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The p-parabolic equation

The evolutionary p-Laplace (or p-parabolic) equa-

tion is

∂u

∂t
− div(|∇u|p−2∇u) = 0, 1 < p <∞.

When p = 2 we have the standard heat equa-

tion.

In this talk, we assume that p ≥ 2.
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More general structure conditions

Our arguments also apply to more general equa-

tions of the type

∂u

∂t
− divA(∇u) = 0,

where A is a Carathéodory function and satis-

fies the standard structural conditions

A(∇u) · ∇u ≥ α|∇u|p

and

|A(∇u)| ≤ β|∇u|p−1,

where α and β are positive constants.

Sometimes A is also assumed to be monotone.
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Structure

The equation is nonlinear: The sum of two

solutions is NOT a solution, in general.

Constants CAN be added to solutions.

Solutions CANNOT be scaled.

The minimum of two (super)solutions is a su-

persolution. In particular, the truncations

min(u, k), k = 1,2, . . . ,

are supersolutions.
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Classes of supersolutions

(i) Weak supersolutions (test functions under

the integral).

(ii) Superparabolic functions (defined through

a comparison principle).

(iii) (Very) weak solutions to a measure data

problem.
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The plan of the talk

I. Superparabolic (supercaloric) functions.

II. Existence and connections to a measure

data problem.

III. Nonlinear parabolic (thermal) capacity and

the infinity set of a superparabolic function.
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I. Superparabolic functions
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Weak solutions

Let Ω ⊂ Rn be an open set and T > 0. A

function

u ∈ Lploc(0, T W
1,p
loc (Ω)),

is a weak solution of

∂u

∂t
− div(|∇u|p−2∇u) = 0

in ΩT = Ω× (0, T ) if∫ T
0

∫
Ω

(
|∇u|p−2∇u · ∇ϕ− u

∂ϕ

∂t

)
dx dt = 0

for all ϕ ∈ C∞0 (ΩT ).

If the integral ≥ 0 for all ϕ ≥ 0, then u is a

supersolution.
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Regularity

(i) By parabolic regularity theory, solutions sat-

isfy an intrinsic parabolic Harnack inequality

and are locally Hölder continuous.

(DiBenedetto, Gianazza and Vespri, Acta Math.,

2008)

(ii) Supersolutions are lower semicontinuous.

(Kuusi, Diff. Int. Eq., 2009)

OBSERVE: No regularity in time is assumed,

in particular, for supersolutions.
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The fundamental solution

The Barenblatt solution Bp : Rn+1 → [0,∞) is

defined as

Bp(x, t)

=


t−

n
λ

(
c− p−2

p λ
1

1−p
(
|x|
t1/λ

) p
p−1

)p−1
p−2

+
, t > 0,

0, t ≤ 0,

where λ = n(p−2)+p, p > 2, and the constant

c is usually chosen so that∫
Rn
Bp(x, t) dx = 1

for every t > 0.

When p→ 2, the Barenblatt solution converges

to the heat kernel.
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Motivation

The Barenblatt solution should be the worst

possible (super)solution, although the principle

of superposition is not available in the nonlin-

ear case.
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Properties

The Barenblatt solution is a weak solution in

the upper half space

{(x, t) ∈ Rn+1 : x ∈ Rn, t > 0}

and it satisfies the equation

∂Bp
∂t
− div(|∇Bp|p−2∇Bp) = δ

in Rn+1, where the right-hand side is Dirac’s

delta at the origin, that is∫ ∞
−∞

∫
Rn

(
|∇Bp|p−2∇Bp ·∇ϕ−Bp

∂ϕ

∂t

)
dx dt = ϕ(0)

for all ϕ ∈ C∞0 (Rn+1).

In contrast with the heat kernel, which is strictly

positive, the Barenblatt solution has a bounded

support at every t > 0. Hence, disturbancies

propagate with finite speed.
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An unexpected feature

The Barenblatt solution is not a supersolution

in an open set that contains the origin. Indeed,∫ 1

−1

∫
Q
|∇Bp(x, t)|p dx dt =∞,

where Q = [−1,1]n ⊂ Rn. Hence

Bp /∈ Lploc(−∞,∞;W1,p
loc (Rn))

and is so-called VERY weak solution to a mea-

sure data problem.

In contrast, the truncated functions

min(Bp(x, t), k), k = 1,2, . . . ,

belong to the correct space and are supersolu-

tions.

OBSERVE: An increasing limit of superolu-

tions may fail to be a supersolution.
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Question

What is the class of supersolutions that is closed

under the increasing convergence?
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Superparabolic functions

A function v : ΩT → (−∞,∞] is called p-super-
parabolic, if

(i) v is finite in a dense subset of ΩT ,

(ii) v is lower semicontinuous,

(iii) v satisfies the following comparison prin-
ciple in every Dt1,t2 = D × (t1, t2) with Dt1,t2 b
ΩT : if h is a solution in Dt1,t2 and continuous
in Dt1,t2 and if h ≤ v on the parabolic boundary
of Dt1,t2, then h ≤ v in Dt1,t2.

(Kilpeläinen and Lindqvist, SIAM J. Math Anal.,
1996)

(K. and Lindqvist, J. reine Angew. Math.,
2008)

When p = 2 we have supercaloric functions
(supertemperatures).
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Remarks

(1) A superparabolic function does not, a pri-

ori, belong to a Sobolev space. The only con-

nection to the equation is through the com-

parison principle.

(2) It is enough to compare in boxes instead

of all cylindrical subdomains

(Korte, Kuusi and Parvianen, J. Evol. Eq.,

2010).
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Examples

(1) A lower semicontinuous representative of

a supersolution is a superparabolic function.

(2) The Barenblatt solution is a superparabolic

function, but not a supersolution.

(3) Any function of the form

v(x, t) = f(t),

where f is a monotone increasing lower semi-

continuous function is superparabolic.
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Increasing convergence

The class of superparabolic functions is closed

under increasing limits, provided the limit func-

tion is finite on a dense set.

OBSERVE: Supersolutions DO NOT have this

property, unless the limit function is assumed

to be bounded or to belong to the correct

parabolic Sobolev space.

(K. and Lindqvist, Ann. Mat. Pura Appl.,

2006)

(Korte, Kuusi and Parviainen, J. Evol. Eq.,

2010)
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A delicate point

The time derivative can be assumed to be an

object belonging to the dual of the parabolic

Sobolev space, but this approach does not give

a class of supersolutions which is closed under

bounded increasing convergence.

EXAMPLE. The function v : Rn+1 → R,

v(x, t) =

1, t > 0,

0, t ≤ 0,

is a supersolution and it can easily be approx-

imated by an increasing sequence of smooth

supersolutions which only depend on the time

variable. However, the time derivative of v

does not belong to the dual of the parabolic

Sobolev space.
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Viscosity = Superparabolic

Superparabolic functions are precisely the vis-

cosity supersolutions.

(Juutinen, Lindqvist and Manfredi, SIAM J.

Mat. Anal., 2001).

In particular, all results for superparabolic func-

tions hold also for viscosity supersolutions.
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Questions

Is a superparabolic function a solution in any

other sense than the viscosity sense?

What can be said about the Sobolev space

regularity of a superparabolic function?
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A summability result

Suppose that v is a superparabolic function.
Then v ∈ Lqloc(ΩT ) for every q with

0 < q < p− 1 +
p

n
.

Moreover, the weak gradient exists and ∇v ∈
L
q
loc(ΩT ) , whenever

0 < q < p− 1 +
1

n+ 1

and the function is a very weak solution. This
result is optimal, as the Barenblatt solution
shows.

In addition, every bounded superparabolic func-
tion is a weak supersolution.

(K. and Lindqvist, Ann. Sc. Norm. Sup. Pisa,
2005)

When p = 2 the result follows from represen-
tation formulas.
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Warning

The exponent for the gradient is strictly smaller

than the natural exponent p. Hence, a super-

parabolic function is only a VERY weak super-

solution.

It seems to be difficult to obtain estimates for

the very weak solutions, since we cannot use

the very weak solution as a test function.

(K. and Lewis, Duke Math. J., 2000)

(K. and Lewis, Ark. Mat. , 2002)

23



The infimal convolution

Let 0 ≤ v ≤ L. For ε > 0, define

vε(x, t) = inf
(y,τ)∈ΩT

{
v(y, τ) +

|x− y|2 + |t− τ |2

2ε

}
,

Properties

(i) vε → v as ε→ 0.

(ii) vε is locally Lipschitz continuous in ΩT .

(iii) vε is a supersolution in the set

{(x, t) ∈ ΩT : dist((x, t), ∂ΩT ) >
√

2Lε}.
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Proof of the summability result

Step 1: First assume that v is bounded.

Step 2: Approximate v with infimal convolu-
tions vε.

Step 3: vε is a supersolution.

Step 4: Caccioppoli estimates for vε.

Step 5: Caccioppoli estimates are passed over
from vε to v. This concludes the proof for
bounded functions.

Step 6: The unbounded case is reached via
min(v, k), k →∞.

Step 7: Estimates do not blow up as k → ∞
under the assumption that the boundary values
are zero on the parabolic boundary.

Step 8: A construction which reduces the
proof to the zero boundary values.
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The main estimate

Assume that v is a superparabolic function with

zero boundary values on the parabolic bound-

ary. Let vk = min(v, k). Then∫ T
0

∫
Ω
|∇vk|p dx dt

+ ess sup
0<t<T

∫
Ω
v2
k dx ≤Mk

for every k = 1,2, . . .

Proof. Choose the test functions

ϕj = (vj − vj−1)− (vj+1 − vj), j = 1,2, . . . , k

26



Summability

Let

Ek = {(x, t) ∈ ΩT : k ≤ v(x, t) < 2k}, k = 1,2, . . .

and κ = 1 + 2
n. Then

kκp|Ek| ≤
∫∫
Ek
v
κp
2k dx dt

≤
∫ T

0

∫
Ω
v
κp
2k dx dt

≤ C
∫ T

0

∫
Ω
|∇v2k|κp dx dt

(
ess sup
0<t<T

∫
Ω
v2

2k dx

)p
n

≤ CM1+p
n(2k)1+p

n.

This implies

|Ek| ≤ Ck1−p−pn, k = 1,2, . . .
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Summability concluded

∫ T
0

∫
Ω
vq dx dt ≤ |ΩT |+

∞∑
k=1

∫∫
E

2k−1

vq dx dt

≤ |ΩT |+
∞∑
k=1

2kq|E2k−1|

≤ |ΩT |+ C
∞∑
k=1

2k(q+1−p−pn) <∞.

The estimate for the gradient is similar.
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II. Equations with measure data
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Question

The Barenblatt solution is a very weak solution

of a measure data problem with Dirac’s delta.

Is every superparabolic function a solution to

a measure data problem?
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Theorem. Let v be a superparabolic function.

Then there exists a positive Radon measure µ

such that v satisfies

∂v

∂t
− div(|∇v|p−2∇v) = µ

in a very weak sense, that is,∫ T
0

∫
Ω

(
|∇v|p−2∇v·∇ϕ−v

∂ϕ

∂t

)
dx dt =

∫ T
0

∫
Ω
ϕdµ

for all ϕ ∈ C∞0 (ΩT ).

The measure µ is called the Riesz measure of

v.

Proof. The summability result implies that

v, ∇v ∈ Lp−1
loc (ΩT ).

Since the truncations are supersolutions,∫ T
0

∫
Ω

(
|∇v|p−2∇v · ∇ϕ− v

∂ϕ

∂t

)
dx dt ≥ 0

for every ϕ ∈ C∞0 (ΩT ) with ϕ ≥ 0. The claim

follows from the Riesz representation theorem.
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Existence

Let µ be a finite positive Radon measure in

ΩT . Then there is a superparabolic function v

in ΩT such that

∂v

∂t
− div(|∇v|p−2∇v) = µ

in the weak sense.

(K., Lukkari and Parviainen, J. Funct. Anal.,

2010)

(K., Lukkari and Parviainen, submitted)

REMARK. In addition, we can show that v has

zero boundary values on the parabolic bound-

ary of ΩT .
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Remarks

(1) If µ belongs to the dual of the parabolic

Sobolev space, then by functional analysis there

exists a unique solution of the above problem

with given boundary values.

However, Dirac’s delta does not belong to this

class, so that the fundamental solutions are

not covered by this.

(2) Uniqueness of the solution of the measure

data problem with given boundary values is an

open problem, since we cannot use the very

weak solution as a test function.
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Proof of the existence

Step 1: Approximate µ with smoother mea-

sures µi.

Step 2: Solve the corresponding problem with

µi.

Step 3: Show that there exists a hyperparabolic

function v such that

vi → v and ∇min(vi, k)→ ∇min(v, k)

as i→∞.

Step 4: Using the summablity results, show

that v <∞ on a dense subset.

34



III. Nonlinear parabolic capacity
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Motivation

The concept of capacity is of fundamental im-

portance in potential theory.

(1) The Wiener type criterion for the boundary

regularity is expressed in terms of capacity.

(2) Removable sets are characterized through

capacity.

(3) The infinity set of a superharmonic func-

tion can be characterized as a set of zero ca-

pacity.
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Definition

Let Ω ⊂ Rn be a regular bounded open set and

Ω∞ = Ω× (0,∞).

The parabolic capacity of E ⊂ Ω∞ is

cap (E)

= sup{µ(Ω∞) : 0 ≤ vµ ≤ 1, supp µ ⊂ E},
where µ is a Radon measure, and vµ is a solu-

tion of

∂u

∂t
− div(|∇u|p−2∇u) = µ

with zero boundary values on the parabolic

boundary of Ω∞.

When p = 2, we have the thermal capacity.

(K., Korte, Kuusi and Parviainen, to appear in

Math. Ann.)
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Remarks

(1) The potential vµ exists by the previous ex-

istence result.

(2) Since vµ is bounded, by the previous summa-

bility result vµ is a supersolution and belongs

to the correct parabolic Sobolev space. Hence,

we may restrict to the case when µ belongs to

the dual of the parabolic Sobolev space and

then the solution vµ with given boundary val-

ues is unique.

(3) The capacity is defined relative to the equa-

tion and to the reference domain Ω∞.
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Properties

(i) If E1 ⊂ E2, then cap (E1) ≤ cap (E2).

(ii) cap (
∞⋃
i=1

Ei) ≤
∞∑
i=1

cap (Ei).

(iii) If E1 ⊂ E2 ⊂ . . . , then

lim
i→∞

cap (Ei) = cap (
∞⋃
i=1

Ei).

(iv) If K1 ⊃ K2 ⊃ . . . are compact sets, then

lim
i→∞

cap (Ki) = cap (
∞⋂
i=1

Ki).
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Approximation by compact sets

For every Borel set E ⊂ Ω∞ we have

cap (E) = sup{cap (K) : K ⊂ E, K compact}.

GAIN: It is enough to have estimates for ca-

pacities of compact sets.
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Capacitary potential

Let K be a compact subset of Ω∞. Then

cap(K) = µRK(K) <∞.

Here the potential RK is the solution of the ob-

stacle problem with the obstacle χK, that is,

the pointwise infimum of superparabolic func-

tions v in Ω∞ such that v ≥ χK.

The potential RK is a weak supersolution with

zero boundary data in Ω∞. Moreover, it is a

weak solution in Ω∞ \K.
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The infinity set

Let v be superparabolic in Ω∞. Then

cap
(
{(x, t) ∈ Ω∞ : v(x, t) =∞}

)
= 0.

(K., Korte, Kuusi and Parviainen, to appear in

Math. Ann.)
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The main estimate

Let v be superparabolic in Ω∞ and λ > 1. Then

there is a constant C, independent of K, such

that

cap ({v > λ} ∩K)

≤ CµRvK(Ω∞)
(
λ1−p + λ−1/(p−1)

)
for all compact K ⊂ Ω∞. Here RvK denotes

the solution of the obstacle problem with the

obstacle vχK.
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The main idea of the proof

In the elliptic case,

min
(
v

λ
,1
)

provides an admissible function for the capacity

of the set {v > λ}, since the class of superhar-

monic functions is closed under scaling.

Because the class of superparabolic functions

is not closed under the scaling, we derive esti-

mates for the scaled obstacle problems instead.
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Open problems

(1) Wiener type criterion for the boundary re-
quality.

(2) Potential estimates for superparabolic func-
tions.

(3) Uniqueness for the measure data problem.

(4) 1 < p < 2.

(5) The dependency of the capacity of the
equation.

(6) The relations of the capacity to the Haus-
dorff measure.

(7) Removability problems for superparabolic
fuunctions.

(8) Other equations.
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Summary

In many cases supersolutions and superparabolic

functions are identified, but this is not, strictly

speaking, correct.

Fundamental Barenblatt solution is a prime ex-

ample of a superparabolic function. It reflects

the worst possible behaviour of a solution also

in the nonlinear case.

Every superparabolic function is a solution to

a measure data problem.

It is possible to develop theory for nonlinear

parabolic capacity. This concept is useful in

boundary regularity.

46


