VERY WEAK SOLUTIONS OF PARABOLIC
SYSTEMS OF p-LAPLACIAN TYPE

JUHA KINNUNEN AND JOHN L. LEWIS

ABSTRACT. We show that the standard assumptions on weak solutions to certain
parabolic systems can be weakened and still the usual regularity properties of solu-
tions can be obtained. In order to do this, we derive estimates for the solutions below
the natural exponent and then apply reverse Holder inequalities.

1. INTRODUCTION

Our work is motivated by classical Weyl’s lemma: If a locally integrable function
satisfies Laplace’s equation in the sense of distributions, then it is real analytic. In
other words, only a very modest requirement on the regularity of a solution is needed
for a partial differential equation to make sense and then the equation gives extra
regularity. We are interested in nonlinear parabolic systems of partial differential
equations so that a counterpart of Weyl’s lemma, is too much to hope for, but the
question of relaxing the standard Sobolev type assumptions on weak solutions and
still obtaining regularity theory is the objective of our work.

We consider solutions to second order parabolic systems

(1.1) 881? = div 4;(z,t,Vu) + Bi(z,t,Vu), 1=1,...,N.

In particular, we are interested in systems of p-Laplacian type. The principal
prototype is the p-parabolic system

8ui

=di p—2 ; , =1,...,N
5 div(|VulP~*Vu;), 7 A

with 1 < p < co. Equations of type (1.1) have recently received new interest, see
for example [D] and [KLi]. Solutions to (1.1) are usually taken in a weak sense
and they are assumed to belong to a parabolic Sobolev space of order p. However,
the weak formulation of (1.1) makes sense under a weaker assumption that the
solution belongs to a Sobolev space of order r for some r < p. Thus we define very
weak solutions of (1.1) to be those functions which satisy the usual integral identity
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associated with the weak formulation of (1.1) and which belong apriori to a weaker
Sobolev space than the usual one. We show that very weak solutions are actually
weak solutions when p > 2n/(n + 2), so possess the usual regularity properties of
such solutions as boundedness, Hélder continuity and higher integrability, see [D]
and [KLe|. In short, we are able to pass from an exponent below to an exponent
which is above the natural Sobolev exponent for such a partial differential equation.
We conclude this paper by making some brief remarks concerning the singular case
1 <p<2n/(n+2). We remind the reader that for this range of p, weak solutions
do not have to be even locally bounded.
In the elliptic case when the system is

(1.2) div A;(z,t, Vu) + Bi(z,t,Vu) =0, i=1,...,N,

it is known that very weak solutions are weak solutions. When p = 2 and the
system is linear this is due to Meyers [M]. Later Elcrat and Meyers [ME] extended
the result to cover the case 1 < p < co. They used a duality argument which is not
available in the nonlinear situation. Later Iwaniec and coauthors (see [I] and [IS])
developed methods which proved the result for equations of p-Laplacian type and
an alternative approach which also worked for higher order systems was given in
[L]. Even though none of these methods apply directly to the parabolic case, our
result is based on [L].

The major difficulty in dealing with a very weak solution  is that u times a cutoff
function cannot be used as a test function in the weak formulation of the equation.
This is a consequence of the assumption that u belongs to a Sobolev space below
the natural exponent p. In [L] suitable test functions are constructed by using the
Whitney extension theorem to extend u off the set where a certain maximal function
is bounded. This approach appears to have first been used in [AF]. In the present
case we encounter major difficulties with this approach. For example there is no
natural maximal function of |Vu|. We use the so called strong maximal function.
Extension of u off the set where this maximal function is bounded has to be done
relative to weighted parabolic rectangles whose side length in either space or time
depends on the given bound. Showing that such an extension can be used to get
the usual Caccioppoli type inequality for the parabolic p-Laplacian involves some
very delicate estimates especially as regards this inequality on time slices. Finally
we obtain reverse Holder inequalities similar to those obtained for weak solutions
in [KLe].

Another problem is that in [L] an important part of the argument uses the fact
that the Hardy-Littlewood maximal function raised to a sufficiently small positive
power is an A, weight in the sense of Muckenhoupt, thanks to a result of Coifman
and Rochberg. In the parabolic case the strong maximal function need not have
this property. We give an alternative argument which turns out to be somewhat
simpler than the one in [L] even in the elliptic case.

As outlined above our argument is rather delicate and somewhat technical. In
fact in an early preprint this paper was combined with [KLe] but in order to keep
the reader from being swamped with technicalities we decided to divide it into two
papers. Thus the reader is advised to have [KLe] at hand as we simply refer to the
relevant parts in [KLe| instead of repeating all details here.

As far as we know there are no earlier results which deal with such fundamental
questions as integrability below the natural exponent for the gradients of solutions



to systems of nonlinear parabolic partial differential equations. Our results appear
to be new even when p = 2.

2. MAIN RESULT FOR VERY WEAK SOLUTIONS

Let £2 C R™ be an open set and let W7 (£2) denote the Sobolev space of real
valued functions g such that g € L"(£2) and the distributional first partial deriva-
tives 0g/0x;, i = 1,2,...,n, exist in 2 and belong to L"(£2). The space W7 ()
is equipped with the norm

n
||g |1,r,.Q = ||g||r,.Q + Z ”ag/axiHr,Q :
=1

Given O C R" open, N a positive integer, —oo < § < T < o0, let
w=(ug,...,un): Ox (S,T) = RN

and suppose that whenever p > max{2n/(n+2),1}, —co< S < 51 <T1 < T <0
and 2 C O we have

(21) u € L2 (.Q X [Sl,Tl]) NnL" ([Sl,Tl]; Wl,r(g))’

where p — 1/2 < r < p. Here the notation L7 ([S1,T1]; W' (£2)) means that for
almost every t, S; < t < Ty, with respect to one dimensional Lebesgue measure,
the function z +— u(z,t) is in WH"(Q) componentwise and

T

Y N
22l = 1l oxcs, o + /S SO i)

1 4=1

r
1,

" dt < oo.

Let Vu denote the distributional gradient of u (taken componentwise) in the z
variable only.
We suppose that A = (A;,..., An), where

A; = Ai(z,t,Vu): O x (S,T) x R"™N - R™,
and B = (By,...,By), where
B; = Bi(z,t,Vu): O x (S,T) x R*Y — R,

are Lebesgue n+1 measurable functions on O x (S, T'). This is the case, for example,
if A; and B;,1=1,2,..., N, satisfy the well known Carathéodory type conditions.
We assume that there exist positive constants ¢;, ¢ = 1,2, 3, such that

(23) ‘Az| S CﬂV’U;'p_l + hl
(2.4) 1B;| < ¢g |[Vul"™" + ho,
and

N
(2.5) Z<A“ VUZ> 2 03|Vu|p - h3,

=1



for + = 1,2,...,N, and almost every (z,t) € O x (S,T). Here (-, -) denotes
the standard inner product in R™ and h;, ¢« = 1, 2, 3, are measurable functions in
O x (S,T) so that

(2.6) ca = |[P"lllg.ox(s,r) < 00,

where ¢ > 1 and
WP = (|ha| + |ha|)?/ P~ + |hg|.

Finally u satisfying (2.1) is said to be a very weak solution in O x (S,T) to the
nonlinear parabolic system

8u1~
ot

= div 4;(z,t,Vu) + Bi(z,t,Vu), 1=1,...,N,

if the structural conditions (2.3)-(2.6) hold and

(2.7) /;/Oi ( - ui% + (A, V) — B,-qﬁi) d dt = 0
=1

for every test function ¢ = (¢1,...,¢n) € C5°(O x (S,T)). Observe that if r is
replaced by p in (2.1), then u is said to be a weak solution.

The following theorem is our main result.
Theorem 2.8. Let p > 2n/(n + 2). Then there exists B > 0 such that if u is a
very weak solution to (1.1) with r = p — [3, then
u € L?(02 x [S1,T1]) N LPHP ([S1, Th); WHPHF(12)),
where 8 > 0 depends only on n, p, g, and c¢;, for i = 1,2,3, while |||ul||p+s,0
depends on these quantities as well as N, 2, S1, Ty and c4.
We present the proof of our main result in Section 4.

Remark 2.9. Theorem 2.8 implies that u is a weak solution to (1.1), so as in [D] it
can be shown for N =1 and h; =0, 7 = 1, 2, 3, that u has a representative which
is Holder continuous on compact subsets of O x (S, T).

3. PRELIMINARY REDUCTIONS

Given 7, s > 0, (z,t) € R*! let
D.(z)={yeR": |y, —xi|<r, 1=1,2,...,n}

and
Qrs(z,t) = Dp(x) X (t —s,t+5)

arectangle in R"*!. Let |E| denote the Lebesgue (n+1)-measure of the measurable
set F and if f is integrable on F with 0 < |E| < oo, then the integral average of f

over F is .
fdxdt:—/fdxdt.
][E E| /g



If Qps(z,7) CO x (S,T), then

L(t) = L(t,u, 2, 7) = m(D,(2))"! /D s

whenever 7 — s < t < 7+ s. Here m denotes Lebesgue measure in R™ and the
integral is taken componentwise.
Let Q be a rectangle in R**t!. We write

a=a(Q)=(a1(Q),-..,an(Q)), where a;(Q) :][Q u; dz dt,

fort=1,2,...,N.

We begin with a useful lemma, which was proved for weak solutions in [KLe]
(see Lemma 3.1). However, the same proof gives the result for very weak solutions
as well.

Lemma 3.1. Suppose that u is a very weak solution to (1.1) with r > min{p —
1/2,1}. If Quap,s(2,7) C O x (S, T), then there exists p, p < p < 2p, and a constant
c depending on p, n, ¢ and ca, such that

L5 (t2) — I (12)] < csp_l][ (IVulP=" + [hn| + |ha) de dt
QQP,S(’Z:T)

for almost all t; with |t; — 7| <s,i=1,2.

We assume that u is a very weak solution to (1.1) and

max{p—1/4,(1+2p)/3} <r=p-—p<p.

To prove Theorem 2.8, we essentially prove analogues of Propositions 4.2 and 4.14
of [KLe] with p replaced by p — S.
We assume, as we may, that r = 1 and (z,t) = (0, 0), since otherwise we consider

v(z,t) = w(Z + rz, t + rPt)

for (z,t) € Q10,100(0,0). It is easily seen that v is a weak solution to a partial
differential equation similar to (1.1) and with the same structure. Proving claims
for v with » = 1 relative to (0,0) and then transforming back we get the result for
the original u.

Let 6 € C§°(—1,1), such that 6 equals a constant which is greater than 1/100
on (—3/4,3/4), 0 is even, positive, and

/Re(T) dr = 1.

If f: Q10,100(0,0) — R is locally Lebesgue integrable we put

fe(z,t) = cy~te 2 /f(y,r) 9(’;;) 9('9” ; y‘) dy dr




whenever 0 < ¢ < 1/10 and (z,t) € Qs,s»(0,0), where ¢ is chosen so that

/ / O(ly|) drdy =1

and v > 0 will be chosen later. Next let Q = Q1025,1055(2, 7) C Q2,20(0,0), with
p < p<10%p, and 5 < s < 10*5. Set

s =o(=5 ) o457

whenever (z,t) € R™"1. Note that for fixed z € R™ the function ¢(z,) is constant
on (17— 12s,7 4 12s), ¢ is constant on @3, 12(2, T), qb e C§° (Q4p,163(z 7')), and

al.

pt H|V$|HOO st < ¢(n) < 0.

Let Qps(2,7) =Q, fix e with 0 < e < 107 min{p, s} and put
ﬂ(ff; t) - { (U’(:B’ t) - a(Q))Eg(aj’ t)’ when (.’L', t) € QS’SI’ (07 0)7 and
7 0 otherwise.

Let £ = max {p—1/2,(1+p)/2} and
(3.2) Aﬁ:fAuvm+¢mfdmﬁ.
a

Next for a locally integrable function g: R™ — [—oc, 00|, let Mg be the strong
maximal function defined by

My(a,t) =supf gl dzar,
QJ Q

where the supremum is taken over all rectangles QV with sides parallel to the coor-
dinate axes and (z,t) € Q. An iteration of the one-dimensional Hardy-Littlewood
maximal theorem implies that

[Mgllo < c(n, o) llglls
for o > 1. R
Let A > ¢5(n, p)A1 = X2, QT = Qep,365(2, 7), { = max{p — 1,1}, and set

E(\) = {(,t) € R™1: (M((|Vu] + [A])¢ xg+)(z,1)) /¢ < A},
S ={(z,t) e R"": [t — 7| < 165},

(3.3) S' ={(z,t) e R""": |t — 7| < 65},
S" ={(z,t) e R""": |t — 7] < 125},
E()\) =E\)NS.

Here x o+ is the characteristic function of Q*. From our definition of a weak solution
and the Hardy-Littlewood maximal theorem it follows that there is c5(n,p) > 1 so
that

(3.4) EQ)NQ#0D when A> .

We shall need an analogue of Lemma 3.1 for u.



Lemma 3.5. Let 0 < £ < 1076 min{p, s}, v = AP and A = max{\P"'sp=2 A}
Suppose that
Qrr2(x,t) N E(csA) # 0
for some A > Ay and Q, 2 (x,t) C S". Then there exists r*, r < r* < 2r, such
that for I« (t;) = I« (t;,u, z,t), i = 1,2, we have
T,+(t3) — I+ (t1)| < cA min{r, p},

whenever |t;—t| < yr?, fori=1,2. Herec depends onn, N, p, andc;,i=1,2,3,4.
Proof. To prove Lemma 3.5, let §,7 > 0 be small, ¢, € C3°(t1 — n,ta + n) with
P1 =1 on (t1,t2) and ¢g € C§°(Dy45(x)) with 1 =1 on Dy (z). Let

¢j:(5¢1¢2)63 j:1a2a"'aNa

We use (0,...,¢;,...,0) as a test function in (2.7). If we denote

¢:(¢17---7¢N)7
(A(-,Vu), Vo) = ((A1(-, Vu), V1), ..., (An(-, Vu),Von)), and
B¢ = (B1¢1,---,BN¢N)7

we get using simple properties of convolutions that

Kl /U— 'Qbﬂﬁz dZdT

B0 = [ @)t df dedr+ [ (A V), V6) - Bo) dzdr

=K, + K3.
Letting first n — 0 and then 6 — 0 we find that
(3.7) m(Dyps (2)) " Ky — — L (t2) + L (t1).

We have Ky = 0, since ¢(z,-) is constant on [1 — 12s,7 + 12s]. Also as 1,d — 0,
we see that K3 converges to the N vector whose ¢th component is

// ((Ai(-, V), V) — (Bi)ed ) dz dr
(3.8) tr /Dy (2)

—/ (Ai(-,Vu)e,Z/)(;deT,
oD (m) X (t]_ ,t2)

where v is the outer unit normal to D,«(x) considered as a subset of R", and o is
n — 1 dimensional surface area on the boundary of this set. The integrands in (3.8)
are understood to be zero outside the support of 5 N

Now we consider two cases. First suppose that r > p/102. Since ¢ vanishes
outside of Q4 16s(2,7), it is easily seen that r*, p* and z, can be chosen so that
r<r*<2r, p/102 < p* < 20p, and

/ u(z,t)dz = / u(z,t) dz,
Dp* (5) D,,.* (E)



whenever ¢ € R. Thus we can replace r* by p* in (3.6)-(3.8). Using (3.8), (2.3),
(2.4), we find for properly chosen p* and t1,%3 € R that

lim m(Dy«(z)) ™| Ks]
7n,0—0

(3.9) -
< csp_l][ (|VulP~" + |h| + |he|) dzdT < cAp.
Qt

Next if r < p/10%, we see from the definition of E()) in (3.3) that (3.9) is still
valid. To be more precise, if 7’ = 2r + 2¢ and s’ = v(2r + 2¢)2, then there is 7*,
r < r* < 2r, such that we have

lim m(Dy-(2)) "} K3|
n,0—0

(3.10) ~
< cW”][ (IVul?™ + |ha| + |h2l)xq+ dzdr < cAr.
er1sl($,t)

From (3.6)-(3.10) we conclude that Lemma 3.5 is valid. O

Since E (M) is closed and A is as in (3.4) we can use a Whitney type argument
see ([S, Chapter VI]), to divide R**! \ E()) into rectangles Q; = Q2 (T3, 44),
1=1,2,..., with

(3.11) 107971, (Qi, E(N) < 15 <107%07 1y (Q4, E(V)),

where

d)\(Ga-H) :inf{|2’2 —Z]_| +A(p—2)/2|7_2 _7—1|1/2:

3.12
(3.12) (z1,71) € G, (22,72) € H}.

With ¢ and A fixed as in Lemma 3.5, we define v = v(-,&, \) on R**! by

(1) u(z,t), when (z,t) € E()\), and
v(z,t) = B N
> 0(Qi, w)w;i(z,t), when (z,t) € R*"™1\ E()).
Here {w;} is a partition of unity of R"*1\ E()) adapted to the covering {Q;}. By

this we mean that for s = 1,2,... we have w; € C§°(Qay, 44,2 (i, 1:)), 0 < w; < 1,
w; > ¢(n)~! on Q,

a’wi

ot

ri I Vwilloo + 7ty

oo

and

Zwi(x,t) =1

for all (z,t) € R\ E(\).
We collect the basic properties of the function v into the following lemma.



Lemma 3.13. There exists ¢ > 1 with the same dependence as in Lemma 3.5 such
that for every A > Ag the following claims are true.

(a) H|UXR”+1\E(>\)‘H00 < cAp.

(b) The function v(-,t) is locally Lipschitz in the variable x on S’ with Lipschitz
constant independent of € and t.

(c) The function v is locally Lipschitz on S'\ E(\) with Lipschitz constant
independent of €.

(d)
/ ov
S\E(X)

E(u —v)|dzdr

< A2 R\ BV + o5~ / u— a(Q)? dz dr.
Q+

(e)
/ (V£ BP0l + Vo] dedr
S'\E(X)
< eN2APT2RMTI\ E(N)| +es7! / lu—a(Q)|? dz dr.
Q+

(f) The function (u — v)? has distributional partial derivatives int on S’.

Proof. Suppose that

QlOlonr,71020n2r2 (.’B, t) n E()‘) # 0

and let ' = 2r 4+ 2¢ and s’ = v(2r + 2¢)2. Choose @~ so that Lemma 3.1 holds
with Q5.5 (2, 7) replaced by @~ and Qsp,255(2,7) C @~ C QT. We claim that

(3.14) T :][ u—a(Q)|xg- dzdr < coA.
erﬁsl($,t)

Now

a(Q) — a(Q7)| < c][Q_ lu—a(Q7)|xq- dzdr < cpA

as we find from using Poincare’s inequality and Lemma 3.1. Thus it suffices to
prove (3.14) with @ replaced by Q™.

If »* > p, this inequality follows once again from Lemma 3.1 and Poincdre’s
inequality. Otherwise, let [ be the least positive integer such that 2! > p. Choose
Q; = Qo (,t) such that 2ir! < 7l < 20F! for 4 = 1,2,...,1 and Lemma 3.1
holds with Q5 s(2,7) replaced by Q;. Using the triangle inequality, Lemma 3.1,
Poincédre’s inequality, (3.2) and (3.3) we get

1
T < CZ][Q' lu — a(Q)|xg- dzdr +][Q, u—a(Q7)|xo- dzdr
=1 i i

!
< cr'AZQi + cpA < cpA.
i=1



Thus claim (3.14) is true.
Now suppose that (2/,t') € Q; C R"™!\ E()). Let
ui:{j:wj;éOon suppwi}, 1=1,2,...,
and observe from (3.11) and (3.12) that (3.14) holds with r = r;. Hence
(', t) < e a(@j i) <c Z][ |(u— a(Q))| dzdr < cp).
JEM jep! @i

From this inequality we conclude that Lemma 3.13 (a) is valid.
Next let Q; be a Whitney rectangle as above and suppose that Q; NS’ # 0.
Choose r and (z,t) € E()\), so that

(3.15) U supp w; C Qr,’yr2 (ﬂf,t)
JEM
and
(3.16) c(p,n)"'r <r; <c(p,n)r for je€ ;.

Again the existence of r follows from (3.11) and (3.12).

We consider two cases. If Q, ,2(z,t) C S”, let r* be as in Lemma 3.5 and set
Q* = Qr yr2(z,t). From Lemma 3.5, (3.14), and Poincéare’s inequality we deduce
for j € p; that

a(Q;. ) — a(@", ) s][Q* fii— a(Q", )| dz dr

< c][ |t — I« ()| dzdT +c  sup  |L«(t) — L« ()]
Q* [t —t|<yr?

< cmin{r, p}][ IVai|dz + cmin{r, p} A
Q*

< cmin{r, p}p‘l][Q* |(u— a(Q))s‘XQ5,,,25S(z,r) dz dr + cmin{r, p}A
< cmin{r, p}/)\\
We conclude that

(3.17) Vol (2, ) < er7™ D [a(Qy, W) — a(Q*, )] < e,

JEM:

and

(3.18) (@) < er7 2y 1Y 1a(Q, @) — a(Q*, )| < ANy

JEM:

dv
ot

for almost every (z/,t') € Q;. If Qpyp2(z,t) N (R"T1\ S”) # () then c(n)yr? > s
and so using (3.14) we find as in (3.17) and (3.18) that

(3.19) IVo|(@,t') < cpA/r; < cANE=P)/2 pg=1/2



and

ov

a9t (a/,') < es™hp

(3.20)

for almost every (z/,¢') € Q,. Thus (c) of Lemma 3.13 is valid.
To complete the proof of (b) let (z/,¢') € S’NE(A) and (z,t') € Q;. If (2”,t') is
a point in F(\) on the line segment connecting these two points and nearest (z,t’),
then for |z — z'| small enough we deduce from (3.17), (3.18) and continuity of v
that
v(z, 1) — (@', )] < |v(2, 1) —o(@", )| + v(2’,t) — v(=",1)]
<chz—2|+ |v(x ) — (", ).

We observe that
lo(z',t') —v(z",t")| = |u(z’,t") — ulz",t")|.

Suppose that |z — 2’| is so small that Qg, 44,2 (2, ') C S” when r = 2|z’ —2”|. Let
r* be as in Lemma 3.5 and set Qf = Qy« ,2(z',t'). Then clearly

(', 1) —u(2",¢)| < [u(2’,t') — a(Q5, w)| + [u(z”, t') — a(Qg, ).
To estimate the first term on the righthand side of this equation, let

Q; = QZ*jT,’Y47jT2 (.'L'I,tl), J = ]_, 27 P

Using Lemma 3.5 and arguing as in the proof of (3.17) and (3.18) we find that

‘a(Q;—l-la ﬂ) - a(Q;a ﬂ)| < 62_j/): |'TI - il?”‘,
for j = 1,2,... From this inequality and continuity of w it follows that

o0

(2, 1) — a(QL, W) Z Q%,1.0) — a(Q%,0)| < A’ — 2.

The term |u(z”,t') — a(Qf,u)| can be estimated similarly. Hence
w(z',t') —v(z, ') < cX|z — 2|

If (z,t') € E(\) we can repeat the above argument with (z”,¢) replaced by (z,t)
to see that the above inequality is true. In view of this inequality, (3.17) and (3.19)
we conclude that (b) of Lemma 3.13 holds.

To prove (d) and (e) we let ©;1 be the set of those indices ¢ for which there exists
Qr r2(x,t) satisfying (3.15) and (3.16) with suppw; N S" # 0 and Qg 42 (2, 1) C
S". Put

Oy = {i: suppw; NS #0 and i¢O1}.



From Lemma 3.13 (a), (3.17), (3.18) and the same argument as in proving these
inequalities, we obtain

; [ —v| + (|Vu| +R)P (o Ho| + \Vv\)) dzdr

>/ G

1€0,
<eANP2 Z / rHa — a(Q;,w)| dzdr
ico, JQins’
—|—c)\ZZ/ (|Vu| + h)P~tdzdr
(3.21) Lo = Jains:
+ A2 Do tRin S la(@), @) — a(Qi, @)
1€EO1 JEW;
<eA?A72 ) |Q
€0,

<EZAPTZRMI\ E())).

Also using Holder’s inequality, (3.3), and the fact that c(n)yr? > s if i € Oq, we
obtain

E@/ (-

- Z Z‘QzﬂS\a Q97|U|)2+0AZ/ (|Vu| + r)P~ 1 dzdr

1€EOQ2 JEU; 1€EOQ2

(3.22) + eA@P)/2g-1/2 Z / (|Vu| + )P~ dzdr Z a(Qj, |u])

i€@, ¥ @iNS' JEM:

ov
ot

i o] + (V] + B)P~ (o 1|v|+\w|>) dz dr

es™ Y Y 1QiN Sla(Qy, @) + AN Y T Qin S|

1€EO2 JEU; 1€EO9

gcs—l/ u— a(Q)[? dzdr + NP RM\ (V).
Q+

Here we have used the fact that £(A\) = E(A)N S. Clearly, (3.21), (3.22) imply the
claims (d) and (e) of Lemma 3.13.
To prove (f) observe from the usual Whitney type argument that @ — v is con-

tinuous in R™*! and vanishes on E()). This fact, the claim (d), and a standard
argument give (f). The proof of Lemma 3.13 is now complete. O

With A still fixed we let ¢ — 0 and note from simple properties of convolutions
that v(-,&,A) = w(-, A) pointwise for almost every (x,t). In fact if

u'(z,t) = { (u(z,t) — a(Q,u))g(:E,t), when  (z,t) € Qup16s(2,7), and
0 otherwise,
then
w(z, t) = { u'(z,1), when (z,t) € E()\)’ and
Zi a(Q;, u)w;(x,t), when (z,t) € Rr+L \E()\)

Clearly (a)-(e) of Lemma 3.13 and (3.17), (3.18), (3.19), (3.20) are valid with v
replaced by w. Moreover, Lemma 3.5 holds with u replaced by u’.



Lemma 3.23. For almost every t with (R™ x {t}) NS’ # 0 the following is true:
If i € ©1 and suppw; N (R™ x {t}) # 0, then for A > Xy we have

< er7 NP2 Q]

(3.24) \ [~ of@s i) wide

and

(3.25) ‘/ n((u' — a(Qi, ), (w — a(Qs, w)))w;(-, ) dz| < cA2AP~2|Q,],

where ¢ > 1 has the same dependence as in Lemma 3.5.

Proof. We prove only (3.25) as the proof of (3.24) is similar. To begin we note from
a now well known argument (see (3.14), (3.17), (3.18)) that

(3.26) / 0 — a(Qs, u)|ws e dt < Amin{rs, p}|Qsl,
Rn+1

whenever u* = v/ or Q; C Q@ and u* = u. This inequality and the same proof as
in (3.17) and (3.18) imply that

(3.27) H(w —a(Q;, u'))wiHoo <A min{r;, p}.

We consider two cases. If 7; > p/20, we can argue as in (3.14) to get

a(Qi, u')| < cAmin{r;, p}.

From this inequality and (3.27) we find in this case that

‘ / n<(ul —a(Q;,u")), (w— a(Qs, u)))w;(-, t) do

(3.28) < eXAPT2|Q;] + ‘ / (u',w — a(Qs, u))wi(-, 1) dz

= eA2AP2Q;| + 1.

To estimate the integral I let ¢1 € C§°(t1 — n,ta + 1) as earlier. We define

¢J = gb({ﬂj - G(Qiau_lj))wiwla ] - 1725 .. 'aNa

where w; denotes the jth component of w and use (0,...,¢;,...,0) as a test func-
tion in (2.7) for j =1,2,..., N. Setting u = (Uy,...,un), where

uj = uj(W; — a(Qi,uj))wi,  j=1,2,...N,

and letting n — 0 we get for almost every t; < to with |t —tgx| < 472, k = 1,2, that

0
< 6/ u'|
Rn+1

—((w — a(Qs,u))w;) | dzdT

‘/n(ﬂ(-7t2) — (1)) dz 0

bo [ (VP ] [hal) (V8 + 8] dedr < XN
Rn+1




The last inequality is obtained using (3.17) and (3.18) for w, (3.26), and (3.27). We
deduce from the above inequality that

t+yr?

1<ty |
t 2

i

/ @] dz dr + A2AP2|Qi] < eAAP2|Q

Combining this inequality with (3.28), we get (3.25) when r > p/20.

Otherwise we note that either v/ = 0 on the support of w; > @, in which case
the integral in (3.25) is trivially zero or Q; C @sp 125(2, 7). In this situation we
once again use the fact that @(z,-) is constant on (r — 12s,7 + 125) to get for
(z,t) € supp w; that

0(Qu ) = B )a(Quu—o(@)| < f = a@uiglr. ) Gl

< Cn’p_l][ = a(Q, u)| dz dt < chrs,
Q:

where the last inequality follows from (3.14). From this inequality and (3.27) we
obtain

‘ Rn«“, —a(Q;, ), (w—a(Qi, u")))w; (-, t) dz

< N1+ [ (0= 0lQu )i (0 - al@u i1 o]

We can now define

¢J - gb(ﬁjj - G(Qiau_lj))wiwla ] = 1325 .. 'aNa

and proceed as in the previous case to estimate the last integral. Doing this we get
(3.25). In view of our earlier remark we see that Lemma 3.23 is true. O
The next lemma is rather delicate and crucial for Theorem 2.8 to hold.
Lemma 3.29. For almost every t with (R™ x {t}) N S" # 0, we have for A > Ay
that
/ (1 = ! = w]?) () dz
R\{z: (z,t)eE(\)}
> _ A2 R B — ¢ / u— a(Q) dz dr.
Qt

where ¢ > 1 has the same dependence as in Lemma 3.5.

Proof. Let

Ay ={i: |[v|+|w/#£0 on suppw;N(R™x {t})#0}



and put Ay = A; N O3 and A = Ay \ A;. To prove Lemma 3.29 we write

/ (P - )0 ds
R7\{z: (z,t)EE(N\)}

:Z/Rn wi(P = [ = wf?) (1) dz

(3.30) iea
+) / wi([v')? = v —w|?) (-, t) dz
i€No R"
=P+ PB.
To estimate P, we observe that c¢(n)yr? > s, when i € Ay, and argue as in (3.22)
to find that
\Pa| = Z / w; (2u'w — w?) (-, t) dz
ieh, Y R”

sy <23 [ went0i]ce S Y @ wains

i€hy 7R i€A2 jEM;

<2 Z/ uw'ww;(-,t) dz +cs_1/ lu — a(Q)* dzdr.
i€Ay VR” Q*

To estimate the last sum in this display we put

¢J:$ﬂ;]wz¢l7 j:1727"'7N7

where 1); is defined following (3.28) and use (0, ...,¢;,...,0) as a test function in
(2.7) for j =1,2,...,N. Arguing as in (3.22) and Lemma 3.23 we get

(3.32) |Py| < eXAP2 R\ E())) +cs—1/ lu — a(Q)|* dz dr.
Q+

To estimate P; set a; = a(Q;,u’) and write

P :Z/Rn w; (|u')? = v —wl?) (-, t) dz

ieA
:Z/ w; ([u'|* = u' = ai|?) (-, t) dz — Z/ wilw — a;* (-, t) dz
(3.33) ieA VR" ien /R"
+ 22/ wi{u' —a;,w —a;)(-,t) dz
ien ' R”
=Ly + Ly + Ls.

To handle L; we use (3.24) to obtain

L, :Z/ wi(|u'2\ — |u' — ai|2)(.’t) dz
Rn

i€A
:Z/ (2(as, v’ — a;) + |as|*)wi (-, t) dzdt
(3.34) ien /R”
> = A Yl Qi + 3 [l [ () ds
R‘Il

€A i€A
=Lq1 + L1o.



We note that if w; # 0 on R™ x {t}, then there exists a Whitney rectangle Q; with
wj > c(n,p)~t on Q; N (R™ x {t}) and suppw,; Nsuppw; # 0. Either j € A or
J € Aa. Let A’ denote the set of those i's for which @); € A. In this case we see
from the same argument as in (3.17) and (3.18) that

(@i, w) — a(Q;,w)| < cAmin{p, r;}.

Using these observations we find for some cg > 1 that

L1 > X725 " 702 |Qs] — XA |Qil

ien’ ieA
To estimate Lq1 observe that if i € A\ A/, then ¢(n)yr? > s, so we have
NP2 a;|r7 Y Qi) < es™Vag2Qu] + cAZAPT2|Q]
while if 4 € A/, then
NP2l Qul < e(m)oAP2r; % a2 Qif + 67 A2AP2(Qy).

Choosing 0 > 0 sufficiently small and summing the above inequalities, we see for
some ¢ > 1 that

L1 > —ctAP2 r2a;]? Q;| — NZAP2IRHLN\ E(\
6 7
i€’

- cs_l/ lu — a(Q)|? dz dr.
Q+

Putting these inequalities for Li; and Lo in (3.34) we conclude for ¢ > 1 large
enough that

L1 > —A2AP-2[ R\ B(A)| — st / u— a(Q) dz dr.
Q+
Moreover, from (3.27) we deduce that
Ly > —cX2AP 2RI\ E())
and from (3.25) we have
Ly > —cX2AP 2R\ E())|.

Using these inequalities in (3.33) we conclude first that
P> —c 22RO\ E(A)] — s~ / u— a(Q)2dzdr
Q+

and thereupon from (3.32) and (3.30) that Lemma 3.29 is true. O



4. PROOF OF THE MAIN RESULT

We continue under the asumptions and notation introduced in Section 3. Recall
that Q@ = Q, s(2,7), Q = Quo35.1055(2, 7), p < p < 10%p, and 5 < s < 10*5. Let

(4.1) ASTP = sp72
for some ¢7 = c¢7(p,n) > 1 and assume that
cTIXEF

SJ[ \Vu|P~ da dt + a(p)][ (s P lu — a(Q)2 + h?~P) dz dt
Q Q

< 07][,\ |VU|P—ﬂ dx dt + cra(p) ][,\ (3_1)\;ﬂ|u _ a(@)|2l_ﬁ + hp—ﬂ) dx dt
Q Q
<X,

where a(p) =1 for 2n/(n +2) < p < 2 and «a(p) = 0 for p > 2. For fixed A > Ay
and € > 0 small we construct v(-,e,A) as in Section 3 and put

¢J:(v‘7$¢1)€ j:172a"'aNa

where 11 € C§° (t1 — n,t2 +n). We use (0,...,¢;,...,0) as a test function in (2.7).
If = (¢1,...,0N), we obtain using the same notatlon as in (3.6) that

Ji =/Rn+1 <g?,v>¢1dxdt
d¢

- /R ((u = a(@))e, v}t 5 dwdt / ((A(, V), Vo) — Bo) da dt
=Jy + J3.

(4.3)

We observe from Lemma 3.13 (d) and (f) that

ou 1
J, = —,v— U dx dt dx dt
1 /1;"+1\E(A) <8t Y U>w1 * Ty 2 /Rn+1 6t|u‘ wl v

1 1

(4.4) :—E/RHI%W—?LI 1ﬁ1dacd1,‘—|—2/Rn+1 5 — [u|*y1 dx dt

Ov -
+/ —,v —u )Y dxdt.
Rr+1\E()) < ot > 1

when |t; — 7| < 6s —n, i = 1,2. Letting 7 — 0 in (4.4) we deduce that

to
J1=§/ (Jaf? = [ —v|*) (=, ) da: // da:dt

for almost every t1 < tq, with |t; — 7| < 6s, ¢ = 1,2. The last integral in this display
can be estimated using Lemma 3.13 (d). Thus

to

+ e
t1

h=y [ (@2 fi-oP) ) do

:J(tz) — J(tl) + e1,

(4.5)



where

| < RN RPNEW) 4o [ Jua(@)P dode = 7.
Q+

Letting n — 0 in J5 and J3 we deduce from Lemma 3.13 (e) that

(4.6) e | 2 / (- a(Q))E,U)% do dt = J:
and

s | / ((A( Vat)e, V(0d)) — Bovd) de dt
(4.7) -

- / ((A(-, V)., V(ug)) — Boiig) da dt + e
EM\N{(z,t): t1<t<ta}

:J:;: + es,

where |es| < J for ¢ sufficiently large.
We now let ¢ — 0 through a properly chosen sequence. For almost every t; < to
with [t; — 7| < 6s, 1 = 1,2, we see that J(t;) — J'(t;) where

Tt = %/ (W] = o/ — wf?) (z,t;) da.
We choose t1, 7 — 6s < t; < 7 — 4s, so that
(4.8) J'(t)) < 1005 /Q = o(@)? do
Next from Lemma 3.29 we see for almost every 5 that

4.9) Tty = =

2 / _ WPCta) dzter = T (t2) + e
RrN{z: (z,t2)EE(N\)}

and —e; < J. We also have J§ — J} and J& — J4, where

(4.10) =5 [ - a@.u) Gy dsar) < .
2 Rn+1 8t
and
I =— / ((A(- V), V(') — Bu'P) da dt + ¢
(4.11) EMNN{(z,t): t1<t<ts}

= J' el
= 5
where |e4| < J. Combining (4.3)-(4.11) we conclude for ¢ sufficiently large that

(4.12) J"(t) + JY < J.



Put R
Uz, t) = M((|Vul + [B)Exo+ ) (2, 1),

for (z,t) € R**!. We multiply both sides of (4.12) by A=(**#) and integrate with
respect to A over (Mg, 00) where Ay < A\4. It is easily seen that for almost every ¢4
and t2 we can interchange the order of integration. For the term corresponding to
J"(t2) we obtain

= [
A4
1
:—5_1)\Zﬂ/ |u,|2("t2) dx
2 Rrn{z: (z,t2)EE(X4)}

4.1

(4.13) .
4

2 J{z: (@t2)2BO)}

1
:iﬁ_l m(-, t2) P/ (-, t2) du,
RTL

|u'|2(.,t2)(/ AP a)) d
l(-,tg)

where m = max{\4,!}. Similarly,

,B_lK]_ :/oo A_(l'i‘,B)Jél d\
A4

(4.14) to -~ ~
_p1 t /nm—ﬂ«A(.,VU),V(u’qﬁ)) — Bu/'$) dz dt.

We now consider two cases. First suppose for A2 and A3 as in (3.4) and (4.1)
respectively, that

(4.15) A2 < 6As,

where 0 < § < 103 will be chosen after the proof of Lemma 4.19 to depend only
on the constants listed in Theorem 2.8. To estimate the term involving J we note
from (4.1) and the definition of ) in Lemma 3.5 that < cAon (Ag,00) when p > 2
while A < cAP~IAP 4 ¢\ on this interval when 2n/(n +2) < p < 2. If (4.15)
holds we put Ay = d\3 and use the above fact to obtain from the Hardy-Littlewood
maximal theorem that

/ AP=3=BX2 R\ E(X)|dA < (6772 +1) PP dz dt
A

4 Rr+1

< (P72 +1)|QT NP,

(4.16)

Inequality (4.16) implies that

/ A~ TdN < (6772 +1)|QT|AEP
[

(4.17) As

-I-cﬂ_l(&)\g)_ﬂs_l/ lu — a(Q)|* dz dt.
Qt



Combining (4.12)-(4.14) and (4.17) we get provided 6*2=P) > g and g > 0 is
sufficiently small

(4.18) K(ts) + K;1 < c)\;'Bs_l/ lu — a(Q)|? dz dt + e,

Qt
where 0 < e < gY/2X07P|QH).

We use (4.18) to prove a form of Caccioppoli type estimate tailored to our situ-
ation.

Lemma 4.19. Let u be a very weak solution to (1.1) for p > 2n/(n + 2) and
suppose that (4.1), (4.2) ard (4.15) are valid. Then there ezxists f > 0 and ¢ > 1
with the same dependence as the constants in Theorem 2.8 such that

QT+ esswp [ = a(Q)P( ) da
to€(7—45,7465) J D3, (2)

(4.20) <es~ATP / lu— a(Q)? du dt + cpP / = a(Q) P~ d dt
Qt Qt
+c / hP=P dg dt.
Q+

Proof. From (2.5), the fact that 5 is constant on Qs3, 12s(2,7) with support in
Qup,165(2,7), and T — 65 < t1 < 7 —4s, we deduce for to, T —4s < ty < 7+ 6s that

to
cK, 2/ / m™P|VulP dz dt
T7—4s J D3, (2)

4.21
(4:21) 2p~t / mPlu— a(Q)|(|Vu| + k)P~ da dt
Q4p,16s(z17-)

:Kg(tz) — K3.

Here ¢ > 1 depends only on p, n, ¢1, ¢o and c3. Thus,

esssup K(t2) + Ka(7 + 6s)

(1—4s,7+865s)
(4.22)
< c(AB_ﬂs_l/ |lu — a(Q)|2dxdt—l—e+K3>.
Qt
Let
E = {(z,t) € D3,(2) x (1 — 4s,7+ 6s): |Vu|(z,t) > Bl(z,t)}
N{(z,t): l(z,t) > A3}

Then

Ky(1 + 6s) > ,B_ﬁ/ (VPP dzdt = Ky4.
E



We may suppose that 8 > 0 is so small that 577 > 1/2. Then from (4.2) and the
Hardy-Littlewood maximal theorem we see that

T7+6s
/ / \Vu|P~P dz dt
T—4s J Dg,(2)

< 2Ky + c6PPAEPIQF| 4 cpP P / 1P=P dz dt

Rn+1
< 2K4 + c6P P AP QT

since f < 6*(2=P), Thus if § < &y and &y > 0 is small enough (depending on the
constants listed in Theorem 2.8), we deduce from (4.2) and the above inequality
that

1 _ _
K>3 Q0 e |
Q

—cs_l)\gﬂ/ lu — a(Q)|? dz dt.
Qt

hP=B dx dt
+
(4.23)

From Young’s inequality, and the fact that QT = Qgp,365(2, 7), we also obtain

1 1., _ -
(124) K| < e NPIQ e p/Q+ u— a(Q)[Pm" da dt.
Putting (4.24), (4.23) into (4.22) we find that Lemma 4.19 is true. O

Fix 6 > 0 so small that Lemma 4.19 is true. Next we use Lemma 4.19 to prove
a Sobolev type estimate for the very weak solution.

Lemma 4.25. If the hypotheses of Lemma 4.19 are satisfied, p = max{p, 2} and

i npp
(n+2)p—B2+p)

then for B > 0 sufficiently small there exists p, p < p < 2p, such that whenever
0 <e <1075, we have

| -Gl
Q5 ,(2)

< P71Q| (c(s))\g_a/Q VulTdedi + €A ).

55(2)
for some c(e) > 1.

Proof. Choose p, p < p < 2p, such that Lemma 3.1 is valid with p replaced by p.
Set 0 = 2(p — B)/p and define ¢ by ¢(1 + o/n) = p.

Set
np(p — B)
(n+ B)p— %

q:

and o = 2(p — B)/p-



We proceed as in the proof of Lemma 3.3 in [KLe|. Let ¢ € C§°(Q25,25(%, 7)) be
a cutoff function such that ¢ =1 on Q5 4(z,7) and |V¢| < 10/p. Let

v(a,t) = lulz, t) - (1) (e, ).
Denote p* = 2p. Holder’s inequality implies that

J :/ v(z, )1+ dg
D« (2)

1/n
S(/ v(z, 1) da:) (/ 1)(3:,t)(q"‘("/”)(‘l—l))"/("—l) dx)
DP* (Z) Dp* (,Z)

We use Sobolev’s theorem for functions in Wh!(D,«(z)) to deduce that there is
constant ¢ = ¢(n) such that

< / o, 1)@/ a@=1)n/ (=) dm)
D« (2)

< c/ v(z, t) @ DA+ 17y (2, 4)| dz
D« (2)

(a-1)/4q 1/q
< c(/ v(z, t)1Fo/m) da:) (/ |Vv(a:,t)|qu> .
Dp*(z) Dp*(z)

(n—1)/n

(n—=1)/n

Thus
1/ 1/n
J < cJ(q_l)/q</ \Vu(x,t)|qda:> p(/ v(z, 1) dm) .
D Dp*(Z)

The same argument as in the proof of Lemma 3.3 in [KLe| gives

1/ 1/
(/ Vo (s, 1)|dz) T< c(/ Ve, )| dz ) !
Dp*(z) Dp*(z)

p* (z)

and

1/n 1/n
(/ o(e,t) dr) < c(/ ula, 1) — 1,(1)|7 da)
D« (2) D« (2)
1/n
< c(/ ula, 1)~ 1+ (1) ?dz)
D« (2)

Collecting the obtained estimates we arrive at
q/n
(4.26) J < c/ |Vu(a:,t)|qdac(/ lu(z, t) — I« (t)|” da:) .
D« (2) D« (2)

We note that the right hand side of (4.20) is smaller than cX§~?|Q*|. If 2n/(n+
2) < p < 2, then this note is a direct consequence of (4.1), (4.2) and Holder’s



inequality. If p > 2 and I, is defined relative to (z,7), then this note follows from
the Sobolev inequality,

u(z,t) — Isp(t)] < M (|Vulxg+)(z,t) < cl(z,t),  (2,t) €QT,

Lemma 3.1, (4.1), and (4.2) (see (3.8), (3.9) in [KLe]). Using this note, Lemma
4.19, Holder’s inequality, and the definitions of ¢ and ¢ we see that

( /D PNCCUR I5(1)|7 d) o
< ( /D PRCUR I, (8)’m " da

. (/ ( )mp_ﬁ d$>(1—0/2)(Q/")
Ds,(z

< AIQH) e ([ e o)

D3p(z)

) qo/(2n)

Ba/(np)

Putting (4.27) into (4.26) and integrating over (s — 7, s + 7) we get using the
definition of ¢, ¢, o and Hélder’s inequality that

of do dt < (NP |QT)) 7/

Q5 ,(2)
s+T Ba/(np)
/ (/ m (. tydr) (/ V(1) de) di
s D3, (2) D3, (2)

—T

<08 1@t pemppare( [
Qs 4 (2)

(4.28) o

VT dz dt)

<PP|Q*) (C(E)Ag—ﬁ][ VT da dt + e ),
Q5 ,(2)

where to get the last line we have also used Young’s inequality for small £ in the
form

a) , (r = 1)(b/E)/D

ab <
T T
with
a = ()\g—ﬁ QF |)q/anq/p()\3p)—ﬁq/?1')\g’
(4.29) r=q/(q—q) =np/Bq,

~ /d
(IVu|/As)T da dt)q !

b= ((Aap)? /Q

as well as (4.1), (4.2). The proof of Lemma 4.25 is now complete. O

5.5(2)



Lemma 4.30. Let u be a very weak solution to (1.1) for p > 2n/(n + 2) and
suppose that (4.1) and (4.2) are valid. Then there exists B > 0 and ¢ > 1 with the
same dependence as the constants in Theorem 2.8 such that

)\g_ﬂ < c(][

where § = max{p—1/2,q} whenp > 2 and ¢ = max{(1+p)/2,q} when 2n/(n+2) <
p<2.

N
VulTdzdt) q+][ WP da dt,

" A(zfr) ng;,"ge?(z:'r)

6p,36s

Proof. Note that if (4.15) is false, then Lemma 4.30 is trivially true. Thus we
assume (4.15) is true. To prove Lemma 4.30 we can copy the proofs of Lemmas 3.4
and 3.20 in [KLe] with minor changes except that we now replace p by p — 8 and
use Lemma 4.19 (with p,s = p,5), as well as Lemma 4.25 (with p, s = 6p, 365), in
place of Lemma 3.2, (3.11) and (3.24) in [KLe]. We omit the details. O

Proof of Theorem 2.8. Using Lemma 4.30 in place of Lemmas 3.4 and 3.20 in [KLe]
we can repeat the argument given in the proof of Propositions 4.1 and 4.14 in
[KLe| with p replaced by p — 8. The covering argument used in the proof of these
propositions guarantees the existence of ¢z, p,s for which (4.1), (4.2) hold. Also
since the constants in Lemma 4.30 are independent of § for 8 sufficiently small, it
is clear from the proof of Propositions 4.1 and 4.14 in [KLe] that

\Vu| € LPYP(Q, s(2, 7))

for 8 > 0 small enough with the same dependence as in Theorem 2.8. Again we
omit the details. 0

4.31 Remark. We do not know if one can replace L?(£2 x (S1,T1)) in (2.1) by
L27B(2 x (81,T})) for small B > 0 and still get the same conclusion in Theorem
2.8 for 2n/(n + 2) < p < 2. Although this seems plausible it would for example
require a different estimate of the error term in Lemma 3.29. This query is false
when p = 2n/(n + 2) as can be seen from the example

u(z,t) = €|z 7/2,

where k = —(n/2)"2"/(*+2) It is easily checked that u satisfies the parabolic
2n/(n + 2) Laplace equation
% = div(|Vu|~¥ "+ vy)

for z € R™ \ {0}. Moreover, u satisfies (2.7) and the weakened form of (2.1) when
p=2n/(n+ 2). One also easily sees for 0 < k' < k, that

iz, t) = —e'ta| /2 (log |x) !

is a weak subsolution to the above equation near (0,0) (in the sense defined in
Section 2) but u ¢ L*#(Q, ,(0,0)) for any small 3, p > 0.
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