
THE BV-CAPACITY IN METRIC SPACES

HEIKKI HAKKARAINEN AND JUHA KINNUNEN

Abstract. We study basic properties of the BV-capacity and
Sobolev capacity of order one in a complete metric space equipped
with a doubling measure and supporting a weak Poincaré inequal-
ity. In particular, we show that the BV-capacity is a Choquet
capacity and the Sobolev 1-capacity is not. However, these quan-
tities are equivalent by two sided estimates and they have the same
null sets as the Hausdorff measure of codimension one. The the-
ory of functions of bounded variation plays an essential role in
our arguments. The main tool is a modified version of the boxing
inequality.

1. Introduction

The notion of capacity plays a crucial role in studying the pointwise
behaviour of a Sobolev function, see [7, 9, 23, 27] for Euclidean and
[18, 19, 4] for more general metric measure spaces. Let 1 ≤ p < ∞ and
according to [26], denote by N1,p(X) the first order Sobolev space on a
metric measure space X. For the general theory of Sobolev functions
on metric measure spaces we refer to a forthcoming monograph [3] by
Björns. The Sobolev p-capacity of E ⊂ X is defined as

capp(E) = inf ‖u‖p
N1,p(X),

where the infimum is taken over all admissible functions u ∈ N1,p(X)
such that 0 ≤ u ≤ 1 and u = 1 on a neighbourhood of E. The theory
of Sobolev p-capacity in the setting of metric measure spaces, when
1 < p < ∞, has been studied in papers [20, 21]. In particular, the
Sobolev p-capacity is so called Choquet capacity when 1 < p < ∞.
This means that the capacity of a Borel set can be obtained by ap-
proximating with compact sets from inside and open sets from outside.
In the Euclidean case with Lebesgue measure the Sobolev p-capacity
is a Choquet capacity also when p = 1, but a slightly unexpected fact
is that the Choquet property fails for p = 1 in the metric setting.
We give an explicit example of this phenomenon inspired by an un-
publised construction by Riikka Korte. During the past fifteen years,
capacities in metric measure spaces have been studied, for example, in
[11, 20, 21, 16]. However, little has been written about the case when
p = 1.
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In this paper we propose that the capacity defined in terms of the
functions of bounded variation, see [9, 27], behaves better than the 1-
Sobolev capacity in metric measure spaces. The BV-capacity of a set
E ⊂ X is

capBV(E) = inf
(
‖u‖L1(X) + ‖Du‖(X)

)
,

where the infimum is taken over all u ∈ BV(X) such that 0 ≤ u ≤ 1
and u = 1 on a neighbourhood of E. Here ‖Du‖ is the total variation
measure of u. In the metric setting a version of the BV-capacity, defined
without the norm of the function, has been studied in [19]. However,
the results in [19] apply for compact sets only and since we do not have
the Choquet property, the passage to more general sets is not clear.
One of the main advantages of using the BV-capacity in this work is
that the results apply for more general sets as well. We show that the
BV-capacity has many of the desired properties and it is, indeed, a
Choquet capacity. In the Euclidean case with Lebesgue measure the
BV-capacity equals to Sobolev 1-capacity, see [9] and [27], but in a
complete metric space equipped with a doubling measure and support-
ing a weak Poincaré inequality, the BV-capacity is merely equivalent
to the Sobolev 1-capacity by two sided estimates. For compact sets
the BV-capacity and Sobolev 1-capacity coincide. We shall present ex-
amples which demonstrate that in general these two quantities are not
equal.

The theory of BV-functions in metric measure spaces, see [24, 1, 2],
with results like coarea formula and lower semicontinuity of the vari-
ation measure play an essential role in our approach. To prove the
equivalence of capacities we use similar approach as in [9] and [19],
where the boxing inequality, originally studied by Gustin in [12], plays
an important role. However, we present a modified version of this in-
equality, since we are dealing with Sobolev capacities, where the norm
of the function is also included. In [19] it is shown that the variational
1-capacity, which is defined without the norm of the function, is equiv-
alent by two sided estimates to the Hausdorff content of codimension
one. Here we show that the Sobolev 1-capacity and the BV-capacity
have same null sets as the Hausdorff measure of codimesion one.

Acknowledgements. The research was supported by the Emil Aal-
tonen Foundation and the Finnish Academy of Science and Letters, the
Vilho, Yrjö and Kalle Väsälä Foundation.

2. Preliminaries

Let X = (X, d, µ) denote a metric space equipped with a metric d and
a positive Borel regular outer measure µ such that 0 < µ(B(x, r)) < ∞
for all balls B(x, r) of X. It is also assumed that X contains at least
two points. The measure µ is said to be doubling if there exists a
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constant CD ≥ 1, called the doubling constant of µ, such that

µ(B(x, 2r)) ≤ CDµ(B(x, r))

for all balls B(x, r) of X. A path in X is defined here as a rectifiable
nonconstant continuous mapping from a compact interval to X. A
path can be parameterized by arc length. In this paper, the definition
of Sobolev spaces on metric measure space X is based on the notion of
p-weak upper gradients, see [26]. We will now recall the definition of
the p-weak upper gradient.

Definition 2.1. A nonnegative Borel function g on X is an upper
gradient of an extended real valued function u on X if for all paths γ
joining points x and y in X we have

(2.2) |u(x) − u(y)| ≤

∫

γ

g ds,

whenever both u(x) and u(y) are finite, and
∫

γ
g ds = ∞ otherwise. Let

1 ≤ p < ∞. If g is a nonnegative measurable function on X, and if the
integral in (2.2) is well defined and the inequality holds for p-almost
every path, then g is a p-weak upper gradient of u.

The phrase that inequality (2.2) holds for p-almost every path with
1 ≤ p < ∞ means that it fails only for a path family with zero p-
modulus, see for example [15]. Many usual rules of calculus hold true
for upper gradients as well, see [3].

Remark. It is known that if u has a p-weak upper gradient g ∈ Lp
loc(X),

then there is a minimal p-weak upper gradient gu such that gu ≤ g µ-
almost everywhere for every p-weak upper gradient of u, see [3].

The Sobolev spaces on X are defined as follows.

Definition 2.3. Let 1 ≤ p < ∞. If u ∈ Lp(X), let

‖u‖N1,p(X) =
(∫

X

|u|p dµ + inf
g

∫

X

gp dµ
)1/p

,

where the infimum is taken over all p-weak upper gradients of u. The
Newtonian space on X is the quotient space

N1,p(X) =
{
u : ‖u‖N1,p(X) < ∞

}/
∼,

where u ∼ v if and only if ‖u − v‖N1,p(X) = 0.

In order to obtain stronger connection between a function and its
upper gradients and to develop first order calculus, one usually assumes
that metric measure space supports some kind of Poincaré inequality.

Definition 2.4. The space X supports a weak (1,p)-Poincaré inequal-
ity if there exists constants CP > 0 and τ ≥ 1 such that for all balls
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B(x, r) of X, all locally integrable functions u on X and for all p-weak
upper gradients g of u

−

∫

B(x,r)

|u − uB(x,r)| dµ ≤ CP r
(
−

∫

B(x,τr)

gp dµ
)1/p

,

where

uB(x,r) = −

∫

B(x,r)

u dµ =
1

µ(B(x, r))

∫

B(x,r)

u dµ.

It is known that Lip(X)∩N1,p(X) is dense in N1,p(X) if µ is doubling
and (1, p)-Poincaré inequality is satisfied, see [26]. From this it easily
follows that Lipschitz functions with compact support are dense in
N1,p(X), if X is also complete.

Throughout the paper we assume that X is a complete metric mea-
sure space endowed with a doubling measure and supporting a (1, 1)-
Poincaré inequality. The definition of functions of bounded variation
on the metric space setting is based on [24] and [2]. For the classical
case of R

n, we refer to [10], [7], [23] and [27]. Notice that in [24] the
functions of bounded variation are defined in terms of the lower point-
wise dilation. However, we may use 1-weak upper gradients instead.
For the proofs of the theorems in this section, we refer to [24, 1, 2].

Definition 2.5. Let u ∈ L1
loc(X). For every open set U ⊂ X we define

‖Du‖(U) = inf
{

lim inf
i→∞

∫

U

gui
dµ : ui ∈ Liploc(U), ui → u in L1

loc(U)
}

,

where gui
∈ L1

loc(U) is a 1-weak upper gradient of ui. Function u ∈
L1(X) is of bounded variation, u ∈ BV(X), if ‖Du‖(X) < ∞. A
measurable set E ⊂ X is said to have finite perimeter if ‖DχE‖(X) <
∞.

Remark. In the definition above, we may assume that gui
is, indeed,

the minimal 1-weak upper gradient of ui. However, with the abuse of
notation we denote the 1-weak upper gradient and the minimal 1-weak
upper gradient of u by gu.

For the following result we refer to Theorem 3.4 in [24].

Theorem 2.6. Let u ∈ BV(X). For every set A ⊂ X we define

‖Du‖(A) = inf
{
‖Du‖(U) : A ⊂ U, U ⊂ X is open

}
.

Then ‖Du‖(·) is a finite Borel outer measure.

The perimeter measure is also denoted by

P (E,A) = ‖DχE‖(A).

For any given u ∈ BV(X) there exists a sequence of functions ui ∈
Liploc(X), i = 1, 2, . . . , such that ui → u in L1

loc(X) and
∫

X

gui
dµ → ‖Du‖(X)
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as i → ∞. The following approximation result will be useful later.

Lemma 2.7. Let u ∈ BV(X). Then there is a sequence of functions
ui ∈ Lipc(X), i = 1, 2, . . . , with upper gradients gui

such that ui → u
in L1(X) and ∫

X

gui
dµ → ‖Du‖(X),

as i → ∞.

Proof. Let i ∈ N and fix x ∈ X. We choose r > 0 such that∫

X

|u| dµ <

∫

B(x,r)

|u| dµ +
1

i
.

Let vi ∈ Liploc(X) be such that
∫

B(x,r+1)

|u − vi| dµ <
1

i

and ∣∣∣‖Du‖(X) −

∫

X

gvi
dµ

∣∣∣ <
1

i
.

Let η ∈ Lipc(X) be a 1-Lipschitz cutoff function such that 0 ≤ η ≤ 1,
η = 1 in B(x, r) and η = 0 in X \ B(x, r + 1). We define ui = viη ∈
Lipc(X) and obtain ∫

X

|u − ui| dµ <
2

i
.

We notice that
gui

= |vi|χB(x,r+1)\B(x,r) + gvi
η

is a 1-weak upper gradient of ui and therefore∫

X

gui
dµ =

∫

B(x,r+1)\B(x,r)

|vi| dµ +

∫

X

gvi
η dµ

≤

∫

B(x,r+1)

|u − vi| dµ +

∫

X\B(x,r)

|u| dµ +

∫

X

gvi
dµ

< ‖Du‖(X) +
3

i
.

Hence ui → u in L1(X) as i → ∞ and

lim sup
i→∞

∫

X

gui
dµ ≤ ‖Du‖(X).

By the definition of ‖Du‖(X) we have that

‖Du‖(X) ≤ lim inf
i→∞

∫

X

gui
dµ

and thus ∫

X

gui
dµ → ‖Du‖(X)

as i → ∞. �
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We now list some basic properties of the perimeter measure.

Theorem 2.8. Let u, v ∈ L1
loc(X), and U ⊂ X be open set. Then

(i) ‖D(αu)‖(U) = |α|‖Du‖(U) for every α ∈ R,
(ii) ‖D(u + v)‖(U) ≤ ‖Du‖(U) + ‖Dv‖(U) and
(iii) ‖D max{u, v}‖(U)+‖D min{u, v}‖(U) ≤ ‖Du‖(U)+‖Dv‖(U).

Proof. We only give a proof for (iii). Without loss of generality we
may assume that ‖Du‖(U) + ‖Dv‖(U) < ∞. Let ui, vi ∈ Liploc(U),
i = 1, 2, . . . , be such that ui → u, vi → v in L1

loc(U),
∫

U

gui
dµ → ‖Du‖(U)

and ∫

U

gvi
dµ → ‖Dv‖(U)

as i → ∞. Since max{ui, vi} → max{u, v} and min{ui, vi} → min{u, v}
in L1

loc(U) as i → ∞, we obtain

‖D max{u, v}‖(U) + ‖D min{u, v}‖(U)

≤ lim inf
i→∞

∫

U

gmax{ui,vi} dµ + lim inf
i→∞

∫

U

gmin{ui,vi} dµ

≤ lim inf
i→∞

∫

U

(gmax{ui,vi} + gmin{ui,vi}) dµ

≤ lim
i→∞

∫

U

(gui
+ gvi

) dµ

= ‖Du‖(U) + ‖Dv‖(U). �

We obtain the metric space version of the relative isoperimetric in-
equality as a direct consequence of the weak (1, 1)-Poincaré inequality.

Theorem 2.9. Let E be a set of finite perimeter, then the following
relative isoperimetric inequality holds

min
{
µ(B(x, r) ∩ E), µ(B(x, r) \ E)

}
≤ 2CP rP (E,B(x, τr)),

for every ball B(x, r) of X.

We need the following lower semicontinuity result.

Theorem 2.10. Let U ⊂ X be an open set and ui ∈ L1
loc(U) be a

sequence such that ‖Dui‖(U) < ∞, for all i = 1, 2 . . . and ui → u in
L1

loc(U) as i → ∞. Then

‖Du‖(U) ≤ lim inf
i→∞

‖Dui‖(U).

Another useful result about functions of bounded variation is the
coarea formula, see [24].
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Theorem 2.11. If u ∈ BV(X) and U ⊂ X is an open set, then

‖Du‖(U) =

∫ ∞

−∞

P ({u > t}, U) dt.

3. BV-capacity

In the classical case the theory of capacity of order one relies strongly
on theory of functions of bounded variation, see [9] and [27]. In the
setting of metric measure spaces, we shall take the theory of functions of
bounded variation presented in the second section as our starting point
and define the capacity in terms of these functions. This approach on
metric spaces has been used in [19].

Definition 3.1. Let E ⊂ X and denote by ABV(E) the set of ad-
missible functions u ∈ BV(X) such that 0 ≤ u ≤ 1 and u = 1 on a
neighbourhood of E. The BV-capacity of E is

capBV(E) = inf
( ∫

X

u dµ + ‖Du‖(X)
)
,

where the infimum is taken over all u ∈ ABV(E).

By the coarea formula we immediately obtain an equivalent defini-
tion.

Lemma 3.2. If E ⊂ X, then

capBV(E) = inf
(
µ(A) + P (A,X)

)
,

where the infimum is taken over all sets A ⊂ X such that E ⊂ int A.

Proof. If A ⊂ X with E ⊂ int A and µ(A) + P (A,X) < ∞, then
χA ∈ ABV(E) and hence

capBV(E) ≤ µ(A) + P (A,X).

By taking the infimum over all such sets A we obtain

capBV(E) ≤ inf
(
µ(A) + P (A,X)

)
.

In order to prove the opposite inequality, we may assume that capBV(E) <
∞. Let ε > 0 and u ∈ ABV(E) be such that

∫

X

u dµ + ‖Du‖(X) < capBV(E) + ε.

By the Cavalieri principle and the coarea formula we have

∫

X

u dµ + ‖Du‖(X) =

1∫

0

(
µ({u > t}) + P ({u > t}, X)

)
dt

and therefore there exists 0 < t0 < 1 such that

µ({u > t0}) + P ({u > t0}, X) < capBV(E) + ε.
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Since u = 1 in an open neighbourhood of E, we have E ⊂ int {u > t0}.
The desired inequality now follows by letting ε → 0. �

We will now prove basic properties of the BV-capacity.

Theorem 3.3. The BV-capacity is an outer measure on X.

Proof. Function u ≡ 0 is admissible for the empty set, therefore

capBV(∅) = 0.

If E1 ⊂ E2 then ABV(E2) ⊂ ABV(E1) and consequently

capBV(E1) ≤ capBV(E2).

To prove the countable subadditivity we may assume that
∞∑

i=1

capBV(Ei) < ∞.

Let ε > 0 and choose functions ui ∈ ABV(Ei) such that
∫

X

ui dµ + ‖Dui‖(X) < capBV(Ei) + ε2−i

for i = 1, 2, . . . Let u = sup
1≤i<∞

ui and notice that

∫

X

u dµ ≤
∞∑

i=1

∫

X

ui dµ ≤
∞∑

i=1

(
capBV(Ei) + ε2−i

)
< ∞.

Hence u ∈ L1(X). For i = 1, 2, . . . we define

vi = max{u1, . . . , ui}

and notice that vi → u in L1(X) as i → ∞. Therefore, by using
Theorem 2.8 (iii) and Theorem 2.10 we obtain

∫

X

u dµ + ‖Du‖(X) ≤
∞∑

i=1

∫

X

ui dµ + lim inf
i→∞

‖Dvi‖(X)

≤
∞∑

i=1

∫

X

ui dµ +
∞∑

i=1

‖Dui‖(X)

≤
∞∑

i=1

capBV(Ei) + ε.

Moreover, u ∈ ABV(
∞⋃
i=1

Ei). Hence by letting ε → 0 we have

capBV

( ∞⋃

i=1

Ei

)
≤

∞∑

i=1

capBV(Ei). �

The following theorem states that the BV-capacity behaves well with
respect to limits of an increasing sequence of arbitrary sets.
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Theorem 3.4. If E1 ⊂ . . . ⊂ Ei ⊂ Ei+1 ⊂ . . . ⊂ X, then

lim
i→∞

capBV(Ei) = capBV

( ∞⋃

i=1

Ei

)
.

Proof. Clearly

lim
i→∞

capBV(Ei) ≤ capBV

( ∞⋃

i=1

Ei

)

and the equality holds if

lim
i→∞

capBV(Ei) = ∞.

Let ε > 0 and assume that

lim
i→∞

capBV(Ei) < ∞.

For every index i = 1, 2, . . . , we may choose ui ∈ ABV(Ei) such that
∫

X

ui dµ + ‖Dui‖(X) ≤ capBV(Ei) + ε2−i.

For i = 1, 2, . . . we define functions

vi = max{u1, . . . , ui} = max{vi−1, ui}

and
wi = min{vi−1, ui}.

Here we set v0 ≡ 0 and E0 = ∅. Notice that vi, wi ∈ BV(X) and
Ei−1 ⊂ int{wi = 1} for every i = 1, 2, . . . By Theorem 2.8 (iii) we
obtain ∫

X

vi dµ + ‖Dvi‖(X) + capBV(Ei−1)

≤

∫

X

vi dµ + ‖Dvi‖(X) +

∫

X

wi dµ + ‖Dwi‖(X)

≤

∫

X

vi−1 dµ + ‖Dvi−1‖(X) +

∫

X

ui dµ + ‖Dui‖(X)

≤

∫

X

vi−1 dµ + ‖Dvi−1‖(X) + capBV(Ei) + ε2−i

for every index i = 1, 2 . . . It then follows by adding that
∫

X

vi dµ + ‖Dvi‖(X) ≤ capBV(Ei) +
i∑

j=1

ε2−j.

Let v = lim
i→∞

vi. By the monotone convergence theorem we obtain
∫

X

v dµ = lim
i→∞

∫

X

vi dµ ≤ lim
i→∞

capBV(Ei) + ε < ∞,

whereas Theorem 2.10 implies that

‖Dv‖(X) ≤ lim inf
i→∞

‖Dvi‖(X) < ∞.
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Thus, v ∈ ABV(
∞⋃
i=1

Ei) and

capBV

( ∞⋃

i=1

Ei

)
≤

∫

X

v dµ + ‖Dv‖(X)

≤ lim inf
i→∞

∫

X

vi dµ + lim inf
i→∞

‖Dvi‖(X)

≤ lim inf
i→∞

( ∫

X

vi dµ + ‖Dvi‖(X)
)

≤ lim
i→∞

capBV(Ei) + ε.

The claim follows by letting ε → 0. �

The next two results follow directly from the definition. The first
theorem states that the BV-capacity is an outer capacity.

Theorem 3.5. For every E ⊂ X we have

capBV(E) = inf{capBV(U) : U ⊃ E, U is open}.

Proof. By monotonicity

capBV(E) ≤ inf{capBV(U) : U ⊃ E, U is open}.

To prove the opposite inequality, we may assume that capBV(E) < ∞.
Let ε > 0 and take u ∈ ABV(E) such that

∫

X

u dµ + ‖Du‖(X) < capBV(E) + ε.

Since u ∈ ABV(E) there is an open set U ⊃ E such that u = 1 on U ,
from which it follows that

capBV(U) ≤

∫

X

u dµ + ‖Du‖(X) < capBV(E) + ε.

Hence

inf{capBV(U) : U ⊃ E, U is open} ≤ capBV(E). �

The next result states that the BV-capacity behaves well with respect
to limits of a decreasing sequence of compact sets.

Theorem 3.6. If K1 ⊃ . . . ⊃ Ki ⊃ Ki+1 ⊃ . . . are compact subsets of
X, then

capBV

( ∞⋂

i=1

Ki

)
= lim

i→∞
capBV(Ki).

Proof. By monotonicity

lim
i→∞

capBV(Ki) ≥ capBV(K),
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where K =
⋂∞

i=1 Ki. Let U be an open set containing K. Now by the
compactness of K, Ki ⊂ U for all sufficiently large i, and therefore

lim
i→∞

capBV(Ki) ≤ capBV(U)

and since the BV-capacity is an outer capacity, we obtain the claim by
taking infimum over all open sets U containing K. �

It turns out that the BV-capacity satisfies the following strong sub-
additivity property.

Theorem 3.7. If E1, E2 ⊂ X, then

capBV(E1 ∪ E2) + capBV(E1 ∩ E2) ≤ capBV(E1) + capBV(E2).

Proof. We may assume that capBV(E1) + capBV(E2) < ∞. Let ε > 0
and u1 ∈ ABV(E1) and u2 ∈ ABV(E2) be such that

∫

X

u1 dµ + ‖Du1‖(X) < capBV(E1) +
ε

2

and ∫

X

u2 dµ + ‖Du2‖(X) < capBV(E2) +
ε

2
.

Clearly max{u1, u2} ∈ ABV(E1∪E2) and min{u1, u2} ∈ ABV(E1∩E2).
By Theorem 2.8 (iii) we obtain

capBV(E1 ∪ E2) + capBV(E1 ∩ E2)

≤

∫

X

max{u1, u2} dµ +

∫

X

min{u1, u2} dµ

+ ‖D max{u1, u2}‖(X) + ‖D min{u1, u2}‖(X)

≤

∫

X

(u1 + u2) dµ + ‖Du1‖(X) + ‖Du2‖(X)

=

∫

X

u1 dµ + ‖Du1‖(X) +

∫

X

u2 dµ + ‖Du2‖(X)

< capBV(E1) + capBV(E2) + ε.

Letting ε → 0, we obtain the claim. �

Theorems 3.3, 3.4, 3.5 and 3.6, together with the general theory of
capacities in [6], imply that BV-capacity is a Choquet capacity, and
therefore we have the following result.

Corollary 3.8. All Suslin sets E ⊂ X are capacitable, this is,

capBV(E) = inf{capBV(U) : E ⊂ U, U is open}

= sup{capBV(K) : K ⊂ E, K is compact}.

In particular, all Borel sets are capacitable.

The next theorem states that for compact sets, we only need to
consider compactly supported Lipschitz functions in the definition of
the BV-capacity.
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Theorem 3.9. Let K be a compact subset of X. Then

capBV(K) = inf
(∫

X

u dµ + ‖Du‖(X)
)
,

where infimum is taken over all functions u ∈ Lipc(X) such that 0 ≤
u ≤ 1 and u = 1 on a neighbourhood of K.

Proof. Clearly

capBV(K) ≤ inf
( ∫

X

u dµ + ‖Du‖(X)
)
,

where infimum is taken over all functions u ∈ Lipc(X), 0 ≤ u ≤ 1 such
that u = 1 on a neighbourhood of K. In order to prove the inequality
in the opposite direction, let u ∈ ABV(K) be such that

∫

X

u dµ + ‖Du‖(X) < capBV(K) + ε,

and u = 1 in open set U ⊃ K with µ(U) < ∞. Since K is compact
and X \ U is a closed set, we can find an open set U ′ ⊂ U such that
K ⊂ U ′ ⊂⊂ U and dist(U ′, X \ U) > 0. By Lemma 2.7 there is a
sequence of functions ui ∈ Lipc(X), i = 1, 2, . . . , with 0 ≤ ui ≤ 1, such
that ui → u in L1(X) and

∫

X

gui
dµ → ‖Du‖(X),

as i → ∞. Let η ∈ Lipc(X) be a cutoff function such that 0 ≤ η ≤ 1,
η = 1 in U ′ and η = 0 in X \ U . For every i = 1, 2, . . . we define
functions

vi = (1 − η)ui + η,

and notice that vi ∈ Lipc(X). Also vi = 1 in U ′ for every index i and
(1 − ui)gη + (1 − η)gui

is a 1-weak upper gradient of vi. To see this,
we use the fact that vi is absolutely continuous on paths as in Lemma
3.1 of [22]. See also [3]. Clearly we can assume that gη is bounded and
gη = 0 in X \ U . Since u = (1 − η)u + η, we obtain

lim sup
i→∞

( ∫

X

vi dµ + ‖Dvi‖(X)
)

≤ lim sup
i→∞

∫

X

vi dµ + lim sup
i→∞

‖Dvi‖(X)

≤

∫

X

u dµ + lim sup
i→∞

∫

X

(1 − ui)gη dµ + lim sup
i→∞

∫

X

gui
dµ

≤

∫

X

u dµ + ‖gη‖∞ lim sup
i→∞

∫

U

|u − ui| dµ + ‖Du‖(X)

=

∫

X

u dµ + ‖Du‖(X) < capBV(K) + ε.
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Therefore, for every ε > 0 we can find a compactly supported admissi-
ble Lipschitz function v such that

∫

X

v dµ + ‖Dv‖(X) < capBV(K) + ε.

The desired inequality follows by taking infimum over such functions.
�

4. Equivalence of the capacities

In this section we prove that the Sobolev 1-capacity is equivalent to
the BV-capacity by two sided estimates. The equivalence of capacities
follows from a modification of a metric space version of Gustin’s boxing
inequality. We will also give examples, which demonstrate that the
Sobolev 1-capacity is not necessarily a Choquet capacity.

Definition 4.1. Let E ⊂ X. Denote by A1(E) the set of admissible
functions u ∈ N1,1(X) such that 0 ≤ u ≤ 1 and u = 1 on a neighbour-
hood of E. The Sobolev 1-capacity of E is

cap1(E) = inf ‖u‖N1,1(X),

where the infimum is taken over all functions u ∈ A1(E).

Remark. The functions in N1,p(X) with 1 ≤ p < ∞ are necessarily
p-quasicontinuous (see [5] and [3]) and thus the above definition of the
capacity agrees with the definition of the Sobolev 1-capacity where the
functions are required to satisfy u = 1 only in E.

It is well known that many of the results presented in the third
section are also true for the Sobolev 1-capacity. Indeed,

(i) cap1(·) is an outer measure,
(ii) cap1(·) is an outer capacity,
(iii) If K1 ⊃ . . . ⊃ Ki ⊃ Ki+1 ⊃ . . . are compact subsets of X, then

cap1

( ∞⋂

i=1

Ki

)
= lim

i→∞
cap1(Ki),

(iv) cap1(·) satisfies the strong subadditivity property.

However, as we will see, the Sobolev 1-capacity fails to be a Choquet
capacity. Our next goal is to prove that the BV-capacity and the
Sobolev 1-capacity are equivalent. To this end, we need the following
modified version of the boxing inequality, see [12], [8] and [19].

Lemma 4.2. Let E ⊂ X be a µ-measurable set such that

lim
r→0

µ
(
E ∩ B(x, r)

)

µ
(
B(x, r)

) = 1
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for every x ∈ E. Then for every 0 < R ≤ 1 there exists a collection of
disjoint balls B(xi, τri), i = 1, 2, . . ., such that 0 < ri ≤ R and

E ⊂
∞⋃

i=1

B(xi, 5τri)

and disjoint sets of indices I1, I2, I1 ∪ I2 = N, such that ri ≥ R/2 for
every i ∈ I1 and

∑

i∈I1

µ
(
B(xi, 5τri)

)
+

∑

i∈I2

µ
(
B(xi, 5τri)

)

5τri

≤ c
(
µ(E) + P (E,X)

)
.

Here τ is the dilation constant in the weak Poincaré inequality and the
constant c depends only on the doubling constant and the constants in
the weak (1, 1)-Poincaré inequality.

Proof. We may assume that µ(E) + P (E,X) < ∞. Let x ∈ E and
denote

(4.3) r̃x = sup
{

0 < r ≤ R :
µ(B(x, r) \ E)

µ(B(x, r))
≤ 1 −

3

4CD

}
.

We choose rx, which satisfies rx < r̃x < 2rx, such that the inequality
in (4.3) holds for rx. We apply a covering argument to obtain pairwise
disjoint balls B(xi, τri), i = 1, 2, . . ., such that

⋃

x∈E

B(x, τrx) ⊂
∞⋃

i=1

B(xi, 5τri).

It follows that

µ(B(xi, ri) ∩ E) ≥
3

4CD

µ(B(xi, ri)),

Denote by I2 the indices for which

µ(B(xi, ri) \ E) >
1

4
µ(B(xi, ri)).

By the relative isoperimetric inequality (Theorem 2.9), we obtain

µ(B(xi, ri))

ri

≤
(
4 +

4CD

3

)min{µ(B(xi, ri) ∩ E), µ(B(xi, ri) \ E)}

ri

≤ cP (E,B(xi, τri))

for every index i ∈ I2.
Let I1 = N \ I2. Then

µ(B(xi, ri) ∩ E) ≥
3

4
µ(B(xi, ri))
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for every i ∈ I1. We claim that ri ≥ R/2 for every i ∈ I1. Indeed, we
have

µ(B(xi, 2ri) \ E) = µ(B(xi, 2ri)) − µ(B(xi, 2ri) ∩ E)

≤ µ(B(xi, 2ri)) − µ(B(xi, ri) ∩ E)

≤ µ(B(xi, 2ri)) −
3

4
µ(B(xi, ri))

≤ µ(B(xi, 2ri)) −
3

4CD

µ(B(xi, 2ri)).

Hence
µ(B(xi, 2ri) \ E)

µ(B(xi, 2ri))
≤ 1 −

3

4CD

,

and if 2ri < R, then this contradicts with the choice of ri. Therefore
ri ≥ R/2 for every i ∈ I1.

By the doubling property of the measure µ we obtain

∑

i∈I1

µ(B(xi, 5τri)) +
∑

i∈I2

µ(B(xi, 5τri))

5τri

≤ c
(∑

i∈I1

µ(B(xi, ri)) +
∑

i∈I2

µ(B(xi, ri))

ri

)

≤ c
(∑

i∈I1

µ(B(xi, ri) ∩ E) +
∑

i∈I2

P (E,B(xi, τri))
)

≤ c
(
µ
( ⋃

i∈I1

B(xi, ri) ∩ E
)

+ P
(
E,

⋃

i∈I2

B(xi, τri)
))

≤ c(µ(E) + P (E,X)).

Here we also used the facts that the balls are disjoint and that P (E, ·)
is a Borel measure by Theorem 2.6. �

Now we are ready to prove the main result of this section.

Theorem 4.4. For any set E ⊂ X, we have

capBV(E) ≤ cap1(E) ≤ c capBV(E),

where the constant c depends only on the doubling constant and the
constants in the weak (1, 1)-Poincaré inequality.

Proof. Clearly capBV(E) ≤ cap1(E). To prove the second inequality,
we may assume that capBV(E) < ∞. Let ε > 0 and choose a function
u ∈ ABV(E) such that

∫

X

u dµ + ‖Du‖(X) < capBV(E) + ε.
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By the coarea formula and the Cavalieri principle

∫

X

u dµ + ‖Du‖(X) =

1∫

0

(
µ({u > t}) + P ({u > t}, X)

)
dt,

and thus

µ({u > t0}) + P ({u > t0}, X) < capBV(E) + ε

for some 0 < t0 < 1. We denote Et0 = {u > t0} and

E∗
t0

=
{

x ∈ Et0 : lim
r→0

µ(Et0 ∩ B(x, r))

µ(B(x, r))
= 1

}
.

From the Lebesgue’s differentiation theorem, see [15], it follows that
µ(E∗

t0
) = µ(Et0) < ∞ and hence P (E∗

t0
, X) = P (Et0 , X) < ∞. Fur-

thermore,

E ⊂ int{u = 1} ⊂ E∗
t0
.

We apply Lemma 4.2 with R = 1 to obtain a covering

E∗
t0
⊂

∞⋃

i=1

B(xi, 5τri)

such that
∑

i∈I1

µ(B(xi, 5τri)) +
∑

i∈I2

µ(B(xi, 5τri))

5τri

≤ c
(
µ(Et0) + P (Et0 , X)

)
.

It follows that

cap1(E) ≤ cap1(E
∗
t0
) ≤

∞∑

i=1

cap1(B(xi, 5τri))

≤
∑

i∈I1

cap1(B(xi, 5τri)) +
∑

i∈I2

cap1(B(xi, 5τri)).

By applying the admissible function

ui(x) =
(
1 −

dist(x,B(xi, 5τri))

5τri

)+

for every index i = 1, 2, . . ., we observe that

cap1(B(xi, 5τri)) ≤ c
(
µ(B(xi, 5τri)) +

µ(B(xi, 5τri))

5τri

)
.

Since ri ≥ 1/2 for every i ∈ I1 we have

∑

i∈I1

cap1(B(xi, 5τri) ≤ c
∑

i∈I1

(
µ(B(xi, 5τri)) +

µ(B(xi, 5τri))

5τri

)

≤ c
∑

i∈I1

µ(B(xi, 5τri)).



THE BV-CAPACITY IN METRIC SPACES 17

On the other hand, since 0 < ri ≤ 1 for every index i we obtain

∑

i∈I2

cap1(B(xi, 5τri)) ≤ c
∑

i∈I2

(
µ
(
B(xi, 5τri)

)
+

µ
(
B(xi, 5τri)

)

5τri

)

≤ c
∑

i∈I2

µ(B(xi, 5τri))

5τri

.

Consequently

cap1(E) ≤ c
∑

i∈I1

µ(B(xi, 5τri)) + c
∑

i∈I2

µ(B(xi, 5τri))

5τri

≤ c(µ(Et0) + P (Et0 , X))

< c
(
capBV(E) + ε

)
.

The claim follows letting ε → 0. �

By Theorem 4.4 the Sobolev 1-capacity is equivalent to the BV-
capacity and we have the following immediate consequence.

Corollary 4.5. The Sobolev 1-capacity satisfies the following proper-
ties:

(i) There is a constant c such that for any incresing sequence of
sets E1 ⊂ E2 ⊂ . . . ⊂ Ei ⊂ . . . ⊂ X we have

lim
i→∞

cap1(Ei) ≤ cap1

( ∞⋃

i=1

Ei

)
≤ c lim

i→∞
cap1(Ei),

(ii)

cap1(E) ≤ c sup{cap1(K) : K ⊂ E, K is compact}

From Theorem 3.9 it follows that the BV-capacity and the Sobolev
1-capacity are equal for compact sets. However, the following example
demonstrates that the BV-capacity and the Sobolev 1-capacity are not
ncessarily equal for noncompact sets. Therefore, the equivalence results
like Theorem 4.4 and Corollary 4.5 cannot be improved and the Sobolev
1-capacity is not a Choquet capacity. Originally, this kind of example
has been constructed by Riikka Korte, see also [3].

Example 4.6. Let m denote the ordinary Lebesgue measure in R
2

and γ = cap1(B(0, 1)) the usual Sobolev 1-capacity of the unit ball in(
R

2, | · |,m
)
. Clearly γ > π. We define dµ = w dm, where

w(x) =

{
(γ − π)/4π, x ∈ B(0, 1),

1, x ∈ R
2 \ B(0, 1)

and obtain a weighted measure µ. The space X = (R2, |·|, µ) is a metric
measure space equipped with a doubling measure and supporting the
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weak (1, 1)-Poincaré inequality. For every index i = 2, 3, 4, . . . let Bi =
B(0, 1 − i−1) and

ui(x) = min
{
1, max{0,−2i|x| + 2i − 1}

}

and notice that ui ∈ A1(Bi). Hence, for every index i we can estimate
the 1-capacity of the set Bi in X by

cap1(Bi) ≤

∫

B(0,1)

1 dµ +

∫

R2

|Dui| dµ

=
γ − π

4
+

γ − π

4π

∫

B2i\Bi

2i dm

=
γ − π

4
+

γ − π

2

(
1 −

3

4i

)
<

3(γ − π)

4
.

It is clear that in
(
R

2, | · |, µ
)

cap1

( ∞⋃

i=2

Bi

)
= cap1(B(0, 1)) = γ −

(
1 −

γ − π

4π

)
π =

5(γ − π)

4
.

Thus

lim
i→∞

cap1(Bi) ≤
3(γ − π)

4
< cap1(B(0, 1)).

A modification of the previous example shows that the Sobolev 1-
capacity is not necessarily a Choquet capacity.

Example 4.7. Let γ, µ,Bi and ui be as in the Example 4.6. Then for
any compact set K ⊂ B(0, 1) = B, we have that dist(K,X \ B) > 0
and therefore K ⊂ Bi for some index i. Thus, by the previous example

cap1(K) ≤ cap1(Bi) <
3(γ − π)

4
.

Hence

sup{cap1(K) : K ⊂ B, K is compact} < cap1(B),

and the Sobolev 1-capacity is not a Choquet capacity.

5. Connections to Hausdorff measure

The restricted spherical Hausdorff content of codimension one of E
is defined as

HR(E) = inf
{ ∞∑

i=1

µ
(
B(xi, ri)

)

ri

: E ⊂
∞⋃

i=1

B(xi, ri), ri ≤ R
}

,

where 0 < R < ∞. The Hausdorff measure of codimension one is
obtained as a limit

H(E) = lim
R→0

HR(E).

Next theorem shows that the BV-capacity and the Hausdorff measure
of codimension one have the same null sets.
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Theorem 5.1. Let E ⊂ X. Then capBV(E) = 0 if and only if H(E) =
0.

Proof. Let us first assume that H(E) = 0. Let ε > 0 and B(xi, ri),
i = 1, 2, . . ., be a covering of E such that ri ≤ 1 for every i = 1, 2 . . .
and

∞∑

i=1

µ(B(xi, ri))

ri

< ε.

Let

ui(x) =
(
1 −

dist(x,B(xi, ri))

ri

)+

and observe that

capBV(B(xi, ri)) ≤ CD

(
µ(B(xi, ri)) +

µ(B(xi, ri))

ri

)

≤ 2CD
µ(B(xi, ri))

ri

.

Hence

capBV(E) ≤
∞∑

i=1

capBV(B(xi, ri))

≤ 2CD

∞∑

i=1

µ(B(xi, ri))

ri

≤ 2CDε.

By taking ε → 0 it follows that capBV(E) = 0.
Then assume that capBV(E) = 0. Then for every index i = 1, 2, . . .

we can choose function ui ∈ ABV(E) such that
∫

X

ui dµ + ‖Dui‖(X) <
1

i2
.

By the Cavalieri principle and the coarea formula, as in the proof of
Theorem 4.4, for every i = 1, 2, . . . we obtain 0 < ti < 1 such that

µ({ui > ti}) + P ({ui > ti}, X) <
1

i2
.

We denote Eti = {ui > ti} and

E∗
ti

=
{

x ∈ Eti : lim
r→0

µ(Eti ∩ B(x, r))

µ(B(x, r))
= 1

}
.

From the Lebesgue’s differentiation theorem it follows that µ(E∗
ti
) =

µ(Eti) < ∞, and consequently, we have P (E∗
ti
, X) = P (Eti , X) < ∞.

As in the proof of Theorem 4.4, we have

E ⊂ int{u = 1} ⊂ E∗
ti
.
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For every i = 1, 2, . . . we apply Lemma 4.2 for E∗
ti

with R = 1/(10τi)
to obtain a covering

E∗
ti
⊂

∞⋃

j=1

B(xi
j, 5τri

j)

such that
∑

j∈Ii
1

µ(B(xi
j, 5τri

j)) +
∑

j∈Ii
2

µ(B(xi
j, 5τri

j))

5τri
j

≤ c
(
µ(Eti) + P (Eti , X)

)
.

For every i = 1, 2, . . . we have following estimate

H1/i(E
∗
ti
) ≤

∞∑

j=1

µ(B(xi
j, 5τri

j))

5τri
j

≤
∑

j∈Ii
1

1

5τri
j

µ(B(xi
j, 5τri

j)) +
∑

j∈Ii
2

µ(B(xi
j, 5τri

j))

5τri
j

≤ 4i
( ∑

j∈Ii
1

µ(B(xi
j, 5τri

j)) +
∑

j∈Ii
2

µ(B(xi
j, 5τri

j))

5τri
j

)

<
4ci

i2
=

c

i
.

Hence

H(E) = lim
i→∞

H1/i(E) ≤ lim sup
i→∞

H1/i(E
∗
ti
) ≤ lim sup

i→∞

c

i
= 0.

�

Remark. By Theorem 4.4 we obtain that the Sobolev 1-capacity and
te Hausdorff measure of codimension one have the same null sets.
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