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THE DERIVATIVE OF THE MAXIMAL FUNCTION

Juha Kinnunen and Peter Lindqvist

Abstract. In this note we show that the local Hardy-Littlewood maximal opera-
tor is bounded in the Sobolev space. Thus the maximal function often has partial

derivatives. We also show that the maximal operator preserves the zero boundary
values in Sobolev’s sense.

1. Introduction

The celebrated maximal operator of Hardy and Littlewood is usually used to
estimate the absolute size and so its possible regularity properties are often ne-
glected. An essential phenomenon is that the maximal operator preserves the class
of Lipchitz continuous functions. By Rademacher’s theorem such functions are
differentiable almost everywhere. The question about differentiability in general
is a more delicate one. It was shown in [K] by the first author that the globally
defined maximal operator preserves the first order Sobolev spaces. The objective
of our note is the local case. Having applications to partial differential equations
in mind we are keen on having a locally defined maximal function that will do as a
test-function in the weak formulation of the equation.

To be more precise, let Ω be an open set in the Euclidean space Rn. For a
locally integrable function u : Ω → [−∞,∞] we define the local Hardy-Littlewood
maximal function MΩu : Ω → [0,∞] as

(1.1) MΩu(x) = sup
1

|B(x, r)|

∫

B(x,r)

|u(y)| dy,

where the supremum is taken over all radii r with 0 < r < dist(x, ∂Ω). In other
words, all open balls B(x, r) centered at x and contained in Ω are admissible. Hence
the local maximal function depends also on the domain. With this definition,
MΩu = u exactly when the non-negative function u is superharmonic in Ω. The
theorem of Hardy, Littlewood, and Wiener, see for example [S], asserts that the
maximal operator is bounded in Lp(Ω) for 1 < p ≤ ∞, that is

(1.2) ‖MΩu‖p,Ω ≤ c(n, p)‖u‖p,Ω.

The Sobolev space W 1,p(Ω), 1 ≤ p ≤ ∞, consists of those functions u which,
together with their first weak partial derivatives Du = (D1u, . . . , Dnu), belong to
Lp(Ω).

Our main result is the following.
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1.3. Theorem. Let 1 < p ≤ ∞. If u ∈ W 1,p(Ω), then MΩu ∈ W 1,p(Ω) and

(1.4)
∣∣DMΩu(x)

∣∣ ≤ 2MΩ|Du|(x),

for almost every x ∈ Ω.

We endow the Sobolev space W 1,p(Ω) with the norm

‖u‖1,p,Ω = ‖u‖p,Ω + ‖Du‖p,Ω .

Using the previous theorem together with (1.2), we see that the local maximal
operator is bounded in W 1,p(Ω) provided 1 < p ≤ ∞. This generalizes the main
result of [K] to the case Ω 6= Rn.

The proof of Theorem 1.3 is based on a general principle given in Section 3. It is
decisive that the first order Sobolev space is a lattice: if u and v belong to W 1,p(Ω),
so does the pointwise maximum max(u, v). This is also the reason why our results
do not hold in the higher order Sobolev spaces. Section 2 contains an expedient
technical lemma.

Let us point out a question related to the definition. As we shall see in Section 4,
the local maximal function preserves the zero boundary values in Sobolev’s sense.
More precisely, for every u ∈ W 1,p

0 (Ω) with 1 < p < ∞, the function MΩu belongs
to W 1,p

0 (Ω). Here W 1,p
0 (Ω) denotes the Sobolev space defined as the completion of

C∞
0 (Ω) with respect to the Sobolev norm. In contrast, the usual way of extending

u ∈ W 1,p
0 (Ω) as zero to the complement of Ω and, then, of taking the global

maximal function of u will not do for our purposes. The global maximal function
MRn belongs to W 1,p(Rn) by [K] but its restriction to Ω does not, in general,
possess the the same boundary values as u. In other words, the usual remedy
would distort the boundary values. To this we may add that neither does the
uncentered maximal function, in general, preserve the boundary values. We hope
to return to applications in our future work.

We thank the anonymous referee for his valuable comments.

2. A lemma

We begin with an auxiliary result, which may be of independent interest. We
make a standing assumption that Ω 6= Rn so that δ(x) = dist(x, ∂Ω) is finite. The
functions ut : Ω → [−∞,∞], 0 < t < 1, defined by

(2.1) ut(x) =
∫

B(x,tδ(x))

u(y) dy,

will play a crucial rôle in the proof of Theorem 1.3. The ball B(x, tδ(x)) is comprised
in Ω. The bar on the integral sign denotes the average, i.e., a division by the volume
ωntnδ(x)n. We also write

∫

∂B(x,r)

u(y) dHn−1(y) =
1

nωnrn−1

∫

∂B(x,r)

u(y) dHn−1(y)

for the spherical average.
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2.2. Lemma. Let 1 < p ≤ ∞ and suppose that u ∈ W 1,p(Ω). Then ut ∈ W 1,p(Ω),
0 < t < 1, and

(2.3) |Dut(x)| ≤ 2MΩ|Du|(x), 0 < t < 1,

for almost every x ∈ Ω.

Proof. Suppose first that u ∈ C∞(Ω). Let t, 0 < t < 1, be fixed. According to
Rademacher’s theorem, as a Lipschitz function δ is differentiable almost everywhere
in Ω. Moreover, |Dδ(x)| = 1 for almost every x ∈ Ω. The Leibnitz rule gives

Diut(x) =Di

( 1
ωn(tδ(x))n

)
·
∫

B(x,tδ(x))

u(y) dy

+
1

ωn(tδ(x))n
· Di

∫

B(x,tδ(x))

u(y) dy, i = 1, 2, . . . , n,

for almost every x ∈ Ω, and by the chain rule

Di

∫

B(x,tδ(x))

u(y) dy =
∫

B(x,tδ(x))

Diu(y) dy

+ t

∫

∂B(x,tδ(x))

u(y) dHn−1(y) · Diδ(x), i = 1, 2, . . . , n,

for almost every x ∈ Ω. Here we also used the fact that

∂

∂r

∫

B(x,r)

u(y) dy =
∫

∂B(x,r)

u(y) dy.

Collecting terms we obtain

(2.4)
Dut(x) = n

Dδ(x)
δ(x)

(∫

∂B(x,tδ(x))

u(y) dHn−1(y) −
∫

B(x,tδ(x))

u(y) dy
)

+
∫

B(x,tδ(x))

Du(y) dy,

for almost every x ∈ Ω. This is a vector identity.
In order to estimate the difference of the two integrals in the parenthesis in

(2.4) we have to take into account a cancellation effect. To this end, suppose that
B(x, R) ⊂ Ω. We use Green’s first identity

∫

∂B(x,R)

u(y)
∂v

∂ν
(y) dHn−1(y) =

∫

B(x,R)

(
u(y)∆v(y) + Du(y) · Dv(y)

)
dy,

where ν(y) = (y − x)/R is the unit outer normal of B(x, R) and we choose v(y) =
|y − x|2/2. With these choices Green’s formula reads

∫

∂B(x,R)

u(y) dHn−1(y) −
∫

B(x,R)

u(y) dy =
1
n

∫

B(x,R)

Du(y) · (y − x) dy.
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We estimate the right-hand side of the previous equality by
∣∣∣∣
∫

B(x,R)

Du(y) · (y − x) dy

∣∣∣∣ ≤ R

∫

B(x,R)

|Du(y)| dy ≤ RMΩ |Du|(x)

and, finally, we conclude that

(2.5)
∣∣∣∣
∫

∂B(x,R)

u(y) dHn−1(y) −
∫

B(x,R)

u(y) dy

∣∣∣∣ ≤
R

n
MΩ|Du|(x).

Let us multiply the vector identity (2.4) with an arbitrary unit vector e =
(e1, . . . , en). Using (2.5) with R = tδ(x), we have by the Schwarz inequality

∣∣e · Dut(x)
∣∣ ≤n

|e · Dδ(x)|
δ(x)

· tδ(x)
n

MΩ |Du|(x) +
∣∣∣∣
∫

B(x,tδ(x))

e · Du(y) dy

∣∣∣∣

≤tMΩ|Du|(x) +
∫

B(x,tδ(x))

|Du(y)| dy

≤(t + 1)MΩ|Du|(x)

for almost every x ∈ Ω. Since t ≤ 1 and e is arbitrary, (2.3) is proved for smooth
functions.

The case u ∈ W 1,p(Ω) with 1 < p < ∞ follows from an approximation argument.
To this end, suppose that u ∈ W 1,p(Ω) for some p with 1 < p < ∞. Then there is
a sequence {ϕj} of functions in W 1,p(Ω) ∩ C∞(Ω) such that ϕj → u in W 1,p(Ω)
as j → ∞.

Fix t with 0 < t < 1. By (2.1) we see that

ut(x) = lim
j→∞

(ϕj)t(x),

when x ∈ Ω. It is clear that

∣∣(ϕj)t(x)
∣∣ ≤

∫

B(x,tδ(x))

|ϕj(y)| dy ≤ MΩϕj(x), j = 1, 2, . . . ,

for every x ∈ Ω. By (2.3) for smooth functions we have

(2.6)
∣∣D(ϕj)t(x)

∣∣ ≤ 2MΩ|Dϕj |(x), j = 1, 2 . . . ,

for almost every x ∈ Ω. These inequalities and the Hardy-Littlewood-Wiener
theorem imply that

∥∥(ϕj)t

∥∥
1,p,Ω

=
∥∥(ϕj)t

∥∥
p,Ω

+
∥∥D(ϕj)t

∥∥
p,Ω

≤ c(n, p)
(
‖ϕj‖p,Ω + ‖Dϕj‖p,Ω

)
= c(n, p)‖ϕj‖1,p,Ω.

Thus
{
(ϕj)t

}∞
j=1

is a bounded sequence in W 1,p(Ω) and, since it converges to ut

pointwise, we conclude that the Sobolev derivative Dut exists and that D(ϕj)t →
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Dut weakly in Lp(Ω) as j → ∞. This is a standard argument yielding the desired
conclusion that ut belongs to W 1,p(Ω).

To establish inequality (2.3) we want to proceed to the limit in (2.6) as j → ∞.
By the sublinearity of the maximal function we obtain

∣∣MΩ |Dϕj |(x) −MΩ|Du|(x)
∣∣ ≤ MΩ

(
|Dϕj | − |Du|

)
(x)

for every x ∈ Ω and, using the Hardy-Littlewood-Wiener theorem once more, we
arrive at

∥∥MΩ |Dϕj | −MΩ|Du|
∥∥

p,Ω
≤

∥∥MΩ(|Dϕj | − |Du|)
∥∥

p,Ω

≤ c(n, p)
∥∥|Dϕj | − |Du|

∥∥
p,Ω

.

Hence MΩ|Dϕj | → MΩ|Du| (even strongly) in Lp(Ω) as j → ∞.
To complete the proof, we notice the following simple proposition: If fj → f

and gj → g weakly in Lp(Ω) and if fj(x) ≤ gj(x), j = 1, 2, . . . , almost everywhere
in Ω, then f(x) ≤ g(x) almost everywhere in Ω. Applying the proposition to (2.6),
we obtain the desired inequality (2.3).

Finally we consider the case p = ∞. Slightly modifying the the above proof we
see that ut ∈ W 1,p

loc (Ω) for every p with 1 < p < ∞ and estimate (2.3) holds for
the gradient. The claim follows from the Hardy-Littlewood-Wiener theorem. This
completes the proof.

3. Proof of Theorem 1.3

The proof of Theorem 1.3 follows now easily, since the hard work has been done
in the proof of Lemma 2.2. Suppose that u ∈ W 1,p(Ω) for some p, 1 < p < ∞.
Then |u| ∈ W 1,p(Ω). Consider the auxiliary functions defined by formula (2.1).
Let tj , j = 1, 2, . . . , be an enumeration of the rationals between 0 and 1 and denote
uj = |u|tj

. By Lemma 2.2 we see that uj ∈ W 1,p(Ω) for every j = 1, 2, . . . and
(2.3) gives us the estimate

|Duj(x)| ≤ 2MΩ|Du|(x), j = 1, 2, . . . ,

for almost every x ∈ Ω. Here we also used the fact that |Du(x)| =
∣∣D|u(x)|

∣∣ for
almost every x ∈ Ω. We define vk : Ω → [−∞,∞] as the pointwise maximum

vk(x) = max
1≤j≤k

uj(x), k = 1, 2, . . .

Using the fact that the maximum of two Sobolev functions belongs to the Sobolev
space, see [GT] Lemma 7.6, we see that {vk} is an increasing sequence of functions
in W 1,p(Ω) converging to MΩu pointwise and

(3.1)
|Dvk(x)| =

∣∣D max
1≤j≤k

uj(x)
∣∣

≤ max
1≤j≤k

|Duj(x)| ≤ 2MΩ|Du|(x), k = 1, 2, . . . ,
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for almost every x ∈ Ω. On the other hand vk(x) ≤ MΩu(x), k = 1, 2, . . . , for
every x ∈ Ω.

The rest of the proof goes along the lines of the final part of the proof for Lemma
2.2. By the Hardy-Littlewood-Wiener theorem we obtain

‖vk‖1,p,Ω = ‖vk‖p,Ω + ‖Dvk‖p,Ω

≤ ‖MΩu‖p,Ω + 2
∥∥MΩ|Du|

∥∥
p,Ω

≤ c(n, p)‖u‖1,p,Ω.

Hence {vk} is a bounded sequence in W 1,p(Ω) such that vk → MΩu almost every-
where in Ω as k → ∞. A weak compactness argument shows that MΩu ∈ W 1,p(Ω),
vk → MΩu and Dvk → DMΩu weakly in Lp(Ω) as k → ∞. Again we may proceed
to the weak limit in (3.1), using the proposition in the end of the previous section.

Let us then briefly consider the case p = ∞. Again using the above argument
it is easy to see that MΩu ∈ W 1,p

loc (Ω) and the claim follows from the Hardy-
Littlewood-Wiener theorem.

4. Boundary values of the maximal function

We have shown that the local Hardy-Littlewood maximal operator preseverves
the Sobolev spaces W 1,p(Ω) provided 1 < p ≤ ∞. In this section we show that the
maximal operator also preserves the zero boundary values in Sobolev’s sense.

4.1. Corollary. Suppose that u ∈ W 1,p
0 (Ω) for some p with 1 < p < ∞, then

MΩu ∈ W 1,p
0 (Ω).

Proof. To see this, let {ϕj} be a sequence of functions in C∞
0 (Ω) such that ϕj → u

in W 1,p(Ω) as j → ∞. Using Theorem 1.3 we see that MΩϕj ∈ W 1,p(Ω),
j = 1, 2, . . . Moreover, it is easy to see that MΩϕj(x) = 0 whenever dist(x, ∂Ω) <

1/2 dist(supp ϕj , ∂Ω). This implies that MΩϕj ∈ W 1,p
0 (Ω), j = 1, 2, . . . The sub-

linearity of the maximal operator yields
∣∣MΩϕj(x) −MΩu(x)

∣∣ ≤ MΩ(ϕj − u)(x)

for every x ∈ Ω and hence by the Hardy-Littlewood-Wiener theorem

‖MΩϕj −MΩu‖p,Ω ≤
∥∥MΩ(ϕj − u)

∥∥
p,Ω

≤ c(n, p)‖ϕj − u‖p,Ω.

On the other hand, using (1.4) we obtain the derivative estimate

‖DMΩϕj‖p,Ω ≤ 2
∥∥MΩ|Dϕj |

∥∥
p,Ω

≤ c(n, p)‖Dϕj‖p,Ω,

which means that {MΩϕj} is a bounded sequence in W 1,p
0 (Ω) converging to u in

Lp(Ω). Again, weak compactness implies MΩu ∈ W 1,p
0 (Ω).

4.2. Remark. Suppose that u ∈ W 1,p(Ω) for some p with 1 < p < ∞. A mod-
ification of our argument shows that |u| − MΩu ∈ W 1,p

0 (Ω). In particular, the
local maximal function preserves the boundary values of non-negative functions in
Sobolev’s sense.
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