
Regularity for a doubly nonlinear equation
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Prototypes of parabolic equations

(1) Evolutionary p-Laplace (or p-parabolic) equa-

tion

∂u

∂t
− div(|Du|p−2Du) = 0, 1 < p <∞.

(DiBenedetto, Gianazza, Vespri)

(2) The porous medium equation

∂u

∂t
−∆(|u|m−1u) = 0, 0 < m <∞.

(Caffarelli, Friedman, Vazquez)

(3) The doubly nonlinear equation

∂(|u|p−2u)

∂t
− div(|Du|p−2Du) = 0, 1 < p <∞.

(Trudinger)

When p = 2 or m = 1 we have the standard

heat equation.
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Structure

Evolutionary p-Laplace equation: Can add con-

stants but cannot scale.

The porous medium equation: Cannot add

constants and cannot scale.

The doubly nonlinear equation: Cannot add

constants but can scale.

The minimum of two solutions is a supersolu-

tion for all equations.

All equations are highly nonlinear: The sum of

two solutions is not a solution, in general.
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The plan of the talk

We consider nonnegative weak solutions of the

doubly nonlinear equation.

I. Description of the context

II. Scale and location invariant Harnack esti-

mates using Moser’s iteration scheme (Kuusi)

III. Local Hölder continuity of weak solutions

using a DiBenedetto type argument (Kuusi,

Siljander, Urbano)

IV. Higher regularity theory using DiBenedetto-

Friedman type argument (Siljander)
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Motivation

(1) Everything should be folklore, but very dif-

ficult to find in the literature when p 6= 2.

(2) There is a lack of transparent proofs in the

literature.

(3) Unexpected phenomenon: Local Hölder

continuity does not follow directly from Har-

nack estimates, since constants cannot be added

to solutions.

(4) General belief that the doubly nonlinear

equation is easier than the evolutionary p-Laplace

equation has turned out to be FALSE.
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Possible applications

(1) A possible generalization of a theorem of

Grigory’an and Saloff-Coste related to a dou-

bling condition and the Poincaré inequality in

metric measure spaces. This is related to the

work of Kumagai.

(2) A possible generalization of the boundary

Harnack principle for the time-independent p-

Laplace equation by Lewis and Nyström. Reg-

ularity results for different measures than Lebes-

gue measure play a central role in their argu-

ment.
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I. Description of the context
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Doubling measures

The Borel measure µ is doubling, if there exists

a constant D0 ≥ 1 such that

µ(B(x,2r)) ≤ D0µ(B(x, r))

for every x ∈ Rn and r > 0.

If µ is doubling and r < R, then

µ(B(x,R))

µ(B(x, r))
≤ C

(
R

r

)dµ
,

where

dµ = log2D0

is a dimension related to the measure and C is

an absolute constant.

(Coifman and Weiss)
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The Poincaré inequality

The measure is said to support a (1, p)-Poincaré

inequality if there exist constants P0 > 0 such

that ∫
B(x,r)

|u− uB(x,r)| dµ

≤ P0r

( ∫
B(x,r)

|Du|p dµ
)1/p

,

for every u ∈ C∞(Rn), x ∈ Rn and r > 0, where

uB(x,r) =
∫
B(x,r)

u dµ

=
1

µ(B(x, r))

∫
B(x,r)

u dµ

denotes the integral average.
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Doubling and Poincaré implies Sobolev

There is a constant C > 0 such that( ∫
B(x,r)

|u− uB(x,r)|
κp dµ

)1/κp

≤ Cr
( ∫

B(x,r)
|Du|p dµ

)1/p

for every x ∈ Rn and r > 0, where

κ =


dµ

dµ − p
, 1 < p < dµ,

2, p ≥ dµ.

is the Sobolev conjugate exponent (Haj lasz and

Koskela, 1995).

Here dµ is the dimension related to the measure

and the constant C = C(p,D0, P0).

A recent result of Keith and Zhong (Ann. of

Math, 2008) shows that the exponent on the

right hand side is self improving as well.
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General assumptions

From now on we assume that the measure µ

is doubling and supports a (1, p)-Poincaré in-

equality.

Moreover, we assume that the measure is non-

trivial in the sense that the measure of every

nonempty open set is strictly positive and mea-

sure of every bounded set is finite.

These are standard assumptions in analysis on

Riemannian manifolds and on more general met-

ric measure spaces, but they are NOT well un-

derstood.

Example. Muckenhoupt’s Ap-weights satisfy

these assumptions (Fabes, Kenig and Serapi-

oni, 1982).
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Elliptic Sobolev spaces

The Sobolev space H1,p(Rn, µ) is defined to be

the completion of C∞(Rn) with respect to the

norm

‖u‖1,p =
( ∫

Rn
|u|p dµ

)1/p
+
( ∫

Rn
|Du|p dµ

)1/p
.

The definition of the local Sobolev space

H
1,p
loc(Rn, µ)

is clear.
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Parabolic Sobolev space

We denote by Lp(−∞,∞;H1,p(Rn)) the space

of functions u = u(x, t) such that for almost

every t ∈ R the function x 7→ u(x, t) belongs to

H1,p(Rn, µ) and∫
R

∫
Rn

(
|u|p + |Du|p

)
dµ dt <∞.

Here

Du =
(
∂u

∂x1
, . . . ,

∂u

∂xn

)
is the spatial gradient.

Notice that the time derivative ut is deliber-

ately avoided.

The definition for the space

L
p
loc(−∞,∞;H1,p

loc(Rn, µ))

is clear.
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Weak solutions

Let 1 < p <∞. A nonnegative function

u ∈ Lploc(−∞,∞;H1,p
loc(Rn, µ))

is a weak solution of

∂(up−1)

∂t
− div(|Du|p−2Du) = 0

in Rn+1 if∫
R

∫
Rn

(
|Du|p−2Du ·Dϕ− up−1∂ϕ

∂t

)
dµ dt = 0

for all ϕ ∈ C∞0 (Rn+1).

If the integral ≥ 0 for all with ϕ ≥ 0, then u is

a supersolution. If the integral ≤ 0, then u is

a subsolution.
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Variational approach

Let K ≥ 1. A nonnegative function

u ∈ Lp(−∞,∞;H1,p(Rn, µ))

is a parabolic quasiminimizer if

1

p

∫
R

∫
Rn
|Du|p dµ dt−

∫
R

∫
Rn
up−1∂ϕ

∂t
dµ dt

≤
K

p

∫
R

∫
Rn
|D(u+ ϕ)|p dµ dt

for all ϕ ∈ C∞0 (Rn+1) (Wieser).

If K = 1, then we have weak solutions.

Observe: This definition makes sense also in

a metric measure space.
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The Barenblatt solution

The function

u(x, t) = t
−n

p(p−1) exp
(
−
p− 1

p

(|x|p
pt

) 1
p−1

)
,

where x ∈ Rn and t > 0, is a solution of the

doubly nonlinear equation with the Lebesgue

measure in the upper half space.

Observe that

u(x, t) > 0

for every x ∈ Rn and t > 0. This indicates an

infinite speed of propagation for disturbancies.
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A delicate point

Methods seem to be very sensitive for the pre-

cise form of the equation: Substitution

v = up−1

gives equation of the form

∂v

∂t
− div(v2−p|Dv|p−2Dv) = 0,

which has the same homogenuity, but is linear

with respect to the time derivative.

Since the function spaces are different, it is

NOT clear that the weak solutions are the

same as for the doubly nonlinear equation.

(Fornaro, Ivanov, Porzio, Sosio and Vespri)
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II. Scale and location invariant Harnack es-

timates
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Parabolic geometry

A natural geometry that respects the scaling

is that r in the spatial direction corresponds to

rp in the time direction.

Let 0 < σ < 1 and τ ∈ R. We denote

Q = B(x, r)× (τ − rp, τ + rp),

σQ+ = B(x, σr)×(
τ +

1

2
rp −

1

2
(σr)p, τ +

1

2
rp +

1

2
(σr)p

)
and

σQ− = B(x, σr)×(
τ −

1

2
rp −

1

2
(σr)p, τ −

1

2
rp +

1

2
(σr)p

)
.

Observe: There is a time lag already in the

case p = 2.
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Parabolic Harnack inequality

Let 1 < p <∞ and assume that the measure µ

is doubling and supports a weak (1, p)-Poincaré

inequality. Let u ≥ 0 be a weak solution and

let 0 < σ < 1. Then we have

ess sup
σQ−

u ≤ C ess inf
σQ+

u,

where the constant C depends only on p, D0,

P0 and σ.

Observe: The constant C is independent of

the scale and location.

(For p = 2 this was proved by Moser and

Trudinger in 1960’s.)
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Challenges

(1) In the case p = 2 it is known that if u > 0

is a solution, then

logu

is a subsolution to the same equation. How-

ever, if p 6= 2, then logu is NOT a subsolution

to the same equation. Instead it is a subso-

lution to a more complicated equation of a p-

parabolic type.

(2) Parabolic BMO is delicate in the case when

p 6= 2.

(3) Measure is NOT translation invariant and

does NOT scale as the Lebesgue measure.
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Ingredients of the proof

(1) Homogeneous Caccioppoli type energy es-

timates (OK).

(2) Sobolev embedding (OK).

(3) The Moser iteration scheme (OK).

(4) Parabolic BMO (replaced with Bombieri’s

real analysis lemma).
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Caccioppoli inequality

Suppose that u ≥ 0 is a weak solution. Then

there exists a constant C = C(p) such that∫
R

∫
Rn
|Du|pϕp dµ dt+ ess sup

t∈R

∫
Rn
upϕp dµ

≤ C
∫
R

∫
Rn
up|Dϕ|p dµ dt

+ C
∫
R

∫
Rn
upϕp−1

∣∣∣∣∂ϕ∂t
∣∣∣∣ dµ dt

for every nonnegative ϕ ∈ C∞0 (Rn).

Proof. Choose the test function

ϕ = uϕp.
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Bombieri’s lemma

Let ν be a Borel measure and θ, A and γ be

positive constants, 0 < δ < 1 and 0 < q ≤
∞. Let Uσ be bounded measurable sets with

Uσ′ ⊂ Uσ for 0 < δ ≤ σ′ < σ ≤ 1. Moreover, if

q <∞, we assume that the doubling condition

ν(U1) ≤ Aν(Uδ) holds. Let f be a positive

measurable function on U1 which satisfies the

reverse Hölder inequality( ∫
Uσ′

fq dν

)1/q
≤
(

A

(σ − σ′)θ
∫
Uσ
fs dν

)1/s

with 0 < s < q. Assume further that f satisfies

ν({x ∈ U1| log f > λ}) ≤
Aν(Uδ)

λγ

for all λ > 0. Then( ∫
Uδ
fq dν

)1/q
≤ C,

where C depends only on θ, δ, γ, q and A.
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III. Local Hölder continuity of weak solu-

tions
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The standard methods

Problem: Constants cannot be added to so-

lutions.

(1) De Giorgi’s and DiBenedetto’s argument

is based on estimating the distribution sets by

using Caccioppoli estimates where instead of u

we have (u−k)±. However, this kind of energy

estimates are not directly available.

(2) Moser’s argument fails, because Harnack’s

inequality does not seem to directly imply the

Hölder continuity.
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DiBenedetto’s argument

This applies to the p-parabolic equation when
we can add constants.

Reduction of oscillation: The idea is to show
that the oscillation in a cylinder is reduced by a
controlled factor when the cylinder is shrinked
by some factor.

Two alternatives:

(1) If the set where the solution is small is
small, then the solution is small almost every-
where in a subcylinder and this information is
then forwarded in time.

(2) If the set where the solution is small is
large, then the set where the solution is above
some threshold level is small also at later times.
Then a De Giorgi type iteration scheme shows
that the supremum of the solution in a sub-
cylinder gets strictly smaller.
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The doubly nonlinear equation

A dichotomy related to the equation:

(1) In large scales, when the oscillation of the

solution is big, the solution behaves like the so-

lutions of the heat equation. In this case, the

reduction of oscillation follows directly from

Harnack’s inequality.

(2) In small scales the oscillation is small, a

posteriori. In this case, the time derivative

term formally looks like

∂(up−1)

∂t
= (p− 1)up−2∂u

∂t
≈ C

∂u

∂t
.

This implies a p-parabolic type behavior and

hence DiBenedetto’s argument applies.
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Theorem. Let 1 < p <∞ and assume that the

measure is doubling and supports a weak (1, p)-

Poincaré inequality. Then every weak solution

u ≥ 0 of the doubly nonlinear equation in Rn is

locally Hölder continuous, in symbols,

u ∈ C0,α
loc (Rn).
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New features of the argument

(1) A modified Caccioppoli inequality. We

introduce a device which absorbs the nonlin-

earity in the time derivative.

(2) Forwarding in time. In the first case,

when the infimum is small, the fact that in

Harnack’s inequality the infimum is taken at

a later time than the supremum provides us a

natural way to forward information in time. In

the second case, new logarithmic lemmas are

used. After the energy estimate and the log-

arithmic lemmas have been proved the second

case follows DiBenedetto’s argument.

Observe: Harnack estimates are used in the

argument.
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New Caccioppoli estimate

Let u ≥ 0 be a locally bounded weak solution

and k ≥ 0. Then there exists a constant C =

C(p) > 0 such that∫
R

∫
Rn
|D(u− k)±|pϕp dt dµ

+ ess sup
t∈R

∫
Rn
J ((u− k)±)ϕp dµ

≤ C
∫
R

∫
Rn

(u− k)p±|Dϕ|
p dt dµ

+ C
∫
R

∫
Rn
J ((u− k)±)ϕp−1

(
∂ϕ

∂t

)
+
dt dµ

for every nonnegative ϕ ∈ C∞0 (Rn+1). Here

J ((u−k)±) = (p− 1)
∫ (u−k)±

0
(k ± s)p−2s ds.

Observe that

∂

∂t
J ((u−k)±) = ±

∂(up−1)

∂t
(u−k)±.
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IV. Higher regularity theory
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Optimal regularity

As the Barenblatt solution for the doubly non-

linear equation is C∞-smooth it raises the ques-

tion whether such regularity is true also for

general solutions.

However, the standard stationary theory for el-

liptic p-Laplacian

div(|Du|p−2Du) = 0

shows that the spatial Hölder continuity of the

gradient, in symbols

C
1,α
loc (Rn+1),

is the best possible regularity that we can have

(Lewis).
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Boundedness of the gradient

The first step in the C1,α
loc -proof is to show that

the gradient is bounded and, consequently, the

solution is spatially Lipschitz-continuous.
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The standard methods

DiBenedetto and Friedman for the p-parabolic

equation.

(1) Differentiation of the equation.

(2) Caccioppoli inequalities for the differenti-

ated equation.

(3) Moser’s iteration to show that the gradi-

ent of the solution is locally integrable to any

power.

(4) Boundedness of the gradient by a De Giorgi

type argument.
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The doubly nonlinear equation

Problem. Nonlinearity of the time derivative

term.

(1) After differentiating the equation, we will

have an extra factor of up−2 in front of the

time derivative.

(2) The obtain estimate is non-homogeneous

although the original equation admits scaling.
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The differentiated equation

∂

∂t

(
(p− 1)up−2uxi

)
− div

(
|Du|p−2Duxi +

∂

∂xi

(
|Du|p−2

)
Du

)
= 0,

i = 1,2, . . . , n
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The gradient bound

Let

rj =
r

2
+

r

2j

and denote

Qj = B(x, rj)× (t− u(x0, t0)m−2r2
j , t)

and

Q∞ = lim
j→∞

Qj.

Let 1 < p <∞ and assume that the measure is

doubling and supports a weak (1, p)-Poincaré

inequality. Let u > 0 be a continuous weak so-

lution of the doubly nonlinear equation. Then

there exists a constant C = C(p,D0, P0) > 0

such that

ess sup
Q∞

|∇u|2 ≤ C
( ∫

Q0

|Du|p dµ dt+ 1
)
.
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Open problems

(1) More direct proofs that are based only on

the definitions in the correct geometry.

(2) Necessary and sufficient Wiener type crite-

rion for the solution of the Dirichlet problem.

(3) Theory for equations with measure data.

(4) Reverse Hölder inequalities for the gradi-

ent.
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Summary

Literature for the doubly nonlinear equation is

very small.

There are unexpected difficulties in dealing with

the doubly nonlinear equation. Indeed, meth-

ods for the evolutionary p-Laplace equation are

used extensively in the arguments.

Despite of difficulties it is possible to develop

regularity theory for the doubly nonlinear equa-

tion.
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