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1. Introduction

Let Ω be a domain in Rn and suppose that 1 < p < ∞. We consider the

weak solutions of the quasilinear equation

div
(
(ADu · Du)(p−2)/2ADu

)
= div(|F |p−2F ), (1.1)

where A = (Aij(x))n×n is a symmetric matrix with measurable coefficients

satisfying the uniform ellipticity condition

λ |ξ|2 ≤ A(x)ξ · ξ ≤ Λ |ξ|2 (1.2)



for all ξ ∈ Rn and almost every x ∈ Ω. Here λ and Λ are positive constants

and η · ξ denotes the standard inner product of η, ξ ∈ Rn. Suppose that

F ∈ Lp
loc(Ω). We recall that the function u ∈ W 1,p

loc (Ω) is a weak solution for

equation (1.1) if

∫

Ω

(ADu · Du)(p−2)/2ADu · Dϕ dx =
∫

Ω

|F |p−2F · Dϕ dx (1.3)

for every ϕ ∈ C∞
0 (Ω).

Equation (1.1) arises naturally in many different contexts. Just to mention

few, we point out that it is the Euler equation for the variational integral

∫

Ω

(
(ADu · Du)p/2 − p |F |p−2F · Du

)
dx.

In the case p = n equation (1.1) (with F = 0) plays a key role in theory

of quasiconformal mappings. If A is the identity matrix, then we have a

non-homogeneous p-harmonic equation.

We are interested in studying how the regularity of F is reflected to the

solutions under minimal assumptions on the coefficient matrix A. In particu-

lar, we are keen on having discontinuous coefficients. A natural weakening of

the case with smooth coefficients is to assume that the coefficients of the ma-

trix A are of vanishing mean oscillation. We recall that a locally integrable

function f is of bounded mean oscillation, if

∫

B(x,r)

|f − fB(x,r)| dy

is uniformly bounded as B(x, r) ranges over all balls contained in Ω; here

fB(x,r) =
∫

B(x,r)

f(y) dy =
1

|B(x, r)|

∫

B(x,r)

f(y) dy

denotes the integral mean over the ball B(x, r). If, in addition, we require

that these averages tend to zero uniformly as r tends to zero, we say that



f is of vanishing mean oscillation and denote f ∈ VMO(Ω), see [21]. Uni-

formly continuous functions are of vanishing mean oscillation, but in general

functions of vanishing mean oscillation need not be continuous. Recently

equations with coefficients of vanishing mean oscillation have obtained con-

siderable attention, see [1], [2], [3], [4], [7], [8], [9], [10], [15] and [20]. Our

main contribution is the following result.

1.4. Theorem. Suppose that the coefficients of A are of vanishing mean

oscillation and that F ∈ Lq
loc(Ω) for some q > p. Let u ∈ W 1,p

loc (Ω) be a weak

solution for equation (1.1). Then for every x0 ∈ Ω, there exist r > 0 and

γ > 0 such that B(x0, 6r) ⊂ Ω and

∫

B(x0,r)

|Du|q dx ≤ γ
(∫

B(x0,6r)

|F |q dx +
∫

B(x0,6r)

|u|q dx
)
. (1.5)

Here r and γ depend only on n, p, q, λ, Λ, dist(x0, ∂Ω) and the VMO data

of A. In particular, this implies that u ∈ W 1,q
loc (Ω).

Observe that the local estimate (1.5) holds above the natural exponent p;

For q = p it follows immediately by choosing the right test function.

The regularity theory for (1.1) has been studied extensively. We take the

opportunity to briefly describe some developments related to our work.

There are two kinds of estimates in the literature. By local estimates we

mean results similar to Theorem 1.4. On the other hand, if u ∈ W 1,p(Rn)

is the weak solution of (1.1) with F ∈ Lq(Rn), then the question is whether

there exists a constant γ > 0 such that
∫

Rn

|Du|q dx ≤ γ

∫

Rn

|F |q dx.

We call this kind of results global estimates.

First suppose that we are in the linear case p = 2. Then (1.1) reduces to

the equation

div(ADu) = div F. (1.6)



If A is the unitary matrix, then global results follow from the classical Lp-

theory for the Laplacian using the Calderón–Zygmund theory, see [12]. The

case of bounded and uniformly continuous coefficients has been studied by

Morrey et al, see [19]. Recently Di Fazio [7] proved a local result for (1.6)

provided the coefficients are bounded functions of vanishing mean oscillation.

His argument is based on representation formulas involving singular integral

operators and commutators. A global result has been obtained by Iwaniec

and Sbordone in [15].

Then we discuss the nonlinear case p 6= 2. If the matrix A is the unitary

matrix, equation (1.1) reads

div(|Du|p−2Du) = div(|F |p−2F ).

This is a non-homogeneous p-harmonic equation. In this case related results

have been obtained by Iwaniec [14] and by DiBenedetto and Manfredi [6].

Their methods are based on maximal function inequalities and the regularity

theory for the p-harmonic equation.

We generalize the local result of Di Fazio to a class of nonlinear equations.

Even in the linear case our argument gives a new proof for the result of Di

Fazio. Our approach is based on choosing the right test function, maximal

function estimates and the regularity theory for the solutions with smooth co-

efficents. In particular, we do not have representation formulas for solutions

available. Instead of using global maximal functions as in [6], we localize the

problem and use maximal functions where the radii of balls are restricted.

The drawback of our method is that it does not seem give the global esti-

mate. On the other hand, our method can be modified to obtain a global

estimate when Ω is a bounded C1,1-domain using the boundary estimates of

[17]. We hope to return to this question in a future paper.

Our paper is organized in the following way. In Section 2 we prove maximal

function inequalities, which may be of independent interest. In Section 3 we



establish an auxiliary local estimate, which is an essential tool in proving our

main result. Finally in Section 4 we complete the proof of Theorem 1.4 using

an approximation argument.

Our notation is standard. We use c to denote positive constants which may

differ even on the same line. The dependence of the parameters is expressed,

for example, by c(n, p). We do not write down explicitly the dependence

on the data. Throughout the paper we use many elementary inequalities

without proofs. The proofs are scattered in the literature and difficult to

locate, but some of our inequalities can be found, for example, in [14].

2. Maximal function inequalities

The Hardy-Littlewood maximal function of a locally integrable function f

is defined by

Mf(x) = sup
r>0

∫

B(x,r)

|f(y)| dy

and the sharp maximal function of f is defined by

f#(x) = sup
r>0

∫

B(x,r)

|f(y)− fB(x,r)| dy.

In the definition of the restricted sharp maximal function f#
ρ there is an

additional requirement that the radii over which the supremum is taken must

be less than or equal to a positive number ρ.

We recall the well-known estimates for the maximal operators.

2.1. Lemma. Suppose that f ∈ Lt(Rn) with t > 1. Then there exists a

constant c = c(n, t) such that

‖Mf‖t ≤ c ‖f‖t (2.2)

and

‖Mf‖t ≤ c ‖f#‖t. (2.3)



The first inequality is the maximal function theorem of Hardy, Littlewood

and Wiener. The second inequality is due to Fefferman and Stein.

Observing that |f | ≤ Mf and f# ≤ 2 Mf , we see that the norms ‖f‖t,

‖Mf‖t and ‖f#‖t are equivalent. The corresponding result is not true for

the restricted sharp maximal function. For example, for uniformly continuous

functions we can make the restricted sharp maximal function arbtrarily small

by taking the bound for the radii to be small enough. There are local versions

of the Fefferman and Stein inequality, see for example Lemma 4 in [13], but we

have not been able to make them to fit to our proof. However, the following

local estimate will do for our purposes.

2.4. Lemma. Suppose that f ∈ Lt(Rn) with t > 1 and supp f ⊂ B(x0, R)

for some R > 0. Then there exist constants k = k(n, t) ≥ 2 and c = c(n, t) >

0 such that
∫

B(x0,R)

|f(x)|t dx ≤ c

∫

B(x0,kR)

f#
kR(x)t dx. (2.5)

Proof. Let k ≥ 2 to be determined later.

First suppose that x ∈ Rn \ B(x0, kR), then |x − x0| ≥ kR. If B(x, r) ∩

B(x0, R) 6= ∅, then r ≥ |x − x0| − R ≥ 1/2|x − x0| and

f#(x) ≤ 2 sup
r>0

1
|B(x, r)|

∫

B(x,r)∩B(x0,R)

|f(y)| dy

≤ c

|x − x0|n

∫

B(x0,R)

|f(y)| dy.

Then suppose that x ∈ B(x0, kR). Clearly

f#(x) ≤ sup
r>kR

∫

B(x,r)

|f(y)− fB(x,r)| dy + f#
kR(x)

≤ 2
|B(x, kR)|

∫

B(x0,R)

|f(y)| dy + f#
kR(x).



Using the above estimates, we have

∫

Rn

f#(x)t dx =
∫

Rn\B(x0,kR)

f#(x)t dx +
∫

B(x0,kR)

f#(x)t dx

≤c
(∫

B(x0,R)

|f(y)| dy
)t
∫

Rn\B(x0,kR)

|x − x0|−nt dx

+ c(kR)n(1−t)
(∫

B(x0,R)

|f(y)| dy
)t

+ c

∫

B(x0,kR)

f#
kR(x)t dx

=I1 + I2 + I3.

An integration in the spherical coordinates and Hölder’s inequality gives

Ij ≤ ckn(1−t)

∫

B(x0,R)

|f(y)|t dy, j = 1, 2.

Using the above estimates, we have

∫

Rn

f#(x)t dx ≤ c
(
kn(1−t)

∫

B(x0,R)

|f(x)|t dx+
∫

B(x0,kR)

f#
kR(x)t dx

)
. (2.6)

Finally applying Lemma 2.1 and estimate (2.6), we obtain

∫

B(x0,R)

|f(x)|t dx =
∫

Rn

|f(x)|t dx ≤ c

∫

Rn

f#(x)t dx

≤ c
(
kn(1−t)

∫

B(x0,R)

|f(x)|t dx +
∫

B(x0,kR)

f#
kR(x)t dx

)

with c = c(n, t). The claim follows by choosing k = k(n, t) ≥ 2 large enough

and absorbing the first term on the right side to the left side.

3. An auxiliary local estimate

In this section we prove an interior a priori estimate, which will be a

crucial ingredient in the proof of Theorem 1.4. Our proof is based on the

maximal function estimates and some known regularity results for the con-

stant coefficient reference equation.



3.1. Proposition. Let 1 < p < ∞. Suppose that F ∈ Lq
loc(Ω) for some

q > p and that u ∈ W 1,q
loc (Ω) is a weak solution of (1.1). Then for every

x0 ∈ Ω there exist d > 0 and γ > 0 such that B(x0, 3d) ⊂ Ω and
∫

B(x0,d/2)

|Du|q dx ≤ γ
(∫

B(x0,3d)

|F |q dx +
∫

B(x0,3d)

|u|q dx
)
. (3.2)

Here d and γ depend only on n, p, q, λ, Λ, dist(x0, ∂Ω) and the VMO data

of A.

Observe that we have the artificial assumption u ∈ W 1,q
loc (Ω) in the state-

ment of Proposition 3.1. This is a technicality to justify the absorption of

some terms in the final part of the proof. Later we show that this assumption

is redundant and that it follows from the assumptions of Theorem 1.4.

Proof of Proposition 3.1. Set t = q/p > 1 and let k = k(N, q/p) ≥ 2 be

as in Lemma 2.4. Later we choose h ≥ 2 and d > 0 appropriately so that

B(x0, 2hkd) ⊂ Ω. Let ζ ∈ C∞
0 (B(x0, d)) be a cut-off function such that

ζ = 1 in B(x0, d/2), 0 ≤ ζ ≤ 1 in Rn and |Dζ| ≤ c/d. We set

w = uζp′
,

where p′ = p/(p−1). Then w ∈ W 1,q(B(x, R)) and, in particular, by Hölder’s

inequality u ∈ W 1,p(B(x, R)) for every R with 0 < R < dist(x, ∂Ω).

We begin with constructing a constant coefficient reference equation for

which we have known regularity results. Later we compare the solutions of

(1.1) to the solutions of the reference equation. To be more precise, for every

x ∈ B(x0, kd) and every R, 0 < R ≤ hkd, we have a unique weak solution

v ∈ W 1,p(B(x, R)) for the equation

div
(
(ABDv · Dv)(p−2)/2ABDv

)
= 0 (3.3)

with the boundary condition

v − w ∈ W 1,p
0 (B(x, R)). (3.4)



Here the matrix AB = AB(x,R) is the integral mean (taken componentwise)

of the matrix A over the ball B = B(x, R). Obviously the averaged matrix

AB satisfies the ellipticity condition (1.2) with the same constants as A.

We need the following estimates for the solution of the constant coefficient

Dirichlet problem. For the proofs of these inequalities we refer to [6] and

[22]. Let v ∈ W 1,p(B(x, R)) be the unique weak solution of (3.3) with the

boundary condition (3.4). Then there exists a constant c = c(n, p, λ, Λ) such

that

ess sup
B(x,ρ)

|Dv| ≤ c
(∫

B(x,R)

|Dw|p dy
)1/p

(3.5)

and ∫

B(x,ρ)

|Dv − (Dv)B(x,ρ)|p dy ≤ c
( ρ

R

)α
∫

B(x,R)

|Dw|p dy (3.6)

for every ρ, 0 < ρ ≤ R/2, with α = α(n, p, λ, Λ) > 0. Observe that here

(Dv)B(x,ρ) denotes the integral average of the vector taken componentwise.

The proof of Proposition 3.1 is based on the following technical result. We

denote

‖A(y)‖ = max
i,j

|Aij(y)|

and

‖A‖∗,R = sup
∫

B(x,r)

‖A − AB(x,r)‖ dy,

where the supremum is taken over all balls B(x, r) with r ≤ R.

3.7. Lemma. Let x ∈ Ω and R, 0 < R ≤ hkd, be such that B(x, 3R) ⊂ Ω

and denote s = (p + q)/2. Suppose that v ∈ W 1,p(B(x, R)) is the unique

weak solution of (3.3) with the boundary condition (3.4). Then for every ε,

0 < ε < 1, we have

∫

B(x,R)

|Dw − Dv|p dy ≤ c(ε)‖A‖1−p/s
∗,R

(∫

B(x,R)

|Dw|s dy
)p/s

(3.8)

+ε

∫

B(x,R)

|Dw|p dy + c(ε, h, d)
∫

B(x,3R)

(
|F |p + |u|p

)
χB(x0,3d) dy.



The proof of (3.8) is not very difficult but it is lengthy. Basically we use

Hölder’s, Sobolev’s and Young’s inequalities successively. Observe, however,

that the mean oscillation of the matrix A appears in the first term on the

right side and this term can be made arbitrarily small if we choose d > 0

small enough. Note also that the right side of (3.8) is independent of v. We

present the proof of Lemma 3.7 at the end of this section and now continue

the proof of Proposition 3.1. So assume, for the moment, that we have proved

Lemma 3.7.

For short, we set

G = (|F |p + |u|p)χB(x0,3d).

Fix ρ, 0 < ρ ≤ kd, and let R = hρ. Choose ε = h−n−α in Lemma 3.7, where

α is the same exponent as in (3.6). Since h ≥ 2, we have B(x, ρ) ⊂ B(x, R),

and (3.8) implies that

∫

B(x,ρ)

|Dw − Dv|p dy ≤ c(h)‖A‖1−p/s
∗,R

(∫

B(x,R)

|Dw|s dy
)p/s

+ h−α

∫

B(x,R)

|Dw|p dy + c(h, d)
∫

B(x,3R)

G dy.

Suppose that 0 < θ ≤ 1. Then

∣∣|ξ|p − |η|p
∣∣ ≤ c(p)θ−p|ξ − η|p + θ|η|p

for every ξ, η ∈ Rn. Using the previous elementary inequality we obtain

∫

B(x,ρ)

∣∣|Dw|p − (|Dw|p)B(x,ρ)

∣∣ dy ≤ c(θ)
∫

B(x,ρ)

|Dw − Dv|p dy

+ c(θ)
∫

B(x,ρ)

|Dv − (Dv)B(x,ρ)|p dy + θ

∫

B(x,ρ)

|Dv|p dy.

for every θ, 0 < θ ≤ 1. Combining the above two estimates and applying



(3.5) and (3.6) we arrive at∫

B(x,ρ)

∣∣|Dw|p − (|Dw|p)B(x,ρ)

∣∣ dy

≤c(θ, h)‖A‖1−p/s
∗,hkd

(∫

B(x,R)

|Dw|s dy
)p/s

+
(
c(θ)h−α + cθ

)∫

B(x,R)

|Dw|p dy + c(θ, h, d)
∫

B(x,3R)

G dy.

Then we interpret the obtained inequality in terms of maximal functions.

We observe that the previous estimate is independent of v and that it holds

for every x ∈ B(x0, kd) and ρ with 0 < ρ ≤ kd. Taking the supremum over

radii yields

(|Dw|p)#kd(x) ≤c(θ, h)‖A‖1−p/s
∗,hkd

(
M(|Dw|s)(x)

)p/s

+
(
c(θ)h−α + cθ

)
M(|Dw|p)(x) + c(θ, h, d) MG(x)

for every x ∈ B(x0, kd). Since supp w ⊂ B(x0, d), we may apply Lemma 2.4

with f = |Dw|p and t = q/p > 1. This implies that∫

B(x0,d)

|Dw|q dx ≤c

∫

B(x0,kd)

∣∣(|Dw|p)#kd

∣∣q/p
dx

≤c(θ, h)‖A‖q/p−q/s
∗,hkd

∫

Rn

(
M(|Dw|s)

)q/s
dx

+
(
c(θ)h−α + cθ

)q/p
∫

Rn

(
M(|Dw|p)

)q/p
dx

+ c(θ, h, d)
∫

Rn

(MG)q/p dx

=I1 + I2 + I3.

We estimate the obtained integrals by the Hardy-Littlewood-Wiener max-

imal function theorem, see Lemma 2.1. Recalling that p < s < q, we may

apply (2.2) and obtain

I1 ≤ c(θ, h)‖A‖q/p−q/s
∗,hkd

∫

B(x0,d)

|Dw|q dx,

I2 ≤
(
c(θ)h−α + cθ

)q/p
∫

B(x0,d)

|Dw|q dx,

I3 ≤ c(θ, h, d)
∫

B(x0,3d)

Gq/p dx.



Now we choose θ small enough and then h large enough such that

(
c(θ)h−α + cθ

)q/p
<

1
4
.

Combining the estimates above we arrive at
∫

B(x0,d)

|Dw|q dx ≤
(
c‖A‖q/p−q/s

∗,hkd +
1
4

)∫

B(x0,d)

|Dw|q dx

+ c(d)
∫

B(x0,3d)

(
|F |q + |u|q

)
dx.

(3.9)

We observe that the first term on the right side can be absorbed to the left

side by choosing d > 0 small enough such that 2khd ≤ dist(x0, ∂Ω) and

c ‖A‖q/p−q/s
∗,hkd ≤ 1

4
.

This completes the proof of Proposition 3.1.

We still have to prove Lemma 3.7.

Proof of Lemma 3.7. Denote

w = uζp′
and g = −uD(ζp′

).

Let v ∈ W 1,p(B(x, R)) be the unique weak solution of (3.3) with v − w ∈

W 1,p
0 (B(x, R)). A direct calculation using (3.3) shows that

div
(
(ABDw · Dw)(p−2)/2ABDw − (ABDv · Dv)(p−2)/2ABDv

)

= div
(
(ABDw · Dw)(p−2)/2ABDw − (ADw · Dw)(p−2)/2ADw

)

+ div
(
(ADw · Dw)(p−2)/2ADw

)
,

(3.10)

where

div
(
(ADw · Dw)(p−2)/2ADw

)

= div
(
(ADu · Du)(p−2)/2ADuζp

)
+ div

(
(ADw · Dw)(p−2)/2ADw

− (A(Dw + g) · (Dw + g))(p−2)/2A(Dw + g)
)
.

(3.11)



Using the fact that u is a solution of (1.1) we conclude that

div
(
(ADu · Du)(p−2)/2ADuζp

)

= div(|F |p−2F )ζp + (ADu · Du)(p−2)/2ADu · D(ζp).
(3.12)

As usual, equations (3.10), (3.11) and (3.12) have to be understood in the

weak sense. Collecting (3.10), (3.11) and (3.12) and choosing the test func-

tion w − v ∈ W 1,p
0 (B(x, R)) we obtain

∫

B(x,R)

(
(ABDw · Dw)(p−2)/2ABDw

− (ABDv · Dv)(p−2)/2ABDv
)
· (Dw − Dv) dy

=I1 + I2 + I3 + I4,

(3.13)

where

I1 =
∫

B(x,R)

(
(ABDw · Dw)(p−2)/2ABDw

− (ADw · Dw)(p−2)/2ADw
)
· (Dw − Dv) dy,

I2 =
∫

B(x,R)

(
(ADw · Dw)(p−2)/2ADw

− (A(Dw + g) · (Dw + g)(p−2)/2A(Dw + g)
)
· (Dw − Dv) dy,

I3 =
∫

B(x,R)

|F |p−2F · D
(
(w − v)ζp

)
dy,

I4 = −
∫

B(x,R)

(ADu · Du)(p−2)/2ADu · D(ζp)(w − v) dy.

We denote the left side of (3.13) by I0.

Let σ > 0 and ε > 0 be parameters to be fixed later.

We estimate the integrals Ii, i = 0, 1, 2, 3, 4. The crucial term for us is I1,

since here we need the assumption that the coefficients of A are of vanishing

mean oscillation. The estimates for the other terms are rather standard. The

proof is divided into two cases.



Case 1. p ≥ 2.

We begin with estimating I0. If p ≥ 2, then for every ξ, η ∈ Rn we have

(
(Aξ · ξ)(p−2)/2Aξ − (Aη · η)(p−2)/2Aη

)
· (ξ − η) ≥ c |ξ − η|p (3.14)

with c = c(p, λ, Λ). Inequality (3.14) implies that

I0 ≥ c

∫

B(x,R)

|Dw − Dv|p dy. (3.15)

This is our estimate for I0.

Then we consider I1. Recall that s = (p + q)/2 and let

t =
ps

(p − 1)(s − p)
> 1.

For every ξ, η ∈ Rn we have

∣∣(Aξ · ξ)(p−2)/2Aξ − (ABξ · ξ)(p−2)/2ABξ
∣∣ ≤ c ‖A − AB‖|ξ|p−1 (3.16)

with c = c(p, λ, Λ). By (3.16), Hölder’s and Young’s inequalities, we have

I1 ≤
∫

B(x,R)

‖A − AB‖|Dw|p−1|Dw − Dv| dy

≤c(σ)
(∫

B(x,R)

‖A − AB‖t dy
)1−p/s(∫

B(x,R)

|Dw|s dy
)p/s

+ σ

∫

B(x,R)

|Dw − Dv|p dy.

The mean oscillation of the coefficients of A can be estimated by the ellip-

ticity assumption, which implies, in particular, that the coefficients of A are

bounded. Hence we obtain
∫

B(x,R)

‖A − AB‖t dy ≤ c ‖A‖∗,R

with constant c depending on the data. Consequently, we have

I1 ≤ c(σ)‖A‖1−p/s
∗,R

(∫

B(x,R)

|Dw|s dy
)p/s

+σ

∫

B(x,R)

|Dw−Dv|p dy. (3.17)



This is the desired estimate for I1.

To bound I2 we use the inequality

∣∣(Aξ · ξ)(p−2)/2Aξ − (Aη · η)(p−2)/2Aη
∣∣ ≤ c

(
|ξ| + |η|

)p−2|ξ − η|,

which holds for every ξ, η ∈ Rn with c = c(p, λ, Λ). We obtain

I2 ≤c

∫

B(x,R)

(
|Dw|p−2 + |Dw + g|p−2

)
|g||Dw − Dv| dy

≤σ

∫

B(x,R)

|Dw − Dv|p dy + ε

∫

B(x,R)

|Dw|p dy

+ c(σ, ε)
∫

B(x,R)

|g|p dy.

(3.18)

This estimate takes care of I2.

To estimate I3 we recall that w − v ∈ W 1,p
0 (B(x, R)). We use Hölder’s,

Sobolev’s and Young’s inequalities in this order and conclude that

I3 ≤
∫

B(x,R)

|F |p−1ζp|D(w − v)| dy + c

∫

B(x,R)

|F |p−1|w − v||Dζ| dy

≤σ

∫

B(x,R)

|Dw − Dv|p dy + c(σ, h)
∫

B(x,R)

|F |pχB(x0,d) dy. (3.19)

Finally we deal with I4. An easy calculation shows that

I4 ≤ c(d)
∫

B(x,R)

|Dw + g|p−2|Du|χB(x0,d)|w − v| dy.

We use Hölder’s then Sobolev’s and finally Young’s inequality to obtain

I4 ≤σ

∫

B(x,R)

|Dw − Dv|p dy + ε

∫

B(x,R)

|Dw|p dy

+ c(σ, ε, h, d)Rp

∫

B(x,R)

|Du|pχB(x0,d) dy

+ c(σ, ε, h, d)
∫

B(x,R)

|g|p dy.

(3.20)

By geometry we can find a ball B(z, r) where the center z lies on the

line joining x0 and x and the radius r = min(d, R) is such that B(x, R) ∩



B(x0, d) ⊂ B(z, r). Let η ∈ C∞
0 (B(z, 2r)) be a cut-off function with η = 1

in B(z, r), 0 ≤ η ≤ 1 in Rn and |Dη| ≤ c/r. Choosing the test function

ηpu in (1.3), after standard calculations, we arrive at the Caccioppoli type

inequality

rp

∫

B(z,r)

|Du|p dy ≤ c

∫

B(z,2r)

(
rp|F |p + |u|p

)
dy.

Observing that B(z, 2r) ⊂ B(x0, 3d) ∩ B(x, 3R), we have

Rp

∫

B(x,R)

|Du|pχB(x0,d) dy

≤ c(h, d)
∫

B(x,3R)

(
|F |p + |u|p

)
χB(x0,3d) dy.

(3.21)

Combining estimates (3.15), (3.17), (3.18), (3.19), (3.20) and (3.21), we

obtain

∫

B(x,R)

|Dw − Dv|p dy ≤ c(σ)‖A‖1−p/s
∗,R

(∫

B(x,R)

|Dw|s dy
)p/s

+ 4σ

∫

B(x,R)

|Dw − Dv|p dy + 2ε

∫

B(x,R)

|Dw|p dy

+ c(σ, ε, h, d)
∫

B(x,3R)

(
|F |p + |u|p

)
χB(x0,3d) dy.

(3.22)

Now choosing σ small enough we see that the second term on the right side

can be absorbed to the left side. This completes the proof of (3.8) in the case

p ≥ 2.

Case 2. 1 < p < 2.

For every ε, 0 < ε < 1, there is c = c(p, λ, Λ) such that

|ξ − η|p ≤cε(p−2)/p
(
(Aξ · ξ)(p−2)/2Aξ

− (Aη · η)(p−2)/2Aη
)
· (ξ − η) + ε|η|p

(3.23)



for every ξ, η ∈ Rn. It follows from (3.23) that
∫

B(x,R)

|Dw − Dv|p dy ≤ c(ε)
∫

B(x,R)

(
(ABDw · Dw)(p−2)/2ABDw

− (ABDv · Dv)(p−2)/2ABDv
)
· (Dw − Dv) dy

+ ε

∫

B(x,R)

|Dw|p dy

≤c(ε)(I1 + I2 + I3 + I4) + ε

∫

B(x,R)

|Dw|p dy

where Ii, i = 1, 2, 3, 4, are the same as before. The integrals I1 and I3 may

be estimated as above.

For I2 we use the inequality
∣∣(Aξ · ξ)(p−2)/2Aξ − (Aη · η)(p−2)/2Aη

∣∣ ≤ c |ξ − η|p−1,

which holds for every ξ, η ∈ Rn with constant c = c(p, λ, Λ), together with

Hölder’s and Young’s inequalities and obtain

I2 ≤c

∫

B(x,R)

|g|p−1|Dw − Dv| dy

≤σ

∫

B(x,R)

|Dw − Dv|p dy + c(σ)
∫

B(x,R)

|g|p dy.

For I4 we use Hölder’s, Sobolev’s and Young’s inequalities to obtain

I4 ≤c(d)
∫

B(x,R)

|Du|p−1χB(x0,d)|w − v| dy

≤σ

∫

B(x,R)

|Dw − Dv|p dy + c(σ, d)Rp

∫

B(x,R)

|Du|pχB(x0,d) dy.

The last term may be estimated as in (3.21). Therefore

I4 ≤σ

∫

B(x,R)

|Dw − Dv|p dy

+ c(σ, h, d)
∫

B(x,3R)

(
|F |p + |u|p

)
χB(x0,3d) dy.

We obtain estimate (3.8) for 1 < p < 2 by combining the estimates for

Ii, i = 0, 1, 2, 3, 4, exactly in the same way as in (3.22) and then choosing

σ = σ(ε) small enough and absorbing terms. This completes the proof of

(3.8) in the case 1 < p < 2 and Lemma 3.7 follows.



4. The proof of the main result

In this section we complete the proof of Theorem 1.4 using an approxi-

mation argument and Proposition 3.1. In particular, we show that if F ∈

Lq
loc(Ω) with q > p, then the weak solutions of (1.1) belong to W 1,q

loc (Ω).

Hence the regularity is reflected to the solutions. Our strategy is to build up

a sequence of equations with smooth coefficients, use the fact that the so-

lutions of the regularized problems are locally Lipschitz and then show that

they converge to the solution of the original problem.

It seems to be crucial for us that the weak solutions of (1.1) belong to a

higher Sobolev space. This is a well-known result, but we restate it here for

the sake of completeness.

4.1. Proposition. Suppose that F ∈ Lq
loc(Ω) with q > p and let u ∈

W 1,p
loc (Ω) be a weak solution of (1.1). Then there exist s, p < s < q, and

c ≥ 1 such that

(∫

B(x0,R)

|Du|s dx
)1/s

≤ c
(∫

B(x0,2R)

|Du|p dx
)1/p

+c
(∫

B(x0,2R)

|F |q dx
)1/q

(4.2)

for every B(x0, 2R) ⊂ Ω. Here s and c depend only on n, p, q, λ and Λ.

Proof. Let ζ ∈ C∞
0 (B(x0, 2R)) be a cut-off function such that ζ = 1 in

B(x0, R), 0 ≤ ζ ≤ 1 and |Dζ| ≤ c/R. We test (1.3) with ϕ = ζp(u −

uB(x0,2R)) ∈ W 1,p
0 (Ω). Using the ellipticity assumption we have

∫

B(x0,2R)

|Du|pζp dx ≤ c
(∫

B(x0,2R)

|Du|p−1|D(ζp)||u − uB(x0,2R)| dx

+
∫

B(x0,2R)

|F |p−1|Du||ζp| dx

+
∫

B(x0,2R)

|F |p−1|u − uB(x0,2R)||D(ζp)| dx
)
.



By Hölder’s and Young’s inequalities we obtain
∫

B(x0,R)

|Du|p dx ≤ c
(
R−p

∫

B(x0,2R)

|u − uB(x0,2R)|p dx +
∫

B(x0,2R)

|F |p dx
)

and finally we use Sobolev’s inequality to conclude that

(∫

B(x0,R)

|Du|p dx
)1/p

≤ c
(∫

B(x0,2R)

|Du|p∗ dx
)1/p∗

+c
(∫

B(x0,2R)

|F |p dx
)1/p

,

where p∗ = max{1, np/(n + p)}. In other words, the gradient of a solution

satisfies a reverse Hölder inequality. Then we use the fact that reverse Hölder

inequalities improve themselves. The version of the result needed here was

first proved by Meyers and Elcrat [18] using the idea of Gehring, see also

Giaquinta’s book [11]. This completes the proof.

Then we construct a sequence of approximating equations with smooth

coefficients. To this end, fix a ball B(x0, 2R) ⊂ Ω. Then there are matrices

Am ∈ C∞(B(x0, 2R)), m = 1, 2, . . . , satisfying the ellipticity condition (1.2)

such that Am → A in L1(B(x0, 2R)) as m → ∞ and

‖Am‖∗,r ≤ ‖A‖∗,r, m = 1, 2, . . . ,

for every r with 0 < r ≤ R. This is easy to see by convolving the coefficients

of A by a smooth approximate identity as in [S].

Let Fm ∈ C∞
0 (B(x0, R)), m = 1, 2, . . . , be functions such that Fm → F

in Lq(B(x0, R)) as m → ∞ and
∫

B(x0,R)

|Fm|q dx ≤
∫

B(x0,R)

|F |q dx, m = 1, 2, . . .

Suppose that u ∈ W 1,p(B(x0, R)). For every m = 1, 2, . . . , there is a

unique solution um ∈ W 1,p(B(x0, R)) for the Dirichlet problem

div
(
(AmDum · Dum)(p−2)/2AmDum

)
= div(|Fm|p−2Fm) (4.3)



with

um − u ∈ W 1,p
0 (B(x0, R)). (4.4)

It seems natural to expect that the solutions to the approximating problems

converge to the solution of the original equation in some suitable sense. This

is the content of the following proposition.

4.5. Proposition. Suppose that u ∈ W 1,p
loc (Ω) is a weak solution of (1.1).

Fix a ball B(x0, 2R) ⊂ Ω. Let um ∈ W 1,p(B(x0, R)), m = 1, 2, . . . , be the

unique solution of (4.3) with the boundary condition (4.4). Then um → u in

W 1,p(B(x0, R)) as m → ∞.

Proof. Fix m. Using (4.3) and (1.1) we have
∫

B(x0,R)

(
(AmDum · Dum)(p−2)/2AmDum

− (AmDu · Du)(p−2)/2AmDu
)
· (Dum − Du) dx

=I1 + I2,

(4.6)

where

I1 =
∫

B(x0,R)

(
(ADu · Du)(p−2)/2ADu

− (AmDu · Du)(p−2)/2AmDu
)
· (Dum − Du) dx,

I2 =
∫

B(x0,R)

(|Fm|p−2Fm − |F |p−2F ) · (Dum − Du) dx.

The left side of equality (4.6) is denoted by I0. Again, we divide the estimates

for (4.6) into two cases.

Case 1. p ≥ 2.

Using the elementary inequality (3.14) we see that

I0 ≥ c

∫

B(x0,R)

|Dum − Du|p dx.

The two terms on the right side of (4.6) are estimated as below.



For I1 we use (3.16) and obtain

I1 ≤c

∫

B(x0,R)

‖A − Am‖|Du|p−1|Dum − Du| dx

≤θ

∫

B(x0,R)

|Dum − Du|p dx + c(θ)
∫

B(x0,R)

‖A − Am‖p′
|Du|p dx,

(4.7)

where 0 < θ < 1. The last term of (4.7) is controlled by the reverse Hölder

inequality. Using (4.2) we obtain
∫

B(x0,R)

‖A − Am‖p′
|Du|p dx

≤
(∫

B(x0,R)

|Du|s dx
)p/s(∫

B(x0,R)

‖A − Am‖p′s/(s−p) dx
)(s−p)/s

≤γ
(∫

B(x0,R)

‖A − Am‖ dx
)(s−p)/s

,

where γ is independent of m.

To estimate I2 we apply the inequality

∣∣|ξ|p−2ξ − |η|p−2η
∣∣ ≤ c(p)

(
|ξ|+ |η|

)p−2|ξ − η|,

where ξ, η ∈ Rn. We conclude that

I2 ≤c

∫

B(x0,R)

(|Fm| + |F |)p−2|Fm − F ||Dum − Du| dx

≤θ

∫

B(x0,R)

|Dum − Du|p dx + c(θ)
(∫

B(x0,R)

|Fm − F |p dx
)p′/p

·
((∫

B(x0,R)

|Fm|p dx
)1/p

+
(∫

B(x0,R)

|F |p dx
)1/p

)p′(p−2)

,

where 0 < θ < 1.

Choosing θ small enough, combining the above estimates and absorbing

terms we arrive at
∫

B(x0,R)

|Dum − Du|p dx ≤ γ
(∫

B(x0,R)

‖A − Am‖ dx
)(s−p)/s

+ γ
(∫

B(x0,R)

|Fm − F |q dx
)p′/q

,



where γ is independent of m. Proposition 4.5 follows in the case p ≥ 2 letting

m → ∞.

Case 2. 1 < p < 2.

It follows from (3.23) that, for every ε with 0 < ε ≤ 1, we have
∫

B(x0,R)

|Dum − Du|p dx ≤ c(ε)
∫

B(x0,R)

(
(AmDum · Dum)(p−2)/2AmDum

− (AmDu · Du)(p−2)/2AmDu
)
· (Dum − Du) dx

+ ε

∫

B(x0,R)

|Du|p dx

≤c(ε)(I1 + I2) + ε

∫

B(x0,R)

|Du|p dx.

Here I1 and I2 denote the same integrals as in (4.6). The integral I1 can be

estimated exactly in the same way as before.

To estimate I2 we apply the inequality

∣∣|ξ|p−2ξ − |η|p−2η
∣∣ ≤ c(p)|ξ − η|p−1,

where ξ, η ∈ Rn. We obtain

I2 ≤c

∫

B(x0,R)

|Fm − F |p−1|Dum − Du| dx

≤θ

∫

B(x0,R)

|Dum − Du|p dx + c(θ)
∫

B(x0,R)

|Fm − F |p dx,

where 0 < θ < 1.

Choosing θ = θ(ε) small enough and absorbing terms we conclude that
∫

B(x0,R)

|Dum − Du|p dx ≤ ε

∫

B(x0,R)

|Du|p dx

+ γ
(∫

B(x0,R)

‖Am − A‖ dx
)(s−p)/s

+ γ
(∫

B(x0,R)

|Fm − F |q dx
)p/q

,

where γ does not depend on m. Letting m → ∞ we have

lim sup
m→∞

∫

B(x0,R)

|Dum − Du|p dx ≤ ε

∫

B(x0,R)

|Du|p dx.



Since ε > 0 is arbitrary, the above inequality implies that

lim sup
m→∞

∫

B(x0,R)

|Dum − Du|p dx = 0.

This proves Proposition 4.5 also in the case 1 < p < 2 and we are done.

Proof of Theorem 1.4. Let B(x0, R) ⊂ Ω. First we assume that q ≤ p∗ =

min{np/(n−p)+, 2p}. Suppose that um ∈ W 1,p(B(x0, R)), m = 1, 2, . . . , are

weak solutions of (4.3) with the boundary condition (4.4). By the regularity

theory the gradients of um are locally Hölder continuous, see [5], [16] and

[22]. In particular, this implies that Dum ∈ L∞
loc(B(x0, R)) and hence um ∈

W 1,q
loc (B(x0, R)) for every m = 1, 2, . . . This means that the functions um,

m = 1, 2, . . . , satisfy the assumptions of Proposition 3.1. Hence by (3.2)

there is d > 0 such that B(x0, 3d) ⊂ B(x0, R) and
∫

B(x0,d/2)

|Dum|q dx ≤ γ
( ∫

B(x0,3d)

|Fm|q dx +
∫

B(x0,3d)

|um|q dx
)
, (4.8)

where d and γ do not depend on m.

Proposition 4.5 and Sobolev’s inequality give us a subsequence of (um)

(denoted by um) such that Dum → Du almost everywhere in B(x0, 3d) and

um → u in Lq(B(x0, 3d)) as m → ∞. It follows from (4.8) using Fatou’s

lemma that
∫

B(x0,d/2)

|Du|q dx ≤ lim sup
m→∞

∫

B(x0,d/2)

|Dum|q dx

≤ γ
(∫

B(x0,3d)

|F |q dx +
∫

B(x0,3d)

|u|q dx
)
.

In particular, this implies that u ∈ W 1,q
loc (Ω).

If q ≥ p∗, we iterate the above procedure. First we see that u ∈ W 1,p∗

loc (Ω)

since F ∈ Lq
loc(Ω) ⊂ Lp∗

loc(Ω). In the first step we improved the integrability

of the gradient of u by a fixed amount. Then we use the same reasoning

again. After finitely many steps we obtain that u ∈ W 1,q
loc (Ω) and we may

use Proposition 3.1 to complete the proof of Theorem 1.4.
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