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Abstract. In this paper we study problems related to parabolic partial differential equations in metric
measure spaces equipped with a doubling measure and supporting a Poincaré inequality. We give a
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1. Introduction

The purpose of this paper is to study problems related to the heat equation

∂u

∂t
− ∆u = 0

in metric measure spaces equipped with a doubling measure and supporting a Poincaré inequality. We
consider a notion of parabolic De Giorgi classes and parabolic quasiminimizers with quadratic structure
conditions and study local regularity properties of functions belonging to these classes. More precisely,
we show that functions in parabolic De Giorgi classes, satisfy a scale and location invariant Harnack
inequality, see Theorem 5.7. Some consequences of the parabolic Harnack inequality are the local Hölder
continuity and the strong maximum principle for the parabolic De Giorgi classes. Our assumptions on
the metric space are rather standard to allow a reasonable first-order calculus; the reader should consult,
e.g., Björn and Björn [3] and Heinonen [20], and the references therein.

Harnack type inequalities play an important role in the regularity theory of solutions to both elliptic
and parabolic partial differential equations as it implies local Hölder continuity for the solutions. A
parabolic Harnack inequality is logically stronger than an elliptic one since the reproduction at each
time of the same harmonic function is a solution of the heat equation. There is, however, a well-known
fundamental difference between elliptic and parabolic Harnack estimates. Roughly speaking, in the elliptic
case the information of a positive solution on a ball is controlled by the infimum on the same ball. In
the parabolic case a delay in time is needed: the information of a positive solution at a point and at
instant t0 is controlled by a ball centered at the same point but later time t0 + t1, where t1 depends on
the parabolic equation.

Elliptic quasiminimizers were introduced by Giaquinta–Giusti [14] and [15] as a tool for a unified
treatment of variational integrals, elliptic equations and systems, and quasiregular mappings on Rn. Let
Ω ⊂ Rn be a nonempty open set. A function u ∈ W 1,p

loc (Ω) is a Q-quasiminimizer, Q ≥ 1, related to the
power p in Ω if

∫

supp(φ)

|∇u|p dx ≤ Q

∫

supp(φ)

|∇(u − φ)|p dx

for all φ ∈ W 1,p
0 (Ω). Giaquinta and Giusti realized that De Giorgi’s method [7] could be extended

to quasiminimizers, obtaining, in particular, local Hölder continuity. DiBenedetto and Trudinger [11]
1
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proved the Harnack inequality for quasiminimizers. These results were extended to metric spaces by
Kinnunen and Shanmugalingam [24]. Elliptic quasiminimizers enable the study of elliptic problems, such
as the p-Laplace equation and p-harmonic functions, in metric spaces under the doubling property of the
measure and a Poincaré inequality. Compared with the theory of p-harmonic functions we have no partial
differential equation, only the variational approach is available. There is also no comparison principle nor
uniqueness for the Dirichlet problem for quasiminimizers. See, e.g., J. Björn [4], Kinnunen–Martio [23],
Martio–Sbordone [28] and the references in these papers for more on elliptic quasiminimizers.

Following Giaquinta–Giusti, Wieser [36] generalized the notion of quasiminimizers to the parabolic

setting in Euclidean spaces. A function u : Ω × (0, T ) → R, u ∈ L2
loc(0, T ;W 1,2

loc (Ω)), is a parabolic
Q-quasiminimizer, Q ≥ 1, for the heat equation (thus related to the power 2) if

−

∫∫

supp(φ)

u
∂φ

∂t
dx dt +

∫∫

supp(φ)

|∇u|2

2
dx dt ≤ Q

∫∫

supp(φ)

|∇(u − φ)|2

2
dx dt

for every smooth compactly supported function φ in Ω×(0, T ). Parabolic quasiminimizers have also been
studied by Zhou [37, 38], Gianazza–Vespri [13], Marchi [27], and Wang [35]. The literature for parabolic
quasiminimizers is very small compared to the elliptic case. One of the goals of this work is to introduce
parabolic quasiminimizers in metric metric spaces. This opens up a possibility to develop a systematic
theory for parabolic problems in this generality.

The present paper is using the ideas of DiBenedetto [9] and is based on the lecture notes [12] of the
course held by V. Vespri in Lecce. We would like to point out that the definition for the parabolic De
Giorgi classes given by Gianazza and Vespri [13] is sligthly different from ours, and it seems that our
class is larger. Naturally, our abstract setting causes new difficulties. For example, Lemma 2.5 plays a
crucial role in the proof of Harnack’s inequality. In Euclidean spaces this abstract lemma dates back to
DiBenedetto–Gianazza-Vespri [10], but as the proof uses the linear sructure of the ambient space a new
proof in the metric setting was needed.

Motivation for this work is to consider the Saloff-Coste–Grigor’yan theorem in metric measure spaces.
Grigor’yan [17] and Saloff-Coste [29] observed independently that the doubling property for the measure
and the Poincaré inequality are sufficient and necessary conditions for a scale invariant parabolic Harnack
inequality for the heat equation on Riemannian manifolds. Sturm [32] generalized this result to the setting
of local Dirichlet spaces; such approach works also in fractal geometries, but always when a Dirichlet form
is defined. For references, see for instance Barlow–Bass–Kumagai [1] and also the forthcoming paper by
Barlow–Grigor’yan–Kumagai [2].

In this paper we introduce a version of parabolic De Giorgi classes that include parabolic quasimini-
mizers and show the sufficiency of the Saloff-Coste–Grigor’yan theorem in metric measure spaces without
using Dirichlet spaces nor the Cheeger differentiable structure [6]. Very recently a similar question has
been studied for degenerate parabolic quasilinear partial differential equations in the subelliptic case
by Caponga–Citti–Rea [5]. Their motivating example is a class of subelliptic operators associated to a
family of Hörmander vector fields and their Carnot–Carathéodory distance. We show that the doubling
property and the Poincaré inequality implies a scale and location invariant parabolic Harnack inequality
for functions belonging to De Giorgi classes, and thus for parabolic quasiminimizers, in general metric
measure spaces. It would be very interesting to know whether also necessity holds in this setting for De
Giorgi classes or for parabolic quasiminimizers; using the results contained in Sturm [33, 34], it is possible
to contruct a regular Dirichlet form, and then a diffusion process, on every locally compact metric spaces,
and this, combined with Sturm [32] can be used to obtain the reverse implication. This is, however, a
very abstract result and it is based on Γ-convergence of non-local Dirichlet forms, with no information
on the limiting Dirichlet form. Such geometric characterization via the doubling property of the measure
and a Poincaré inequality is not available for an elliptic Harnack inequality, see Delmotte [8].
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The paper is organized as follows. In Section 2 we recall the definition of Newton–Sobolev spaces and
prove some preliminary technical results; these results are general results on Sobolev functions and are
of independent interest. In Section 3 we introduce the parabolic De Giorgi classes of order 2 and define
parabolic quasiminimizers. In Section 4 we prove the‘ local boundedness of elements in the De Giorgi
classes, and finally, in Section 5 we prove a Harnack-type inequality.
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2. Preliminaries

In this section we briefly recall the basic definitions and collect some results needed in the sequel. For
a more detailed treatment we refer, for instance, to the forthcoming monograph by A. and J. Björn [3]
and the references therein.

Standing assumptions in this paper are as follows. By the triplet (X, d, µ) we will denote a complete
metric space X , where d is the metric and µ a Borel measure on X . The measure µ is supposed to be
doubling, i.e., there exists a constant c ≥ 1 such that

(1) 0 < µ(B2r(x)) ≤ cµ(Br(x)) < ∞

for every r > 0 and x ∈ X . Here Br(x) = B(x, r) = {y ∈ X : d(y, x) < r} is the open ball centered at x
with radius r > 0. We want to mention in passing that to require the measure of every ball in X to be
positive and finite is anything but restrictive; it does not rule out any interesting measures. The doubling
constant of µ is defined to be cd := inf{c ∈ (1,∞) : (1) holds true}. The doubling condition implies that
for any x ∈ X , we have

(2)
µ(BR(x))

µ(Br(x))
≤ cd

(

R

r

)N

= 2N
(

R

r

)N

,

for all 0 < r ≤ R with N := log2 cd. The exponent N serves as a counterpart of dimension related to the
measure. Moreover, the product measure in the space X × (0, T ), T > 0, is denoted by µ⊗L1, where L1

is the one dimensional Lebesgue measure.
We follow Heinonen and Koskela [21] in introducing upper gradients as follows. A Borel function

g : X → [0,∞] is said to be an upper gradient for an extended real-valued function u on X if for all
rectifiable paths γ : [0, lγ ] → X , we have

(3) |u(γ(0)) − u(γ(lγ))| ≤

∫

γ

g ds.

If (3) holds for p–almost every curve, we say that g is a p–weak upper gradient of u; here by p–almost
every curve we mean that (3) fails only for a curve family Γ with zero p–modulus. Recall, that the
p–modulus of a curve family Γ is defined as

ModpΓ = inf

{
∫

X

̺p dµ : ̺ ≥ 0 is a Borel function,

∫

γ

̺ ≥ 1 for all γ ∈ Γ

}

.

From the definition, it follows immediately that if g is a p-weak upper gradient for u, then g is a p-weak
upper gradient also for u− k, and |k|g for ku, for any k ∈ R.

The p-weak upper gradients were introduced in Koskela–MacManus [25]. They also showed that if
g ∈ Lp(X) is a p–weak upper gradient of u, then, for any ε > 0, one can find an upper gradients gε of u
such that gε > g and ‖gε− g‖Lp(X) < ε. Hence for most practical purposes it is enough to consider upper
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gradients instead of p–weak upper gradients. If u has an upper gradient in Lp(X), then it has a unique
minimal p-weak upper gradient gu ∈ Lp(X) in the sense that for every p-weak upper gradient g ∈ Lp(X)
of u, gu ≤ g a.e., see Corollary 3.7 in Shanmugalingam [31] and Haj lasz [19] for the case p = 1.

Let Ω be an open subset of X and 1 ≤ p < ∞. Following the definition of Shanmugalingam [30], we
define for u ∈ Lp(Ω),

‖u‖pN1,p(Ω) := ‖u‖pLp(Ω) + inf ‖g‖pLp(Ω),

where the infimum is taken over all upper gradients of u. The Newtonian space N1,p(Ω) is the quotient
space

N1,p(Ω) =
{

u ∈ Lp(Ω) : ‖u‖N1,p(Ω) < ∞
}

/∼,

where u ∼ v if and only if ‖u − v‖N1,p(Ω) = 0. If u, v ∈ N1,p(X) and v = u µ-almost everywhere, then

u ∼ v. Moreover, if u ∈ N1,p(X), then u ∼ v if and only if u = v outside a set of zero p-capacity. The
space N1,p(Ω) is a Banach space (see Shanmugalingam [30, Theorem 3.7] and it is easily verified that it

has a lattice structure. A function u belongs to the local Newtonian space N1,p
loc (Ω) if u ∈ N1,p(V ) for all

bounded open sets V with V ⊂ Ω, the latter space being defined by considering V as a metric space with
the metric d and the measure µ restricted to it.

Newtonian spaces share many properties of the classical Sobolev spaces. For example, if u, v ∈ N1,p
loc (Ω),

then gu = gv a.e. in {x ∈ Ω : u(x) = v(x)}, in particular gmin{u,c} = guχ{u6=c} for c ∈ R.
We shall also need a Newtonian space with zero boundary values; for the detailed definition and main

properties we refer to Shanmugalingam [31, Definition 4.1]. For a measurable set E ⊂ X , let

N1,p
0 (E) = {f |E : f ∈ N1,p(X) and f = 0 p–a.e. on X \ E}.

The notion of p–a.e. is based on the notion of sets of null p–capacity; the p–capacity of a set E can be
defined as

CappE = inf
{

‖u‖pN1,p(X) : u ∈ N1,p(X), u ≥ 1 on E
}

.

This space equipped with the norm inherited from N1,p(X) is a Banach space.
We shall assume that X supports a weak (1, 2)-Poincaré inequality, that is there exist constants C2 > 0

and Λ ≥ 1 such that for all balls Bρ ⊂ X , all integrable functions u on X and all upper gradients g of u,

(4)

∫

−
Bρ

|u− uBρ | dµ ≤ C2ρ

(

∫

−
BΛρ

g2 dµ

)1/2

,

where

uB :=

∫

−
B

u dµ :=
1

µ(B)

∫

B

u dµ.

It is noteworthy that by a result of Keith and Zhong [22] if a complete metric space is equipped with a
doubling measure and supports a weak (1, 2)-Poincaré inequality, then there exists ε > 0 such that the
space admits a weak (1, p)-Poincaré inequality for each p > 2 − ε. We shall use this fact in the proof of
Lemma 5.6 which is crucial for the proof of a parabolic Harnack inequality. For more detailed references
of Poincaré inequality, see Heinonen–Koskela [21] and Haj lasz–Koskela [18]. In particular, in the latter it
has been shown that if a weak (1, 2)–Poincaré inequality is assumed, then the Sobolev embedding theorem
holds true and so a weak (q, 2)–Poincaré inequality holds for all q ≤ 2∗, where, for a fixed exponent p we
have defined

(5) p∗ =















pN

N − p
, p < N,

+∞, p ≥ N.
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In addition, we have that if u ∈ N1,2
0 (Bρ), Bρ ⊂ Ω, then the following Sobolev–type inequality is valid

(6)

(

∫

−
Bρ

|u|q dµ

)1/q

≤ c∗ ρ

(

∫

−
Bρ

g2u dµ

)1/2

, 1 ≤ q ≤ 2∗;

for a proof of this fact we refer to Kinnunen–Shanmugalingam [24, Lemma 2.1]. The crucial fact here for

us is that 2∗ > 2. We also point out that since u ∈ N1,2
0 (Bρ), then the balls in the previuous inequality

have the same radius. The fact that a weak (1, p)–Poincaré inequality holds for p > 2 − ε implies also
the following Sobolev–type inequality

(7)

(

∫

−
Bρ

|u|q dµ

)1/q

≤ Cp ρ

(

∫

−
Bρ

gp dµ

)1/p

, 1 ≤ q ≤ p∗,

for any function u with zero boundary values and any g upper gradient of u. The constant c∗ depends
only on cd and on the constants in the weak (1, 2)–Poincaré inequality.

We also point out that requiring a Poincaré inequality implies in particular the existence of “enough”
rectifiable curves; this also implies that the continuous embedding N1,2 → L2, given by the identity map,
is not onto.

We now state and prove some results that are needed in the paper; these results are stated for functions
in N1,2, but can be easily generalized to any N1,p, 1 ≤ p < +∞ if we assumed instead a weak (1, p)–
Poincaré inequality.

Theorem 2.1. Assume u ∈ N1,2
0 (Bρ), 0 < ρ < diam(X)/3 (any ρ > 0 in case X has infinite diameter);

then there exist κ > 1 such that we have
∫

−
Bρ

|u|2κ dµ ≤ c2∗ρ
2

(

∫

−
Bρ

|u|2 dµ

)κ−1
∫

−
BΛρ

g2u dµ.

Proof. Let κ = 2− 2/2∗, where 2∗ is as in the Sobolev inequality (6). By Hölder’s inequality and (6), we
obtain the claim

∫

−
Bρ

|u|2κ dµ ≤

(

∫

−
Bρ

|u|2 dµ

)κ−1(
∫

−
Bρ

|u|2
∗

dµ

)2/2∗

≤ c2∗ρ
2

(

∫

−
Bρ

|u|2 dµ

)κ−1
∫

−
BΛρ

g2u dµ.

�

By integrating the previous inequality in time, we obtain a parabolic Sobolev inequality.

Proposition 2.2. Assume u ∈ C([s1, s2];L2(X)) ∩ L2(s1, s2;N1,2
0 (Bρ)). Then there exists κ > 1 such

that
∫ s2

s1

∫

−
Bρ

|u|2κ dµ dt ≤ c2∗ρ
2

(

sup
t∈(s1,s2)

∫

−
Bρ

|u(x, t)|2 dµ(x)

)κ−1
∫ s2

s1

∫

−
Bρ

g2u dµ dt.

We shall also need the following De Giorgi-type lemma.

Lemma 2.3. Let p > 2 − ε and 1 ≤ q ≤ p∗; moreover let k, l ∈ R with k < l, and u ∈ N1,2(Bρ). Then

(l − k)µ({u ≤ k} ∩Bρ)1/qµ({u > l} ∩Bρ)1/q ≤ 2Cpρµ(Bρ)2/q−1/p

(

∫

{k<u<l}∩BΛρ

gpu dµ

)1/p

.
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Remark 2.4. - The previous result holds in every open set Ω ⊂ X , provided that (6) holds with Ω in
place of Bρ.

Proof. Denote A = {x ∈ Bρ : u(x) ≤ k}; if µ(A) = 0, the result is immediate, otherwise, if µ(A) > 0, we
define

v :=

{

min{u, l} − k, if u > k,
0, if u ≤ k.

We have that
∫

Bρ

|v − vBρ |
q dµ =

∫

Bρ\A

|v − vBρ |
q dµ +

∫

A

|vBρ |
q dµ ≥ |vBρ |

qµ(A)

and consequently

(8) |vBρ |
q ≤

1

µ(A)

∫

Bρ

|v − vBρ |
q dµ.

On the other hand, we see that
∫

Bρ

|v|q dµ =

∫

{u>l}∩Bρ

(l − k)q dµ +

∫

{k<u≤l}∩Bρ

|v|q dµ

≥ (l − k)qµ({u > l} ∩Bρ),

(9)

and using (8), we obtain
(

∫

Bρ

|v|q dµ

)1/q

≤

(

∫

Bρ

|v − vBρ |
q dµ

)1/q

+
(

|vBρ |
qµ(Bρ)

)1/q

≤ 2

(

µ(Bρ)

µ(A)

∫

Bρ

|v − vBρ |
q dµ

)1/q

.

By (7) and the doubling property, we finally conclude that

(l − k)µ({u > l} ∩Bρ)1/q ≤ 2Cpρ
µ(Bρ)2/q−1/p

µ(A)1/q

(

∫

BΛρ

gpv dµ

)1/p

,

which is the required inequality. �

The following measure-theoretic lemma is a generalization of a result obtained in [10] to the metric

space setting. Roughly speaking, the lemma states that if the set where u ∈ N1,1
loc (X) is bounded away

from zero occupies a good piece of the ball B, then there exists at least one point and a neighborhood
about this point such that u remains large in a large portion of the neighborhood. In other words, the
set where u is positive clusters about at least one point of the ball B.

Lemma 2.5. Let x0 ∈ X, ρ0 > ρ > 0 with µ(∂Bρ(x0)) = 0 and α, β > 0. Then, for every λ, δ ∈ (0, 1)

there exists η ∈ (0, 1) such that for every u ∈ N1,2
loc (X) satisfying

∫

Bρ0 (x0)

g2u dµ ≤ β
µ(Bρ0(x0))

ρ20
,

and

µ({u > 1} ∩Bρ(x0)) ≥ αµ(Bρ(x0)),

there exists x∗ ∈ Bρ(x0) with Bηρ(x∗) ⊂ Bρ(x0) and

µ({u > λ} ∩Bηρ(x∗)) > (1 − δ)µ(Bηρ(x∗)).
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Remark 2.6. - The assumption µ(∂Bρ(x0)) = 0 is not restrictive, since this property holds except for
at most countably many radii ρ > 0 and we can choose the appropriate radius ρ as we like. We also
point out that the two previous lemmas can also be stated for functions of bounded variation instead of
Sobolev functions, once a weak (1, 1)–Poincaré inequality is assumed; the proofs given here can be easily
adapted to this case by using the notion of the perimeter.

Proof. For every η < (ρ0 − ρ)/(2Λρ), we may consider a finite family of disjoint balls {Bηρ(xi)}i∈I ,
xi ∈ Bρ(x0) for every i ∈ I, Bηρ(xi) ⊂ Bρ(x0), such that

Bρ(x0) ⊂
⋃

i∈I

B2ηρ(xi) ⊂ Bρ0(x0).

Observe that B2Ληρ(xi) ⊂ Bρ0(x0) for every i ∈ I and by the doubling property, the balls B2Ληρ(xi) have
bounded overlap with bound independent of η. We denote

I+ =

{

i ∈ I : µ({u > 1} ∩B2ηρ(xi)) >
α

2cd
µ(B2ηρ(xi))

}

and

I− =

{

i ∈ I : µ({u > 1} ∩B2ηρ(xi)) ≤
α

2cd
µ(B2ηρ(xi))

}

.

By assumption, we get

αµ(Bρ(x0)) ≤ µ({u > 1} ∩Bρ(x0))

≤
∑

i∈I+

µ({u > 1} ∩B2ηρ(xi)) +
α

2cd

∑

i∈I−

µ(B2ηρ(xi))

≤
∑

i∈I+

µ({u > 1} ∩B2ηρ(xi)) +
α

2

∑

i∈I−

µ(Bηρ(xi))

≤
∑

i∈I+

µ({u > 1} ∩B2ηρ(xi)) +
α

2
µ(B(1+η)ρ(x0))

and consequently

(10)
α

2

(

µ(Bρ(x0)) − µ(B(1+η)ρ(x0) \Bρ(x0))
)

≤
∑

i∈I+

µ({u > 1} ∩B2ηρ(xi)).

Assume by contradiction that

(11) µ({u > λ} ∩Bηρ(xi)) ≤ (1 − δ)µ(Bηρ(xi)),

for every i ∈ I+; this clearly implies that

µ({u ≤ λ} ∩Bηρ(xi))

µ(Bηρ(xi))
≥ δ.

The doubling condition on µ also implies that

µ({u ≤ λ} ∩B2ηρ(xi))

µ(B2ηρ(xi))
≥

δ

cd
.

By Lemma 2.3 with q = 2, k = λ and l = 1, we obtain that

δ

cd
µ({u > 1} ∩B2ηρ(xi)) ≤

µ({u ≤ λ} ∩B2ηρ(xi))

µ(B2ηρ(xi))
µ({u > 1} ∩B2ηρ(xi))

≤
16C2

2η
2ρ2

(1 − λ)2

∫

{λ<u<1}∩B2Ληρ(xi)

g2u dµ.(12)
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Summing up over I+ and using the bounded overlapping property, from (10) we get

α

2
(1 − λ)2

δ

cd

(

µ(Bρ(x0)) − µ(B(1+η)ρ(x0) \Bρ(x0)
)

≤ 16C2
2η

2ρ2
∑

i∈I+

∫

{λ≤u<1}∩B2Ληρ(xi)

g2u dµ

≤ c′η2ρ2
∫

Bρ0 (x0)

g2u dµ

≤ c′βµ(Bρ0(x0))η2,

where the costant c′ is given by 16C2
2 multiplied by the overlapping constant. The conclusion follows by

passing to the limit with η → 0, since the condition µ(∂Bρ(x0)) = 0 implies that the left hand side of the
previous equation tends to

α

2
(1 − λ)2

δ

cd
µ(Bρ(x0)).

�

We conclude with a result which will be needed later; for the proof we refer, for instance, to [16,
Lemma 7.1].

Lemma 2.7. Let {yh}∞h=0 be a sequence of positive real numbers such that

yh+1 ≤ cbhy1+α
h ,

where c > 0, b > 1 and α > 0. Then if y0 ≤ c−1/αb−1/α2

, we have

lim
h→∞

yh = 0.

3. Parabolic De Giorgi classes and quasiminimizers

We consider a variational approach related to the heat equation (see Definition 3.3)

(13)
∂u

∂t
− ∆u = 0 in Ω × (0, T )

and provide a Harnack inequality for a class of functions in a metric measure space generalizing the
known result for positive solutions of (13) in the Euclidean case. The following definition is essentially
based on the approach of DiBenedetto–Gianazza–Vespri [10] and also of Wieser [36]; we refer also to the
book of Lieberman [26] for a more detailed description.

Definition 3.1 (Parabolic De Giorgi classes of order 2). Let Ω be a non-empty open subset of X and
T > 0. A function u : Ω × (0, T ) → R belongs to the class DG+(Ω, T, γ), if

u ∈ C([0, T ];L2
loc(Ω)) ∩ L2

loc(0, T ;N1,2
loc (Ω)),

and for all k ∈ R the following energy estimate holds

sup
t∈(τ,s2)

∫

Br(x0)

(u− k)2+(x, t) dµ +

∫ s2

τ

∫

Br(x0)

g2(u−k)+
dµ ds ≤ α

∫

BR(x0)

(u − k)2+(x, s1) dµ(x)(14)

+ γ

(

1 +
1 − α

θ

)

1

(R− r)2

∫ s2

s1

∫

BR(x0)

(u − k)2+ dµ ds,

where (x0, t0) ∈ Ω × (0, T ), and θ > 0, 0 < r < R, α ∈ [0, 1], s1, s2 ∈ (0, T ), and s1 < s2 are so that

τ, t0 ∈ [s1, s2], s2 − s1 = θR2, τ − s1 = θ(R − r)2,
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and BR(x0) × (t0 − θR2, t0 + θR2) ⊂ Ω × (0, T ). The function u belongs to DG−(Ω, T, γ) if (14) holds
with (u − k)+ replaced by (u − k)−. The function u is said to belong to the parabolic De Giorgi class of
order 2, denoted DG(Ω, T, γ), if

u ∈ DG+(Ω, T, γ) ∩DG−(Ω, T, γ).

In what follows, the estimate (14) given in Definition 3.1 is referred to as energy estimate or Caccioppoli-
type estimate. We also point out that our definition of parabolic De Giorgi classes of order 2 is sligthly
different from that given in the Euclidean case by Gianazza–Vespri [13]; our classes seem to be larger,
but it is not known to us whether they are equivalent.

Denote K(Ω × (0, T )) = {K ⊂ Ω × (0, T ) : K compact} and consider the functional

E : L2(0, T ;N1,2(Ω)) ×K(Ω × (0, T )) → R, E(w,K) =
1

2

∫∫

K

g2w dµ dt.

Definition 3.2 (Parabolic quasiminimizer). Let Ω be an open subset of X. A function

u ∈ L2
loc(0, T ;N1,2

loc (Ω))

is said to be a parabolic Q-quasiminimizer, Q ≥ 1, related to the heat equation (13) if

(15) −

∫∫

supp(φ)

u
∂φ

∂t
dµ dt + E(u, supp(φ)) ≤ QE(u− φ, supp(φ))

for every φ ∈ Lipc(Ω × (0, T )) = {f ∈ Lip(Ω × (0, T )) : supp(f) ⋐ Ω × (0, T )}.

In the Euclidean case with the Lebesgue measure it can be shown that u is a weak solution of (13)
if and only if u is a 1-quasiminimizer for (13), see [36]. Hence 1-quasiminimizers can be seen as weak
solutions of (13) in metric measure spaces. This motivates the following definition.

Definition 3.3. A function u is a parabolic minimizer if u is a parabolic Q-quasiminimizer with Q = 1.

We also point out that the class of Q-quasiminimizers is non-empty and non-trivial, since it contains
the elliptic Q-quasiminimizers as defined in [14, 15] and as shown there, there exist many other examples
as well.

Remark 3.4. - It is possible to prove, by using the Cheeger differentiable structure and the same proof
contained in Wieser [36, Section 4], that a parabolic Q–quasiminimizer belongs to a suitable parabolic
De Giorgi class. We are not able to prove this result directly without using the Cheeger differentiable
structure; the main problem is that the map u 7→ gu is only sublinear and not linear, and linearity is a
main tool used in the argument.

4. Parabolic De Giorgi classes and local boundedness

We shall use the following notation;

Q+
ρ,θ(x0, t0) = Bρ(x0) × [t0, t0 + θρ2),

Q−
ρ,θ(x0, t0) = Bρ(x0) × (t0 − θρ2, t0],

Qρ,θ(x0, t0) = Bρ(x0) × (t0 − θρ2, t0 + θρ2).

When θ = 1 we shall simplify the notation by writing Q+
ρ (x0, t0) = Q+

ρ,1(x0, t0), Q−
ρ (x0, t0) = Q−

ρ,1(x0, t0)

and Qρ(x0, t0) = Qρ,1(x0, t0).
We shall show that functions belonging to DG(Ω, T, γ) are locally bounded. Here we follow the

analogous proof contained in [24] for the elliptic case. Consider r, R > 0 such that R/2 < r < R,
s1, s2 ∈ (0, T ) with 2(s2 − s1) = R2 and σ ∈ (s1, s2) such that σ < (s1 + s2)/2, fix x0 ∈ X . We define
level sets at scale ρ > 0 as follows

A(k; ρ; t1, t2) := {(x, t) ∈ Bρ(x0) × (t1, t2) : u(x, t) > k}.
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Let r̃ := (R + r)/2, i.e., R/2 < r < r̃ < R, and η ∈ Lipc(Br̃) such that 0 ≤ η ≤ 1, η = 1 on Br, and

gη ≤ 2/(R− r). Then v = (u− k)+η ∈ N1,2
0 (Br̃) and gv ≤ g(u−k)+ + 2(u− k)+/(R− r). We have

∫∫

−−
Br×(σ,s2)

(u− k)2+ dµ dt ≤ 2N
∫∫

−−
Br̃×(σ,s2)

(u− k)2+η
2 dµ dt

≤
2N

µ⊗ L1(Br̃ × (σ, s2))

(

∫∫

Br̃×(σ,s2)

(u− k)q+η
q dµ dt

)2/q
(

µ⊗ L1(A(k; r̃;σ, s2)
)(q−2)/q

≤ 2N
(

µ⊗ L1(A(k; r̃;σ, s2))

µ⊗ L1(Br̃ × (σ, s2))

)(q−2)/q
(

∫∫

−−
Br̃×(σ,s2)

(u − k)q+η
q dµ dt

)2/q

.

We now use Proposition 2.2 taking q = 2κ. We get

∫∫

−−
Br×(σ,s2)

(u− k)2+ dµ dt ≤ 2N22/κc
2/κ
∗ r2/κ

(

µ⊗ L1(A(k; r̃;σ, s2))

µ⊗ L1(Br̃ × (σ, s2))

)(κ−1)/κ

×

(

sup
t∈(σ,s2)

∫

−
Br̃

(u − k)2+η
2 dµ

)(κ−1)/κ(
∫∫

−−
Br̃×(σ,s2)

g2(u−k)+η dµ dt

)1/κ

.

By applying (14) with τ = σ, α = 0, and θ = 1/2, since κ > 1, we arrive at

∫∫

−−
Br×(σ,s2)

(u− k)2+ dµ dt ≤ 2N+2 c
2/κ
∗ r2/κ

(s2 − σ)1/κ

(

µ⊗ L1(A(k; r̃;σ, s2))

µ⊗ L1(Br̃ × (σ, s2))

)(κ−1)/κ

×

(

sup
t∈(σ,s2)

∫

−
Br̃

(u − k)2+(x, t) dµ

)(κ−1)/κ
(

2

∫ s2

σ

∫

−
Br̃

g2(u−k)+
dµ dt

+
8

(R− r)2

∫ s2

σ

∫

−
Br̃

(u − k)2+ dµ dt

)1/κ

≤2N+2 c
2/κ
∗ r2/κ

(s2 − σ)1/κ

(

µ⊗ L1(A(k; r̃;σ, s2))

µ⊗ L1(Br̃ × (σ, s2))

)(κ−1)/κ
µ(BR)

µ(Br̃)

×
6γ + 22N+3

(R − r)2

∫ s2

s1

∫

−
BR

(u − k)2+ dµ dt.

By the the choice of σ, we see that (s2 − σ)−1 < 2(s2 − s1)−1, and consequently

∫∫

−−
Br×(σ,s2)

(u − k)2+ dµ dt ≤ 2N+4(3γ + 22N+2)c
2/κ
∗ r2/κ

(

µ⊗ L1(A(k; r̃;σ, s2))

µ⊗ L1(Br̃ × (σ, s2))

)(κ−1)/κ

(16)

×
µ(BR)

µ(Br̃)
(s2 − σ)(κ−1)/κ 1

(R − r)2

∫∫

−−
BR×(s1,s2)

(u− k)2+ dµ dt

Consider h < k. Then

(k − h)2
(

µ⊗ L1(A(k; r̃;σ, s2))
)

≤

∫∫

A(k;r̃;σ,s2)

(u− h)2+ dµ dt

≤

∫∫

A(h;r̃;σ,s2)

(u− h)2+ dµ dt =

∫ s2

σ

∫

Br̃

(u− h)2+ dµ dt,
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from which, using the doubling property (2), it follows that

µ⊗ L1(A(k; r̃;σ, s2)) ≤
1

(k − h)2
(

µ⊗ L1 (Br̃ × (σ, s2))
)

u(h; r̃;σ, s2)2(17)

≤
2N+1

(k − h)2
(

µ⊗ L1 (Br̃ × (σ, s2))
)

u(h;R; s1, s2)2, ,

where

u(l; ρ; t1, t2) :=

(

∫∫

−−
Bρ×(t1,t2)

(u − l)2+dµ dt

)1/2

.

By plugging (17) into (16) and arranging terms we arrive at

(18) u(k; r;σ, s2) ≤ c̄
r1/κ(s2 − σ)(κ−1)/2κ

(k − h)(κ−1)/κ(R − r)
u(k;R; s1, s2)u(h;R; s1, s2)(κ−1)/κ,

with c̄ = 2N+2+(N+1)(κ−1)/(2κ)(3γ + 22N+2)1/2c
1/κ
∗ .

Let us consider the following sequences: for n ∈ N, k0 ∈ R and fixed d we define

kn := k0 + d

(

1 −
1

2n

)

ր k0 + d,

rn :=
R

2
+

R

2n+1
ց

R

2
, and

σn :=
s1 + s2

2
−

R2

4n+1
ր

s1 + s2
2

.

This is possible since 2(s2 − s1) = R2. The following technical result will be useful for us.

Lemma 4.1. Let u0 := u(k0;R; s1, s2), un := u(kn; rn;σn, s2),

θ :=
κ− 1

κ
, a :=

1 + θ

θ
= 1 +

κ

κ− 1
,

and

dθ = c̄ 21+θ/2+a(1+θ)uθ
0,

where c̄ is the constant in (18). Then

(19) un ≤
u0

2an
.

Proof. We prove the lemma by induction. First notice that (19) is true for n = 0. Then assume that (19)
is true for fixed n ∈ N. In (18), we first estimate r1/κ(s2 − σ)(κ−1)/2κ by R1/κ(s2 − s1)(κ−1)/2κ. Then
we replace r with rn+1, R with rn, σ with σn+1, s1 with σn, h with kn, and k with kn+1. With these
replacements we arrive at

un+1 ≤
c̄ R1/κ(s2 − s1)(κ−1)/(2κ)

(kn+1 − kn)(κ−1)/κ(rn − rn+1)
u1+(κ−1)/κ
n .

Denote c′ := c̄ R1/κ(s2 − s1)(κ−1)/(2κ) so that we have

un+1 ≤
c′u1+θ

n

(kn+1 − kn)θ(rn − rn+1)
.

Since rn − rn+1 = 2−(n+2)R and kn+1 − kn = 2−(n+1)d, we obtain

un+1 ≤ c′
2(n+1)θ+n+2

dθR
u1+θ
n = 2c′

2(n+1)(1+θ)

dθR
u1+θ
n ≤ 2c′

2(n+1)(1+θ)

dθR

( u0

2an

)1+θ

.
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As 2(s2 − s1) = R2, we have

c′′ :=
2c′

R
= 2c̄ R1/κ(s2 − s1)(κ−1)/(2κ) 1

R
= 21+θ/2c̄.

Point being that the constant c′′ is independent of R, s1, and s2. Finally, since (1 − a)(1 + θ) = −a we
arrive at

un+1 ≤ c′′
2(n+1)(1+θ)

dθ

( u0

2an

)1+θ

= 2−a(n+1)u0.

This completes the proof. �

Before proving the main result of this section, we need the following proposition.

Proposition 4.2. For every number k0 ∈ R we have

u(k0 + d;R/2; (s1 + s2)/2, s2) = 0,

where d is defined as in Lemma 4.1.

Proof. Since kn ≤ k0 + d, R/2 ≤ rn ≤ R, s1 ≤ σn ≤ (s1 + s2)/2, the doubling property implies that

0 ≤ u(k0 + d;R/2; (s1 + s2)/2, s2) ≤ 2N+1u(kn; rn;σn, s2) = un.

By Lemma 4.1, we have limn→∞ un = 0 and the claim follows. �

We close this section by proving local boundedness for functions in the De Giorgi class.

Theorem 4.3. Suppose u ∈ DG(Ω, T, γ). Then there is a constant c∞ depending only on cd, γ, and the
constants in the weak (1, 2)–Poincaré inequality, such that for all BR × (s1, s2) ⊂ Ω × (0, T ), we have

ess sup
BR/2×((s1+s2)/2,s2)

|u| ≤ c∞

(

∫∫

−−
BR×(s1,s2)

|u|2dµ dt

)1/2

.

Proof. The Proposition 4.2 implies that

ess sup
BR/2×((s1+s2)/2,s2)

u ≤ k0 + d,

where d is defined in Lemma 4.1. Then

ess sup
BR/2×((s1+s2)/2,s2)

u ≤ k0 + c∞

(

∫∫

−−
BR×(s1,s2)

(u− k0)2+dµ dt

)1/2

,

with c∞ = c̄1/θ 21+θ/2+a(1+θ), c̄ the constant in (18). The previous inequality with k0 = 0 can be written
as follows

ess sup
BR/2×((s1+s2)/2,s2)

u ≤ c∞

(

∫∫

−−
BR×(s1,s2)

u2
+dµ dt

)1/2

≤ c∞

(

∫∫

−−
BR×(s1,s2)

|u|2dµ dt

)1/2

.

Since also −u ∈ DG(Ω, T, γ) the analogous argument applied to −u gives the claim. �
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5. Parabolic De Giorgi classes and Harnack inequality

In this section we shall prove a scale-invariant parabolic Harnack inequality for functions in the De
Giorgi class of order 2 and, in particular, for parabolic quasiminimizers.

Proposition 5.1. Let ρ, θ > 0 be chosen such that the cylinder Q−
ρ,θ(y, s) ⊂ Ω × (0, T ). Then for each

choice of a, σ ∈ (0, 1) and θ̄ ∈ (0, θ), there is ν+, depending only on N, γ, c∗, a, θ, θ̄, such that for every
u ∈ DG+(Ω, T, γ) and m+ and ω for which

m+ ≥ ess sup
Q−

ρ,θ(y,s)

u and ω ≥ osc
Q−

ρ,θ(y,s)
u,

the following claim holds true: if

µ⊗ L1
(

{(x, t) ∈ Q−
ρ,θ(y, s) : u(x, t) > m+ − σω}

)

≤ ν+µ⊗ L1
(

Q−
ρ,θ(y, s)

)

,

then

u(x, t) ≤ m+ − aσω µ⊗ L1-a.e. in Bρ/2(y) × (s− θ̄ρ2, s].

Proof. Define the following sequences, h ∈ N,

ρh :=
ρ

2
+

ρ

2h+1
ց

ρ

2
, θh = θ̄ +

1

2h
(θ − θ̄) ց θ̄ ,

Bh := Bρh
(y), sh := s− θhρ

2 ր s− θ̄ρ2 , Q−
h := Bh × (sh, s],

σh := aσ +
1 − a

2h
σ ց aσ, and kh = m+ − σhω ր m+ − aσω.

Consider a sequence of Lipschitz continuous functions ζh, h ∈ N, satisfying the following:

ζh ≡ 1 in Q−
h+1 , ζh ≡ 0 in Q−

ρ,θ(y, s) \Q−
h

gζh ≤
1

ρh − ρh+1
=

2h+2

ρ
, 0 ≤ (ζh)t ≤

2h+1

θ − θ̄

1

ρ2
.

Denote Ah := {(x, t) ∈ Q−
h : u(x, t) > kh}. We have

∫∫

Q−

h

(u− kh)2+ζ
2
h dµ dt ≥

∫∫

Q−

h+1

(u− kh)2+ dµ dt ≥

∫∫

Ah+1

(u− kh)2+ dµ dt

≥

∫∫

Ah+1

(kh+1 − kh)2 dµ dt =
((1 − a)σω)2

22h+2
µ⊗ L1(Ah+1),

and consequently

(20)

∫ s

sh

∫

−
Bh

(u − kh)2+ζ
2
h dµ dt ≥

((1 − a)σω)2

22h+2

µ⊗ L1(Ah+1)

µ(Bh+1)
.
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On the other hand, if we use first Hölder’s inequality and then Proposition 2.2, we obtain the following
estimate

∫ s

sh

∫

−
Bh

(u−kh)2+ζ
2
h dµ dt ≤

(

µ⊗ L1(Ah)

µ(Bh)

)(κ−1)/κ(∫ s

sh

∫

−
Bh

(u− kh)2κ+ ζ2κh dµ dt

)1/κ

≤ c
2/κ
∗ ρ2/κ

(

µ⊗ L1(Ah)

µ(Bh)

)(κ−1)/κ(

sup
t∈(sh,s)

∫

−
Bh

(u − kh)2+ζ
2
h dµ

)(κ−1)/κ

×

×

(
∫ s

sh

∫

−
Bh

(

2 ζ2h g
2
(u−kh)+

+ 2g2ζh(u− kh)2+

)

dµ dt

)1/κ

≤ c
2/κ
∗ ρ2/κ

(

µ⊗ L1(Ah)

µ(Bh)

)(κ−1)/κ
1

µ(Bh)

(

sup
t∈(sh,s)

∫

Bh

(u − kh)2+ dµ

)(κ−1)/κ

×

×

(

2

∫ s

sh

∫

Bh

g2(u−kh)+
dµ dt +

22h+5

ρ2

∫ s

sh

∫

Bh

(u− kh)2+ dµ dt

)1/κ

≤ 21/κ c
2/κ
∗ ρ2/κ

(

µ⊗ L1(Ah)

µ(Bh)

)(κ−1)/κ
1

µ(Bh)

(

sup
t∈(sh,s)

∫

Bh

(u− kh)2+ dµ+

+

∫ s

sh

∫

Bh

g2(u−kh)+
dµ dt +

22h+4

ρ2

∫ s

sh

∫

Bh

(u − kh)2+ dµ dt

)

.

We continue by applying the energy estimate (14) with r = ρh, R = ρh−1, α = 0, s2 = s, τ = sh,
s1 = sh−1 and get

∫ s

sh

∫

−
Bh

(u−kh)2+ζ
2
h dµ dt

≤ 21/κ c
2/κ
∗ ρ2/κ

(

µ⊗ L1(Ah)

µ(Bh)

)(κ−1)/κ
1

µ(Bh)

(

22h+4

ρ2

∫ s

sh

∫

Bh

(u − kh)2+ dµ dt+

+ γ

(

1 +
2h

θ − θ̄

)

22h+2

ρ2

∫ s

sh−1

∫

Bh−1

(u − kh)2+ dµ dt

)

≤C1 ρ
2/κ

(

µ⊗ L1(Ah)

µ(Bh)

)(κ−1)/κ
1

µ(Bh)

23h+4

ρ2

∫ ∫

Q−

h−1

(u − kh)2+ dµ dt

where C1 = 21/κ c
2/κ
∗ (1 + γ + γ/(θ − θ̄)). We also have that u− kh ≤ m+ − kh = σhω and then

∫ ∫

Q−

h−1

(u− kh)2+ dµdt ≤ µ⊗ L1(Ah−1)(σhω)2 ≤ µ⊗ L1(Ah−1)(σω)2 .

This implies that

∫ s

sh

∫

−
Bh

(u−kh)2+ζ
2
h dµ dt ≤ 22h+4 C1(σω)2

1

ρ2
κ−1
κ

(

µ⊗ L1(Ah)

µ(Bh)

)

κ−1
κ µ⊗ L1(Ah−1)

µ(Bh)

≤ 22h+4C1(σω)2 θ
κ−1
κ 2N(1+κ−1

κ )

(

µ⊗ L1(Ah−1)

µ⊗ L1(Bh−1)

)

κ−1
κ µ⊗ L1(Ah−1)

µ(Bh−1)
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where we have estimated µ(Bh−1)/µ(Bh) ≤ 2N . By the last inequality and (20), if we call C2 the constant

C1 θ
κ−1
κ 2N(1+κ−1

κ )+6(1 − a)−2, we obtain

µ⊗ L1(Ah+1)

µ(Bh+1)
≤ C2 24h

(

µ⊗ L1(Ah−1)

µ⊗ L1(Bh−1)

)

κ−1
κ µ⊗ L1(Ah−1)

µ(Bh−1)
;

finally, dividing by s − sh+1 and since (s − sh−1)/(s − sh+1) ≤ θ/θ̄, we can summarize what we have
obtain by writing

(21) yh+1 ≤ C3 24h y
1+(κ−1)/κ
h−1

where we have defined

yh :=
µ⊗ L1(Ah)

µ⊗ L1(Q−
h )

and C3 = C2
θ

θ̄

i.e.

C3 = 21/κ c
2/κ
∗

(

1 + γ +
γ

θ − θ̄

)

θ
κ−1
κ 2N(1+κ−1

κ )+6 1

(1 − a)2
θ

θ̄
.

We observe that the hypotheses of Lemma 2.7 are satisfied with c = C3, b = 24 and α = (κ− 1)/κ. Then
if

y0 ≤ c−1/αb−1/α2

we would be able to conclude, since {yh}h is a decreasing sequence, that

lim
h→∞

yh = 0.

Since y0 = µ⊗ L1(A0)/µ⊗ L1(Q−
0 ), where

Q−
0 = Bρ(y) × (s− θρ2, s], and A0 = {(x, t) ∈ Q−

0 : u(x, t) > m+ − σω}.

To do this it is sufficient to choose ν+ to be

ν+ = C
−κ/(κ−1)
3 16−κ2/(κ−1)2 .

By definition of yh and Ah we see that

u ≤ m+ − aσω µ⊗ L1-a.e. in Bρ/2(y) ×
(

s− θ̄ρ2, s
]

,

which completes the proof. �

An analogous argument proves the following claim.

Proposition 5.2. Let ρ, θ > 0 be chosen such that the cylinder Q−
ρ,θ(y, s) ⊂ Ω × (0, T ). Then for each

choice of a, σ ∈ (0, 1) and θ̄ ∈ (0, θ), there is ν−, depending only on N, γ, c∗, a, θ, θ̄, such that for every
u ∈ DG−(Ω, T, γ) and m+ and ω for which

m− ≤ ess inf
Q−

ρ,θ(y,s)
u and ω ≥ osc

Q−

ρ,θ(y,s)
u,

the following claim holds true: if

µ⊗ L1
(

{(x, t) ∈ Q−
ρ,θ(y, s) : u(x, t) < m− + σω}

)

≤ ν−µ⊗ L1
(

Q−
ρ,θ(y, s)

)

,

then

u(x, t) ≥ m− + aσω µ⊗ L1-a.e. in Bρ/2(y) × (s− θ̄ρ2, s].

Proof. It is sufficient to argue as in the proof of Proposition 5.1 considering (u−k̂h)− in place of (u−kh)+,

where k̂h = m− + σhω. �
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The next result is the so called expansion of positivity. Following the approach of DiBenedetto [9] we
show that pointwise information in a ball Bρ implies pointwise information in the expanded ball B2ρ at
a further time level.

Proposition 5.3. Let (x∗, t∗) ∈ Ω × (0, T ) and ρ > 0 with B5Λρ(x∗) × [t∗ − ρ2, t∗ + ρ2] ⊂ Ω × (0, T ).

Then there exists θ̃ ∈ (0, 1), depending only on γ, such that for every θ̂ ∈ (0, θ̃) there exists λ ∈ (0, 1),

depending on θ̃ and θ̂, such that for every h > 0 and for every u ∈ DG(Ω, T, γ) the following is valid. If

u(x, t∗) ≥ h µ− a.e. in Bρ(x∗),

then

u(x, t) ≥ λh µ− a.e. in B2ρ(x∗), for every t ∈ [t∗ + θ̂ρ2, t∗ + θ̃ρ2].

From now on, let us denote

Ah,ρ(x∗, t∗) := {x ∈ Bρ(x∗) : u(x, t∗) < h}.

Remark 5.4. - Let (x∗, t∗) ∈ Ω × (0, T ) and h > 0 be fixed. Then if u(x, t∗) ≥ h for µ-a.e. x ∈ Bρ(x∗)
we have that

Ah,4ρ(x∗, t∗) ⊂ B4ρ(x∗) \Bρ(x∗).

The doubling property implies

µ(Ah,4ρ(x∗, t∗)) ≤

(

1 −
1

4N

)

µ(B4ρ(x∗)).

The proof of Proposition 5.3 requires some preliminary lemmas.

Lemma 5.5. Given (x∗, t∗) for which B4ρ(x∗) × [t∗, t∗ + θ ρ2] ⊂ Ω × (0, T ), there exist η ∈ (0, 1) and

θ̃ ∈ (0, θ) such that, given h > 0 and u ≥ 0 in DG(Ω, T, γ) for which the following holds

u(x, t∗) ≥ h µ− a.e. in Bρ(x∗)

then

µ(Aηh,4ρ(x∗, t)) <

(

1 −
1

4N+1

)

µ(B4ρ(x∗))

for every t ∈ [t∗, t∗ + θ̃ρ2].

Proof. We may assume that h = 1, otherwise we consider the scaled function u/h. We apply the energy

estimate of Definition 3.1 with R = 4ρ, r = 4ρ(1− σ), s1 = t∗, s2 = t∗ + θ̃ρ2 with θ̃ to be chosen, τ = t∗,
σ ∈ (0, 1), and α = 1. This gives us

sup
t∗<t<t∗+θ̃ρ2

∫

B4ρ(1−σ)(x∗)

(u − 1)2−(x, t)dµ(x) +

∫ t∗+θ̃ρ2

t∗

∫

B4ρ(1−σ)(x∗)

g2(u−1)−
dµ dt

≤

∫

B4ρ(x∗)

(u− 1)2−(x, t∗)dµ(x) +
γ

16σ2ρ2

∫ t∗+θ̃ρ2

t∗

∫

B4ρ(x∗)

(u− 1)2− dµ dt.

Since u ≥ 1 in Bρ(x∗), we deduce from Remark 5.4 that

µ({x ∈ B4ρ(x∗) : u(x, t∗) < 1}) <

(

1 −
1

4N

)

µ(B4ρ(x∗)).
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Notice that (u− 1)− ≤ 1; thus we have in particular

sup
t∗<t<t∗+θ̃ρ2

∫

B4ρ(1−σ)(x∗)

(u− 1)2−(x, t) dµ(x)

≤

∫

B4ρ(x∗)

(u − 1)2−(x, t∗) dµ(x) +
γ

16σ2ρ2

∫ t∗+θ̃ρ2

t∗

∫

B4ρ(x∗)

(u− 1)2− dµ dt

≤

(

1 −
1

4N

)

µ(B4ρ(x∗)) +
γ

16σ2ρ2

∫ t∗+θ̃ρ2

t∗

∫

B4ρ(x∗)

(u− 1)2− dµ dt

≤

(

1 −
1

4N

)

µ(B4ρ(x∗)) +
γθ̃

16σ2
µ(B4ρ(x∗))

Writing Ah,ρ(t) in place of Ah,ρ(x∗, t), decomposing

Aη,4ρ(t) = Aη,4ρ(1−σ)(t) ∪ {x ∈ B4ρ(x∗) \B4ρ(1−σ)(x
∗) : u(x, t) < η},

and using the doubling property we have

µ(Aη,4ρ(t)) ≤ µ(Aη,4ρ(1−σ)(t)) + µ
(

B4ρ(x∗) \B4ρ(1−σ)(x
∗)
)

.

On the other hand,
∫

B4ρ(1−σ)(x∗)

(u− 1)2−(x, t) dµ(x) ≥

∫

Aη,4ρ(1−σ)(t)

(u − 1)2−(x, t) dµ(x) ≥ (1 − η)2µ(Aη,4ρ(1−σ)(t)).

Finally, we obtain

µ(Aη,4ρ(t)) ≤ µ(Aη,4ρ(1−σ)(t)) + µ
(

B4ρ(x∗) \B4ρ(1−σ)(x
∗)
)

(22)

≤(1 − η)−2

∫

B4ρ(1−σ)(x∗)

(u− 1)2−(x, t)dµ + µ
(

B4ρ(x∗) \B4ρ(1−σ)(x
∗)
)

≤ (1 − η)−2

(

1 −
1

4N
+

γθ̃

16σ2

)

µ(B4ρ(x∗)) + µ
(

B4ρ(x∗) \B4ρ(1−σ)(x
∗)
)

.

If the claim of the lemma was false, then for every θ̃, η ∈ (0, 1) there exists t̄ ∈ [t∗, t∗ + θ̃ρ2] for which

µ(Aη,4ρ(t)) ≥

(

1 −
1

4N+1

)

µ (B4ρ(x∗)) .

Applying this last estimate, then (22) for t = t̄ and dividing by µ (B4ρ(x∗)) we would have
(

1 −
1

4N+1

)

≤ (1 − η)−2

(

1 −
1

4N
+

γθ̃

16σ2

)

+
µ(B4ρ(x∗) \B4ρ(1−σ)(x

∗))

µ(B4ρ(x∗))
.

Choosing, for instance, θ̃ = σ3 and letting η and σ go to zero we would have the contradiction 1−4−N−1 ≤
1 − 4−N . �

Lemma 5.6. Assume u ∈ DG(Ω, T, γ), u ≥ 0. Let θ̃ be as in Lemma 5.5 and h > 0. Consider (x∗, t∗)

in such a way that B5Λρ(x∗) × [t∗ − θ̃ρ2, t∗ + θ̃ρ2] ⊂ Ω × (0, T ) and assume that

u(x, t∗) ≥ h, µ− a.e. x ∈ Bρ(x∗).

Then for every ǫ > 0 there exists η1 ∈ (0, 1), depending on ǫ, cd, γ, θ̃, and the constant in the weak
Poincaré inequality, such that

µ⊗ L1
(

{(x, t) ∈ B4ρ(x∗) × [t∗, t∗ + θ̃ρ2] : u(x, t) < η1h}
)

< ǫµ⊗ L1
(

B4ρ(x∗) × [t∗, t∗ + θ̃ρ2]
)

.
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Proof. Apply the energy estimate (14) in B5Λρ(x∗) × (t∗ − 2θ̃ρ2, t∗) with

R = 5Λρ, r = 4Λρ, s2 = t∗ + θ̃ρ2, s1 = t∗ − θ̃ρ2, τ = t∗, and α = 0,

at the level k = ηh2−m, where η > 0 and m ∈ N. We obtain

∫ t∗+θ̃ρ2

t∗

∫

B4Λρ(x∗)

g2
(u− ηh

2m )−
dµ dt(23)

≤ γ

(

1 +
1

2θ̃

)

1

(Λρ)2

∫ t∗+θ̃ρ2

t∗−θ̃ρ2

∫

B5Λρ(x∗)

(

u−
ηh

2m

)2

−

dµ dt

≤ γ

(

1 +
1

2θ̃

)

1

(Λρ)2
η2h2

22m
2θ̃ρ2µ (B5Λρ(x∗))

≤ γ(2θ̃ + 1)
η2h2

22m
µ (B5Λρ(x∗)) .

To simplify notation, let us write Ah,ρ(t) instead of Ah,ρ(x∗, t). Lemma 2.3 with parameters k = ηh/2m,
l = ηh/2m−1, q = 1 and 2 − ε < p < 2, implies

∫

B4ρ(x∗)

(

u−
ηh

2m

)

−

(x, t) dµ ≤
ηh

2m
µ(Aηh2−m,4ρ(t))(24)

≤
8Cpρµ(B4ρ(x∗))2−1/p

µ(B4ρ(x∗) \Aηh2−m+1,4ρ(τ))

(
∫

Ã(t)

gp
(u− ηh

2m )−
(x, t) dµ

)1/p

,

for every t ∈ [t∗, t∗ + θ̃ρ2], where Ã(t) := Aηh2−m+1,4Λρ(t) \Aηh2−m,4Λρ(t). Clearly,

B4ρ(x∗) \Aηh2−m+1,4ρ(t) ⊇ B4ρ(x∗) \Aηh,4ρ(t).

If we choose η so that it satisfies the hypothesis of Lemma 5.5 and write

µ(B4ρ(x∗) \Aηh,4ρ(t)) + µ(Aηh,4ρ(t)) = µ(B4ρ(x∗)),

then we deduce that

µ(B4ρ(x∗) \Aηh,4ρ(t)) > 4−N−1µ(B4ρ(x∗))

for every t ∈ [t∗, t∗ + θ̃ρ2]. We finally arrive at

∫

B4ρ(x∗)

(

u−
ηh

2m

)

−

(x, t) dµ ≤ 8Cp4N+1µ(B4ρ(x∗))1−1/pρ

(
∫

Ã(t)

gp
(u− ηh

2m )−
(x, t) dµ

)1/p

.

Integrating this with respect to t and defining the decreasing sequence {am,ρ}∞m=0 as

am,ρ : =

∫ t∗+θ̃ρ2

t∗
µ
(

Aηh2−m,ρ(t)
)

dt

= µ⊗ L1

({

(x, t) ∈ Bρ(x∗) × [t∗ − θ̃ρ2, t∗] : u(x, t) <
ηh

2m

})

,
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we get by the Hölder inequality

∫ t∗+θ̃ρ2

t∗

∫

B4ρ(x∗)

(

u−
ηh

2m

)

−

(x, t) dµ dt(25)

≤ 8Cp4N+1µ(B4ρ(x∗))1−1/pρ

(
∫ t∗+θ̃ρ2

t∗

∫

Ã(t)

gp
(u− ηh

2m )−
(x, t) dµ dt

)1/p

≤ 8Cp4N+1µ(B4ρ(x∗))1−1/pρ

(
∫ t∗+θ̃ρ2

t∗

∫

B4Λρ(x∗)

g2
(u− ηh

2m )−
dµ dt

)1/2

(am−1,4Λρ − am,4Λρ)(2−p)/2.

On the other hand,
∫ t∗+θ̃ρ2

t∗

∫

B4ρ(x∗)

(

u−
ηh

2m

)

−

(x, t) dµ dt ≥
ηh

2m+1
am+1,4ρ

from which, using first (25) and then (23), we obtain

a
2/(2−p)
m+1,4ρ ≤ c(am−1,4Λρ − am,4Λρ),

where c = (C2
p16N+3γ(2θ̃+1)µ(B4ρ(x∗))2(1−1/p)µ(B5Λρ(x∗))ρ2)1/(2−p). Hence for every m∗ ∈ N we have

m∗
∑

m=1

a
2/(2−p)
m+1,4ρ ≤ c(a0,4Λρ − am∗,4Λρ).

Since {am,ρ}∞m=0 is decreasing the sum
∑∞

m=1 a
2/(2−p)
m+1,4ρ converges, and consequently

lim
m→∞

am,4ρ = 0.

This completes the proof. �

Proof of Proposition 5.3. The proof is a direct consequence of Proposition 5.2 used with the right pa-

rameters. Fix θ = 1 and let θ̃ be as in Lemma 5.5; choose also θ̂ ∈ (0, θ̃) and let ν− be the constant in
Proposition 5.2 determined by these parameters and a = 1/2. Apply Lemma 5.6 with ǫ = ν− and obtain
the constant η1 for which the assumptions of Proposition 5.2 are satisfied with

y = x∗, s = t∗ + θ̃ρ2, θ̄ := θ̃ − θ̂,m− = 0 and σ =
η1h

ω
.

This concludes the proof with λ = 1
2η1. �

The following is the main result of this paper.

Theorem 5.7 (Parabolic Harnack). Assume u ∈ DG(Ω, T, γ), u ≥ 0. For any constant c2 ∈ (0, 1], there
exists c1 > 0, depending on cd, γ, and the constants in the weak (1, 2)–Poincaré inequality, such that for
any Lebesgue point (x0, t0) ∈ Ω × (0, T ) with B5Λρ(x0) × (t0 − ρ2, t0 + 5ρ2) ⊂ Ω × (0, T ) we have

u(x0, t0) ≤ c1 ess inf
Bρ(x0)

u(x, t0 + c2ρ
2).

As a consequence, u is locally α-Hölder continuous with α = − log2
1−γ
γ and satisfies the strong maximum

principle.

Proof. Suppose t0 = 0; up to rescaling, we may write u(x0, 0) = ρ−ξ for some ξ > 0 to be fixed later.
Define the functions

M(s) = sup
Q−

s (x0,0)

u, N (s) = (ρ− s)−ξ, s ∈ [0, ρ).
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Let us denote by s0 ∈ [0, ρ) the largest solution of M(s) = N (s). Define

M := N (s0) = (ρ− s0)−ξ,

and fix (y0, τ0) ∈ Q−
s0(x0, 0) in such a way that

(26)
3M

4
< sup

Q−

ρ0/4
(y0,τ0)

u ≤ M,

where ρ0 = (ρ− s0)/2; this implies that Q−
ρ0

(y0, τ0) ⊂ Q−
(ρ+s0)/2

(x0, 0), as well as that

sup
Q−

ρ0
(y0,τ0)

u ≤ sup
Q−

(ρ+s0)/2
(x0,0)

u < N

(

ρ + s0
2

)

= 2ξM.

Let us divide the proof into five steps.
Step 1. We assert that

(27) µ⊗ L1

({

(x, t) ∈ Q−
ρ0/2

(y0, τ0) : u(x, t) >
M

2

})

> ν+µ⊗ L1
(

Q−
ρ0/2

(y0, τ0)
)

,

where ν+ is the constant in Proposition 5.1. To see this, assume on the contrary that equation (27) is
not true. Then set k = 2ξM and

m+ = ω = k, θ = 1, ρ =
ρ0
2
, σ = 1 − 2−ξ−1, and a = σ−1

(

1 −
3

2ξ+2

)

.

We obtain from Proposition 5.1 that

u ≤
3M

4
in Q−

ρ0
4

(y0, τ0),

which contradicts (26).
Step 2. We show that there exists

t̄ ∈

(

τ0 −
ρ20
4
, τ0 −

ν+
8

ρ20
4

]

such that

(28) µ

({

x ∈ Bρ0/2(y0) : u(x, t̄) ≥
M

2

})

>
ν+
2
µ(Bρ0/2(y0)),

and

(29)

∫

Bρ0/2(y0)

g2u(x, t̄) dµ(x) ≤ α
µ(Bρ0 (y0))

ρ20
k2,

for some sufficiently large α > 0. For this, we define the sets A(t), I, and Jα as follows

A(t) :=

{

x ∈ Bρ0/2(y0) : u(x, t) ≥
M

2

}

,

I :=

{

t ∈ (τ0 −
ρ20
4
, τ0] : µ(A(t)) >

ν+
2
µ(Bρ0/2(y0))

}

,

and

Jα :=

{

t ∈ (τ0 −
ρ20
4
, τ0] :

∫

Bρ0/2(y0)

g2u(x, t)dµ(x) ≤ α
µ(Bρ0(y0))

ρ20
k2

}

.
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From (27) we have that

ν+µ⊗ L1(Q−
ρ0/2

(y0, τ0)) <

∫ τ0

τ0−ρ2
0/4

µ(A(t)) dt

=

∫

I

µ(A(t))dt +

∫

(τ0−ρ2
0/4]\I

µ(A(t)) dt

≤ µ(Bρ0/2(y0))|I| +
ν+
2
µ⊗ L1(Q−

ρ0/2
(y0, τ0))

= µ⊗ L1(Q−
ρ0/2

(y0, τ0))

(

|I|

(

4

ρ20

)

+
ν+
2

)

.

This implies the following lower bound

|I| ≥
ν+ρ

2
0

8
.

On the other hand, if we apply (14) with R = ρ0, r = ρ0/2, α = 0, and θ = 1, we obtain
∫

Q−

ρ0/2
(y0,τ0)

g2u dµ dt =

∫

Q−

ρ0/2
(y0,τ0)

g2(u−k)−
dµ dt(30)

≤
8γ

ρ20

∫

Q−

ρ0
(y0,τ0)

(u− k)2− dµ dt ≤
8γk2

ρ20
µ⊗ L1(Q−

ρ0
(y0, τ0))

= 8γk2µ(Bρ0(y0)).

This estimate implies

4γk2µ(Bρ0(y0)) ≥

∫

(τ0−ρ2
0/4,τ0]

dt

∫

Bρ0/2(y0)

g2u(x, t) dµ

≥ α
µ(Bρ0 (y0))

ρ20
k2
(

ρ20
4

− |Jα|

)

,

which in turn gives us

|Jα| ≥
ρ20
4

(

1 −
16γ

α

)

.

Choosing α = 64γ/ν+, we obtain

|I ∩ Jα| = |I| + |Jα| − |I ∪ Jα| ≥
ν+ρ

2
0

16
.

Then if we set

T =

(

τ0 −
ρ20
4
, τ0 −

ν+
8

ρ20
4

]

,

we get

|I ∩ Jα ∩ T | = |I ∩ Jα| + |T | − |(I ∩ Jα) ∪ T | ≥
ρ20
4

ν+
8
,

and in particular I ∩ Jα ∩ T 6= ∅.
Step 3. We fix t̄ ∈ T ; by Lemma 2.5 we have that for any δ ∈ (0, 1), there exist x∗ ∈ Bρ0/2(y0) and

η ∈ (0, 1) such that

(31) µ

({

u(·, t̄) >
M

4

}

∩Bηρ0/2(x∗)

)

> (1 − δ)µ(Bηρ0/2(x∗)).
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Step 4. We show that for ε > 0 to be fixed, there exists x̄ such that Q+
εηρ0/4

(x̄, t̄) ⊂ Q−
ρ0

(y0, τ0) and

(32) µ⊗ L1

({

u ≤
M

8

}

∩Q+
εηρ0/4

(x̄, t̄)

)

≤ 4N+1(γε2 + δ)µ⊗ L1
(

Q+
εηρ0/4

(x̄, t̄)
)

.

Indeed, consider the cylinder
Q = Bηρ0/4(x∗) × (t̄, t̄ + t∗]

with t∗ = (εηρ0/4)2. Using the energy estimate (14) on Q with k = M/4, R = ηρ0/2, r = R/2 and
α = 1, we obtain together with (31) that for any s ∈ (t̄, t̄ + t∗]

∫

Bηρ0/4(x∗)

(

u−
M

4

)2

−

(x, s) dµ(x)

≤
16γ

η2ρ20

∫ t̄+t∗

t̄

dt

∫

Bηρ0/2(x∗)

(

u−
M

4

)2

−

(x, t) dµ(x) +

∫

Bηρ0/2(x∗)

(

u−
M

4

)2

−

(x, t̄) dµ(x)

≤
M2

16
(γε2 + δ)µ(Bηρ0/2(x∗)).

Define

B(t) =

{

x ∈ Bηρ0/4(x∗) : u(x, t) ≤
M

8

}

,

and we have that
∫

Bηρ0/4(x∗)

(

u−
M

4

)2

−

(x, s)dµ(x) ≥

∫

B(s)

(

u−
M

4

)2

−

(x, s)dµ(x) ≥
M2

64
µ(B(s)).

Putting the preceding two estimates together we arrive at

µ(B(s)) ≤ 4(γε2 + δ)µ(Bηρ0/2(x∗))

for every s ∈ (t̄, t̄ + t∗]. Integrating this inequality over s we obtain the estimate

µ⊗ L1

({

u ≤
M

8

}

∩Q+
εηρ0/4

(x∗, t̄)

)

≤ 2N+2(γε2 + δ)µ⊗ L1
(

Q+
εηρ0/4

(x∗, t̄)
)

.

We have to apply Proposition 5.1; we then have that there exists x̄ so that Q+
εηρ0/4

(x̄, t̄) ⊂ Q−
ρ0

(y0, τ0)

satisying equation (32). To see this, we take a disjoint family of balls {Bεηρ0/4(xj)}mj=1 such that
Bεηρ0/4(xj) ⊂ Bηρ0/4(x∗) for every j = 1, . . . ,m, and

Bηρ0/4(x∗) ⊂
m
⋃

j=1

Bεηρ0/2(xj).

Given this disjoint family, there exists j0 such that (32) is satisfied with x̄ = xj0 . Otherwise we would
get a contradiction summing over j = 1, . . . ,m.

Step 5. Due to our construction, we are able to state

osc
Q+

εηρ0/4
(x̄,t̄)

u ≤ k = 2ξM.

We also have that if s̄ = t̄ + (εηρ0/4)2 then Q+
εηρ0/4

(x̄, t̄) = Q−
εηρ0/4

(x̄, s̄); we apply Proposition 5.2 with

ρ =
εηρ0

4
, θ = 1, m− = 0, ω = k, a =

1

2
, σ = 2−ξ−3,

so we can deduce that there exists ν− > 0 such that if

(33) µ⊗ L1

({

u ≤
M

8

}

∩Q−
εηρ0/4

(x̄, s̄)

)

≤ ν−µ⊗ L1(Q−
εηρ0/4

(x̄, s̄))
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then

u(x, t) ≥
M

16
, µ⊗ L1 − a.e. in Q−

r (x̄, s̄),

where r = εηρ0/8.
Fix ε and δ in (32) small enough so that (33) is satisfied and t̄ + (εηρ/4)2 < 0. With this choice of δ,

we obtain the constants η and r that depend only on δ. Expansion of positivity, Proposition 5.3, implies

u(x, t) ≥ λ
M

16
,

for all x ∈ B2r(x̄) and t ∈ [t̂ + θ̂r2, t̂ + θ̃r2] for some t̂ ∈ (t̄, t̄ + (εηρ0/4)2], where θ̃ depends only on

γ, whereas λ depends on γ and θ̂ ∈ (0, θ̃) that we shall fix later. We can repeat the argument with r

replaced by 2r and initial time varying in the interval [t̂ + θ̂r2, t̂ + θ̃r2] to obtain the following estimate

u(x, t) ≥ λ2M

16
,

for all x ∈ B4r(x̄) and t ∈ [t̂ + 5θ̂r2, t̂ + 5θ̃r2]. Thus iterating this procedure, we can show by induction
that for any m ∈ N

(34) u(x, t) ≥ λmM

16
,

for all x ∈ B2mr(x̄) and t ∈ [sm, tm], where

sm = t̂ + θ̂r2
4m − 1

3
and tm = t̂ + θ̃r2

4m − 1

3
.

We fix m in such a way that 2ρ < 2mr ≤ 4ρ; since x̄ ∈ Bρ(x0), we then have the inclusion Bρ(x0) ⊂
B2mr(x̄). Recalling that r = εη(ρ− s0)/16, we obtain

(ρ− s0)−ξ =

(

24

εη
r

)−ξ

=
(εη)ξ

24ξrξ
≥ (εη)ξ2(m−6)ξρ−ξ.

Hence equation (34) can be rewritten as follows

u(x, t) ≥ λmM

16
= λm (ρ− s0)−ξ

16
≥ (2ξλ)m(εη)ξ2−6ξ−4ρ−ξ = (2ξλ)m(εη)ξ2−6ξ−4u(x0, 0).

for any x ∈ Bρ(x0) and t ∈ [sm, tm].

We now fix c2 > 0 and choose θ̂ in such a way that 16
3 θ̂ < c2. With this choice, since 2mr ≤ 4ρ, we

have

(35) sm ≤ θ̂r2
4m

3
≤ θ̂

16

3
ρ2 < c2ρ

2.

Once θ̂ has been fixed, we have λ; we now fix ξ = − log2 λ. With these choices also the radius r is fixed
and so m is chosen in such a way that

1 − log2 r ≤ m ≤ 2 − log2 r.

We draw the conclusion that

u(x, t) ≥ c0u(x0, 0)

with c0 := (εη)ξ2−6ξ−4 for all x ∈ Bρ(x0) and t ∈ [sm, tm].
Notice that by (35) we have got two alternatives. Either c2ρ

2 ∈ [sm, tm] or c2ρ
2 > tm. In the former

case, the proof is completed by taking c1 = c−1
0 . Whereas in the latter case, we can select t̃ ∈ [sm, tm]

such that

u(x, t̃) ≥ c0u(x0, 0)



24 KINNUNEN, MAROLA, MIRANDA JR. AND PARONETTO

for all x ∈ Bρ(x0). We can assume that θ̂ is small enough such that t̃ + θ̂ρ2 < c2ρ
2. By expansion of

positivity, Proposition 5.3, we then obtain that

u(x, t) ≥ λc0u(x0, 0)

for all x ∈ B2ρ(x0) and t ∈ [t̃ + θ̂ρ2, t̃ + θ̃ρ2]. If c2ρ
2 < t̃ + θ̃ρ2, then the proof is completed by selecting

c1 = (λc0)−1. If this was not the case, we could restrict the previous inequality on Bρ(x0), and so

iterating the procedure, adding the condition that θ̂ ≤ θ̃, using the fact that the estimate is already true

on [t̃ + θ̂ρ2, t̃ + θ̃ρ2],

u(x, t) ≥ λ2c0u(x0, 0)

for each x ∈ Bρ(x0) and t ∈ [t̃+ θ̂ρ2, t̃+ 2θ̃ρ2]. By induction, if k is an integer such that t̃+ kθ̃ρ2 ≥ c2ρ
2,

then

u(x, t) ≥ λkc0u(x0, 0)

for every x ∈ Bρ(x0) and t ∈ [t̃+ θ̂ρ2, t̃+ kθ̃ρ2]. It is crucial to select such an index k which depends only

on the class and not on the function. We then take k in such a way that t̃+kθ̃ ≥ c2ρ
2. As −ρ2 ≤ t̃ ≤ c2ρ

2

the index k has to be chosen in such a way that both 1 + c2 ≤ kθ̃ and t̃ + kθ̃ remains in the domain of
reference. Notice that 1 + c2 ≤ 2. Hence there exists k such that 2 ≤ kθ̃ ≤ 3, and we are done with the
proof. �
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