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Abstract. A kind of supersolutions of the so-called p-parabolic equation are stud-
ied. These p-superparbolic functions are defined as lower semicontinuous functions
obeying the comparison principle. Incidentally, they are precisely the viscosity super-

solutions. One of our results guarantees the existence of a spatial Sobolev gradient.
For p = 2 we have the supercaloric functions and the ordinary heat equation.

1. Introduction

The solutions of the partial differential equation

(1.1)
∂u

∂t
= div(|∇u|p−2∇u), 1 < p <∞,

form a similar basis for a prototype of a nonlinear parabolic potential theory as the
solutions of the heat equation do in the classical theory. Especially, the celebrated
Perron method can be applied even in the nonlinear situation p 6= 2; see [KL] for this
and related results concerning more general equations. For the regularity theory of
such equations the reader is asked to consult the monograph by DiBenedetto [D].
See also Chapter 2 of the recent book [WZYL]. The equation is often called the
p-parabolic equation, but is also known as the evolutionary p-Laplace equation and
the non-Newtonian filtration equation in the literature.

In this connection the so-called p-superparabolic functions are essential. They
are defined as lower semicontinuous functions obeying the comparison principle
with respect to the solutions of (1.1). The p-superparabolic functions are of actual
interest also because they are the viscosity supersolutions of (1.1), see [JLM]. Thus
there is an alternative definition in the modern theory of viscosity solutions, but
here we are content to mention that our results automatically hold for the viscosity
supersolutions. One should pay attention to the fact that, in their definition, the
p-superparabolic functions are not required to have any derivatives, and, conse-
quently, it is not evident how to directly relate them to the differential inequality

(1.2)
∂u

∂t
≥ div(|∇u|p−2∇u).
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The weak solutions of (1.2), defined with the aid of test functions under the in-
tegral sign, are called supersolutions and, since they are required to have Sobolev
derivatives, they constitute a more tractable class of functions. The reader should
carefully distinguish between p-superparabolic functions and supersolutions. For
example consider the Barenblatt solution Bp : Rn+1 → [0,∞),

(1.3) Bp(x, t) =











t−n/λ
(

C −
p− 2

p
λ1/(1−p)

(

|x|

t1/λ

)p/(p−1))(p−1)/(p−2)

+

, t > 0,

0, t ≤ 0,

where λ = n(p− 2) + p, p > 2, and the constant C is usually chosen so that

∫

Rn

Bp(x, t) dx = 1

for every t > 0. This function is not a supersolution in an open set that contains
the origin. It is the a priori summability of ∇Bp that fails. Indeed,

∫ 1

−1

∫

Q

|∇Bp(x, t)|
p dx dt = ∞,

where Q = [−1, 1]n ⊂ Rn. However, the Barenblatt solution is a p-superparabolic
function in Rn+1. In the case p = 2 we have the heat kernel

W (x, t) =







1

(4πt)n/2
e−|x|2/4t, t > 0

0, t ≤ 0.

In contrast with the heat kernel, which is strictly positive, the Barenblatt solution
has a bounded support at a given instance t > 0. Hence the disturbancies propagate
with finite speed when p > 2. -The Barenblatt solution describes the propagation of
the heat after the explosion of a hydrogen bomb in the atmosphere. This function
was discovered in [B].

Supersolutions and p-superparabolic functions are often identified in the litera-
ture, even though this is not strictly speaking correct, as the Barenblatt solution
shows. However, we show that there are no other locally bounded p-superparabolic
functions than supersolutions. Indeed, locally bounded p-superparabolic functions
have Sobolev derivatives with respect to the spatial variable and we can substitute
them into the weak form of (1.2). This is the content of the following theorem.

1.4. Theorem. Let p ≥ 2. Suppose that v is a locally bounded p-superparabolic

function in an open set Ω ⊂ Rn+1. Then the Sobolev derivative

∇v =

(

∂v

∂x1
, . . . ,

∂v

∂xn

)

exists and the local summability

∫ t2

t1

∫

Q

|∇v|p dx dt <∞
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holds for each Q× [t1, t2] ⊂ Ω. Moreover, we have

∫ t2

t1

∫

Q

(

|∇v|p−2∇v · ∇ϕ− v
∂ϕ

∂t

)

dx dt ≥ 0

whenever ϕ ∈ C∞
0 (Q× (t1, t2)) with ϕ ≥ 0.

The proof of Theorem 1.4 is presented in Chapter 4. For unbounded p-super-
parabolic functions some immediate results follow, because, if v is a p-superpara-
bolic function, so are functions

vL = vL(x) = min(v(x), L),

and thus Theorem 1.4 is valid for each vL.
In the case p = 2 the proof of Theorem 1.4 can be extracted from the linear

representation formulas in [W1-2]. Then all superparabolic functions can be rep-
resented in terms of the heat kernel. For p > 2 the principle of superposition is
not available. Instead we use an obstacle problem in the calculus of variations to
construct supersolutions which approximate a given p-superparabolic function. A

priori estimates for the approximants are derived and these estimates are passed
over to the limit.

In order to bypass some technical difficulties related to the time derivative ut we
use the regularized equation

(1.5)
∂u

∂t
= div

(

(|∇u|2 + ε2)(p−2)/2∇u
)

,

which does not degenerate at the critical points where ∇u = 0. Here ε is a real
parameter. The solutions of (1.5) are smooth, provided ε 6= 0. In the case ε = 0
the equation (1.5) reduces to the true p-parabolic equation (1.1). See Chapter 2 of
[WZYL].

A distinct feature is that the p-superparabolic functions are defined at every
point of their domain. Thus the study of the pointwise behaviour is relevant. If
the value is changed even at a single point, then the obtained function is not p-
superparabolic anymore. At each point in the domain a p-superparabolic function
v has the value given by

v(x, t) = ess lim inf
(y,τ)→(x,t)

τ<t

v(y, τ).

This is the content of Theorem 5.2. Here the essential limes inferior means that any
set of (n + 1)-dimensional measure zero can be neglected in the calculation of the
limes inferior. It is worthwhile to observe the role of the time. What is to happen
in the future will have no influence at the present time: the instances τ with τ ≥ t
are not necessary to include.

Our argument is based on a general principle and it applies to other equations
as well. It can be extended to include equations like

∂u

∂t
=

n
∑

i,j=1

∂

∂xi

(∣

∣

∣

∣

n
∑

k,m=1

akm(x)
∂u

∂xk

∂u

∂xm

∣

∣

∣

∣

(p−2)/2

aij(x)
∂u

∂xj

)

,
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where the matrix (aij) with bounded measurable coefficients satisfies the standard
condition

n
∑

i,j=1

aij(x)ξiξj ≥ γ|ξ|2

for all ξ = (ξ1, ξ2, . . . , ξn) in Rn.
A comment on our approach to deal with the time derivative ut is appropriate.

Strictly speaking this quantity does not exist in the same sense as ∇u; it is not
a derivative in Sobolev’s sense. For supersolutions, even simple examples of the
form u(x, t) = g(t) where g(t) is an increasing lower semicontinuous step function,
illuminate this feature. The regularized equation and some averaging procedures
are here needed only to overcome this difficulty. Let us however mention that ut
can be interpreted as an object in the theory of J.-L. Lions et consortes, see [L].
The use of this powerful theory would enable us to calculate rather freely with ut
so that a much shorter exposition is possible. Although we have not followed this
path, the reader may find it instructive to skip the regularized equation and the
averaging procedures at the first reading. We have also deliberately decided to
exclude the case p < 2. On the other hand, we think that some features might be
interesting even for the ordinary heat equation, to which everything reduces when
p = 2.

2. Preliminaries

In what follows, Q will always stand for a parallelepiped

Q = (a1, b1) × (a2, b2) × · · · × (an, bn), ai < bi, i = 1, 2, . . . , n,

in Rn and the abbreviations

QT = Q× (0, T ), Qt1,t2 = Q× (t1, t2),

where T > 0 and t1 < t2, are used for the space-time boxes in Rn+1. The parabolic
boundary of QT is

ΓT = (Q× {0}) ∪ (∂Q× [0, T ]).

Observe that the interior of the top Q × {T} is not included. Similarly, Γt1,t2 is
the parabolic boundary of Qt1,t2 . The parabolic boundary of a space-time cylinder
Dt1,t2 = D×(t1, t2) has a similar definition. Let 1 ≤ p <∞. In order to describe the
appropriate function spaces, we recall that W 1,p(Q) denotes the Sobolev space of
functions u ∈ Lp(Q), whose first distributional partial derivatives belong to Lp(Q).
The norm is

‖u‖W 1,p(Q) = ‖u‖Lp(Q) + ‖∇u‖Lp(Q).

The Sobolev space with zero boundary values, denoted by W 1,p
0 (Q), is the comple-

tion of C∞
0 (Q) in the norm ‖u‖W 1,p(Q). We denote by Lp(t1, t2;W

1,p(Q)), t1 < t2,
the space of functions such that for almost every t, t1 ≤ t ≤ t2, the function
x→ u(x, t) belongs to W 1,p(Q) and

∫ t2

t1

∫

Q

(

|u(x, t)|p + |∇u(x, t)|p
)

dx dt <∞.

Notice that the time derivative ut is deliberately avoided. The definition for the
space Lp(t1, t2;W

1,p
0 (Q)) is analogous.

The Sobolev inequality is valid in the following form, see [D, Chapter I, Propo-
sition 3.1].
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2.1. Lemma. Suppose that u ∈ Lp(0, T ;W 1,p
0 (Q)). Then there is c = c(n, p) > 0

such that

(2.2)

∫ T

0

∫

Q

|u|(1+2/n)p dx dt ≤ c

∫ T

0

∫

Q

|∇u|p dx dt
(

ess sup
0<t<T

∫

Q

|u|2 dx
)p/n

.

To be on the safe side we give the definition of the (super)solutions, interpreted
in the weak sense.

2.3. Definition. LetΩ be an open set in Rn+1 and suppose that u ∈ Lp(t1, t2;W
1,p(Q))

whenever Qt1,t2 ⊂ Ω. Then u is called a solution of (1.5), if

(2.4)

∫ t2

t1

∫

Q

(

(|∇u|2 + ε2)(p−2)/2∇u · ∇ϕ− u
∂ϕ

∂t

)

dx dt = 0

whenever Qt1,t2 ⊂ Ω and ϕ ∈ C∞
0 (Qt1,t2). If, in addition, u is continuous, then u

is called p-parabolic in the case ε = 0. Further, we say that u is a supersolution of
(1.5), if the integral (2.4) is non-negative for all ϕ ∈ C∞

0 (Qt1,t2) with ϕ ≥ 0. If this
integral is non-positive instead, we say that u is a subsolution.

Several remarks are related to the definition. By parabolic regularity theory
the solutions in the case ε 6= 0 are smooth, after a possible redefinition on a set
of measure zero. The existence of the continuous time derivative ut is of vital
importance to us. In the p-parabolic case ε = 0 the solutions and their spatial
gradients are Hölder continuous but this does not concern ut, see [D] and [WZYL].

2.5. Remark. If the test function ϕ is required to vanish only on the lateral bound-
ary ∂Q× [t1, t2], then the boundary terms

∫

Q

u(x, t1)ϕ(x, t1) dx = lim
σ→0

1

σ

∫ t1+σ

t1

∫

Q

u(x, t)ϕ(x, t) dx dt

and
∫

Q

u(x, t2)ϕ(x, t2) dx = lim
σ→0

1

σ

∫ t2

t2−σ

∫

Q

u(x, t)ϕ(x, t) dx dt

have to be included. In the case of a supersolution to the p-parabolic equation the
condition becomes

(2.6)

∫ t2

t1

∫

Q

(

|∇u|p−2∇u · ∇ϕ− u
∂ϕ

∂t

)

dx dt

+

∫

Q

u(x, t2)ϕ(x, t2) dx−

∫

Q

u(x, t1)ϕ(x, t1) dx ≥ 0

for almost all t1 < t2 with Qt1,t2 ⊂ Ω.
There is a principal, well-recognized difficulty with the definition, present in the

case ε = 0. Namely, in proving estimates we usually need a test function ϕ that
depends on the solution itself, for example ϕ = uζ where ζ is a smooth cutoff
function. Then one cannot avoid that the “forbidden quantity” ut shows up in the
calculation of ϕt. In most cases one can easily overcome this difficulty by using
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an equivalent definition in terms of Steklov averages, as in [D, pp. 18 and 25]
and [WZYL, Chapter 2]. Alternatively, one can proceed using convolutions with
smooth mollifiers as in [AS, pp. 199–121]. This remark also concerns our estimates
but we have one noteworthy exception. Indeed, the proof of a convergence result
(Lemma 4.15) is delicate when it comes to the “forbidden quantity” and there is a
true complication, not easy to detect and not easy to dismiss.

We have found the convolution

(2.7) u∗(x, t) =
1

σ

∫ t

0

e(s−t)/σu(x, s) ds, σ > 0,

to be expedient, see [N, p. 36]. It is essential in the proof of Lemma 4.7. The
notation hides the dependece on σ. For continuous or bounded and semicontinuous
functions u the averaged function u∗ is defined at each point. Observe that

(2.8) u∗ + σ
∂u∗

∂t
= u.

Some properties are listed in the following lemma.

2.9. Lemma. (i) If u ∈ Lp(QT ), then

‖u∗‖p,QT
≤ ‖u‖p,QT

and
∂u∗

∂t
=
u− u∗

σ
∈ Lp(QT ).

Moreover, u∗ → u in Lp(QT ) as σ → 0.
(ii) If, in addition, ∇u ∈ Lp(QT ), then ∇(u∗) = (∇u)∗ componentwise,

‖∇u∗‖p,QT
≤ ‖∇u‖p,QT

,

and ∇u∗ → ∇u in Lp(QT ) as σ → 0.
(iii) Furthermore, if uk → u in Lp(QT ), then also

u∗k → u∗ and
∂u∗k
∂t

→
∂u∗

∂t

in Lp(QT ).
(iv) If ∇uk → ∇u in Lp(QT ), then ∇u∗k → ∇u∗ in Lp(QT ).
(v) Analogous results hold for weak convergence in Lp(QT ).
(vi) Finally, if ϕ ∈ C(QT ), then

ϕ∗(x, t) + e−t/σϕ(x, 0) → ϕ(x, t)

uniformly in QT as σ → 0.

Proof. The proof is rather straightforward. To obtain the fundamental contraction
property in (i), we use the Hölder inequality to obtain

∣

∣

∣

1

σ

∫ t

0

e−(t−s)/σu(x, s) ds
∣

∣

∣

p

≤
( 1

σ

∫ t

0

e−(t−s)/σ ds
)p−1( 1

σ

∫ t

0

e−(t−s)/σ|u(x, s)|p ds
)

≤
1

σ

∫ t

0

e−(t−s)/σ|u(x, s)|p ds.
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Integrating this inequality with respect to t over [0, T ] and reversing the order of
integration in the double integral, we arrive at

∫ T

0

|u∗(x, t)|p dt ≤

∫ T

0

(1 − e−(T−s)/σ)|u(x, t)|p dt ≤

∫ T

0

|u(x, t)|p dt.

An integration with respect to x yields the inequality in (i).
Let us then go to (vi). A calculation shows that

(ϕ∗(x, t) + e−t/σϕ(x, 0)) − ϕ(x, t)

= e−t/σ(ϕ(x, 0) − ϕ(x, t)) +
1

σ

∫ t

0

e−(t−s)/σ(ϕ(x, s) − ϕ(x, t)) ds.

To see that this expression converges uniformly to zero as σ → 0, we have to
consider three intervals [0, δ], [δ, T − δ], [T − δ, T ] separately, where δ > 0 is small.
The rest of the proof is now standard and we leave it as an exercise for the reader.

The averaged equation for a supersolution u in Ω is the following. If QT ⊂ Ω,
then

(2.10)

∫ T

0

∫

Q

(

(∇u|p−2∇u)∗ · ∇ϕ− u∗
∂ϕ

∂t

)

dx dt

+

∫

Q

u∗(x, T )ϕ(x, T ) dx ≥

∫

Q

u(x, 0)

(

1

σ

∫ T

0

ϕ(x, s)e−s/σ ds

)

dx

for all test functions ϕ ≥ 0 vanishing on the parabolic boundary ΓT of QT . If, in
addition, u ≥ 0 in QT and ϕ(x, T ) = 0, this implies that

(2.11)

∫ T

0

∫

Q

(

(∇u|p−2∇u)∗ · ∇ϕ− u∗
∂ϕ

∂t

)

dx dt ≥ 0.

Notice that we do not have |∇u∗|p−2∇u∗ in (2.10), except in the favourable case
p = 2. For the proofs of (2.10) and (2.11), we observe that (2.6) implies that

(2.12)

∫ T

s

∫

Q

(

|∇u(x, t− s)|p−2∇u(x, t− s) · ∇ϕ(x, t)

− u(x, t− s)
∂ϕ

∂t
(x, t)

)

dx dt+

∫

Q

u(x, T − s)ϕ(x, T ) dx

≥

∫

Q

u(x, 0)ϕ(x, s) dx

when 0 ≤ s ≤ T . Notice that (x, t− s) ∈ QT . Multiply by σ−1e−s/σ, integrate over
[0, T ] with respect to s and, finally, change the order of integration between s and
t. This yields (2.10).

The averaging procedure (2.7) has the advantage that values taken outside QT

are not evoked. That is not the case with the more conventional convolution

(2.13) (u ∗ ρσ)(x, t) =

∫ ∞

−∞

u(x, t− τ)ρσ(τ) dτ
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where Friedrichs’ mollifier

(2.14) ρσ(τ) =







C

σ
e−σ

2/(σ2−τ2), |τ | < σ,

0, |τ | ≥ σ,

is involved. The result is that the inequality

(2.15)

∫∫

Ω

(

(|∇u|p−2∇u) ∗ ρσ · ∇ϕ− (u ∗ ρσ)
∂ϕ

∂t

)

dx dt ≥ 0

holds for all ϕ ∈ C∞
0 (Ω), ϕ ≥ 0, under the restriction that the parameter σ has to

be strictly less than the distance from the support of ϕ to the boundary of Ω. This
has the effect that the virtual domain is shrinked. On the other hand, an advantage
of this approach is that it is not limited to space-time boxes.

The next lemma is well-known, see [D].

2.16. Lemma. Let u ∈ Lp(0, T ;W 1,p(Q)) be a subsolution of the equation (1.5).
Assume that u ≥ 0 in QT . Then there is a constant c = c(p) such that

(2.17)

∫ T

0

∫

Q

|∇u|pζp dx dt+ ess sup
0<t<T

∫

Q

u2ζp dx ≤ c

∫ T

0

∫

Q

u2

∣

∣

∣

∣

∂(ζp)

∂t

∣

∣

∣

∣

dx dt

+ c

∫ T

0

∫

Q

up|∇ζ|p dx dt+ |ε|p−2

∫ T

0

∫

Q

ζp dx dt

holds for all ζ ∈ C∞(QT ), ζ ≥ 0, vanishing on the parabolic boundary ΓT .

Proof. The proof is included only for instructive purposes. First, consider the case
ε = 0. Let 0 ≤ τ ≤ T . The equation reads

∫ τ

0

∫

Q

(

|∇u|p−2∇u · ∇ϕ− u
∂ϕ

∂t

)

dx dt+

∫

Q

u(x, τ)ϕ(x, τ) dx ≤ 0

where we want to use the test function ϕ = ζpu, which strictly speaking, is not
admissible. However, here the use of the averaged function u∗ or other convolution
approximants presents no difficulties. After a few integrations by parts we arrive
at

(2.18)

−

∫ τ

0

∫

Q

u
∂ϕ

∂t
dx dt+

∫

Q

u(x, τ)ϕ(x, τ) dx

=
1

2

∫

Q

u(x, τ)2ζ(x, τ)p dx−
1

2

∫ τ

0

∫

Q

u2 ∂(ζp)

∂t
dx dt.

We also have

(2.19)

∫ τ

0

∫

Q

|∇u|p−2∇u · ∇ϕdx dt

=

∫ τ

0

∫

Q

|∇u|pζp dx dt+ p

∫ τ

0

∫

Q

ζp−1u|∇u|p−2∇u · ∇ζ dx dt

8



and, using Young’s inequality

pζp−1|∇u|p−1u|∇ζ| ≤ (p− 1)βqζp|∇u|p + β−pup|∇ζ|p

where q = p/(p− 1) and β is small enough (βq = 1− 1/p will do), we can estimate
the absolute value of the last integral so that the integral of (p − 1)βqζp|∇u|p is
absorbed by the left-hand side.

Combining this with (2.18) and (2.19) we obtain

(2.20)

∫ τ

0

∫

Q

|∇u|pζp dx dt+
1

2

∫

Q

ζ(x, τ)pu(x, τ)2 dx

≤ c

∫ T

0

∫

Q

u2

∣

∣

∣

∣

∂(ζp)

∂t

∣

∣

∣

∣

dx dt+ c

∫ T

0

∫

Q

up|∇ζ|p dx dt

The parameter τ , 0 ≤ τ ≤ T , is at our disposal. Inequality (2.20) is to be used
twice. First, we select τ so that

∫

Q

ζ(x, τ)pu(x, τ)2 dx ≥
1

2
ess sup
0<t<T

∫

Q

ζp(x, t)u2(x, t) dx.

This shows that the essential supremum term in question is less than four times
the right-hand side of (2.20). Second, we take τ = T in (2.20) to estimate the first
integral in (2.17). Adding the two estimates, we arrive at the desired result in the
case ε = 0.

Let us turn our attention to the case ε 6= 0. The case is even simpler, since no
averaging of the test function ϕ = ζpu is needed. Otherwise the proof is rather
similar. An additional feature is that with the aid of the inequalities

1

2
ζp|∇u|p +

1

2
|ε|p−2|∇u|2 ≤ (|∇u|2 + ε2)(p−2)/2|∇u|2

and

(|∇u|2 + ε2)(p−2)/2|∇u · ∇ζ| ≤ 2(p−2)/2|∇u|p−1|∇ζ| + 2(p−2)/2|ε|p−2|∇u||∇ζ|

not only the integral of ζp|∇u|p but also the integral of |ε|p−2ζp|∇u|2 can be ab-
sorbed.

For solutions with zero boundary values on some part of the boundary the previous

estimate can be improved. To be more specific, consider the domain R = Q \ Q′,
Q′ ⊂⊂ Q, between two parallelepipeds. Suppose that h is p-parabolic in the domain

RT = (Q \Q′) × (0, T ).

Assume further that h ∈ C(RT ), h ≥ 0, and that h vanishes on the parabolic
boundary ΓT of QT . Then

(2.21)

∫ T

0

∫

R

|∇h|pζp dx dt ≤ c

∫ T

0

∫

R

hp|∇ζ|p dx dt

for all smooth ζ = ζ(x) ≥ 0 depending only on the spatial variable and vanishing
on the lateral boundary ∂Q′ × [0, T ]. (There is no requirement on ∂Q× [0, T ].)

The important improvement over (2.17) is that we obtain an estimate of the
integral of |∇h|p over a domain of the form (Q\Q′′)×(0, T ), whereQ′ ⊂⊂ Q′′ ⊂⊂ Q.
The proof can be extracted from the proof of Lemma 2.16. This will be used in the
proof of Lemma 4.15.
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3. The obstacle problem

The obstacle problem in the calculus of variations is a basic tool in the study of
the p-superparabolic functions, to be defined in Section 4 as lower semicontinuous
functions obeying a comparison principle. As we will see later, a p-superparabolic
function can be approximated from below with solutions of obstacle problems.

Let ψ ∈ C∞(Rn+1) and consider the class Fψ of all functions w ∈ C(QT ) such
that

w ∈ Lp(0, T ;W 1,p(Q)), w = ψ on ΓT , and w ≥ ψ in QT .

The function ψ acts as an obstacle and also prescribes the boundary values.
The following existence theorem will be useful for us later.

3.1. Lemma. There is a unique w ∈ Fψ such that

(3.2)

∫ T

0

∫

Q

(

(|∇w|2 + ε2)(p−2)/2∇w · ∇(φ− w) + (φ− w)
∂φ

∂t

)

dx dt

≥
1

2

∫

Q

|φ(x, T ) − w(x, T )|2 dx

for all smooth functions φ in the class Fψ. In particular, w is a continuous super-

solution of (1.5). Moreover, in the open set {w > ψ} the function w is a solution

of (1.5). In the case ε 6= 0 we have w ∈ C∞(QT ).

Proof. The existence can be shown as in the proof of Theorem 3.2 in [AL]. The proof
of the Hölder continuity of the solution can be extracted from [C]. The regularity
in the case ε 6= 0 follows from a standard parabolic regularity theory described in
the celebrated book [LSU].

Let wε denote the solution of (3.2) with ε 6= 0 and let v denote the one with
ε = 0. We keep the obstacle ψ fixed and let ε → 0 in (3.2). The question is about
the convergence of the solutions of the obstacle problems: Do the wε’s converge to
v in some sense?

3.3. Lemma. The inequality

(3.4)

∫ T

0

∫

Q

(

(|∇wε|
2 + ε2)(p−2)/2∇wε − |∇v|p−2∇v

)

· ∇(wε − v) dx dt ≤ 0

holds. In particular,

(3.5) lim
ε→0

∫ T

0

∫

Q

|∇wε −∇v|p dx dt = 0.

Proof. We write w = wε. We begin the proof with some remarks. The estimate

∫ T

0

∫

Q

|∇w|p dx dt ≤ c

∫ T

0

∫

Q

|∇v|p dx dt+ c|ε|p−2

∫ T

0

∫

Q

|∇v|2 dx dt

with c = c(p) follows from (3.4) with the aid of Young’s inequality.
10



We also have

(3.6)

∫ T

0

∫

Q

|∇w|p dx dt ≤ c

∫ T

0

∫

Q

|∇v|p dx dt+ c|ε|p−2T |Q|

with another c = c(p), if |ε| ≤ 1, for instance.
The elementary inequalities

|a− b|p ≤ 2p−2(|a|p−2a− |b|p−2b) · (a− b)

and

∣

∣(|a|2 + ε2)(p−2)/2a− |a|p−2a
∣

∣ ≤











p− 2

2
|ε|p−1, 2 ≤ p ≤ 3,

p− 2

2
ε2(|a|2 + ε2)(p−3)/2, p ≥ 3,

and (3.4) imply that

(3.7)

∫ T

0

∫

Q

|∇w −∇v|p dx dt ≤ c(p− 2)|ε|p−1T |Q|,

when 2 ≤ p ≤ 3 and

(3.8)

∫ T

0

∫

Q

|∇w −∇v|p dx dt ≤ cε2
(

∫ T

0

∫

Q

|∇v|p dx dt+ T |Q|
)

,

when p ≥ 3. Here we also used (3.6). In particular, this implies that (3.5) holds.
Thus it is enough to prove (3.4).

Now we proceed to the actual proof. For simplicity we assume that the obstacle
ψ ≥ 0 and that ψ vanishes on the parabolic boundary ΓT . (We will only need this
case.) The difficulty is that vt is forbidden. However, wt is available. Our aim is
to take full advantage of the fact that w and v are solutions of the corresponding
equations in the open sets where the obstacle does not hinder.

We replace v with the supersolution

vα = v +
α

T − t
,

where α > 0. Then vα → ∞ as t → T and vα ≥ ψ + α/T . Since vα is continuous,
we conclude that v∗α → vα uniformly in QT−δ, δ > 0, as σ → 0; recall Lemma 2.9.
It follows that

v∗α > ψ +
α

2T

in QT , when σ is small enough (depending on α). The set {w > v∗α} is open and
it cannot touch the Euclidean boundary of QT . The set {w > v∗α} is contained in
{w > ψ+α/(2T )}, that is, the obstacle does not hinder w. Thus w is a solution of
(1.5) in {w > v∗α}.

We choose the test function ϕ = w − v∗α and subtract the regularized equation

∫∫

{w>v∗α}

(

(|∇vα|
p−2∇vα)∗ · ∇ϕ− v∗α

∂ϕ

∂t

)

dx dt ≥ 0

11



(see (2.11)) from the equation for w. We obtain
∫∫

{w>v∗α}

(

(|∇w|2 + ε2)(p−2)/2∇w − (|∇vα|
p−2∇vα)∗

)

· ∇(w − v∗α) dx dt

≤

∫∫

{w>v∗α}

(w − v∗α)
∂

∂t
(w − v∗α) dx dt

=
1

2

∫∫

{w>v∗α}

∂

∂t
(w − v∗α)2 dx dt = 0.

This estimate is free of derivatives with respect to time. Moreover, ∇vα = ∇v and
∇v∗α = ∇v∗. First, we let σ → 0 and then α→ 0. We arrive at

(3.9)

∫∫

{w≥v}

(

(|∇w|2 + ε2)(p−2)/2∇w − |∇v|p−2∇v
)

· ∇(w − v) dx dt ≤ 0.

Strictly speaking the limit set of integration contains the set {w > v} and is itself
contained in {w ≥ v}, but, because the integrand vanishes a.e. in {w = v}, this
does not matter. This is the desired estimate in {w ≥ v}.

To obtain the same estimate for {w ≤ v}, we reverse the roles of the functions in
the previous construction. However, the situation is not completely symmetric. It
is important that no points outside {v > ψ} are evoked in the averaging procedure.

Since v is a solution of (1.1) in {v > ψ} we have

(3.10)

∫∫

{v>ψ}

(

(|∇v|p−2∇v) ∗ ρσ · ∇ϕ− (v ∗ ρσ)
∂ϕ

∂t

)

dx dt = 0

when ϕ ∈ C∞
0 ({v > ψ}) and σ is smaller than a number depending on the test

function ϕ, see (2.15).
This time we consider the supersolution

wα = w +
α

T − t
,

where α > 0. The set {v∗ρσ > wα} is contained in {v > ψ+α/(2T )} for all σ small
enough (depending on α). The latter set has a positive distance to the coincidence
set {v = ψ}. For σ small enough the function

ϕ = v ∗ ρσ − wα

will, consequently, do as test function in (3.10), when we integrate only over the
set {ϕ > 0}. It follows that

∫∫

{v∗ρσ>wα}

(

(|∇v|p−2∇v) ∗ ρσ

− (|∇wα|
2 + ε2)(p−2)/2∇wα

)

· ∇(v ∗ ρσ − wα
)

dx dt

≤

∫∫

{v∗ρσ>wα}

(v ∗ ρσ − wα)
∂

∂t
(v ∗ ρσ − wα) dx dt

=
1

2

∫∫

{v∗ρσ>wα}

∂

∂t
(v ∗ ρσ − wα)2 dx dt = 0.

The time derivative has disappeared, so that we can let σ → 0 and then α → 0.
Again we arrive at (3.9), though integrated over the set {v ≥ w} this time. Hence
we have obtained the desired estimate.

12



4. The p-superparabolic functions and their approximants

The supersolutions of the p-parabolic equation do not form a good closed class of
functions. The Barenblatt solution defined in (1.3) is not a supersolution of (1.1) in
Rn+1. However, the Barenblatt solution is a p-superparabolic function according
to the following definition.

4.1. Definition. A function v : Ω → (−∞,∞] is called p-superparabolic if

(1) v is lower semicontinuous,
(2) v is finite in a dense subset of Ω,
(3) v satisfies the following comparison principle on each subdomain Dt1,t2 =

D × (t1, t2) with Dt1,t2 ⊂ Ω: if h is p-parabolic in Dt1,t2 and continuous

in Dt1,t2 and if h ≤ v on the parabolic boundary of Dt1,t2 , then h ≤ v in
Dt1,t2 .

It follows immediately from the definition that if u and v are p-superparabolic
functions so are their pointwise minimum min(u, v) and u + α, α ∈ R. Observe,
that u+ v and βu, β ∈ R, are not superparabolic in general. However, with some
effort we can see that if v is p-superparabolic in QT , then

v +
α

T − t
,

with α > 0, is a p-superparabolic function in QT . This is well in accordance with
the corresponding properties of supersolutions.

Notice that a p-superparabolic function is defined at every point in its domain.
No differentiability is presupposed in the definition. The only tie to the differential
equation is through the comparison principle. It was established in [KL] that (3)
can be replaced by the following “elliptic” comparison principle.

4.2. Lemma. Let Ξ be any domain with compact closure in Ω. If h is p-parabolic
in Ξ and continuous in Ξ and if h ≤ v on the Euclidean boundary ∂Ξ, then h ≤ v
in the whole Ξ.

Observe that there is no reference to the parabolic boundary. We will only need
the fact that the condition (3) in Definition 4.1 implies Lemma 4.2. This is a rather
immediate consequence of the definition. The opposite implication is deeper.

Of course, there is a relation between supersolutions and p-superparabolic func-
tions. Roughly speaking, the supersolutions are p-superparabolic, provided the
issue about lower semicontinuity is properly handled. We refer to [KL, Lemma
4.2]. In particular, a continuous supersolution is p-superparabolic.

The Barenblatt solution clearly shows that the class of p-superparabolic func-
tions contains more than supersolutions. Nevertheless, it turns out that a p-
superparabolic function can be approximated pointwise with an increasing sequence
of supersolutions, constructed through successive obstacle problems. Let us describe
this procedure.

4.3. Lemma. Suppose that v is a p-superparabolic function in Ω and let Qt1,t2 ⊂
Ω. Then there is a sequence of supersolutions

vk ∈ C(Qt1,t2) ∩ L
p(t1, t2;W

1,p(Q)), k = 1, 2, . . . ,
13



of (1.1) such that v1 ≤ v2 ≤ · · · ≤ v and vk → v pointwise in Qt1,t2 as k → ∞.

If, in addition, v is locally bounded in Ω, then the Sobolev derivative ∇v exists and

∇v ∈ Lploc(Ω).

Proof. The lower semicontinuity implies that there is a sequence of functions ψk ∈
C∞(Ω), k = 1, 2, . . . , such that

ψ1 ≤ ψ2 ≤ . . . and lim
k→∞

ψk = v

at every point of Ω. Using the functions ψk as obstacles we construct supersolutions
of (1.1) that approximate v from below. This has to be done locally, say in a given
box Qt1,t2 with Qt1,t2 ⊂ Ω. To simplify the notation we consider QT , assuming that

QT ⊂ Ω. Let vk ∈ C(QT ) ∩ Lp(0, T ;W 1,p(Q)), k = 1, 2, . . . , denote the solution of
the obstacle problem in QT with the obstacle ψk, see Lemma 3.1 with ε = 0. Then
vk ≥ ψk and vk = ψk on ΓT .

We claim that

v1 ≤ v2 ≤ . . . and vk ≤ v, k = 1, 2, . . . ,

in QT . Consider the set {vk > ψk}. In this set vk is a p-parabolic function with
boundary values ψk, except possibly when t = T . The function

v +
α

T − t
,

with α > 0, is a p-superparabolic function in QT . This function has larger boundary
values than vk on the boundary of {vk > ψk}. By the “elliptic” comparison principle
(Lemma 4.2) it can be shown that

v +
α

T − t
≥ vk

in {vk > ψk}. Letting α→ 0 we obtain v ≥ vk in {vk > ψk}. But certainly v ≥ vk
in {vk = ψk}. Thus v ≥ vk and consequently

v = lim
k→∞

ψk ≤ lim
k→∞

vk ≤ v

in QT . Notice how the comparison principle was used. The fact that vk+1 ≥ vk
can be proved in the same manner.

So far we have constructed an increasing sequence of continuous supersolutions
of the p-parabolic equation converging pointwise to the given p-superparabolic func-
tion. Assume, in addition, that there is L <∞ such that

0 ≤ v(x, t) ≤ L

for every (x, t) ∈ QT . Then also 0 ≤ vk ≤ L, k = 1, 2, . . . , and Lemma 2.16, applied
to the subsolution L− vk, provides us with the bound

∫ T

0

∫

Q

|∇vk|
pζp dx dt ≤ cL2

∫ T

0

∫

Q

∣

∣

∣

∣

∂(ζp)

∂t

∣

∣

∣

∣

dx dt+ cLp
∫ T

0

∫

Q

|∇ζ|p dx dt

14



where ζ, 0 ≤ ζ ≤ 1, is a test function vanishing on the parabolic boundary ΓT .
By weak compactness we can, via weakly convergent subsequences of ζ∇vk, con-
clude that ∇v exists in Sobolev’s sense and that ∇v ∈ Lploc(QT ). The weak lower
semicontinuity implies

∫ T

0

∫

Q

|∇v|pζp dx dt ≤ lim inf
k→∞

∫ T

0

∫

Q

|∇vk|
pζp dx dt

≤ cL2

∫ T

0

∫

Q

∣

∣

∣

∣

∂(ζp)

∂t

∣

∣

∣

∣

dx dt+ cLp
∫ T

0

∫

Q

|∇ζ|p dx dt.

As a matter of fact we have established that ∇v ∈ Lploc(QT ) provided v is locally
bounded in Ω.

4.4. Remark. As a supersolution each vk satisfies the equation

(4.5)

∫ T

0

∫

Q

(

|∇vk|
p−2∇vk · ∇ϕ− vk

∂ϕ

∂t

)

dx dt ≥ 0.

The passage to the limit under the integral sign as k → ∞ requires much more
information than the so far established weak convergence, except in the case p = 2.
A comment is appropriate now. For p > 2 the inequality

22−p|∇(v∗ − v∗k)|
p ≤ (|∇v∗|p−2∇v∗ − |∇v∗k|

p−2∇v∗k) · (∇v
∗ −∇v∗k)

is still available, but the averaging procedure leads to the quantity (|∇vk|
p−2∇vk)

∗

instead of |∇v∗k|
p−2∇v∗k. All attempts to adjust the situation cause, as it were,

subtle difficulties disturbing the double limit procedure as k → ∞ and σ → 0.

Let us resume the study of the approximants

v1 ≤ v2 ≤ . . . with v = lim
k→∞

vk.

obtained from the obstacle problem in QT with obstacles ψk as in the proof of
Lemma 4.3. We assume that

(4.6) 0 ≤ ψk ≤ L, k = 1, 2, . . .

Our aim is to prove that, under this assumption, ∇vk → ∇v locally in Lp(QT ).
To achieve this we utilize the corresponding property for the regularized equation
(1.5), which is easier to handle. Let ε 6= 0 be fixed and let wk denote the solution
to the obstacle problem in QT with the obstacle ψk. In the notation of Lemma 3.1,
we have wk ∈ Fψk

. Recall that wk ≥ ψk in QT and that wk = ψk on ΓT . Since

ε 6= 0, we also have wk ∈ C(QT ) ∩ C∞(QT ). It follows that

w1 ≤ w2 ≤ . . . and w = lim
k→∞

wk

as in the case ε = 0; see the proof of Lemma 4.3. The dependence of ε is suppressed
in the notation for wk and w. Here w is, to begin with, merely a lower semicon-
tinuous function in Lp(0, T ;W 1,p(Q)). Recall that the obstacles ψk were induced
by v. Therefore w ≥ v. We also have 0 ≤ w ≤ L. We claim that w is, in fact,
a supersolution of (1.5). The proof is rather involved, although we deal with the
regularized problem with a fixed ε 6= 0. The complication is visible in the averaging
procedure.
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4.7. Lemma. Under the assumption (4.6) for the obstacles,

∇wk → ∇w in Lploc(QT ).

Moreover, w is a supersolution to (1.5) in QT .

Proof. Let ζ ∈ C∞
0 (QT ), 0 ≤ ζ ≤ 1, where it is essential that the support of ζ does

not touch the Euclidean boundary ∂QT . Write θ = ζp. The uniform bound for
u = L− wk provided by Lemma 2.16 allows us to conclude that

∫ T

0

∫

Q

|∇wk|
pθ dx dt ≤ c

where c = c(n, p, L, θ, ε). Observe that the bound is independent of k. By weak
compactness it follows that ∇w exists and that ∇w ∈ Lploc(QT ). We can extract a
subsequence for which ∇wkj

converges to ∇w weakly in Lploc(QT ). (Actually, this
holds for the original sequence.)

Let σ > 0 and use the averaged function w∗ introduced in (2.7). Recall that

(4.8)
∂w∗

∂t
=
w − w∗

σ
.

Using the test function (w∗ − wk)θ in the equation for wk, we obtain

(4.9)

∫ T

0

∫

Q

(

(|∇w∗|2 + ε2)(p−2)/2∇w∗ − (|∇w∗
k|

2 + ε2)(p−2)/2∇w∗
k

)

· ∇
(

(w∗ − wk)θ
)

dx dt

≤

∫ T

0

∫

Q

(|∇w∗|2 + ε2)(p−2)/2∇w∗ · ∇
(

(w∗ − wk)θ
)

dx dt

−

∫ T

0

∫

Q

wk
∂

∂t

(

(w∗ − wk)θ
)

dx dt.

We aim at first letting k → ∞, which causes a difficulty in the last term, namely,
the appearance of the time derivative wt, which has to be avoided.

Let us begin with the crucial last term

−

∫ T

0

∫

Q

wk
∂

∂t

(

(w∗ − wk)θ
)

dx dt

= −

∫ T

0

∫

Q

wk(w
∗ − wk)

∂θ

∂t
dx dt−

∫ T

0

∫

Q

θwk
∂

∂t
(w∗ − wk) dx dt.

Using

∫ T

0

∫

Q

θ(w∗ − wk)
∂

∂t
(w∗ − wk) dx dt =

1

2

∫ T

0

∫

Q

θ
∂

∂t
(w∗ − wk)

2 dx dt

= −
1

2

∫ T

0

∫

Q

(w∗ − wk)
2 ∂θ

∂t
dx dt
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we can write the last term in (4.9) as

−

∫ T

0

∫

Q

wk
∂

∂t

(

(w∗ − wk)θ
)

dx dt = −

∫ T

0

∫

Q

θw∗ ∂

∂t
(w∗ − wk) dx dt

−
1

2

∫ T

0

∫

Q

(w∗ − wk)(w
∗ + wk)

∂θ

∂t
dx dt.

One more integration by parts exposes the factor w∗ − wk and we have

(4.10)

−

∫ T

0

∫

Q

wk
∂

∂t

(

(w∗ − wk)θ
)

dx dt =

∫ T

0

∫

Q

θ(w∗ − wk)
∂w∗

∂t
dx dt

+
1

2

∫ T

0

∫

Q

(w∗ − wk)
2 ∂θ

∂t
dx dt.

Needless to say, the calculations leading to this formula can be arranged in various
ways. In view of (4.8) we have the important estimate

lim
k→∞

∫ T

0

∫

Q

θ(w∗ − wk)
∂w∗

∂t
dx dt

=

∫ T

0

∫

Q

θ(w∗ − w)(w − w∗)

σ
dx dt ≤ 0

and from (4.10) we finally obtain

(4.11)

lim sup
k→∞

(

−

∫ T

0

∫

Q

wk
∂

∂t

(

(w∗ − wk)θ
)

dx dt
)

≤
1

2

∫ T

0

∫

Q

(w∗ − w)2
∂θ

∂t
dx dt

for the last term in (4.9).
Rearranging (4.9) we have

(4.12)

22−p

∫ T

0

∫

Q

θ|∇w∗ −∇wk|
p dx dt

≤

∫ T

0

∫

Q

θ
(

(|∇w∗|2 + ε2)(p−2)/2∇w∗ − (|∇w∗
k|

2 + ε2)(p−2)/2∇w∗
k

)

· ∇(w∗ − wk) dx dt

≤

∫ T

0

∫

Q

(w∗ − wk)(|∇w
∗
k|

2 + ε2)(p−2)/2∇w∗
k · ∇θ dx dt

+

∫ T

0

∫

Q

θ(|∇w∗|2 + ε2)(p−2)/2∇w∗ · ∇(w∗ − wk) dx dt

+

∫ T

0

∫

Q

−wk
∂

∂t

(

(w∗ − wk)θ
)

dx dt

=Ak +Bk + Ck,
17



where the algebraic inequality

22−p|a− b|p ≤
(

(|a|2 + ε2)(p−2)/2a− (|b|2 + ε2)(p−2)/2b
)

· (a− b),

a, b ∈ Rn, p ≥ 2, was used. We estimate the last three integrals in (4.12). Recall
that θ = ζp. Hölder’s inequality and (2.17), with the subsolution L− wk, give

|Ak| ≤p2
(p−2)/2

(

∫ T

0

∫

Q

|w∗ − wk|
p|∇ζ|p dx dt

)1/p

·
(

∫ T

0

∫

Q

(

2|∇wk|
p + |ε|p−2

)

ζp dx dt
)1/q

≤c
(

∫ T

0

∫

Q

|w∗ − wk|
p|∇ζ|p dx dt

)1/p

where q = p/(p− 1) and c = c(n, p, L, ζ, ε) is independent of k and σ. Thus

(4.13) lim sup
k→∞

|Ak| ≤ c
(

∫ T

0

∫

Q

|w∗ − w|p|∇ζ|p dx dt
)1/p

.

In the second integral Bk we may proceed to the limit in view of the weak
convergence and we obtain

(4.14) lim
k→∞

Bk =

∫ T

0

∫

Q

ζp(|∇w∗|2 + ε2)(p−2)/2∇w∗ · ∇(w∗ − w) dx dt.

Recall that Ck was handled in (4.11).
Each of the bounds (4.11), (4.13), and (4.14) approaches zero as σ → 0. There-

fore we can select σ > 0 so small that

lim sup
k→∞

∫ T

0

∫

Q

θ|∇w∗ −∇wk|
p dx dt

is as small as we please. Then also

lim sup
k→∞

‖θ(∇w −∇wk)‖p,QT

≤ ‖θ(∇w∗ −∇w)‖p,QT
+ lim sup

k→∞
‖θ(∇w∗ −∇wk)‖p,QT

can be made smaller than any preassigned quantity. This proves that ∇wk → ∇w
locally in Lp(QT ). Now we may pass to the limit under the integral in

∫ T

0

∫

Q

(

(|∇wk|
2 + ε2)(p−2)/2∇wk · ∇ϕ− wk

∂ϕ

∂t

)

dx dt ≥ 0

as k → ∞. The result is the required equation for ∇w.

The main objective of this section is to give a proof of Theorem 1.4 stating that
bounded p-superparabolic functions are, in fact, supersolutions. We have already
established that ∇v ∈ Lploc(Ω) (see Lemma 4.3). The proof of Theorem 1.4 follows
from the approximation result below.
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4.15. Lemma. Suppose that v is a locally bounded p-superparabolic function in

Ω. For every Qt1,t2 with Qt1,t2 ⊂ Ω, there exists a sequence of supersolutions vk of

(1.1), v1 ≤ v2 ≤ · · · ≤ v, in Qt1,t2 such that vk → v at each point of Qt1,t2 and

∇vk → ∇v in Lp(Qt1,t2)

as k → ∞.

Proof. We may assume that QT ⊂ Ω, and that Qt1,t2 ⊂ QT We can also assume

that 1 ≤ v ≤ L in QT by adding a constant to v. Let θ ∈ C∞
0 (QT ), 0 ≤ θ ≤ 1

and θ = 1 on Qt1,t2 . Again, consider the obstacles ψk and the two sequences of
supersolutions

v1 ≤ v2 ≤ . . . , v = lim
k→∞

vk

and
w1 ≤ w2 ≤ . . . , w = lim

k→∞
wk

in QT . These are the same functions as before. Recall that vk are solutions to the
obstacle problem related to the true p-parabolic equation (1.1) whereas wk are the
corresponding solutions related to the regularized equation (1.5), all with the same
ε.

We want to show that

(4.16) lim
k→∞

∫ T

0

∫

Q

θ|∇vk −∇v|p dx dt = 0.

To this end, we use Minkowski’s inequality and obtain

(4.17)
‖θ(∇v −∇vk)‖p,QT

≤ ‖θ(∇v −∇w)‖p,QT
+ ‖θ(∇w −∇wk)‖p,QT

+ ‖θ(wk −∇vk)‖p,QT
.

There is a technical difference between the cases 2 ≤ p ≤ 3 and p > 3.
First we study the case 2 ≤ p ≤ 3. This is simple because (3.7) implies that

∫ T

0

∫

Q

θ|∇wk −∇vk|
p dx dt ≤

∫ T

0

∫

Q

|∇wk −∇vk|
p dx dt

≤ c|ε|p−1T |Q|

for the last term in (4.17). By the weak lower semicontinuity of the integral also
the first term is bounded by c|ε|p−1T |Q|. Finally, we use Lemma 4.7 to conclude
that for the intermediate term

lim
k→∞

‖θ(∇w −∇wk)‖p,QT
= 0.

Therefore
lim sup
k→∞

‖θ(∇v −∇vk)‖p,QT
≤ c|ε|p−1T |Q|

for every ε 6= 0. The left-hand side is independent of ε. The desired result (4.16)
follows in the case 2 ≤ p ≤ 3.
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Let us then consider the case p > 3. Now we have to use (3.8) instead of (3.7).
Thus there is an extra difficulty with the term ‖∇vk‖p,QT

in the inequality

(4.18)

∫ T

0

∫

Q

θ|∇wk −∇vk|
p dx dt ≤ cε2

(

∫ T

0

∫

Q

|∇vk|
p dx dt+ T |Q|

)

since a bound independent of the index k is called for. In order to avoid the conflict
between the global nature of Lemma 3.3 and the local result in Lemma 2.16, we
make an adjustment.

Notice that we need vk → v only in Qt1,t2 , not in the whole of QT . We select

the obstacles ψk so that ψk = 0 in QT \ Qt1,t2 , and ψk → v only in Qt1,t2 . Since
v ≥ 1, we may assume that ψk > 0 in Qt1,t2 . With these arrangements it is clear

that the obstacle cannot hinder in the outer region QT \ Qt1,t2 . Therefore vk is
even p-parabolic there. Thus the estimate (2.21) is available and together with
(2.17) this exhibits a bound of the form ε2c(L,QT , Qt1,t2), when |ε| ≤ 1, for the
quantities in (4.18). Now one only has to replace c|ε|p−1T |Q| in the previous case
by ε2c(L,QT , Qt1,t2). This concludes the proof.

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let Qt1,t2 ⊂ Ω. By Lemma 4.16 we have

∫ t2

t1

∫

Q

(

|∇v|p−2∇v · ∇ϕ− v
∂ϕ

∂t

)

dx dt

= lim
k→∞

∫ t2

t1

∫

Q

(

|∇vk|
p−2∇vk · ∇ϕ− vk

∂ϕ

∂t

)

dx dt ≥ 0

whenever ϕ ∈ C∞
0 (Qt1,t2) with ϕ ≥ 0.

5. Pointwise behaviour

For a lower semicontinuous function v in Ω we have

(5.1)

v(x, t) ≤ lim inf
(y,τ)→(x,t)

v(y, τ)

≤ ess lim inf
(y,τ)→(x,t)

v(y, τ) ≤ ess lim inf
(y,τ)→(x,t)

τ<t

v(y, τ),

when (x, t) ∈ Ω. We show that for a p-superparabolic function also the reverse
inequalities hold.

5.2. Theorem. Suppose that v is a p-superparabolic function Ω. Then

(5.3) v(x, t) = ess lim inf
(y,τ)→(x,t)

τ<t

v(y, τ)

holds at every point (x, t) ∈ Ω.

The proof is based on the following lemma.
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5.4. Lemma. Suppose that v is a p-superparabolic function Ω. Assume that

QT ⊂ Ω and that

(1) v ≤ 0 at every point in QT and

(2) v = 0 at almost every point in QT .

Then v = 0 at every point in Q× (0, T ].

Proof. Let ψk ∈ C∞(Ω) be such that

ψ1 ≤ ψ2 ≤ . . . and lim
k→∞

ψk = v

at every point in Ω. Let vk be the solution of the obstacle problem with the obstacle
ψk as in the proof of Lemma 4.3. Then

v1 ≤ v2 ≤ . . . and ψk ≤ vk ≤ v

at every point in QT . To be on the safe side concerning the final result also at the
instant t = T , we can solve the obstacle problem in a slightly larger domain, say
QT+δ with a small δ > 0.

Select an arbitrary Q′ ⊂⊂ Q and choose t′, 0 < t′ < T . Let hk denote the unique
p-parabolic function in Q′

t′,T+δ with the values hk = vk on the parabolic boundary

of Q′
t′,T+δ. At every point in Q′

t′,T+δ we have

h1 ≤ h2 ≤ . . . and hk ≤ vk ≤ v.

By Harnack’s convergence theorem (see [KL, Remark 3.2]), the limit function

h = lim
k→∞

hk

is p-parabolic in Q′
t′,T+δ. Then the function

w =

{

h in Q′
t′,T+δ,

v otherwise,

is, indeed, p-superparabolic in Ω. For the verification of the comparison principle
the fact that h ≤ v is essential, see [KL, p. 671].

We know that w ≤ v ≤ 0 everywhere in QT and, in particular, that h ≤ v ≤ 0
everywhere in Q′

t′,T+δ. We claim that h = 0 in Q′
t′,T . Then we could conclude that

v = 0 everywhere in Q′× (t′, T ). Moreover, h(x, T ) ≤ v(x, T ) for every x ∈ Q′ (this
holds up to the instant t = T + δ) and since h is continuous, we could also conclude
that v(x, T ) ≥ 0, when x ∈ Q′. By lower semicontinuity the alternative v(x, T ) > 0
is out of the question. Therefore it is sufficient to prove the claim.

First we observe that if h itself were an admissible test function in the equation
for h, we could easily conclude that ∇h = 0 almost everywhere. The averaged
equation for h reads

∫ T

t′

∫

Q′

(

(∇h|p−2∇h)∗ · ∇ϕ− h∗
∂ϕ

∂t

)

dx dt+

∫

Q′

h∗(x, T )ϕ(x, T ) dx

≥

∫

Q′

h(x, t′)

(

1

σ

∫ T

t′
ϕ(x, s)e−s/σ ds

)

dx
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where we have taken into account that the diffusion starts at the instance t′ by
regarding ϕ(x, t) as zero when 0 ≤ t ≤ t′. We choose the test function

ϕk = (hk − vk)
∗ = h∗k − v∗k

and regard hk− vk as zero when 0 ≤ t ≤ t′ in (2.7). Inserting the test function and
letting k → ∞ we obtain

(5.5)

∫ T

t′

∫

Q′

(

(∇h|p−2∇h)∗ · ∇ϕ− h∗
∂h∗

∂t

)

dx dt+

∫

Q′

h∗(x, T )2 dx

≥

∫

Q′

h∗(x, t′)

(

1

σ

∫ T

t′
h∗(x, s)e−s/σ ds

)

dx

in view of Lemma 2.9, since hk − vk → h in Lp(Q′
t′,T ) as k → ∞. We have

−

∫ T

t′

∫

Q′

h∗
∂h∗

∂t
dx dt =

1

2

∫

Q′

h∗(x, t′)2 dx−
1

2

∫

Q′

h∗(x, T )2 dx.

Now we let σ → 0. It follows that

(5.6)
1

2

∫

Q′

(

h(x, T )2 + h(x, t′)2
)

dx+

∫ T

t′

∫

Q′

|∇h|p dx dt = 0

because the right-hand side of (5.5) converges to zero as σ → 0. This can be easily
seen in view of the fact t′ > 0 (the excluded case t′ = 0 produces an extra term
which we now avoid).

From (5.6) it follows immediately that ∇h = 0 almost everywhere in Q′
t′,T .

Therefore there is a constant c such that

(5.7)

∫ T

t′
h(x, t) dt = c

when x ∈ Q′.
We have to show that the constant c is zero. To this end, notice that ∇w ∈

Lploc(Ω) if v is locally bounded in Ω. We may assume that, to begin with, we
have the function min(v, 1), which is locally bounded. For the Sobolev derivative
we can conclude that ∇w = 0 almost everywhere in QT (because ∇v = 0 almost
everywhere by assumption and ∇h = 0). Then also

∫ T

t′
w(x, t) dx = c

for almost every x ∈ Q. In particular

∫ T

t′
v(x, t) dx = c

for almost every x ∈ Q \Q′. The assumption v = 0 almost everywhere implies that
c = 0. Because h ≤ 0 and because h is continuous, the integral (5.7) cannot vanish,
unless h = 0 everywhere. This concludes the proof of the lemma.
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5.8. Lemma. Suppose that v is p-superparabolic in Ω and that QT ⊂⊂ Ω. If

v(x, t) > λ for almost every (x, t) ∈ QT , then v(x, t) ≥ λ for every (x, t) ∈ Q×(0, T ].

Proof. The auxiliary function

u(x, t) = min(v(x, t), λ) − λ,

in place of v, satisfies the assumptions in Lemma 5.4. Hence u = 0 everywhere in
Q× (0, T ]. This is equivalent to the assertion.

Proof of Theorem 5.2. Denote

λ = ess lim inf
(y,τ)→(x,t)

τ<t

v(y, τ)

in (5.3). According to (5.1) it is sufficient to prove that λ ≤ v(x0, t0). Thus we
can assume that λ > −∞. First we consider the case λ < ∞. Given ε > 0, we
can find a δ > 0 and a parallelepiped Q with the center x0 such that the closure of
Q× (t0 − δ, t0) is comprised in Ω and

v(x, t) > λ− ε

for almost every (x, t) ∈ Q× (t0 − δ, t0). According to Lemma 5.4,

v(x, t) ≥ λ− ε

for every (x, t) ∈ Q× (t0 − δ, t0]. In particular, we can take (x, t) = (x0, t0). Hence
v(x0, t0) ≥ λ− ε. Since ε > 0 was arbitrary, we have established that λ ≤ v(x0, t0),
as desired.

The case λ = ∞ is easily reached via the functions vk = min(v, k), k = 1, 2, . . .
Indeed,

v(x0, t0) ≥ vk(x0, t0) ≥ min(∞, k) = k,

k = 1, 2, . . . , in view of the previous case. This concludes the proof of Theorem 5.2.
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