] and then higher
integrability.

It seems to us that our results can be used to extend partial regularity results
in [GM] for nonlinear elliptic systems to cover some parabolic systems. For p = 2
this was done in [GS], but our method applies also when p 6= 2.

2. Preliminaries

In order to be more precise about the structure and solutions of the system (1.1)
we need some notation. Let Ω ⊂ Rn be an open set and let W 1,p(Ω) denote the
Sobolev space of real valued functions g such that g ∈ Lp(Ω) and the distributional
first partial derivatives ∂g/∂xi, i = 1, 2, . . . , n, exist in Ω and belong to Lp(Ω).
The space W 1,p(Ω) is equipped with the norm

‖g‖1,p,Ω = ‖g‖p,Ω +
n∑

i=1

∥∥∂g/∂xi

∥∥
p,Ω

.

Given O ⊂ Rn open, N a positive integer, −∞ ≤ S < T ≤ ∞, let

u = (u1, . . . , uN ) : O × (S, T ) → RN

and suppose that whenever −∞ ≤ S < S1 < T1 < T ≤ ∞ and Ω ⊂ O we have

(2.1) u ∈ L2
(
Ω × [S1, T1]

)
∩ Lp

(
[S1, T1];W 1,p(Ω)

)
.

Here the notation Lp
(
[S1, T1];W 1,p(Ω)

)
means that for almost every t, S1 < t < T1,

with respect to one dimensional Lebesgue measure, the function x 7→ u(x, t) is in
W 1,p(Ω) componentwise and

(2.2) |||u|||pp,Ω = ‖u‖p
p,Ω×(S1,T1)

+
∫ T1

S1

N∑

i=1

∥∥ui(·, t)
∥∥p

1,p,Ω
dt < ∞.

Let ∇u denote the distributional gradient of u (taken componentwise) in the x
variable only.

We suppose that A = (A1, . . . , AN ), where

Ai = Ai(x, t,∇u) : O × (S, T ) × RnN → Rn,

and B = (B1, . . . , BN ), where

Bi = Bi(x, t,∇u) : O × (S, T ) × RnN → R,
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are Lebesgue (n + 1)-measurable functions on O × (S, T ). This is the case, for
example, if Ai and Bi, i = 1, 2, . . . , N , satisfy the well known Carathéodory type
conditions. We assume that there exist positive constants ci, i = 1, 2, 3, such that

|Ai| ≤ c1|∇u|p−1 + h1(2.3)

|Bi| ≤ c2 |∇u|p−1 + h2,(2.4)

and

(2.5)
N∑

i=1

〈Ai,∇ui〉 ≥ c3|∇u|p − h3,

for i = 1, 2, . . . , N , and almost every (x, t) ∈ O × (S, T ). Here 〈 · , · 〉 denotes
the standard inner product in Rn and hi, i = 1, 2, 3, are measurable functions in
O × (S, T ) so that

(2.6)
∥∥(|h1| + |h2|)p/(p−1) + |h3|

∥∥
q̂,O×(S,T )

= c4 <∞,

where q̂ > 1.
Finally u satisfying (2.1) is said to be a weak solution in O × (S, T ) to the

nonlinear parabolic system

∂ui

∂t
= divAi(x, t,∇u) + Bi(x, t,∇u), i = 1, . . . , N,

if the structural conditions (2.3)-(2.6) hold and

(2.7)
∫ T

S

∫

O

N∑

i=1

(
− ui

∂φi

∂t
+ 〈Ai,∇φi〉 − Biφi

)
dx dt = 0

for every test function φ = (φ1, . . . , φN ) ∈ C∞
0 (O × (S, T )).

The following theorem is our main result.

Theorem 2.8. Let p > 2n/(n+ 2) and suppose that u is a weak solution to (1.1).
Then there exists ε > 0 such that

u ∈ L2
(
Ω × [S1, T1]

)
∩ Lp+ε

(
[S1, T1];W 1,p+ε(Ω)

)
,

where ε > 0 depends only on n, p, q̂, and ci, for i = 1, 2, 3, while |||u|||p+ε,Ω depends
on these quantities as well as N , Ω, S1, T1 and c4.

The proof of our main result follows from two propositions in Section 4.
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3. Fundamental estimates

In this section we state and outline the proofs of some Sobolev and Caccioppoli
type lemmas which will be used in the proof of the main result. To do this we shall
need some notation. Given r, s > 0, (x, t) ∈ Rn+1, let

Dr(x) = {y ∈ Rn : |y − x| < r}

denote the open ball in Rn and

Qr,s(x, t) = Dr(x) × (t− s, t+ s)

a cylinder in Rn+1. Let |E| denote the Lebesgue (n+1)-measure of the measurable
set E and if f is integrable on E with 0 < |E| <∞, then the integral average of f
over E is ∫

E

f dx dt =
1
|E|

∫

E

f dx dt.

If Qρ,s(z, τ) ⊂ O × (S, T ), then

Iρ(t) = Iρ(t, u, z, τ) = m(Dρ(z))−1

∫

Dρ(z)

u(x, t) dx,

whenever τ − s < t < τ + s. Here m denotes Lebesgue measure in Rn and the
integral is taken componentwise.

Lemma 3.1. Suppose that u is a weak solution to (1.1). If Q4ρ,s(z, τ) ⊂ O×(S, T ),
then there exists ρ̂, ρ < ρ̂ < 2ρ, and a constant c depending on p, n, c1 and c2,
such that

|Iρ̂ (t2) − Iρ̂ (t1)| ≤ csρ−1

∫

Q2ρ,s(z,τ)

(
|∇u|p−1 + |h1| + |h2|

)
dx dt

for almost all ti, τ − s < ti < τ + s, i = 1, 2.

Proof. To prove this lemma, let δ, η > 0 be small, ρ < ρ̂ < 2ρ, t1 < t2, ψ1 ∈
C∞

0 (t1 − η, t2 + η) with ψ1 = 1 on the interval (t1, t2), and let ψ2 ∈ C∞
0 (Dρ̂+δ(z))

be a radial function with ψ2 = 1 on Dρ̂ (z). For fixed j = 1, 2, . . . , N , we put
φj = ψ1 ψ2 and φi = 0 otherwise. Using (2.7) and letting first η → 0 and then
δ → 0 we get from well known Sobolev type arguments that for almost every t1, t2
and ρ̂, as above,

m(Dρ̂ (z))
(
Iρ̂ (t2, uj) − Iρ̂ (t1, uj)

)

=
∫

∂D
ρ̂

(z)×(t1,t2)

〈x− z, Aj(x, t)〉 |x− z|−1 dσ(x) dt

+
∫

D
ρ̂

(z)×(t1,t2)

Bj dx dt.
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Here σ denotes (n−1)-dimensional surface area on ∂Dρ̂ (z). Choose ρ̂, ρ < ρ̂ < 2ρ,
so that

∫

∂D
ρ̂

(z)×(t1,t2)

(
|∇u|p−1 + |h1| + |h2|

)
dσ dt

≤ 100ρ−1

∫

D2ρ(z)×(t1,t2)

(
|∇u|p−1 + |h1| + |h2|

)
dx dt.

Using this choice, (2.3), (2.4) in the above inequality, and summing over j =
1, 2, . . . , N , we deduce the claim.

The following lemma is a Caccioppoli type estimate for parabolic systems of
p−Laplacian type. For short we write

hp = (|h1| + |h2|)p/(p−1) + |h3|.

Lemma 3.2. Let u be a weak solution to (1.1) and a = (a1, . . . , aN ) ∈ RN . Then
there exists a constant c depending on n, N , p, ci for i = 1, 2, 3, 4, such that if
Qρ1,s1(z, τ) ⊂ Qρ2,s2(z, τ) ⊂ O × (S, T ) with 0 < ρ2, s2 < 1, then we have

∫

Qρ1,s1 (z,τ)

|∇u|p dx dt+ ess sup
t∈(τ−s1,τ+s1)

∫

Dρ1 (z)

|u− a|2 dx

≤c (s2 − s1)−1

∫

Qρ2,s2 (z,τ)

|u− a|2 dx dt

+ c (ρ2 − ρ1)−p

∫

Qρ2,s2 (z,τ)

|u− a|p dx dt+ c

∫

Qρ2,s2 (z,τ)

hp dx dt.

Proof. Lemma 3.2 follows from a standard Caccioppoli type estimate obtained from
(2.7) by formally choosing test functions of the form

φi = (u− a)i ψ
p
i , i = 1, 2, . . . , N,

where ψi ∈ C∞
0 (Qρ2,s2(z, τ)) is a cutoff function with ψi = 1 on Qρ1,s1(z, τ), 0 ≤

ψi ≤ 1 and

(ρ2 − ρ1)−1
∥∥|∇ψi|

∥∥
∞ + (s2 − s1)−1

∥∥∥∂ψi

∂t

∥∥∥
∞
< 1000.

There is a difficulty with the test functions φi since the solution usually has a very
modest degree of regularity with respect to the time variable. We refer the reader
to [D, p. 24–27] for an argument to overcome this difficulty.

Next we prove a Sobolev type inequality.
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Lemma 3.3. Let 1 ≤ ν <∞ and suppose that u ∈ Lν
(
(τ−2s, τ+2s);W 1,ν(D2ρ(z))

)
.

Then there is a constant c depending on n and ν such that

∫

Qρ,s(z,τ)

|u(x, t)− Iρ(t)|ν(1+2/n) dx dt ≤ c

∫

Q2ρ,2s(z,τ)

|∇u(x, t)|ν dx dt

·
(

ess sup
t∈(τ−2s,τ+2s)

∫

D2ρ(z)

|u(x, t)− Iρ(t)|2 dx
)ν/n

.

Proof. Let t, τ −2s < t < τ+2s, be such that x 7→ u(x, t) belongs to W 1,ν(D2ρ(z))
and denote ρ∗ = 2ρ. Let ψ ∈ C∞

0 (Q2ρ,2s(z, τ)) be a cutoff function such that ψ = 1
on Qρ,s(z, τ) and |∇ψ| ≤ 10/ρ. Let

v(x, t) = |u(x, t) − Iρ(t)|ψ(x, t).

Hölder’s inequality implies that

J =
∫

Dρ∗ (z)

v(x, t)ν(1+2/n) dx

≤
( ∫

Dρ∗ (z)

v(x, t)2 dx
)1/n( ∫

Dρ∗ (z)

v(x, t)(ν+(2/n)(ν−1))n/(n−1) dx
)(n−1)/n

.

We use Sobolev’s theorem for functions in W 1,1(Dρ∗(z)) to deduce that there is
constant c = c(n) such that

( ∫

Dρ∗(z)

v(x, t)(ν+(2/n)(ν−1))n/(n−1) dx
)(n−1)/n

≤ c

∫

Dρ∗(z)

v(x, t)(ν−1)(1+2/n)|∇v(x, t)| dx

≤ c
( ∫

Dρ∗ (z)

v(x, t)ν(1+2/n) dx
)(ν−1)/ν( ∫

Dρ∗ (z)

|∇v(x, t)|ν dx
)1/ν

.

Thus

J ≤ cJ (ν−1)/ν
( ∫

Dρ∗ (z)

|∇v(x, t)|ν dx
)1/ν( ∫

Dρ∗ (z)

v(x, t)2 dx
)1/n

.

Clearly

( ∫

Dρ∗ (z)

|∇v(x, t)|ν dx
)1/ν

≤ cρ∗−1
( ∫

Dρ∗ (z)

|u(x, t)− Iρ(t)|ν dx
)1/ν

+
( ∫

Dρ∗ (z)

|∇u(x, t)|ν dx
)1/ν

.
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Poincaré’s inequality in W 1,ν(Dρ∗(z)) implies that

( ∫

Dρ∗ (z)

|u(x, t)− Iρ(t)|ν dx
)1/ν

≤
( ∫

Dρ∗ (z)

|u(x, t)− Iρ∗(t)|ν dx
)1/ν

+ |Iρ∗(t) − Iρ(t)|m(Dρ∗(z))1/ν

≤c
( ∫

Dρ∗ (z)

|u(x, t)− Iρ∗(t)|ν dx
)1/ν

≤cρ∗
( ∫

Dρ∗ (z)

|∇u(x, t)|ν dx
)1/ν

and hence
( ∫

Dρ∗(z)

|∇v(x, t)|ν dx
)1/ν

≤ c
( ∫

Dρ∗ (z)

|∇u(x, t)|ν dx
)1/ν

.

The same argument as above gives

( ∫

Dρ∗ (z)

v(x, t)2 dx
)1/n

≤ c
( ∫

Dρ∗ (z)

|u(x, t) − Iρ(t)|2 dx
)1/n

≤ c
( ∫

Dρ∗ (z)

|u(x, t)− Iρ∗(t)|2 dx
)1/n

.

Collecting the obtained estimates we arrive at

J ≤ c

∫

Dρ∗ (z)

|∇u(x, t)|ν dx
( ∫

Dρ∗ (z)

|u(x, t) − Iρ∗(t)|2 dx
)ν/n

.

The claim follows by integrating this inequality with respect to t over the interval
(τ − 2s, τ + 2s). Observe that the proof applies to the case n = 1 as well.

The following two lemmas are essential tools in proving our main result. We
divide the discussion into two parts depending on whether p ≥ 2 or 2n/(n+ 2) <
p < 2.

Lemma 3.4. Let u be a weak solution to (1.1) with p ≥ 2. Suppose that λ > 0, s =
λ2−p ρ2, and Q40ρ,402s(z, τ) ⊂ O×(S, T ). Denote Q = Qρ,s(z, τ), Q′ = Q4ρ,42s(z, τ)
and Q′′ = Q20ρ,202s(z, τ). If there is c5 ≥ 1 such that

c−1
5 λp ≤

∫

Q

(
|∇u|p + hp

)
dx dt

≤ c5

∫

Q′′

(
|∇u|p + hp

)
dx dt ≤ c25λ

p,

then there is c ≥ 1 such that
∫

Q′′
|∇u|p dx dt ≤ c

(∫

Q′
|∇u|q dx dt

)p/q

+ c

∫

Q′
hp dx dt,
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where q = max{p− 1, pn/(n+2)}. The constant c has the same dependence as the
constant in Lemma 3.2, except that it also depends on c5.

Proof. First suppose that p ≥ 2. From Lemma 3.2 with ρ1 = ρ, s1 = s, ρ2 = 2ρ
and s2 = 2s, we have

(3.5)

∫

Qρ,s(z,τ)

|∇u|p dx dt ≤ cs−1

∫

Q2ρ,2s(z,τ)

|u− a|2 dx dt

+ cρ−p

∫

Q2ρ,2s(z,τ)

|u− a|p dx dt+ c

∫

Q2ρ,2s(z,τ)

hp dx dt

=T1 + T2 + c

∫

Q2ρ,2s(z,τ)

hp dx dt.

Since p ≥ 2 we may estimate T1 in terms of T2 using Hölder’s and Young’s
inequalities and the assumption that s = λ2−pρ2 as

(3.6)
T1 ≤cλp−2ρ−2

∫

Q2ρ,2s(z,τ)

|u− a|2 dx dt

≤λp/(4c5) + c T2,

where c ≥ 1 has the same dependence as c in Lemma 3.2 except that it also depends
on c5.

Hence it is enough to estimate T2. By Lemma 3.1 we choose ρ̂, 2ρ < ρ̂ < 4ρ, so
that

(3.7) |Iρ̂ (t) − Iρ̂ (ξ)| ≤ csρ−1

∫

Q′

(
|∇u|p−1 + |h1| + |h2|

)
dx dt,

for almost every ξ, τ − 2s < ξ < τ + 2s. Let Q̂ = Qρ̂,2s(z, τ) and in (3.5) take

a = a(Q̂) = (a1(Q̂), . . . , aN (Q̂)), where ai(Q̂) =
∫

Q̂

ui dx dt,

for i = 1, 2, . . . , N . Then we have

(3.8) T2 ≤ cρ−p

∫

Q̂

|u− Iρ̂ (t)|p dx dt+ cρ−p ess sup
t∈(τ−2s,τ+2s)

|Iρ̂ (t) − a(Q̂)|p.

We begin with estimating the second term on the right side of (3.8). Using (3.7)
we have

(3.9)
|Iρ̂ (t) − a(Q̂)| ≤ (4s)−1

∫ τ+2s

τ−2s

|Iρ̂ (t) − Iρ̂ (ξ)| dξ

≤ csρ−1

∫

Q′

(
|∇u|p−1 + |h1| + |h2|

)
dx dt
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and hence using the definition of λ we obtain

(3.10)

cρ−p ess sup
t∈(τ−2s,τ+2s)

|Iρ̂ (t) − a(Q̂)|p

≤ cλp(2−p)
(∫

Q′

(
|∇u|p−1 + |h1| + |h2|

)
dx dt

)p

≤ c
(∫

Q′

(
|∇u|p−1 + |h1| + |h2|

)
dx dt

)p/(p−1)

≤ c
(∫

Q′
|∇u|p−1 dx dt

)p/(p−1)

+ c

∫

Q′
hp dx dt.

Observe that the assumption p ≥ 2 is used in the second inequality above.
Next we estimate the first term on the right side of (3.8). Lemma 3.3 implies

that

(3.11)

∫

Q̂

|u− Iρ̂ (t)|p dx dt

≤ c

∫

Q̃

|∇u|q dx dt
(

ess sup
t∈(τ−4s,τ+4s)

∫

D
ρ̃

(z)

|u− Iρ̃ (t)|2 dx
)q/n

,

where q = pn/(n+ 2), Q̃ = Q2ρ̂,4s(z, τ) and ρ̃ = 2ρ̂.
We estimate the essential supremum on the right side of (3.11). Let Q∗ =

Q10ρ,10s(z, τ). Clearly
∫

D
ρ̃

(z)

|u− Iρ̃ (t)|2 dx

≤ c

∫

D
ρ̃

(z)

|u− a(Q∗)|2 dx+ cm(Dρ̃ (z)) |a(Q∗) − Iρ̃ (t)|2

≤ c

∫

D
ρ̃

(z)

|u− a(Q∗)|2 dx

and hence using Lemma 3.2 with a = a(Q∗) we have

(3.12)

ess sup
t∈(τ−4s,τ+4s)

∫

D
ρ̃

(z)

|u− Iρ̃ (t)|2 dx

≤c ess sup
t∈(τ−4s,τ+4s)

∫

D
ρ̃

(z)

|u− a(Q∗)|2 dx

≤cs−1

∫

Q∗
|u− a(Q∗)|2 dx dt+ cρ−p

∫

Q∗
|u− a(Q∗)|p dx dt,

where

(3.13)
s−1

∫

Q∗
|u−a(Q∗)|2 dx dt ≤ cs−1

∫

Q∗
|u− I10ρ(t)|2 dx dt

+ cs−1|Q∗| ess sup
t∈(τ−10s,τ+10s)

|I10ρ(t) − a(Q∗)|2
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and

(3.14)
ρ−p

∫

Q∗
|u−a(Q∗)|p dx dt ≤ cρ−p

∫

Q∗
|u− I10ρ(t)|p dx dt

+ cρ−p|Q∗| ess sup
t∈(τ−10s,τ+10s)

|I10ρ(t) − a(Q∗)|p.

By Poincaré’s inequality in W 1,2(D10ρ(z)) we have

(3.15)

s−1

∫

Q∗
|u− I10ρ(t)|2 dx dt = s−1

∫ τ+10s

τ−10s

∫

D10ρ(z)

|u− I10ρ(t)|2 dx dt

≤ cs−1ρ2

∫

Q∗
|∇u|2 dx dt ≤ cs−1ρ2

(∫

Q∗
|∇u|p dx dt

)2/p

|Q∗|

≤ cρn+2λ2.

Here we used the assumption that p ≥ 2 again. Exactly the same argument gives

(3.16) ρ−p

∫

Q∗
|u− I10ρ(t)|p dx dt ≤ c

∫

Q∗
|∇u|p dx dt ≤ cρn+2λ2.

Using Lemma 3.1 we choose ρ̃, 10ρ < ρ̃ < 20ρ, such that

|Iρ̃ (t) − Iρ̃ (ξ)| ≤ csρ−1

∫

Q′′

(
|∇u|p−1 + |h1| + |h2|

)
dx dt,

when τ − 10s < ξ < τ + 10s. This implies that

(3.17)

s−1|Q∗| ess sup
t∈(τ−10s,τ+10s)

|I10ρ(t) − a(Q∗)|2

≤ cs2ρn−2
(∫

Q′′

(
|∇u|p + hp

)
dx dt

)2(p−1)/p

≤ cρn+2λ2.

A similar argument (see (3.10)) also gives

(3.18)

ρ−p|Q∗| ess sup
t∈(τ−10s,τ+10s)

|I10ρ(t) − a(Q∗)|p

≤ cρnsλp(2−p)
(∫

Q′′

(
|∇u|p−1 + |h1| + |h2|

)
dx dt

)p

≤ cρn+2λ2.

Using (3.12)–(3.18) we conclude that

ess sup
t∈(τ−4s,τ+4s)

∫

D
ρ̃

(z)

|u− Iρ̃ (t)|2 dx ≤ cρn+2λ2.

By (3.11) and Young’s inequality we see that the first term on the right side of
(3.8) can be estimated as

cρ−p

∫

Q̂

|u− Iρ̂ (t)|p dx dt ≤ cλ2q/n

∫

Q̃

|∇u|q dx dt

≤ c
(∫

Q̃

|∇u|q dx dt
)p/q

+ λp/(4c5).
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Finally using (3.5), (3.6), (3.8) and (3.10) we have

(3.19)

∫

Q

|∇u|p dx dt ≤ λp/(2c5) + c
(∫

Q′
|∇u|q dx dt

)p/q

+ c
(∫

Q′
|∇u|p−1 dx dt

)p/(p−1)

+ c

∫

Q′
hp dx dt.

The claim follows from this estimate by absorbing the term containing λp into the
left side.

Next we prove an analogue of Lemma 3.4 for 2n/(n+ 2) < p < 2.

Lemma 3.20. Let u be a weak solution to (1.1) with 2n/(n+2) < p < 2. Suppose
that λ > 0, s = λ2−p ρ2, and Q40ρ,402s(z, τ) ⊂ O × (S, T ). Denote Q = Qρ,s(z, τ),
Q′ = Q4ρ,42s(z, τ) and Q′′ = Q20ρ,202s(z, τ). If there is c6 ≥ 1 such that

c−1
6 λp ≤

∫

Q

(
|∇u|p + s−1|u− a(Q)|2 + hp

)
dx dt

≤ c6

∫

Q′′

(
|∇u|p + s−1|u− a(Q′′)|2 + hp

)
dx dt ≤ c26λ

p,

then there is c ≥ 1 such that∫

Q′′
|∇u|p dx dt ≤ c

(∫

Q′
|∇u|q dx dt

)p/q

+ c

∫

Q′
hp dx dt,

where q = 2n/(n+ 2). The constant c has the same dependence as the constant in
Lemma 3.2, except that it also depends on c6.

Proof. We use the same notation as in the proof of Lemma 3.4. Clearly (3.5) also
holds this case. Since p < 2 we use Hölder’s inequality to estimate T2 in (3.5) in
terms of T1 and obtain

(3.21)
T2 ≤ c

(
ρ−2

∫

Q2ρ,2s(z,τ)

|u− a|2 dx dt
)p/2

≤ cλ(1−p/2)p T
p/2
1 ≤ λp/(4c6) + c T1.

To estimate T1 by Lemma 3.1 we choose ρ̂, 2ρ < ρ̂ < 4ρ, so that (3.7) holds. Let
Q̂ = Qρ̂,2s(z, τ). Using the same argument which led to (3.8) we see that

(3.22) T1 ≤ cs−1

∫

Q̂

|u− Iρ̂ (t)|2 dx dt+ cs−1 ess sup
t∈(τ−2s,τ+2s)

|Iρ̂ (t) − a(Q̂)|2.

Using (3.9), the definition of λ and Young’s inequality, we obtain

(3.23)

s−1 ess sup
t∈(τ−2s,τ+2s)

|Iρ̂ (t) − a(Q̂)|2

≤ cλ2−p
(∫

Q′

(
|∇u|p−1 + |h1| + |h2|

)
dx dt

)2

≤ λp/(4c6) + c
(∫

Q′

(
|∇u|p−1 + |h1| + |h2|

)
dx dt

)p/(p−1)

≤ λp/(4c6) + c
(∫

Q′
|∇u|p−1 dx dt

)p/(p−1)

+ c

∫

Q′
hp dx dt.
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To estimate the first term on the right side of (3.22) we use Lemma 3.3 and argue
first as in (3.11) to get

(3.24)

∫

Q̂

|u− Iρ̂ (t)|2 dx dt

≤ c

∫

Q̃

|∇u|q dx dt
(

ess sup
t∈(τ−4s,τ+4s)

∫

D
ρ̃

(z)

|u− Iρ̃ (t)|2 dx
)q/n

,

where q = 2n/(n + 2), Q̃ = Q2ρ̂,4s(z, τ) and ρ̃ = 2ρ̂. The essential supremum on
the right side of (3.24) is then estimated as in (3.12) and we obtain

(3.25)

ess sup
t∈(τ−4s,τ+4s)

∫

D
ρ̃

(z)

|u− Iρ̃ (t)|2 dx ≤ cs−1

∫

Q∗
|u− a(Q∗)|2 dx dt

+ cρ−p

∫

Q∗
|u− a(Q∗)|p dx dt,

where Q∗ = Q10ρ,10s(z, τ) as before. Using the assumption of the lemma and
remembering that s = λ2−pρ2, we have

s−1

∫

Q∗
|u− a(Q∗)|2 dx dt ≤ cλp|Q∗| ≤ cρn+2λ2.

The second term on the right side of (3.25) can be estimated exactly the same way
as in the case p ≥ 2, see (3.14),(3.16) and (3.18). We conclude that

ess sup
t∈(τ−4s,τ+4s)

∫

D
ρ̃

(z)

|u− Iρ̃ (t)|2 dx ≤ cρn+2λ2.

By (3.24) and Young’s inequality we arrive at

(3.26)

cs−1

∫

Q̂

|u− Iρ̂ (t)|2 dx dt ≤ cλp−q

∫

Q̃

|∇u|q dx dt

≤ c
(∫

Q̃

|∇u|q dx dt
)p/q

+ λp/(4c6).

The claim now follows from using (3.22), (3.23) and (3.26) as before by absorbing
the term containing λp into the left side. This completes the proof.

3.27. Remark. We record for the future reference that the constant c in Lemmas
3.4 and 3.20 remain bounded above if p is in a compact subset of (2n/(n+ 2),∞).
This is easily seen by analyzing the constants in Lemmas 3.1, 3.2 and 3.3.

4. Reverse Hölder inequalities

In this section we show that gradients of weak solutions of (1.1) satisfy a reverse
Hölder inequality provided p > 2n/(n + 2). As in the previous section, slightly
different arguments are needed to handle the cases p ≥ 2 and 2n/(n+ 2) < p < 2.
First we study the case p ≥ 2.
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Proposition 4.1. Let u be a weak solution to (1.1) when p ≥ 2 and suppose that
Q4R,(4R)p(z, τ) ⊂ O × (S, T ), where 0 < R < 1. Then there exist ε > 0 and c ≥ 1
having the same dependence as the corresponding constants in Theorem 2.8 with

(∫

QR,Rp (z,τ)

|∇u|p+ε dx dt
)1/(p+ε)

≤ cRσp−1
(∫

Q2R,(2R)p (z,τ)

|∇u|p dx dt
)σ

+ cR−1 + c
(∫

Q2R,(2R)p(z,τ)

hp+ε dx dt
)1/(p+ε)

,

where σ = (2 + ε)/(2(p+ ε)).

Proof. To prove Proposition 4.1 we assume, as we may, that R = 1 and (z, τ) =
(0, 0), since otherwise we consider

v(x, t) = u(z +Rx, τ +Rpt)

for (x, t) ∈ Q4,4p(0, 0). It is easily seen that v is a weak solution to a partial differ-
ential equation similar to (1.1) and with the same structure. Proving Proposition
4.1 for v with R = 1 relative to (0,0) and then transforming back we get Proposition
4.1 for u.

For short we denote Q̃ = Q2,2p(0, 0). To begin the proof of Proposition 4.1 we
divide Q̃ into Whitney type cylinders

Qi = Qri,r2
i
(zi, τi), i = 1, 2, . . . ,

so that ri is comparable to the parabolic distance of Qi to the boundary of Q̃. Let
us recall that the parabolic distance of sets E, F ⊂ Rn+1 is

inf
{
|x− y| + |t− s|1/2 : (x, t) ∈ E and (y, s) ∈ F

}
.

Moreover the cylinders Qi, i = 1, 2, . . . , are of bounded overlap and

Q5ri,(5ri)2(zi, τi) ⊂ Q̃.

Next for (x, t) ∈ Q̃ we define

g(x, t) =
(
|∇u| + h

)
(x, t)

and
f(x, t) = ĉ−1 min

{
|Qi|1/2 : (x, t) ∈ Qi

}
g(x, t),

where ĉ ≥ 1 will be chosen later.
Let

λ2
0 =

∫

Q̃

|g|p dx dt

and λ > max{λ0, 1} = λ′0. Suppose that (x, t) ∈ Qi with |f(x, t)| > λ. We set

α = |Qi|−1 and γ = α1−p/2λ2−p.
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If ri/20 ≤ r ≤ ri, then for ĉ large enough we have

(4.2)
∫

Qr,γr2 (x,t)

|g|p dx dt ≤ cγ−1α

∫

Q̃

|g|p dx dt ≤ ĉ pλpαp/2.

By Lebesgue’s differentiation theorem, we have for almost every such (x, t) that

(4.3) lim
r→0

∫

Qr,γr2 (x,t)

|g|p dx dt > ĉ pλpαp/2.

From (4.2), (4.3) and continuity of the integral we see that there exists ρ, 0 <
ρ < ri/20, such that

(4.4)
∫

Qρ,γρ2 (x,t)

|g|p dx dt = ĉ pλpαp/2

and

(4.5)
∫

Qr,γr2 (x,t)

|g|p dx dt ≤ ĉ pλpαp/2

for ρ ≤ r ≤ ri.
Let s = γρ2 and denote

Q = Qρ,s(x, t), Q′ = Q4ρ,42s(x, t), and Q′′ = Q20ρ,202s(x, t).

Since λ, α > 1 and p ≥ 2 we have γ ≤ 1. This implies that Q′′ ⊂ Q̃.
Now (4.4) and (4.5) imply that there is a constant c ≥ 1 such that

(4.6) c−1λpαp/2 ≤
∫

Q

|g|p dx dt ≤ c

∫

Q′′
|g|p dx dt ≤ c2λpαp/2.

Observe that
s = γρ2 =

(
λα1/2

)2−p
ρ2.

Thus we can apply Lemma 3.4 with λ replaced by λα1/2. Note that c5 in this case
depends only on n and p. From Lemma 3.4 we conclude for

q = max{p− 1, pn/(n+ 2)}

and c ≥ 1 that

(4.7)
∫

Q′′
|∇u|p dx dt ≤ c

(∫

Q′
|∇u|q dx dt

)p/q

+ c

∫

Q′
hp dx dt.

Using (4.6) and (4.7) we have

(4.8)
c−1λp ≤

∫

Q′′
|f |p dx dt ≤ c

(∫

Q′
|f |q dx dt

)p/q

+ c

∫

Q′
k dx dt

≤ c2
∫

Q′
|f |p dx dt ≤ c3λp,
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where
k(x, t) = min

{
|Qi|p/2 : (x, t) ∈ Qi

}
hp(x, t).

Let G(λ) =
{
(x, t) ∈ Q̃ : |f(x, t)| > λ

}
and η > 0. Then by (4.8) we obtain

(4.9)

(∫

Q′
|f |q dx dt

)p/q

≤ cηpλp +
(
|Q′|−1

∫

Q′∩G(ηλ)

|f |q dx dt
)p/q

≤cηp
(∫

Q′
|f |q dx dt

)p/q

+ cηp

∫

Q′
k dx dt

+ cλp−q|Q′|−1

∫

Q′∩G(ηλ)

|f |q dx dt.

A similar argument gives

(4.10)

∫

Q′
k dx dt ≤cηp

(∫

Q′
|f |q dx dt

)p/q

+ cηp

∫

Q′
k dx dt

+ c |Q′|−1

∫

Q′∩G(ηλ)

k dx dt.

Choosing η > 0 small enough in (4.9), (4.10) and absorbing terms we arrive at

(4.11)

(∫

Q′
|f |q dx dt

)p/q

+
∫

Q′
k dx dt

≤ cλp−q|Q′|−1

∫

Q′∩G(ηλ)

|f |q dx dt+ c |Q′|−1

∫

Q′∩G(ηλ)

k dx dt.

An examination of the proof of the well known Vitali type covering lemma shows
that we can choose pairwise disjoint cylinders

Q′
i = Q4ρi,γ(4ρi)2(xi, ti), i = 1, 2, . . . ,

such that almost everywhere

G(λ) ⊂
∞⋃

i=1

Q′′
i ⊂ Q̃,

where
Q′′

i = Q20ρi,γ(20ρi)2(xi, ti), i = 1, 2, . . .

From (4.8) and (4.11) we deduce that for some small η > 0 we have

(4.12)

c−1λp ≤
∫

Q′′
i

|f |p dx dt

≤ cλp−q

∫

Q′
i

|f |q dx dt+ c

∫

Q′
i

k dx dt

≤ c2λp−q |Q′
i|−1

∫

Q′
i∩G(ηλ)

|f |q dx dt+ c2 |Q′
i|−1

∫

Q′
i∩G(ηλ)

k dx dt

≤ c3λp.
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Multiplying (4.12) by |Q′| and summing over i we get from (4.12) and disjointness
of the cylinders Q′

i, i = 1, 2, . . . , that

(4.13)

∫

G(λ)

|f |p dx dt ≤
∑

i

∫

Q′′
i

|f |p dx dt

≤ cλp−q
∑

i

∫

Q′
i∩G(ηλ)

|f |q dx dt+
∑

i

∫

Q′
i∩G(ηλ)

k dx dt

≤ cλp−q

∫

G(ηλ)

|f |q dx dt+ c

∫

G(ηλ)

k dx dt.

We can now apply a standard argument to complete the proof of Proposition
4.1. For completeness we sketch it. Using Fubini’s theorem and (4.13) we have

∫

G(λ′
0)

|f |p+ε dx dt = ε

∫ ∞

λ′
0

λε−1
( ∫

G(λ)

|f |p dx dt
)
dλ

+ λ′0
ε
∫

G(λ′
0)

|f |p dx dt

≤cε
∫ ∞

λ′
0

λε−1+p−q
( ∫

G(ηλ)

|f |q dx dt
)
dλ

+ cε

∫ ∞

λ′
0

λε−1+p−q
( ∫

G(ηλ)

k dx dt
)
dλ+ λ′0

ε
∫

G(λ′
0)

|f |p dx dt

≤ cε

ε+ p− q

∫

G(λ′
0)

|f |p+ε dx dt+ c

∫

G(λ′
0)

|f |εk dx dt

+ λ′0
ε
∫

G(λ′
0)

|f |p dx dt.

By Young’s inequality we obtain∫

G(λ′
0)

|f |εk dx dt ≤ ε

∫

G(λ′
0)

|f |ε+p dx dt+ c

∫

G(λ′
0)

k1+ε/p dx dt.

Choosing ε > 0 small enough we may absorb the integrals involving |f |p+ε into the
left side and we obtain∫

G(λ′
0)

|f |p+ε dx dt ≤ cλ′0
ε
∫

G(λ′
0)

|f |p dx dt+ c

∫

G(λ′
0)

k1+ε/p dx dt.

Observe that there is a difficulty in moving terms to the left side since they may
be infinite. This technical problem can be treated, for example, by truncating the
function f . To be more precise, let Λ > λ′0 and denote fΛ = min{|f |,Λ}. If |f | is
replaced by fΛ in the definition of G(λ), we see that (4.13) holds with |f | replaced
by fΛ, and we can go through the above argument. Now all absorbed terms are
finite and we obtain the claim passing to the limit as Λ → ∞. Thus∫

Q̃

|f |p+ε dx dt ≤ λ′0
ε
∫

Q̃\G(λ′
0)

|f |p dx dt+
∫

G(λ′
0)

|f |p+ε dx dt

≤ cλ′0
ε
∫

Q̃

|f |p dx dt+ c

∫

Q̃

k1+ε/p dx dt.

Proposition 4.1 follows easily from this inequality.
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Then we prove a counterpart of Proposition 4.1 when 2n/(n+ 2) < p < 2.

Proposition 4.14. Let u be a weak solution to (1.1) when 2n/(n + 2) < p < 2
and suppose that Q4R,(4R)p(z, τ) ⊂ O× (S, T ), where 0 < R < 1. Then there exist
ε > 0 and c ≥ 1 having the same dependence as the corresponding constants in
Theorem 2.8 with

(∫

QR,Rp (z,τ)

|∇u|p+ε dx dt
)1/(p+ε)

≤cR−1
( ∫

Q2R,(2R)p (z,τ)

|u− a(Q2R,(2R)p(z, τ))|2 dx dt
)ν

+ cR−1 + c
(∫

Q2R,(2R)p (z,τ)

hp+ε dx dt
)1/(p+ε)

,

where ν =
(
2ε+ (n+ 2)p− 2n

)
/
(
(p+ ε)((n+ 2)p− 2n)

)
.

Proof. Again we divide Q̃ = Q2,2p(0, 0) into Whitney type cylinders Qi, i =
1, 2, . . . , exactly in the same way as in the proof of Proposition 4.1. Next for
(x, t) ∈ Q̃ put

g(x, t) =
(
|∇u| + h

)
(x, t).

Let

(4.15) λ
((n+2)p−2n)/2
0 =

∫

Q̃

|u− a(Q̃)|2 dxdt,

and λ > max{λ0, 1} = λ′0. For (x, t) ∈ Q̃ we define

f(x, t) = ĉ−1 min
{
|Qi|σ : (x, t) ∈ Qi

}
g(x, t),

where
σ =

2n+ 8
(n+ 2)

(
(n+ 2)p− 2n

)

and c̃ ≥ 1 will be chosen later. Suppose (x, t) ∈ Qi with |f(x, t)| > λ. Put
α = |Qi|−σ and let γ = (λα)2−p. Again by Lebesgue’s differentiation theorem, we
have for almost every such (x, t) that

lim
r→0

∫

Qr,γr2 (x,t)

|g|p dx dt > ĉ pλpαp.

Also if r = (λα)p/2−1r′i with ri/20 ≤ r′i ≤ ri, then Qr,γr2(x, t) ⊂ Q̃ and for ĉ large
enough we have from Lemma 3.2 and Hölder’s inequality

∫

Qr,γr2 (x,t)

(
|g|p + γ−1r−2|u− a(Qr,γr2(x, t))|2

)
dx dt

≤ c(n)r−(n+4)
i (λα)(1−p/2)n

∫

Q̃

(
hp + 1 + |u− a(Q̃)|2

)
dx dt

< ĉ pλpαp,
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since p > 2n/(n + 2). We again use continuity of the integral to find ρ, 0 < ρ <
(λα)p/2−1ri/20 such that

(4.16)
∫

Qρ,γρ2 (x,t)

(
|g|p + γ−1ρ−2|u− a(Qρ,γρ2(x, t))|2

)
dx dt = ĉ pλpαp

and

(4.17)
∫

Qr,γr2 (x,t)

(
|g|p + γ−1r−2|u− a(Qr,γr2(x, t))|2

)
dx dt ≤ ĉ pλpαp

for ρ ≤ r ≤ (λα)p/2−1ri. From (4.16) and (4.17) we see that Lemma 3.20 can be
applied with Q = Qρ,γρ(x, t) and λ replaced by λα. We can now repeat the proof
of Proposition 4.1 essentially verbatim from (4.8) on to get Proposition 4.14. We
omit the details.

The proof of Theorem 2.8 follows easily from Proposition 4.1, Proposition 4.14
and Lemma 3.3.
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