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1 Introduction

Let X be a complete metric space equipped with a metric d and a Borel regular outer measure
μ satisfying the doubling condition. A locally integrable function f : X → R is of bounded
mean oscillation, denoted as f ∈ BMO(X), if

‖ f ‖∗ = sup
∫
−

B
| f − fB | dμ < ∞,

where the supremum is taken over all balls B ⊂ X . We discuss invariance properties of
BMO-functions. More precisely, we extend a characterization of Gotoh [7,8] of mappings
that preserve BMO to the metric setting. A μ-measurable map F : X → X is a BMO-map if
F−1(E) is aμ-null set for eachμ-null set E ⊂ X , and for every f ∈ BMO(X) the composed
map CF ( f ) = f ◦ F is in BMO(X). The first condition guarantees the uniqueness of the
BMO-map. Moreover, the composition operator CF is a bounded operator from BMO(X) to
BMO(X).

The class of BMO-functions is used, for example, in harmonic analysis, partial differential
equations and quasiconformal mappings. Indeed, the first invariance property for BMO-
functions was obtained by Reimann [16], where he showed that a homeomorphism is a
BMO-map if and only if it is quasiconformal, provided the homeomorphism is assumed
to be differentiable almost everywhere. Later Astala showed in [1] that the differentiability
assumption is superfluous for a suitably localized result. The advantage of the approach by
Gotoh [7] is that it applies to general measurable functions and hence is more suitable to
extensions to themetric setting. The Euclidean theory for BMO-functions is well understood,
but not so much in a general metric measure space. For related metric space results we refer
to [3,12,14,15] and also to [2, Section 3.3].

We generalize the construction of certain extremal BMO-functions by Uchiyama [19] (see
also [5, Section 2]) to doubling spaces. The result is stated inTheorem2.1 and it constitutes the
first part of the present paper. In the second part, we consider characterizations of BMO-maps
between doubling spaces. Our main result is stated in Theorem 3.1. The characterizations in
Theorem 3.1 are along the lines of the ones due to Gotoh [7,8].

2 Construction of certain BMO-functions

Throughout the paper, X is a complete metric space equipped with a metric d and a Borel
regular outer measure μ satisfying the doubling condition. An open ball

B(x, r) = {y ∈ X : d(y, x) < r}, x ∈ X, r > 0,

is simply denoted by B, we write rad(B) for the radius of the ball B, and λB = {y ∈ X :
d(y, x) < λr}, λ > 0, is the ball with the same center, but the radius dilated by the factor
λ.

In this paper, the doubling condition means that there exists a constant cD > 1 such that
for all x ∈ X , 0 < r < ∞ and y ∈ X such that B(x, 2r) ∩ B(y, r) 
= ∅, we have

μ(B(x, 2r)) ≤ cDμ(B(y, r)).

Notice that this condition is usually required to hold only for x = y, but if this stan-
dard doubling condition is valid with some uniform constant cμ, then μ(B(x, 2r)) ≤
μ(B(y, 8r)) ≤ c3μμ(B(y, r)), i.e. our version of the standard doubling condition is satisfied
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A characterization of BMO self-maps 407

with cD = c3μ. The standard doubling condition implies that if B(x, R) ⊂ X , y ∈ B(x, R),
and 0 < r ≤ R < ∞, then

μ(B(y, r))

μ(B(x, R))
≥ c−2

μ

(
r

R

)log2 cμ

.

We refer, for instance, to [2, Lemma 3.3].
We recall that a locally integrable function f : X → R has bounded mean oscillation,

denoted as f ∈ BMO(X), if

‖ f ‖∗ = sup
∫
−

B
| f − fB | dμ < ∞,

where the supremum is taken over all balls B ⊂ X . We will identify functions which only
differ by a constant; we shall call ‖ f ‖∗ the BMO-norm of f . Here both fB and the barred
integral

∫−B f dμ denote the integral average of f over a ball B.
The following theorem is a metric space counterpart of a construction of certain BMO-

functions in Uchiyama [19] and Garnett–Jones [5].

Theorem 2.1 Let λ > 1 and let E1, . . . , EN , N ≥ 2, be μ-measurable subsets of X such
that

min
1≤ j≤N

μ(E j ∩ B)

μ(B)
≤ c−4λ

D (2.1)

for any ball B ⊂ X. Then there exist functions { f j }N
j=1 such that

N∑
j=1

f j (x) = 1, (2.2)

and for each 1 ≤ j ≤ N
0 ≤ f j (x) ≤ 1, (2.3)

and
f j (x) = 0 μ−almost everywhere on E j , (2.4)

and moreover,

‖ f j‖∗ ≤ c1
λ

. (2.5)

Here c1 is a constant that only depends on cD and N. Conversely, if there exists { f j }N
j=1 that

satisfy (2.2)–(2.4) and

‖ f j‖∗ ≤ c2
λ

holds with a sufficiently small constant c2, only depending on cD and N, for every 1 ≤ j ≤ N,
then (2.1) holds.

Before the proof of the theorem, we fix some notation and state few lemmas that will be
needed later. Let q be a large integer, depending only on cD and N , such that

1 + Nc6Dq ≤ 2q . (2.6)

For every k ∈ Z, let rk = 2−kq and letDk be a maximal set of points such that d(x, y) ≥ 1
2rk

whenever x, y ∈ Dk . Let D = ⋃
k∈Z Dk . Moreover, let

Bk = {B(x, rk) : x ∈ Dk} .
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408 J. Kinnunen et al.

From the maximality of the set Dk it follows that for every k ∈ Z,

X =
⋃

B∈Bk

B.

We say that a function a ∈ C(X) is adapted to a ball B = B(x, r), if

supp a ⊂ B(x, 2r) and |a(x) − a(y)| ≤ d(x, y)

r
.

For a ball B, we set

g j (B) = logcD

μ(B)

μ(E j ∩ B)
, 1 ≤ j ≤ N . (2.7)

Let us state the following simple lemma for the function g j .

Lemma 2.2 Let k be a positive integer. If B1 ⊂ B2 and ck
Dμ(B1) ≥ μ(B2) for the balls B1

and B2 in X, then

g j (B1) ≥ g j (B2) − k.

Proof Clearly

g j (B1) = logcD

μ(B1)
μ(B1∩E j )

≥ logcD

c−k
D μ(B2)

μ(B2∩E j )
= g j (B2) − k.

��
The next result is well known for the experts, but we recall it here.

Lemma 2.3 Let f ∈ BMO(X). Then

1
2‖ f ‖∗ ≤ sup

∣∣∣∣
∫

X
f g dμ

∣∣∣∣ ≤ ‖ f ‖∗,

where the supremum is taken over all functions g for which there exists a ball B such that

supp g ⊂ B, ‖g‖∞ ≤ 1

μ(B)
, and

∫
X

g dμ = 0.

Conversely, if f is a locally integrable function on X and the supremum above is finite, then
f ∈ BMO(X) with the above norm estimate.

Proof First notice that for any g as above, we have∣∣∣∣
∫

X
f g dμ

∣∣∣∣ =
∣∣∣∣
∫

X
(f − fB)g dμ

∣∣∣∣ ≤
∫
−

B
| f − fB | dμ ≤ ‖ f ‖∗.

This gives the upper bound.
To see the lower bound, let ε > 0 and let B be a ball such that

‖ f ‖∗ ≤
∫
−

B
| f − fB | dμ + ε.

Let h ∈ L∞(B) with ‖h‖L∞(B) ≤ 1 be a function for which∫
B

| f − fB | dμ =
∫

B
( f − fB)h dμ. (2.8)
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Since
∫

B( f − fB) dμ = 0, we have∫
B

| f − fB | dμ =
∫

B
( f − fB)(h − h B) dμ. (2.9)

Define

g = (h − h B)χB

2μ(B)
.

Then

supp g ⊂ B, ‖g‖L∞(B) ≤ 1

μ(B)
and

∫
X

g dμ = 0.

Moreover ∫
X

f g dμ = 1

2μ(B)

∫
B

f (h − h B) dμ

= 1

2μ(B)

∫
B
( f − fB)(h − h B) dμ. (2.10)

By combining the Eqs. (2.9) and (2.10) we conclude that∫
B

| f − fB | dμ = 2μ(B)

∫
X

f g dμ

and ∫
X

f g dμ = 1

2

∫
−

B
| f − fB | dμ ≥ 1

2
(‖ f ‖∗ − ε).

The claim follows by passing ε → 0.
The Eq. (2.8) together with the above inequalities also indicates that the finiteness of

sup
∣∣∫

X f g dμ
∣∣ implies f ∈ BMO(X). ��

The proof of the metric space version of the following John-Nirenberg lemma can be
found for example in Theorem 3.15 in [2]. See also [3] and [15].

Lemma 2.4 Let B ⊂ X be a ball and f ∈ BMO(5B). Then for every λ > 0

μ({x ∈ B : | f (x) − fB | > λ}) ≤ 2μ(B) exp

(
− Aλ

‖ f ‖∗

)
.

The positive constant A depends only on the doubling constant cD.

We are ready for the proof of the main result of this section.

Proof of Theorem 2.1 The necessity part of the theorem is an immediate consequence of
Lemma 2.4. Fix λ > 1 and let B be a ball. By (2.2), there exists j0 such that

( f j0)B ≥ 1

N
.

Thus, by Lemma 2.4 and (2.4), we have

μ(B∩E j0 )

μ(B)
≤ μ({x∈B : | f j0 (x)−( f j0 )B |≥1/N })

μ(B)

≤ 2e−A/(N‖ f ‖∗) ≤ 2 exp
(
− Aλ

Nc2

)
≤ c−4λ

D ,

if c2 is chosen to be small enough. This completes the proof of the necessity part of Theo-
rem 2.1.
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410 J. Kinnunen et al.

Then we consider the sufficiency. By (2.1), we have

μ

⎛
⎝ N⋂

j=1

E j

⎞
⎠ = 0.

Thus, if λ > 1 is smaller than a given number, then the functions

f j =
χEc

j∑N
k=1 χEc

k

, 1 ≤ j ≤ N ,

satisfy the desired properties (we denote the characteristic function of a set A by χA). So we
may assume that λ is large enough.

First, we assume that
E1, . . . , EN ⊂ B0 (2.11)

for some B0 ∈ B0. We will inductively construct the sequences of BMO functions { f j,h}∞h=1,
1 ≤ j ≤ N , such that

N∑
j=1

f j,h(x) = λ, (2.12)

0 ≤ f j,h(x) ≤ λ, (2.13)

f j,h(x) ≤ g j (B) for every x ∈ B, if B ∈ Bh, (2.14)

and
‖ f j,h‖∗ ≤ c1. (2.15)

If the functions f j,h above have been constructed, there exists a sequence 1 ≤ h1 < h2 < . . .

such that { f j,hk }∞k=1 converge weak* in L∞ as k → ∞, since ‖ f j,h‖∞ ≤ λ by (2.13). We
set

f j = weak∗ − lim
k→∞

f j,hk

λ
, 1 ≤ j ≤ N .

Then (2.2) and (2.3) follow from (2.12) and (2.13). Let g be as in Lemma 2.3. Then∣∣∣∣
∫

f j g dμ

∣∣∣∣ = 1

λ

∣∣∣∣ limk→∞

∫
f j,hk g dμ

∣∣∣∣ ≤ 1

λ
lim sup

k→∞
‖ f j,hk ‖∗ ≤ c1

λ
.

Thus (2.5) with constant 2c1 follows from Lemma 2.3. Since, by Lebesgue’s theorem,

lim
r→0

sup
B�x

rad(B)≤r

g j (B) = 0

for μ-almost every x ∈ E j , we have by (2.14)

lim
h→0

f j,h(x) = 0

for μ-almost every x ∈ E j . Thus (2.4) follows. Hence { f j }N
j=1 are the desired functions.

To remove the restriction (2.11), we take balls Bp ∈ B−p , p = 1, 2, . . ., such that
Bp−1 ⊂ Bp for every p, and we can construct f j,p such that all other conditions are as for
B0, except that

f j,p = 0 on E j ∩ Bp.
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A characterization of BMO self-maps 411

Then there exists a sequence 1 ≤ p1 < p2 . . . such that { f j,pk }∞k=1 converge weak* in L∞.
Then

f j = weak∗ − lim
k→∞ f j,pk , 1 ≤ j ≤ N ,

are the desired functions.
Thus, to complete the proof Theorem 2.1 we shall construct a sequence of functions that

satisfy the conditions (2.12)–(2.15). The proof is organized as follows. In Lemma 2.5, we
will construct the sequence { f j,h}∞h=0, 1 ≤ j ≤ N , and show that these functions satisfy the
conditions (2.12)–(2.14). And finally, in Lemma 2.7, we show that the condition (2.15) is
valid for the functions.

Lemma 2.5 Let E1, . . . , EN satisfy (2.1) and (2.11). Then there exist { f j,h} and A j,h ⊂ Bh

having the properties (2.12)–(2.14) and satisfying the following conditions

| f j,h(x) − f j,h(y)| ≤ 2(h+1)q d(x, y), (2.16)

A j,h = {B ∈ Bh : sup
B

f j,h−1 > g j (B)}, (2.17)

f j,h(x) ≥ f j,h−1(x) − c3Dq, (2.18)

and
f j,h(x) ≥ f j,h−1(x) for x /∈

⋃
B∈A j,h

2B. (2.19)

Proof By (2.1), we have

max
1≤ j≤N

g j (B0) ≥ 4λ.

Set

s(B0) = min{ j : 1 ≤ j ≤ N , g j (4B0) ≥ 4λ},

fs(B0),0 = λ, and f j,0 = 0 for j 
= s(B0).

Assume now that the functions f1,k−1, . . . , fN ,k−1 have been defined and satisfy the condi-
tions (2.12)–(2.14), (2.16), (2.18) and (2.19). Define A j,k by (2.17). For any ball B, let bB

denote a function that is adapted to B, 0 ≤ bB ≤ 1 and bB = 1 on B. Let A j,k = {Bm}p
m=1.

Set aB1 = min{qbB1 , f j,k−1} and

aBm = min

{
qbBm , f j,k−1 −

m−1∑
n=1

aBn

}
for m = 2, . . . , p.

Since the supports of {bBm } overlap at most c3D times, the functions c−3
D q−1aBm are adapted

to Bm . Set

f̃ j,k = f j,k−1 −
∑

B∈A j,k

aB = f j,k−1 − v j,k .

Since

f̃ j,k = max

⎧⎨
⎩ f j,k−1 −

∑
B∈A j,k

qbB , 0

⎫⎬
⎭ ,
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412 J. Kinnunen et al.

we see that { f̃ j,k} satisfy (2.13), (2.18) and (2.19).
If B ∈ A j,k and x ∈ B, then by Lemma 2.2

f̃ j,k(x) ≤ max{ f j,k−1(x) − q, 0} ≤ max{g j (B̃) − q, 0} ≤ g j (B),

for every B̃ ∈ Bk−1 such that B ⊂ B̃.
If B ∈ Bk \ A j,k and x ∈ B, then

f̃ j,k(x) ≤ f j,k−1(x) ≤ g j (B)

by the definition of A j,k . So { f̃ j,k} satisfies (2.14). These functions do not satisfy the property
(2.12), and hence we shall modify the functions further. We set

f j,k = f̃ j,k +
∑

B∈⋃N
m=1 Am,k

s(B)= j

aB = f̃ j,k + w j,k .

The modified sequence { f j,k} satisfies (2.12). Also the conditions (2.13), (2.18), and (2.19)
are met since aB ≥ 0.

Let us next look at the condition (2.14). If B ∈ Bk and w j,k = 0 on B, then

f j,k = f̃ j,k ≤ g j (B) on B,

since f̃ j,k satisfies (2.14). If B ∈ Bk and w j,k 
= 0 on B, then, by the definition of w j,k , there
exists a ball B̃ ∈ Bk such that

B ∩ 2B̃ 
= ∅ and g j (4B̃) ≥ 4λ.

Then B ⊂ 4B̃. By Lemma 2.2,

g j (B) ≥ g j (4B̃) − 2 ≥ λ.

So by (2.13), we have

f j,k(x) ≤ λ ≤ g j (B)

and consequently (2.14) holds.
Let us show that the condition (2.16) holds. If x, y ∈ B̃ and B̃ ∈ Bk , then

|(−v j,k(x) + w j,k(x)) − (−v j,k(y) + w j,k(y))|
≤ ∑

B∈⋃N
m=1 Am,k

|aB(x) − aB(y)| (2.20)

Since the supports of {aB}B∈⋃m Am,k overlap at most Nc3D times, (2.20) is dominated by

Nc3D · c3Dq · d(x, y)

rk
= Nc6Dq2qkd(x, y).

From this we conclude that

| f j,k(x) − f j,k(y)| ≤ | f j,k−1(x) − f j,k−1(y)| + Nc6Dq2qkd(x, y)

≤ (1 + Nc6Dq)2kqd(x, y) ≤ 2(k+1)qd(x, y),

where we used (2.16) for f j,k−1, and also the inequality (2.6). ��
Lemma 2.6

f j,h(x) ≤ g j (B) − 1

3
log2

r

rh
+ 8 · 2q + 6

for every x ∈ B = B(y, r) for any B such that r ≤ 4rh.
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A characterization of BMO self-maps 413

Proof There are at most c3D balls in B1, . . . , Bk with the centers inDh such that Bi ∩ B 
= ∅.
Let

δ = min
1≤i≤k

g j (Bi ) = g j (Bi0).

By (2.14)

inf
x∈B

f j,h(x) ≤ δ,

and by (2.16) we have

f j,h(x) ≤ δ + 2(h+1)q2r ≤ δ + 8 · 2q

whenever x ∈ B.
On the other hand,

g j (B) = logcD

μ(B)

μ(B ∩ E j )

≥ logcD

μ(B)∑
i μ(Bi ∩ E j )

≥ logcD

μ(B)

c3D maxi {μ(Bi ∩ E j )}
= logcD

μ(B)

μ(Bi0)
+ logcD

μ(Bi0)

μ(Bi0 ∩ E j )
+ logcD

1

c3D

≥ logcD

μ(B)

μ(Bi0)
+ δ − 3

≥ 1

3
log2

r

rh
+ δ − 6.

The desired result follows from the two previous estimates. ��
We finish to proof of Theorem 2.1 by proving the following lemma.

Lemma 2.7 ‖ f j,h‖∗ ≤ c1.

Proof Let B = B(x, r) be any ball. If r ≤ 2−hq then, by (2.16), we have

inf
c∈R

∫
−

B
| f j,h − c|dμ ≤ 2q . (2.21)

If 0 ≤ n < h and 2−(n+1)q < r ≤ 2−nq , let

β j =
∫
−

B
f j,n dμ.

Notice that by Lemma 2.6,

β j ≤ g j (4B) + 1

3
q + 8 · 2q + 6. (2.22)

We will show that ∫
−

B
| f j,h − β j | dμ ≤ C. (2.23)
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414 J. Kinnunen et al.

Let
{x ∈ B : | f j,h(x) − β j | ≥ α}

= {x ∈ B : f j,h(x) < β j − α} ∪ {x ∈ B : f j,h(x) > β j + α}
=: G(B, j, α) ∪ H(B, j, α).

(2.24)

First, we estimate μ(G(B, j, α)). Let α > 2q+1. Note that f j,n(x) > β j − 2q+1 on B by
(2.16). So if x ∈ G(B, j, α) then, by (2.19), there exists B̃ ∈ A j,k , n < k ≤ h, such that
x ∈ 2B̃ and f j,k(x) < β j − α. So by (2.18), we have

f j,k−1(x) < β j − α + c3Dq,

and by (2.16)

f j,k−1(y) < β j − α + c3Dq + 3

for every y ∈ B̃. Thus, by the definition of A j,k , we obtain

g j (B̃) < β j − α + c3Dq + 3.

By the above, we can use the standard 5-covering theorem ([2, Lemma 1.7]) and take disjoint
balls {Bm} ⊂ ⋃

n<k≤h A j,k such that

Bm ⊂ 4B, G(B, j, α) ⊂
⋃
m

5Bm,

and
g j (Bm) < β j − α + c3Dq + 3. (2.25)

Thus

μ(G(B, j, α)) ≤ c3D
∑

m

μ(Bm) = c3D
∑

m

μ(E j ∩ Bm)c
g j (Bm )

D

≤ Cc
β j −α

D

∑
m

μ(E j ∩ Bm)

≤ Cc
g j (4B)−α

D

∑
m

μ(E j ∩ Bm)

≤ Cc
g j (4B)−α

D μ(E j ∩ 4B) ≤ Cμ(B)c−α
D . (2.26)

Here we used first (2.7), then (2.25), (2.22) and finally (2.7) again.
Let us then estimate the measure μ(H(B, j, α)). Let α > (N − 1)2q+1. Note that∑N
m=1 βm = λ by (2.12). So if x ∈ H(B, j, α), then

∑
1≤m≤N , m 
= j

fm,h(x) = λ − f j,h(x) =
N∑

m=1
βm − f j,h(x)

=
( ∑
1≤m≤N , m 
= j

βm

)
− (

f j,h(x) − β j
)

<

( ∑
1≤m≤N , m 
= j

βm

)
− α.

Thus ∑
1≤m≤N

m 
= j

(βm − fm,h(x)) > α.
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A characterization of BMO self-maps 415

So

x ∈
⋃

1≤m≤N
m 
= j

G(B, m, α/(N − 1)),

and consequently

H(B, j, α) ⊂
⋃

1≤m≤N
m 
= j

G(B, m, α/(N − 1)).

By (2.26), we have

μ(H(B, j, α)) ≤ C(N − 1)μ(B)c−α/(N−1)
D . (2.27)

Thus, if 2−hq ≤ r ≤ 1, then (2.23) follows from (2.26) and (2.27). If r > 1, then put
βs(B0) = λ and β j = 0 for j 
= s(B0). Then (2.23) follows from the same argument. Thus
Lemma 2.7 follows from (2.21) and (2.23).

The proof of Theorem 2.1 is now complete. ��

3 Characterizations of BMO-maps

We say that a μ-measurable map F : X → X is a BMO-map if

(I) F−1(E) is a μ-null set for each μ-null set E ⊂ X ,
(II) for every f ∈ BMO(X) the composed map CF ( f ) = f ◦ F is in BMO(X).

We shall prove a metric space generalization of a theorem due to Gotoh [7, Theorem 3.1]
which characterizes BMO-maps between doubling metric measure spaces. In the proof we
apply Uchiyama’s construction proved in Sect. 2. The condition (3.1) has a similar flavor as
the conditions in [6] and [11] related to invariance properties of quasiconformal mappings.

Theorem 3.1 Suppose that F : X → X is μ-measurable. Then the following conditions are
equivalent:

(i) There exist positive finite constants K and α such that for an arbitrary pair of μ-
measurable subsets E1, E2 of X we have

sup
B

min
k=1,2

μ(F−1(Ek) ∩ B)

μ(B)
≤ K

(
sup

B
min

k=1,2

μ(Ek ∩ B)

μ(B)

)α

, (3.1)

where the suprema are taken over all balls B in X;
(ii) There exist constants 0 < γ < 1/4 and λ > 0 such that for an arbitrary pair of

μ-measurable subsets E1, E2 of X satisfying

sup
B

min
k=1,2

μ(Ek ∩ B)

μ(B)
< λ,

we have

sup
B

min
k=1,2

μ(F−1(Ek) ∩ B)

μ(B)
< γ,

where the suprema are taken over all balls B in X;

123



416 J. Kinnunen et al.

(iii) F is a BMO-map with the operator norm of CF bounded by C K/α, where C depends
only on the doubling constant.

The condition (i) readily implies the condition (ii), and hence to show the equivalence of
conditions (i)–(iii), it is enough to prove implications (i)⇒(iii), (ii)⇒(iii) and (iii)⇒(i), in
Propositions 3.7, 3.8, and 3.9, respectively. The Uchiyama construction of BMO functions,
presented in Section 2, is used in the proof of Proposition 3.9. For the proof of the bound for
the operator norm, see Proposition 3.7.

Remark 3.2 Let us comment on the condition (i).

(1) Setting E1 = E2 = X in (3.1) it can be seen that K ≥ 1.
(2) If (3.1) is valid for some positive α0 it clearly holds for all 0 < α < α0. And moreover,

since the condition (3.1) is interesting mainly with small values of the exponent α, we
shall assume, without loss of generality, that α ≤ 1.

We shall next prove several lemmas on BMO functions.

Lemma 3.3 Let f ∈ BMO(X). Then

min{μ({x ∈ B : f (x) ≥ t}), μ({x ∈ B : f (x) ≤ s})}
≤ 2μ(B) exp

(
−C

t − s

‖ f ‖∗

)

for every −∞ < s ≤ t < ∞, where C is a positive constant depending on the doubling
constant cD.

Proof By symmetry, we may assume that fB ≤ (s + t)/2. Then Lemma 2.4 implies that

μ({x ∈ B : f (x) ≥ t}) ≤ μ

({
x ∈ B : | f (x) − fB | ≥ t − s

2

})

≤ 2μ(B) exp

(
− A(t − s)

2‖ f ‖∗

)
.

If fB ≥ (s + t)/2, we get a similar estimate for μ({x ∈ B : f (x) ≤ s}). ��
A converse of the statement in Lemma 3.3 is presented in the following.

Lemma 3.4 Let f : X → R be a μ-measurable function with | f | < ∞μ-almost everywhere
in X. Assume there exist positive constants C1, C2 such that for every ball B in X we have

min{μ({x ∈ B : f (x) ≥ t}), μ({x ∈ B : f (x) ≤ s})}
≤ C1μ(B) exp (−C2(t − s))

for every −∞ < s ≤ t < ∞. Then f ∈ BMO(X) and

‖ f ‖∗ ≤ 4(C1 + 1)C−1
2 exp(2C2).

In the proof of Lemma 3.4 we apply the following lemma which can be found in [7,
Lemma 4.5].

Lemma 3.5 Let λ : R → [0, 1] be a non-constant, non-decreasing function. Assume that
there exists positive constants C1, C2 such that

min{λ(s), 1 − λ(t)} ≤ C1 exp(−C2(t − s))

123



A characterization of BMO self-maps 417

for every −∞ < s ≤ t < ∞. Then there exists t0 ∈ R such that

max{λ(t0 − t), 1 − λ(t0 + t)} ≤ (C1 + 1) exp(2C2) exp(−C2t)

for each t ≥ 0.

Proof of Lemma 3.4 We apply Lemma 3.5 by setting

λ(t) = μ({x ∈ B : f (x) ≤ t})
μ(B)

.

Then by the hypothesis λ(t) meets the assumption in Lemma 3.5 with the same constants C1

and C2. Hence there exists t0 ∈ R such that the second inequality of Lemma 3.5 is valid for
every t ≥ 0. This implies that

ν(t) = μ({x ∈ B : | f (x) − t0| ≥ t}) ≤ 2(C1 + 1)μ(B) exp(2C2) exp(−C2t)

for every t ≥ 0. We obtain
∫

B
| f − fB | dμ ≤ 2

∫
B

| f − t0| dμ = 2
∫ ∞

0
ν(t) dt

≤ 4(C1 + 1)C−1
2 exp(2C2)μ(B)

from which the claim follows. ��
In Euclidean spaces the following lemma is due to Strömberg [17]. A result similar to this

has also been considered for nondoubling measures by Lerner in [13].

Lemma 3.6 Let f : X → R be μ-measurable. Assume that there exist constants 0 < γ <

(4c3D)−1, and λ > 0 such that for each ball B in X we have

inf
c∈Rμ({x ∈ B : | f (x) − c| ≥ λ}) ≤ γμ(B). (3.2)

Then f ∈ BMO(X) satisfying ‖ f ‖∗ ≤ Cλ, where a positive constant C depends only on the
doubling constant cD.

Proof Let f beμ-measurable on X , and fix γ and λ such that the hypothesis (3.2) is satisfied
for each ball in X . Fix a ball B ⊂ X and let c0 be the number where the infimum in (3.2) is
reached. For each m = 1, 2, . . . we write

S+
m = {x ∈ B : f (x) − c0 > mλ},

S−
m = {x ∈ B : f (x) − c0 < −mλ},

Sm = S+
m ∪ S−

m = {x ∈ B : | f (x) − c0| > mλ},
Em = {x ∈ B : mλ < | f (x) − c0| ≤ (m + 1)λ},

and

E0 = {x ∈ B : | f (x) − c0| ≤ λ}.
Let us estimate the measure of the set S+

m . First notice that S+
m ⊂ S+

m−1. For μ-almost every
x ∈ S+

m−1, there exists a ball Bx = B(x, rx ) such that

1

2cD
μ(Bx ) < μ(Bx ∩ S+

m−1) ≤ 1

2
μ(Bx ) (3.3)
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and

μ(B(x, r) ∩ S+
m−1) >

1

2
μ(B(x, r))

for all r < 1
2rx ; see, for example, Theorem 3.1 and Remark 3.2 in [9].

By awell known 5-covering theorem ([2, Lemma 1.7]), we can cover the set S+
m−1 by finite

or countable sequence of balls {Bi }i satisfying (3.3) such that the balls { 15 Bi }i are disjoint.
It follows from (3.3) that the infimum in (3.2) is reached with some constant c such that

c0 + (m − 2)λ ≤ c ≤ c0 + mλ

in each of the balls Bi , and hence c − c0 ≤ mλ.
We conclude, by applying the in inequality (3.2) in balls Bi , that

μ(S+
m+1) ≤

∑
i

μ(Bi ∩ S+
m+1) ≤ γ

∑
i

μ(Bi ) ≤ c3Dγ
∑

i

μ( 15 Bi )

≤ 2c3Dγ
∑

i

μ( 15 Bi ∩ S+
m−1) ≤ 2c3Dγμ(S+

m−1)

Since μ(S+
1 ) ≤ μ(S1) < γμ(B), it follows from the previous estimate that

μ(S+
2m+2) ≤ μ(S+

2m+1) ≤ (2c3Dγ )m+1μ(B)

for each m = 1, 2, . . .. Since a similar estimate holds for S−
m , we altogether have

μ(Sm) ≤ 2(2c3Dγ )m/2μ(B).

We thus conclude
∫
−

B
| f − fB | dμ ≤ 2

μ(B)

( ∞∑
m=0

∫
Em

| f − c0| dμ

)

≤ λ + 2
∞∑

m=1

(m + 1)λ
μ(Sm)

μ(B)

≤ λ

(
1 + 2

∞∑
m=1

(m + 1)(2c3Dγ )m/2

)

≤ λ

(
1 + 2

∞∑
m=1

(m + 1)2−m/2

)
.

Since the preceding estimate holds for any ball B ⊂ X , the claim follows.

Let us now turn to the proof of Theorem 3.1.

Proposition 3.7 [(i) ⇒ (iii)] Let F : X → X be μ-measurable and assume that there exist
positive finite constants K and α such that the condition (i) of Theorem 3.1 holds. Then F is
a BMO-map satisfying ‖CF‖ ≤ C K/α, where C depends on the doubling constant cD.

Proof The condition (i) implies that if E is a μ-null subset of X then also μ(F−1(E)) = 0.
Let f ∈ BMO(X) and set for each −∞ < s ≤ t < ∞

E1 = {x ∈ X : f (x) ≤ s} and E2 = {x ∈ X : f (x) ≥ t}. (3.4)
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It follows from Lemma 3.3 that

min{μ(E1 ∩ B), μ(E2 ∩ B)} ≤ 2μ(B) exp

(
−C

t − s

‖ f ‖∗

)

for all balls B in X . The condition (i) implies

min{μ(F−1(E1) ∩ B), μ(F−1(E2) ∩ B)} ≤ 2α Kμ(B) exp

(
−C

α(t − s)

‖ f ‖∗

)

for all balls B in X . Since

F−1(E1) ∩ B = {x ∈ B : ( f ◦ F)(x) ≤ s}
and

F−1(E2) ∩ B = {x ∈ B : ( f ◦ F)(x) ≥ t},
it follows from Lemma 3.4 that f ◦ F ∈ BMO(X) and (recall that α ≤ 1, see Remark 3.2)

‖CF ( f )‖∗ ≤ 4(2α K + 1)‖ f ‖∗
Cα

exp(2Cα/‖ f ‖∗)

= C K‖ f ‖∗
α

exp(Cα/‖ f ‖∗),

whereC is a positive constant depending on the doubling constant cD . Applying the preceding
estimate to τ f , τ > 0, and letting τ → ∞, we obtain that ‖CF‖ ≤ C K/α. ��
Proposition 3.8 ((ii) ⇒ (iii)) Let F : X → X be μ-measurable and assume that there exist
constants 0 < γ < (4c3D)−1 and λ > 0 such that the condition (ii) of Theorem 3.1 holds.
Then F is a BMO-map satisfying ‖CF‖ ≤ Cλ, where C depends on the doubling constant
cD and γ .

Proof The condition (ii) implies that if E is a μ-null subset of X then also μ(F−1(E)) = 0.
Let f ∈ BMO(X) and assume, without loss of generality, that ‖ f ‖∗ = 1. We define the

sets E1 and E2 for each −∞ < s < t < ∞ as in (3.4). We apply Lemma 3.3 and obtain

sup
B

min
k=1,2

μ(Ek ∩ B)

μ(B)
≤ 2 exp (−C(t − s)) < λ,

whenever t − s ≥ C1, where C1 only depends on λ and the constant C from Lemma 3.3.
Hence the condition (ii) implies that

sup
B

min
k=1,2

μ(F−1(Ek) ∩ B)

μ(B)
< γ.

For every ball B in X we set

sB = sup {s ∈ R : μ({x ∈ B : f (F(x)) ≤ s})
≤ μ({x ∈ B : f (F(x)) ≥ s + C1})} .

Since | f (F(x))| < ∞ for μ-almost every x ∈ X , we have that sB 
= ±∞. Hence

μ({x ∈ B : f (F(x)) ≤ sB − 1}) < γμ(B)

and

μ({x ∈ B : f (F(x)) ≥ sB + C1 + 1}) < γμ(B).
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If we set cB = sB + C1/2 and τ = 1 + C1/2, we obtain

μ({x ∈ B : | f (F(x)) − cB | ≥ τ }) ≤ 2γμ(B).

The claim follows from Lemma 3.6. ��
We shall apply the Uchiyama construction in the proof of the following result.

Proposition 3.9 ((iii) ⇒ (i)) Let F : X → X be a BMO-map. Then there exist positive
constants K and β, depending only on the doubling constant cD, such that the condition (i)
of Theorem 3.1 holds with α = β/‖CF‖.

Proof Let E1 and E2 be μ-measurable subsets in X and let λ > 0 be such that

c−4λ
D = sup

B
min

k=1,2

μ(Ek ∩ B)

μ(B)
.

By Theorem 2.1 there exist functions f1 and f2, both in BMO(X), such that f1 + f2 = 1,
0 ≤ fk ≤ 1, fk = 0 on Ek , and ‖ fk‖∗ ≤ C1/λ for k = 1, 2, where a positive constant C1

depends on the doubling constant cD . Define for k = 1, 2 the composed function gk = fk ◦F .
Then g1 + g2 = 1, 0 ≤ gk ≤ 1, gk = 0 on F−1(Ek), and ‖gk‖∗ ≤ C1‖CF‖/λ for k = 1, 2.

Let us fix a ball B in X . Clearly, we may assume that (g1)B ≥ 1/2. Then by Lemma 2.4
we obtain

μ(F−1(E1) ∩ B)

μ(B)
≤ μ({x ∈ B : |g1(x) − (g1)B | ≥ 1/2})

μ(B)

≤ 2 exp(−Cλ/‖CF‖),
where C is a positive constant depending on the doubling constant cD . By plugging in the
value of λ, we obtain

sup
B

min
k=1,2

μ(F−1(Ek) ∩ B)

μ(B)
≤ 2

(
sup

B
min

k=1,2

μ(Ek ∩ B)

μ(B)

)C/‖CF ‖

which completes the proof. ��
3.1 Ap-weights and BMO-maps

We close this paper by discussing the connection between Muckenhoupt Ap-weights and
BMO-maps.

It is well known that if ω is an Ap-weight for some 1 ≤ p < ∞, then logω ∈ BMO(X),
and on the other hand, whenever f ∈ BMO(X), then eδ f is an Ap-weight for some δ > 0
and 1 ≤ p < ∞. We refer to [4] for this result in the Euclidean setting. It straightforward
to verify that the result has its counterpart also in metric measure spaces with a doubling
measure.

We can add the following condition to the list in Theorem 3.1:
(iv) For each Ap-weight ω, with some 1 ≤ p < ∞, the composed map ωδ ◦ F is an

Ap′ -weight for some positive δ and 1 ≤ p′ < ∞.
In Euclidean spaces, the condition (iv) can be stated in terms of A∞-weights, see [8,

Corollary 3.3], and these weights have several but equivalent characterizations. In general
metric spaces A∞-weights have first been defined and studied in [18]. In this generality,
however, these different conditions are not necessarily equivalent. In particular, the class of
A∞-weights canbe strictly larger than theunionof Ap-weights [18]. Several characterizations
for A∞-weights and their relations in doubling metric measure spaces have also been studied
in [10].
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