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Weak solutions

1.1 Euler-Lagrange equation

Second order elliptic equations of divergence type appear in the calculus of varia-
tions, which studies minimizers of certain integrals modeling, for example, the
energy of a system. The underlying function space is usually assumed to be a
Sobolev space, but we begin with a brief introduction under the assumption that
minimizers exist and that all appearing functions are smooth. Later we consider
the corresponding problems in Sobolev spaces and show that the minimizers are
not necessarily smooth.
Let Q cR"™ be a bounded open set with a smooth boundary and let

F:QOxRxR"'—R,F=F(x,(,¢§)

be a smooth function. Smoothness in a compact set Q means that the function
and its all partial derivatives have continuous extensions from Q to Q. Consider a

variational integral

I(U)Z/F(x,u(x),Dv(x))dx

Q

for smooth functions v : Q — R satisfying the boundary condition
u=g onodQ.

A function u € C®°(Q) is a minimizer of the variational integral I(-) above with the
boundary values g, if
I(w) <I(v)

for every v € C°(Q) with v = g on Q. In particular, we have
/F(x,u(x),Du(x))dx < / F(x,u(x)+ @(x),D(u(x) + px) dx
Q Q

1
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for every ¢ € C3°(Q). Let
i(e)=Iu+ep), €cR.
If u is a minimizer, and since u + €@ = g on 9Q, the function i(¢) has a minimum

at £ = 0, which implies that i’(0) = 0. Since

e)=I(u+ep)= / F (x, u(x)+ e@(x), Du(x) + £D<p(x)) dx
Q

a direct computation by applying the chain rule and switching the order of differ-

entiation and integration shows that
i'(e) = (i 6(?5; (2, u(x) + ep(x), Du(x) + €D ) —(x)
66( (%, u(x) + ep(x), Du(x) + eDp(x)) w(x)) dx.
By setting ¢ = 0, we conclude that
0=i(0)= /Q (Li %F(x u(x), Du(x))—(x)+ G_CF(x , u(x), Du(x))<P(x))

Since ¢ has a compact support in (), an integration by parts gives

/ ( i i (iF(x u(x),Du(x))
Q

i=1 Ox; \9¢;

for every ¢ € C3°(Q2). This implies that u is a solution to the partial differential

+ (%F(x u(x), Du(x))) @x)dx=0

equation
- Z (6{ F(x,u(x), Du(x))) + %F(x u(x),Du(x)) = in Q,

or equivalently
—divA(x,u(x),Du(x))+B(x,u(x),Du(x)) =0 in Q,
where

A =A(x,u(x),Du(x)) = (iF(x, u(x),Du(x)),..., iF(x, u(x),Du(x))
0¢&1 0¢n

and 5
B =B(x,u(x),Du(x)) = a—(F(x, u(x),Du(x)).

Note that by the chain rule we have

-y

ig=1 afzach

This is the Euler-Lagrange equation associated with the variational integral I(.).

2,

-(x) + iF(x u(x),Du(x))=0 in Q.

F(x,u(x), Du(x))) 3,0% o

Observe that this is a nonlinear second order partial differential equation of
divergence form. Moreover, we have

2 2

aflaij(x ,u(x),Du(x)) = a;jaélF(x u(x),Du(x)), i.j=1,2,...,n,
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so that the coefficient matrix is symmetric. Convexity assumptions are needed to
show existence and uniqueness of minimizers in the calculus of variation. More

precisely, assume that there exists 8 > 0 such that

n 2
F(x,(,6)éE: = 01E1
,-,J-Zzlafié’éj (x,0,8):¢; = 01¢]

for every x € Q, { € R and ¢ € R”. This condition asserts that the mapping ¢ —

F(x,(,¢) is uniformly convex for every x € Q and { € R.

Example 1.1. Let
1
F(x,(,6) = Z1¢”,
Then

O paetr=2 L= 16%85 =12
—F(x ==— —— ‘=¢, 1=1,2,...,n,
& 2651‘ 2068 =% %

and (%F(x,( ,&€)=0. Thus the Euler-Lagrange equation associated with the varia-

tional integral
Iw)=1 / IDv(x)I? dx
2 Ja

is

i 2 (—F(x u(x), Du(x))) i 2 (—(x))

=1 0x; \0¢&; =10

62
=— Z —(x) =—-Au(x)=0 in Q.

i=1 xi

In other words, a minimizer with the boundary values g is a solution to the

Dirichlet problem

Au=0 in £,
u=g on 0J0Q.

for the Laplace equation.

Example 1.2. The Euler-Lagrange equation associated with the variational inte-
gral
1
Iv)== / IDv(x)|* dx — / f)v(x)dx
2Ja Q

is the Poisson equation —Au = f (exercise).

Example 1.3. Let

1 n

F(x’(7 E) = 5 ( Z al](x)fl{] + 6(2) _(f(x)’
i,j=1

where A = A(x) = (a;(x)) is a symmetric n x n matrix and ¢ € R. Then

@F(xzf)_zi-alj(x)y i:172""’n’
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and

0
a_cF(x’(,é‘) = C( - f(x)

Thus the Euler-Lagrange equation associated with the variational integral

Ly a0 2| gx e
I(v) = 2/9( Y a”(x)(?xi (x) axj(x)+cv(x) )dx /Qf(x)v(x)dx

i,j=1
1

= —/ (ADv(x)- Du(x) + cv(x)?) dx—/ fxv(x)dx,
2Ja Q

is
L
i=10x;

- (aijg—Z)+cu=f in Q.

These lectures discuss the divergence type partial differential equation in the
example above. The uniform convexity condition on the variational integral leads
to the uniform ellipticity condition on the coefficients a;;, 7,7 =1,2,...,n. This
condition is applied in the proof of the existence of a solution and in the regularity
theory for weak solutions to elliptic partial differential equations with bounded
measurable coefficients.

1.2 Second order divergence type PDEs

Let Q c R” be a bounded open set. We consider the Dirichlet boundary value

problem
Lu=f in Q,
u=g on 0Q,

where u : Q — R is the unknown function. Here f,g:Q — R are given functions
and L denotes a second order (linear) partial differential operator of the form

Lu(x)=- i Dj(a;j(x)D;u(x)) + Z b;(x)D;u(x)+ clx)u(x) (1.4)

n
i,j=1 i=1

for given coefficient functions a;;,b; and ¢, i,j = 1,...,n. Here we denote the
partial derivatives as
du
Diu(x)=—(x), i=1,...,n.
6xi
The operator can be written as

Lu(x) = —div(A(x)Du(x)) + b(x) - Du(x) + c(x)u(x)
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where
a1(x) ... apix)
alz(x) anz(x)
Alx)=
atn(x) ... apn(x)

is an n x n matrix and b(x) = (b1(x),...,b,(x)) is a column vector. The negative
sign in front of the second order terms disappears after integration by parts and
in the definition of weak solutions later. We say that (1.4) is of divergence form

and we assume the symmetry condition
a;j(x)=a;i(x) foralmostevery x€Q, i,j=1,...,n. (1.5)

Under this assumption the eigenvalues of the symmetric n x n matrix A(x) =

(a;;(x)) are real numbers.

Remark 1.6. In the constant coefficient case when every a;j, i,j =1,...,n, is
constant, we may always assume that a;; = a ;. To see this observe that D ;D;u =
D;D;u and we may replace both a;; and aj; by %(aij +a;), which does not change

the operator (exercise).

Definition 1.7. We say that the operator L in (1.4) is uniformly elliptic, if there
exists constants 0 < A < A < oo such that

MEP < Y a;j@)éé < AE?
i,j=1

for almost every x € Q and every ¢ € R”.

THE MORAL: The uniform ellipticity condition gives uniform bounds for the
speed of diffusion to each direction. In particular, the diffusion does not extinct or
blow up.

Remark 1.8. The ellipticity condition implies that the coefficient functions a;},
i,j=1,...,n, are nonnegative and essentially bounded. To see this, let i # j and
choose ¢ =(¢1,...,{p) ER"” such that {; =¢{;=1and {; =0 for k£ #i,j. Then

.Zlaij(x){igj =a;j(x)+aji(x) = 2a;;(x)
i.j=

and thus 0 < 2a;;(x) < A for almost every x € Q2. For the diagonal element, we
choose ¢ =(¢1,...,¢,) €R™ such that ¢; =1 and ¢, =0 for £ #i. Then

Y aij@)éEiEj = aii(x)

i,j=1
and thus 0 < a;;(x) < A for almost every x € Q. It follows that

laijllLo@ <A, i,j=1,...,n.
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Remark 1.9. The ellipticity condition can be written in the form
MEP < A)é-& < AP

for almost every x € Q and every ¢ € R”. In particular, this implies that for almost
every point x € ) the symmetric matrix A(x) = (a;;(x)) is strictly positive definite

and the real eigenvalues 1;(x), i = 1,...,n, of A(x) satisfy
A<sAix)< A, forevery xe€Q, i=1,...,n.

Example 1.10. If A(x)=1, b; =0, and ¢ =0, we have the Poisson equation

n 92
Lu(x) = —div(A(x)Du(x)) = —divDu(x) = — Z Z—Z(x) = —Au(x) = f(x).

i=1 0X;

For f =0, we have the Laplace equation Au = 0.

Remark 1.11. 1t is rather standard in the PDE theory that the variables are not
written down explicitly in functions unless there is a specific reason to do so. This

makes expressions shorter and, hopefully, more readable.

Remark 1.12. We shall focus on the the case p = 2, but it is possible to consider

nonlinear variational integrals
I(v)= / F(x,Dv)dx,
Q

where F : Q x R" — R satisfies the structural conditions

(1) F(-,¢)is measurable for every ¢ e R",
(2) F(x,-)is strictly convex and differentiable for every x € Q and

(3) there exist constants 0 < a < 8 < co such that
alél? < F(x,$) < BIEIP
for every x € Q and ¢ e R” with 1 < p <oco.
On the other hand, we may consider nonlinear PDEs of the form
—divA(x,Du)=0,
where A : Q x R* — R” satisfies the structural conditions

(1) A(,¢) is measurable for every ¢ € R,

(2) A(x,-)is continuous for every x € Q,

(3) |A(x,8)| <aléP~! for every x € Q and £ e R,

(4) A(x,&)-& =P for every x € Q and ¢ € R” and

(5) (A(x,&)—A(x,8)- (&' = &) >0 for every x € Q and &' # & e R™.
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Let F satisfy (1)—(3) above and A =(Aq,...,,As),

o] .
Ai(x,8) = a_fiF(x’é’)’ 1=1,2,...,n.

Then

; __y9(9 -
—divA(x,Du(x)) = — ;:21 e (aéiF(x,Du(x))) =0

is the Eular-Lagrange equation associated with the variational integral
Iv)= / F(x,Dv)dx
Q

and A satisfies (1)—(5) above with a = 2P and ¢ = a, see [14, Lemma 2.95] and
[14, Theorem 2.98].

Example 1.13. Remark 1.11 covers the p-Laplace equation
~div()DulP~2Du) =0,
is the Euler-Lagrange equation associated with the p-Dirichlet integral
I(v)= / |[Dv|? dx.
Q
For this we refer to [13] and [14].

Example 1.14. Let A(x) = (a;j(x)) be a symmetric matrix of bounded measurable

functions satisfying the ellipticity condition
2 2
AMET < Ax)E-E < AlE|

for almost every x € Q and every £ e R” with 0 < 1 < A <oo. Let

o

F(xyé-):l_lj(A(x)f{) ) 1<p<00,

and

[T

I(v)=/F(x,Dv)dx=1/(A(x)Dv(x)-Dv(x)) dx.
Q P Ja

Then F satisfies (1)~(3) in Remark 1.11 and the associated Euler-Lagrange equa-

tion is
P
2

—divA(x,Du) = — div((A(@)Dulx)- Du(x)) ? " Ax)Du(x)) = 0

with
£-1

Ax,&) = (A()E- )T A,

see [14, Example 2.101].
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1.3 Physical inferpretation

Consider a fluid moving with velocity b = (b1,...,b,) in a domain in R” and let
u = u(x,t) describe the concentration of a chemical in the fluid at point x at
moment ¢. Observe that the concentration changes in time. Assume that the total
amount of chemical in any subdomain Q' = Q changes only because of inward or
outward flux through the boundary Q). This gives

i)
— udxz/ aDu-vdS—/ ub-vdS. (1.15)
ot Jo aqy oy

where v = v(x) = (v1(x),...,v,(x)) is the outward pointing unit normal vector on
8Q' and
u ,
Du(x)-v(x)= —(x), x€0Q,
av

is the outward normal derivative of u and a > 0 is the diffusion constant. The first
integral on the right-hand side describes how much chemical comes in through the
boundary by diffusion by assuming that the flux is proportional to the gradient,
but in the opposite direction, that is, the flow is from higher concentration to
lower. Note that Du(x)-v(x) > 0, x € 0Q, if the concentration outside is greater
than inside. The second integral on the right-hand side describes the amount of
chemical that moves through the boundary by advection, that is, is transported by
the flux. The negative sign is explained by the fact that v is an outward pointing
unit normal.

By the Gauss-Green theorem
Diu(x)dx:/ u(x)v;(x)dS(x), i=1,...,n,
Q' o

By differentiating under integral and using the Gauss-Green theorem in (1.15)

/utdxz/ aDu-vdS—/ ub-vdS
Q Y Y

n n
/ aZ(Diu)vidS— ZubividS
Y =1 QY =1

we obtain

ub;v; dS)

Il

aD;u)v;dS —/

Q aQ/

S— i~

R

Il

~
]
—

Di(aDiu)dx—/ D;(ub;) dx)
Q/

Il
3

n
a Di(Diu)dx—/ Y Di(ub;)dx
i=1 Q=1

~
Il

adivDudx—/ div(ub)dx
Q/

I

alu dx—/ div(ub)dx.
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Since this holds for every Q' = ), we conclude that u satisfies the parabolic PDE

u;— alAu +div(ub)=0.

diffusion  advection

The derivation of the PDE above was done in the case when a is constant,
which means that the diffusion does not depend on the location of the point x in
the domain Q. If the diffusion is not uniform in the domain, that is, the coefficient
a depends on the location x € Q, then a is a function of x. If the diffusion is
not isotropic in the sense that it is faster to some directions than others, then
the constant diffusion matrix A(x) = ¢l can be replaced with a more general

symmetric matrix A(x) = (a;;(x)). This leads to

a n n
-— udx = Z (aijDiu)deS_Z ubividS, i,j:1,...,n.
0t Jor ij=1Jaqy iz1/aq

and the PDE becomes

n
u— Y, Djla;jD;u)+ ) Di(bju)=0.
i,j=1 i=1
—
diffusion advection

n

If the total amount of u is not conserved, then additional term cu for a creation
or depletion of chemical, for example, in chemical reactions, and external source f

appear. Then we have the nonhomogeneous PDE

n n
Uy — Z Dj(aijDiu)+ ;Di(biu)z—&+ f

S~ . N
iy=1 ! decay source

diffusion advection
Here a;; = a;j(x), b; = b;(x), ¢ = c(x) and f = f(x) are functions of x. This PDE
can be used to model physical systems including chemical concentration, heat

propagation and mass transport. If the system is in equilibrium in the sense that

the solution does not depend on time, then u; = 0 and we obtain the elliptic PDE

- Y Dj@ijDiw)+ Y Dibju)+cu=f,

ij=1 i=1

n
where a;;, b;, ¢ and f are smooth enough functions for i,j =1,...,n. Observe that
if we apply the Leibniz rule to the advection term we obtain

n n n

- Z Dj(aijDiu)+ Z b;D;u+ ZDibi +clu= f

ij=1 i=1 i=1

and thus we have a PDE of type

n
Lu=- Z Dj(aijDiu)-l-ZbiDiu-i-Cu:f, (1.16)

n
i,j=1 i=1
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where L is a second order divergence type operator as in (1.4). A function u € C2(Q)
is a classical solution of (1.16), if it satisfies the PDE at every point x € Q. In order
to be able to show the existence of solutions for general coefficient functions a;;,

bj,cand f,i,j=1,...,n, we consider a weaker notion of solution.

THE MORAL: Inorder to understand the physical interpretation of a PDE
it is better to consider an integrated version of a PDE instead of the pointwise

version.

Remark 1.17. A nondivergence form operator

n n
Lu=- Z aijDiju+ZbiDiu+cu
i,j=1 i=1

can be written as

n n n
Lu=- Z Dj(aijDiu)+Z(bi+ZDjaij)Diu+cu-
i,j=1 i=1 j=1

THE MORAL: A PDE in nondivergence form can be written in divergence
form and vice versa. The main advantage of divergence form is in the arguments

that are based on integration by parts.

1.4 Definition of weak solution

Sobolev space methods are important in existence results for PDEs. Let u € C2(Q)

be a classical solution to the Laplace equation

[\v]

no g2y
Au = —=0
g’lax

~.

and let ¢ € C°(Q). An integration by parts gives

5%y
Oz/(pAudx:/(pdivDudxz Y 5 pdx
Q Q Qj=1 6xj
n 62 n ou 8
= —u<pdx=—z —u—(pdxz—/Du-Dtpdx
= dx? ~ o 0x; Ox;
J=1/Q 0% Jj=1J/Q G5 C4j Q

for every ¢ € C3°(Q). Conversely, if u € C%(Q) and
/ Du-Dpdx=0 forevery ¢eCy(Q),
Q
then by the computation above

/ @Audx=0 forevery ¢ecCz(Q).
Q
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This implies that Au = 0 in Q. This shows that of u € C2(Q), then Au =0 in Q if
and only if

/Du-D(pdsz for every ¢ e C3(Q).
Q

THE MORAL: There are second order derivatives in the definition of a classical
solution to the Laplace equation, but in the definition above is enough to assume

that only first order weak derivatives exist.

It is useful to define the meaning of a PDE even if u ¢ C%(Q) and the coefficients
a;;¢C 1(Q). There are two main motivations for a definition of a weak solution to
a PDE.

(1) Weak solutions are sometimes more accessible than classical solutions.

(2) In some cases the classical solution does not exist at all. Thus weak

solutions may be the only solutions to the problem.

The general strategy in existence theory for PDEs is to weaken to the notion of a
solution so that a problem has a solution. Regularity theory studies whether the
PDE is strong enough to give extra regularity to a weak solution. It is natural to

begin with existence theory so that we know that the PDE has enough solutions.

Assumption: We consider L is as in (1.4) and make a standing assumption that
Q cR" is a bounded open set,

aij,bi,ceL®(Q), i,j=1,...,n

and
feL?Q).

Moreover, we assume that symmetry condition in (1.5) and the ellipticity condition
in Definition 1.7 hold true. These assumptions will not be repeated at every
occasion. Sometimes we assume more smoothess on the coefficients or on the

domain or set some of coefficients to zero, but these will be specified case by case.
Motivation: If u € C%(Q), a;j€ Ccl(Q) and p € C7°(Q) then we can integrate by
parts and Lu = f gives

/f(pdx:/ (— Z Dj(aijDiu)+ZbiDiu+cu)(pdx
Q Q i

i,j=1 i=1
n n
= / ( Y (a;jD;u)Djp+) b;Djup+ cu<p) dx
Q\i,j=1 i=1
for every ¢ € C3°(Q). Observe that there are only first order derivatives of u and

no derivatives of the coefficients a;; in the integral above.
On the other hand, if

n n
/(Z (aijDiu)Dj(p+ZbiDiu(p+cu(p) dx:/f(pdx
Q = Q

i,j=1 i=1
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for every ¢ € C3°(Q), then

n n
/(— Z Dj(aijDiu)+ZbiDiu+cu—f edx=0
Q\ ij=1 i=1

for every ¢ € C°(Q2) and consequently Lu(x) = f(x) for every x € Q.

THE MORAL: A function u € C%(Q) is a classical solution of (1.16) if and only
if it is a weak solution of (1.16) in the sense of the definition below. Observe that
the negative sign in front of the second order terms disappears after integration
by parts.

Next we define a weak solution to the Dirichlet problem

Lu=f in Q,
u=0 on 09,

so that the solution itself belongs to a Sobolev space and the boundary values are

taken in the Sobolev sense.

Definition 1.18. A function u € Wo1 2(Q) is a weak solution of Lu = f in Q, where
L is asin (1.4), if

n n
/(Z aijDiuDj(p+ZbiDiu(p+cu<p) dx=/f<pdx
Q i=1 Q

i,j=1

for every ¢ € C3°(Q).

THE MORAL: The definition of a weak solution is based on integration by
parts. A classical solution satisfies the PDE pointwise, but a weak solution
satisfies the PDE in integral sense. There are second order derivatives in the
definition of a classical solution, but in the definition above is enough to assume
that only first order weak derivatives exist. This is compatible with Sobolev spaces.

Remarks 1.19:

(1) Observe that it is enough to assume that u € Wli’cz(Q) in the definition of
weak solution. This gives a local notion of solution without any boundary
conditions, so that this definition applies to PDEs with Dirichlet, Neumann
or other boundary conditions. This local definition is useful when we study
regularity of solutions inside the domain. However, solutions are not
unique without fixing the boundary values.

(2) A solution u € W2(Q) to the Dirichlet problem with nonzero boundary
values g € WH2(Q),

Lu=f in Q,
u-geW,(Q),
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can be obtained by consideringw =u—g € WO1 ’Z(Q), which is a weak solution
of the problem

Lw=f in Q,
w e Wy *(Q),
with f = f — Lg. Both approaches lead to the same result (exercise).
Example 1.20. A function u € Wli’cz(Q) is a weak solution to the Laplace equation

Au=01in Q, if

n
/Du-D(pdxz Y DiuDipdx=0 forevery ¢ecCJ(Q). (1.21)
Q Qi=1

A function u € W2(Q) is a weak solution to Au = 0 in Q with boundary values
geWh(Q), if u — g € Wy (Q) and it satisfies (1.21).

Example 1.22. Let f € L2(Q). A function u € W,-*(Q) is a weak solution to the
Poisson equation —Au = f in Q, if

/Du-D(pdxz/f(pdx for every ¢ e C3(Q). (1.23)
Q Q

A function u € WO1 2(Q) is a weak solution to —Au = f in Q with zero boundary
values, if it satisfies (1.23).
Example 1.24. Letn=1,Q0=(0,2),b=0=c,a =1 and
1, x€(0,1],
fx)=
2, xe(l1,2).

Consider the problem

Lu(x)=f(x), x€Q,
u(0)=0=u(2),

with Lu(x) = —(au(x)) = —u"(x). By solving

" 1, x€(0,1],
Lu(x)=-u"(x)=f(x)= {
2, x€(1,2),

in the subintervals (0,1) and (1,2) respectively, and requiring that the solution u
belongs to C1(Q), we obtain

1,2, 5
—sx“+3x, x€(0,1],
—x2+%x—l, x€(1,2).

We observe that u € C1(Q), but u ¢ C2(Q). In particular, u is not a classical solution
to the problem above.

Claim: u is a weak solution.
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Reason. The first task is to show that u € W2(Q) and u € WO1 ’Z(Q), which is left

as an exercise. Let 0 <& <1 and ¢ € C(Q). Since u is a classical solution to
Lu(x)=-u"(x) = f(x)

when x € (0,1-¢)uU (1 +¢,2), using integration by parts, we have

/ f@)px)dx = —/ u" (x)p(x)dx
(0,1-£)U(1+£,2) (0,1-£)U(1+¢,2)

= / u' () (x)dx
(0,1-e)u(1+¢,2)

- (W' A-p1-e)-0+0-u'(1+e)p(l+e)).

By the Lebesgue dominated convergence theorem

lim fx)p(x)dx =/ f@)p(x)dx
€=0./(0,1-e)u(1+£,2) (0,2)
and
lim u'(x)p'(x)dx =/ u'(x)¢'(x)dx.
€=0/(0,1-e)u(1+£,2) (0,2)

Moreover, since u € C1(Q), we have
u(1-e)p(l-e)—u'(1+e)p(l+e)—0
as € — 0. Thus

/ u' ()¢ (x)dx = f@)px)dx for every ¢ e CP(Q).
(0,2) (0,2)

THE MORAL: Evenifthe coefficients are smooth and the operator is uniformly
elliptic, the weak solution does not necessarily belong to C2(Q). In particular, the

problem does not necessarily have a classical solution.

Example 1.25. Letn=1,Q0=(0,2), f=1,b=0=c,

1, x€(0,1],
alx) =
{2, x€(1,2).

Consider the problem
Lu(x)=f(kx), x€Q,
{ u(0) =0 = u(2),
where Lu(x) = —(a(x)u'(x))'. By solving the equation in the subintervals (0,1) and

(1,2) respectively, as well as requiring suitable conditions at x = 1, we obtain

1.2, 5
—-5x%+32x, x€(0,1],
u(x):{ §x2+ 3

1.2, 5 1
—zX +ﬁx+g, x€(1,2).

We observe that u ¢ C1(Q). However, u is a weak solution to the above problem

(exercise).
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THE MORAL: Ifthe coefficients are not smooth, the weak solution does not
necessarily belong to C1(Q). In particular, the problem does not have a classical
solution and the weak solution does not even have the first order derivatives in
the classical sense.

1.5 Serrin’s example

We begin with reconsidering Serrin’s example of a pathological weak solution, see
[17]. See also Meyers [15], Chen and Wu [1, p. 189] and Giaquinta [5, p. 157]. This
example shows that under the assumption that a;; € L*(Q), i,j =1,...,n, the best
result we can hope for is that weak solutions are locally Holder continuous. See
also Remark 4.23, Remark 4.37 and Remark 5.36 below.

Let n =2 and 0 < @ < 1. We claim that the function u : R” — R,

u(x) =ulxy,...,x,) =x1]x|"% (1.26)
is a classical solution to
n
- Y Dj(a;j(x)D;u(x))=0 for every xeR"\{0}, 1.27)
ij=1
where
a(n—a) XixXj

a;j(x)=06;;+ i,j=1,...,n. (1.28)

1-a)n-1-a) |x|?’
Here §;; is the Kronecker delta

1, j=i,
0ij = .
0, j#i.
By the chain rule, we have
r r
D;(x|")=D; ( X2+ a2+ ... +x,%) =D; (x5 +x5+...+x2)2

r1 r-2
== (B tad+ . +x2)? 2 =y (a2 T

DN~

r—2
=rxi( x%+x%+...+x,21) =rx;lxl""2, i=1,...,n,

for every r e R and x # 0. For i # 1, this implies
D;u(x) =D;(x1lxl™%) = x1 - (—a)x;|x) "2 = —axyxilx] 472,
For i =1, we have
Diu(x) = Dr(xrlal ™) = x1 - (—a)xalal ™72 4 2] = x|~ - axflx] 772

This gives
Diu(x) =6;11x"% — ax1x;lx| "2, i=1,...,n. (1.29)
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Let
a(n—a)

TU-on-1-a)

A direct computation gives

XiXi
aijDiu(x) = 6ij + b#) (6i1|x|_“ — axlxilxl_“_z)

|c|2

= 5ij5i1|x|7a +6i1bxixj|x|7a72 —6ijax1xi|x|7a72 - abxlxl-zlex|7“74,

fori,j=1,...,n. We observe that

n

Y Dj(aijx)Dju(x))=)_D; (Z aij(x)Diu(x)) ,

i,j=1 J=1 i=1
where
n
Y a;j(x)D;u(x)
i=1

n

- —a-2 —a-2 2 —a—d

=Z(5ij5i1|x| a+6i1bxixj|x| a —b;jax1x;|x| a —abxlxilexl a )
i=1

n
- —a-2 —a-2 —a-4v\ 2
=81l % + bayajlal YT —axyajlx|TYT7 — abxyajlx] ™Y in
i=1
251j|x|7a+bx1xj|x|7“72—axlxj|x|7a72—abxlxj|x|7“74|x|2

=81,lxI "%+ (b —a—ab)xix;lx| "2, j=1,...,n.

For j # 1, this implies

Dj (Z aij(x)Diu(x)) = Dj (61j|x|_“ +b-a- ab)xlxﬂx'_a_z)
i=1
=(b—a-ab)x (%72 +xj(~a - 2)xjlx| %)
= (b a-abur (6772~ @+ Dalx 74

For j =1, we have

Dy (Zail(xwiu(x)) =D1(811lxl™ + (b —a— ab)xilx| "%
i=1

|—(l—2 |—a—4)

= —axllxl_“_Q+(b—a—ab)[2x1|x +x%(—a—2)x1|x

= —axi|x| ¥ 2+ (b -a-ab)xy (2|3c|_"‘_2 —(a+ 2)x%|x|_"‘_4) .
This implies

D; (za,- j<x)Diu(x>)
i=1

= —81jaxn e~ 2+ (b — @ - ab)w (14 61))lx % = (@ + Da?la ")
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for j=1,...,n. By summing up, we obtain

n
ZDJ(
j=1 i

n

a;j(x)D; u(x))
1

Il
M=

(=01 a1 ]2l ™* 2+ (b — a— ab)x1(1+61)lx| 7% — (@ +2)x?|x7*™%)

~.
Il
-

n
—81jax1lxl ™%+ Y (b - a— ab)xy(1+87,)lx| "2
j=1

1l
M=

.
I
it

n
(b-a—ab)xy(a+2)x2lx| "%

Jj=1

n
= —ax1lx] 2 +(b-a—ab)xilx| 2 (1+67;)
j=1

n
—(b-a-ab)xi(a+2)x|~** Z‘lx?
J:

= —ax1|x| ¥ 2+ (b -a—ab)xilxl ¥ 2(n+1)— (b —a—ab)xi(a+2)x| ¢ 2

=(—a+(b-a-ab)n+1)—(b-a-ab)a+2)x)x| "2
By (1.27), this expression should be equal to 0 for every x # 0. This is possible if

—a+(b-a-ab)n+1)—-(b-—a-ab)a+2)=0
— —a+bn+b-—an-a—-abn-—ab-ba-2b+a’+2a+a’b+2ab=0

—bn+b-abn-ab-ba-2b+a’b+2ab=a+an+a-a’-2a
<:>b(n+l—an—2+a2):an—a2.

This implies
an — a? _ aln—a)
n-l-an+a?2 (Q-a)n-1-a)
and this is precisely how b was defined.
The coefficients a;;, i,j = 1,...,n, in (1.28) can be represented as a sym-

metric matrix

b=

2
* X1X2 X1Xn
ai1(x) -+ apx(x) 1+bﬁ bW bW
agi(®) -+ agp(x) pHR  14pl2 . pEE
Ax)= ) ) — x| x| x| . (1.30)
an1(x) o apnp(x) x1%n Xora 2
" . bLE O 1+bi0
We observe that b = —(l—gg(nn_—al)—a) is positive, since 0 < a <1 and n = 2.

We show that the coefficients a;; are bounded for every i,j=1,...,n. By (1.28)
and the triangle inequality

a(n—a) XiX;j Xix;j
a4 = 104+ - 1= @) [P IR
Xil||X;
N N T A S

|x2 lx|2
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for every x € R® \ {0}. This implies that

max|la;;llzeomny < 1+D. (1.31)
i.j
Next we show that (1.27) is uniformly elliptic. We claim that

€2 < Y aij@)EE; <1 +b)E? (1.32)
i,j=1

for every x € R\ {0} and ¢ € R”. This implies that the uniform ellipticity condition
in Definition 1.7 is satisfied with

a(n—a)
1-a)n-1-a)

Observe that A > 1 can be made arbitrarily close to 1 by choosing a > 0 small

A=1 and A=1+

enough.
We begin with the lower bound. To this end, we observe that

Y aijEEi =) &) (ai@)é) =) &) (5ij5i +bxi—xzjfi)
i,j=1 j=1 i=1 j=1 =1 ||
n bxj n n 9 b I n
=24 5j+Winfi =Z€j+Wijijxi<fi
J=1 i=1 Jj=1 j=1 i=1

b
=1EP+ — P = 181,
||

since b > 0 and (x-¢&)% = 0. This proves the left-hand inequality in (1.32). The
right-hand side inequality in (1.32) follows from the Cauchy-Schwarz inequality,

since

& b b

Y aij@)EiE = 16+ — (- O < &P+ —5 lalPIE1? = €7+ bIEP = A+ )¢
ij=1 x| x|

We discuss a matrix version of (1.32). Since
n
TA@E = Y aij@éi;,
1,j=1
we have
1612 < éTA(x)E <(1+b)IE]?  for every x € R and & € R™.
This implies
ETA)E=1E12>0 for every E#0

and thus the matrix A(x) is positive definite. This implies that the the matrix
A(x) has n positive eigenvalues, with multiplicities. Let v # 0 be an eigenvector of
A(x) corresponding to the eigenvalue A > 0. Then

vTA(x)v =vT v =A0vTv= )LIvI2
= w2 <vTA@)w = A <1+

= 1<A<1+5b.
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This shows that all eigenvalues of A(x) belong to the interval [1,1 + b].
Since equality occurs in the Cauchy-Schwarz inequality, if the vectors are

linearly dependent, we have
& b
TA@x= Y aij@uxix; = + W(x 22 = (1+b)lxl.
ij=1
We claim that x # 0 is an eigenvector of A(x) corresponding to the eigenvalue 1+ b.
By a direct computation, we show that

A(x)x=(1+b)x,

that is,
2
X X1%9 *1%p
1+bpe  b3p bLE | [n x1
pUZ2 14p 2 ... pEEm | |y Xxg
|| ‘ || I?6| Tl =(1+b)
2
X1X X9X, X X X
b bRE o IHbEE LT "

The jth row of the product on the left-hand side is
x2x; x2x; x2x; n
xj+b|;—|2j+ |;—|2]+...+b|3':—|21 :xj+xj%izzlxi2
b 9 :
=x; (1+ W-le ) =(1+b)xj, j=1,...,n,

which clearly is the same as the corresponding row on the right-hand side.

The trace, that is the sum of the diagonal elements, of a square matrix equals
to the sum of the eigenvalues. In this case
2

X
2=n+b =n+b.

n
i=
|

A= 1+b
=1

1%
|2
12

||
Since 1+ b is an eigenvalue of A(x), the sum of all other eigenvalues

n—-1
Ai=n+b—-(1+b)=n-1.
i=1

We proved above that all eigenvalues of A(x) belong to the interval [1,1 + b]. This
implies that all other n — 1 eigenvalues of A(x), except 1+ b, are equal to 1. Thus
the characteristic polynomial of the matrix A(x) is

det(A — AD) = (=1)"(A—(1+ )L —1)*"L.

Let u be as in (1.26). We claim that u € Wlt’cz([R”). First we show that
ue L%OC(R”). For every r > 0, we have

/ lu(x)® dx = / 11?121 727 dx < / /2| 2% dx
B(0,r) B(0,r) B(0,r)

.
:/ 1200 g = wn—1/ P2l gn=1g
B(O,r) 0

1 2(1-a)+n

R
_ _ 1 J21-a)+n
20—-a)+n

= <00,
0o 2(0-a)+n
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since 2(1-a)+n >0.
Next we show that D;u € L? (R"), i=1,...,n. By (1.29), we have

- —a-2 .
Diu(x)=6;1lx|™" —axix;|x|"“7%, i=1,...,n,

for every x # 0. It is an exercise to show that D;u, i =1,...,n, is the weak partial

derivative of u in R"™. For every r > 0, we have

_ y912
/ IDiu(x)Izdx:/ ||x| “—ax%lxl @ 2| dx
B(0,r) B(0,r)

:/B(o )(le_“|1—ax%|x|_2|)2 dx
T

- 9,2
:/ || 2“|1—ax%|x| 2| dx.
B(0,r)

We note that
1>1-axflxl 2> 1-alxflxI 2=1-a>0
= |1—ax%|x|_2| <1
92
= |1-ax?x| %" < 1.
Thus
r
/ ID;u(x)?dx < / x| 72 dx = wp_1 / p~*p" dp
B(0,r) B(0,r) 1]
1 n—2a " 1 n—2a
= = r < N
n—20c}O 0o n—2a *

Since D;u is bounded in R” \ B(0,r), we conclude that D;u € leoc([R"), i=1,...,n.
(5)| Since u is a classical solution to

n
- Z Dj(a;j(x)D;u(x))=0 for every xeR"\{0},
i,j=1

we have

n n
/ Z aijDiuqu)dxz/ Z a;;D;uD;pdx=0
R R

"i,j=1 "\{0}i,j=1
for every ¢ € C3°(R™ \ {0}).
Assume then that ¢ € C3°(R™). Let 0 <r < % and let n € C3°(B(0,2r)) be a cutoff
function with

2
O0sn<l, n=1 in B(0,r) and |Dn|<-.
r

Then (1 -n)¢p € C3°(R" \{0}) and thus

n
0= Z aijDiuDj((l—n)(p)dx
R™ ;=1
n n
= Y. (1-ma;jD;uDjpdx— Y ¢a;D;uD;ndx.

R ,j=1 R ,5=1
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We observe that

n

<) lplla;;|D;ullD jnldx

n
/ Z pa;;D;uDndx
R ij=1JR"

" i,j=1

n
< l@llzo@nmax llaijlizomny Y., [ IDiullDjnldx
i,J i,j=1 Rn

n
< lglLegnymaxlla;jlLegn= Y D;uldx
L I j=1JB(02r)

n

1
2 2 1
< @l Loo@nymax |l Loon) — Z (/ |DiuI2dx) |B(0,2r)|2
LJ T j=1\JB(0,2r)

1
bl
sch(/ |Du|2dx) —0 as r—0.
B(0,2r)

Thus

n n
O:lim( Y. (1-ma;jDiuDjpdx— > (paijDiuDjndx)
R 721 R o1

n
=lim Y (1-ma;jD;uDjpdx
r—0 R” i,j=1
n

= Z lim(1-mna;;D;uD jpdx
R i,j:1rﬁ0

n
= Z aijDiuDj(pdx
R i j=1
for every ¢ € Cj°(R"). Here we used the fact that
liII(l)(l -n(x))=1 forevery xeR"\{0}
r—

and the dominated convergence theorem with the integrable majorant

[(A-na;;D;uD ;| <|a;;D;uD ;|

< | D@lloo@eymax lla;;llLooge) | Dul € L1(R™).
1,J

THE MORAL: A weak solution in (1.26) to a uniformly elliptic equation with
bounded coefficients in (1.27) is locally Holder continuous with the exponent 1 -«
(exercise), but the weak gradient is unbounded in every neighbourhood of the
origin. In particular, the gradient is not continuous. Thus a weak solution is
not smoother than locally Hélder continuous without further assumptions on the

coefficients.

Next we modify the example to justify the assumption that u € Wli’cz(Q)
from the point of view of regularity theory. Let n =2 and 0 < £ < 1. The function
u:B(0,1) - R,

w(x) = w(xy,...,x,) = xq|x1 "¢ (1.33)
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is a classical solution to

- Z Dj(a;j(x)D;u(x)) =0 for every x¢€B(0,1)\{0},

i,j=1
where
xix; ..
aij(x)zéij+(a—1)| 2 i,j=1,...,n, (1.34)
x
and
n-1

T ern-2
This problem is essentially the same as in (1.26), (1.27) and (1.28) with a replaced
by 1—e¢.

. n-1 _n—-1-ele+n-2)
@ Tee+n-2) ele+n—-2)

B n-1-e?—en+2e¢ _(A-e)n-1+¢)

B ele+n—-2) T ele+n-2)

By inserting a=1-¢ we havea—1= % which equals b in the step (1).

It is an exercise to show that the coefficients are bounded and that the uniform
ellipticity condition in Definition 1.7 is satisfied with A =1 and A =a.
We have (exercise)
n
e WHP(Q <—.
“ @, p n+e—1
Observe that p <2, when n =2, and thus

ug Wh2(Q) forevery O<e<l.

However, as in the step (5), we see that

n
/ Z aijDiuDJ-(pdeO
B(0,1)i,j=1

for every ¢ € C°(B(0, 1)) (exercise). In this sense u is a weak solution to

- i Dj(aijDiu) =0 in B(0,1),
ij=1
but u ¢ WH2(Q) for every 0 < ¢ < 1. Clearly the function u is neither locally
bounded nor has a local maximum principle. See also Remark 4.23 below.

This example can be used, moreover, to show that the Dirichlet problem need
not have a unique solution. In fact, let v € WH2(Q) be the unique weak solution
with the same boundary values on 092 as u. Then u —v =0 on 0Q, but u —v is
not identically zero in Q. This shows that the identically zero function and v —u
are weak solutions to the Dirichlet problem with zero boundary values. Thus the
problem has two solutions corresponding to the same data, provided we give up
the requirement that these solutions belong to W12(Q).
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THE MORAL: Local boundedness, uniqueness and maximum principle may
not hold without the assumption that a weak solution belongs to Wlt’cz(Q). Thus
the usual requirement that a weak solution belongs to Wﬁ)’f(ﬂ) is an essential

part of the theory.

1.6 Sobolev-Poincaré inequalities

We recall several versions of the Sobolev inequality. These results will be applied

throughout. We begin with the Gagliardo-Nirenberg-Sobolev inequality.

Theorem 1.35. Let 1<sp<n and p* = %. There exists ¢ = ¢(n, p) such that

1
(/ Iulp*dx)p SC(/ IDulpdx)p

for every u € WP (R™).

THE MORAL: The Sobolev-Gagliardo-Nirenberg inequality implies that
WLr(R") « LP"(R"), when 1< p < n. More precisely, WH2(R") is continuously
imbedded in L?"(R"), when 1 < p < n. Observe that p* > p. This is the Sobolev

embedding theorem for 1< p <n.

Remark 1.36. Let 1< p <n and let Q cR” be an open set. By considering the zero
extension of u to the complement of (2, Theorem 1.35 implies that

1 1
(/Iulp*dx)p sc(n,p)(/ IDulpdx)P
Q Q

for every u € WO1 P(Q). This is a version of the Sobolev-Gagliardo-Nirenberg
inequality for Sobolev spaces with zero boundary values.

Next we discuss a version of the Sobolev-Gagliardo-Nirenberg inequality for

the full range 1< p < oo.

Theorem 1.37. Let 1 < p < oo, let Q < R” be an open set with [Q] < oo, and
assume that ueWé’p(Q). Let lsg<p*= %, for 1< p<n,and 1<gq <oo for

n < p <oo. There exists a constant ¢ = ¢(n, p,q) such that

(/Qlulqu)éscIQI'lt_zl’Jr;(/QlDulpdx);.

THE MORAL: Let QcR"” be an open set with |Q| < co. IquWOLP(Q),then
u € L1(Q) for some q > p.
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Proof. Extend u as zero outside Q2. Then Du(x) = 0 for almost every x € R* \ Q.
Assume first that 1 < p < n. Hé6lder’s inequality and the Gagliardo-Nirenberg-
Sobolev inequality imply

1 1 1 1 n nn;p
(/Iulqu)q s|9|ﬁ‘ﬁ+a(/|u|ﬁdx) ?
Q Q
1
1 1,1 D
sc(n,p)mﬁ‘?a(/ |Du|de)”.
Q

Assume then that n < p <oo. If ¢ > p, choose 1 < p < n satisfying q = nnTI;. By
the first part of the proof and Holder’s inequality, we obtain

1
(/ Iulqu)q SC(n,p,q)IQI%_%+%(/ IDuIﬁdx)
Q Q 1

1_1.1 >
se(n,p,qnmﬁ”’”(/ Dul dx)”.
Q

(ST

Finally, if ¢ < p, the claim follows from the previous case for some ¢ > q and
Holder’s inequality on the left-hand side. a

Remark 1.38. A Poincaré inequality for Sobolev functions with zero boundary
values follows from Theorem 1.37 by choosing ¢ = p. Assume that Q cR" is a

bounded open set and let 1 < p <oo. There is a constant ¢ = c(n, p) such that
/ lul? dx < lelg / [Dul? dx < cdiam(Q)p/ |Dul|? dx
Q Q Q

for every u € Wol’p(Q).

Next we discuss a Sobolev-Poincaré inequality on balls.

Theorem 1.39. Let 1< p <n, let Q cR" be an open set and assume that u €
WYP(Q). There exists a constant ¢ = c¢(n, p) such that

loc

1

1
. g »
(][ lu = up(e,ml” dy)p scr(][ IDulpdy)
B(x,r) B(x,r)

for every ball B(x,r) € Q.

The next theorem gives a general Sobolev-Poincaré inequality for Sobolev
functions.

Theorem 1.40. Let 1 < p < oo, let Q c R” be an open set, and assume that
uert’cp(Q). Letl<sg<p* =%for1Sp<nand1Sq<oofornsp<oo. There
exists a constant ¢ = c¢(n, p, q) such that

7 7
(][ Iu—uB(x,r)quy) scr(][ IDulpdy) (1.41)
B(x,r) B(x,r)

for every ball B(x,r) € Q.
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THE MORAL: The Sobolev-Poincaré inequality asserts that the mean oscil-
lation of a function in a Sobolev space is uniformly bounded by the mean value
of the gradient over balls. In other words, if the gradient is small in average,
the function does not oscillate too much. Moreover, there is a gain in the sense
that the exponent g on the left-hand side is bigger than the exponent p on the
right-hand side. The result holds for the full range 1 < p < oo and not only for the

Sobolev exponent p*.

Proof. By the Soblev-Poincaré inequality with the Sobolev conjugate exponent, for

1< p <n, there exists a constant ¢ = ¢(n, p) such that

n-p

np_ 3 _n-p np_ D
lu—up@,rl*?dy =cr P lu—up@,rl*?dy
B(x,r) B(x,r)

1
corl ( / Dul? dy)p (1.42)
B(x,r)

1
=cr(][ IDulpdy)P.
B(x,r)

For 1 < p <n, inequality (1.41) follows from (1.42) and Hélder’s inequality on the
left-hand side.

In the case p = n we proceed as in the proof of Theorem 1.37. For ¢ > p = n,
there exists 1 < s < n such that ¢ = ;*., and (1.41) follows from (1.42) with
exponent s and an application of Hélder’s inequality on the right-hand side. For
q < p, the claim follows from the previous case and Hélder’s inequality on the

left-hand side. d

Remark 1.43. By choosing ¢ = p in Theorem 1.40, we obtain a Poincaré inequality
on balls. Let 1 < p <oo, let Q c R” be an open set and assume that u € Wli’f(Q).
There exists ¢ = ¢(n, p) such that

3 3
][ lu—upunlPdy| <cr ][ [Dul? dy
B(x,r) B(x,r)

»

for every B(x,r) € Q.

It is enough to consider constant functions to see that it is not possible to
replace the mean oscillation by the mean value on the right-hand side of (1.41) for

a function u € Wli’f (Q), that is, in general we cannot replace

1
q
(]l lu—upenl? dy)
B(x,r)
(][ Iu(x)lqdy)q
B(x,r)

by

-
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in (1.41). However, this is possible for functions u € W(} P(B(x,r)). This result
follows from Corollary 1.37, but we give an alternative proof which is based on
the Sobolev-Poincaré inequality (1.41). This technique can be adapted to other

situations as well, see Theorem 1.47 below.

Theorem 1.44. Let B(x,7r)cR*. Let 1< g <p* = % forlsp<nandl<gqg<oo

for n < p <oco. There exists a constant ¢ = ¢(n, p, q) such that

1 1
(][ Iulqdy)q scr(][ IDulpdy)p (1.45)
B(x,r) B(x,r)

for every u € Wy " (B(x,r).

Proof. We may assume that g > 1 since the claim for ¢ = 1 follows from Hélder’s
inequality. Consider first the case. Then u =0 in B(x,2r)\ B(x,r). By Hélder’s
inequality

luB(x,2r| < ][ lwl xB(x,r () dy
B(x,2r)

1 1
IBGx,r) )1-q([ ] )a
= d
) ( |B(x,2r)| B(x,2r)|u| Y (1.46)

1

— @™ (][ |u|qdy)q :
B(x,2r)

Using Minkowski’s inequality, the Sobolev-Poincaré inequality from Theorem 1.40
for B(x,2r) and (1.46), we obtain

) ar)
lulfdy| < lu—up@enl?dy| +lupesanl
B(x,2r) B(x,2r)
1 1
p —na1-1 q
<c(n,p,q)r [DulPdy| +(@7") ¢ lul9dy| <oo.
B(x,2r) B(x,2r)

1
Since (2‘”)1_3 <1, the second term on the right-hand side can be absorbed to the
left-hand side, and thus

1 1
(][ Iulqdy)q SC(n,p,q)r(][ IDulpdy)p.
B(x,2r) B(x,2r)

Finally, the mean value integrals on both sides can be taken with respect to B(x,r)
since u =0 and Du =0 in B(x,2r)\ B(x,r). a

It is also possible to replace the mean oscillation by the mean value on the
left-hand side of (1.41) for a function u € Wlt’;’(ﬂ) do not necessary have zero

boundary values but that vanish in a large subset.

Theorem 1.47. Let 1 < p < oo, let Q c R” be an open set, and assume that
ueE Wli’cp(Q). Let B(x,r) € Q be a ball. Assume that u =0 in a set E < B(x,r)
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satisfying |E| = y|B(x,r) with 0<y<1. Let 1sq<p*= % for 1< p <n, and

1< g < oo for n < p <oo. There exists a constant ¢ = c(n, p,q,y) such that

1 1
(][ ul? dy)q < cr(][ \DulP dy)p . (1.48)
B(x,r) B(x,r)

Proof. We may assume that g > 1 since the claim for g = 1 follows from Hélder’s

inequality. By Holder’s inequality

][ udy S][ Iuldy:][ lu|XBex,r\E QY
B(x,r) B(x,r) B(x,r)

1-1 :
<(Ber BN [ jugray)” (1.49)
B(x,r)

luB,ml =

|B(x, )l

1
<1-p'e (][ |u|qdy)q.
B(x,r)

1
Since 0 < (1 - y)l_E < 1. Using Minkowski’s inequality, the Sobolev-Poincaré
inequality in Theorem 1.40 and (1.49), we obtain

1 1
q a q g
lulfdy| < lu—up@ml?dy| +luBerl
B(x,r) B(x,r)

1 ) 1
][ IDulpdy)p +(1—y)1‘6(][ Iulqdy)q < 0.
B(x,r) B(x,r)

Since 0 < (1—- y)l_% <1, the second term on the right-hand side can be absorbed

<c(n,p,q)r

to the left-hand side, and we conclude that there exists a constant ¢ = ¢(n,p,q,y)
such that

1

1
(][ Iulqdy)q <cr(][ IDuIde)p. O
B(x,r) B(x,r)

1.7 Young’s inequality

Before stating the main results of this chapter, we recall two useful versions of

Young’s inequality.

Lemma 1.50 (Young’s inequality). Let 1 < p <oo and a,b =0, then

af b?

p p
1,.1_ i - _P_
where sty = 1 or equivalently p’ = po1

Remark 1.51. Young’s inequality for p = 2 follows immediately from

2 2
(a—b)2>0<=>a2—2ab+b2>0<=>%+E>ab>0.
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Lemma 1.52 (Young’s inequality with €). Let 1 < p <o0, a¢,b 20 and € > 0.
Then

ab < ea? +cbp’,
where

_1.p-1
c =c(g,p) =(pe) w1 P

1 ~ 1
Proof. We apply Young’s inequality to @ = (pe)?a and b = (pe) » b. This gives
1 _1
ab =(pe)Pa(pe) Pb

<

ea’ _o bP
p +(p£) D 7

1 .
bP. a

1
=¢eaf +(pe) P1 P

Remark 1.53. For p=2,a,b =0 and € >0, we have
1
ab<ea®+ —b2.
4e

Remark 1.54. 1t is essential that € can be chosen as small as we please. We shall
use the inequality in the following context. Suppose that f € LP(A) and g€ L?(A)

and that
/ IflpdeC/ IF1P  Igldx
A A
Then by applying Young’s inequality with € we obtain

/ FPdx<c / P gl dx
A A

1.2
sw:/ Ifl(p D1 dx+c(£,p)/ lgIP dx.
A A

for some constant ¢ > 0.

Now we can move the LP-integral of f to the left-hand-side and obtain
(1- ce)/ IfIPdx < c(s,p)/ lgIP dx.
A A

If 1—ce >0 or equivalently € < %, then the estimate above implies that

/|f|de<M/|g|de.
A ].—CE A



Existence results

In this chapter we discuss two methods to show that a weak solution to a PDE
exists under very general conditions. The first method is a Hilbert space approach
which applies to linear PDEs only. Then we consider direct methods in the calculus
of variations, which is a Banach space approach and applies to nonlinear PDEs as

well.

2.1 Hilbert space approach for the Laplace
eqguation

Let Q c R” be a bounded open set and let g € W12(Q). Consider the Dirichlet
problem

-Au=0 in Q,

u—geWy(Q.
Recall trom Example 1.20 that a function u € W12(Q) is a weak solution to the
problem above, if u — g€ WO1 2(Q) and

/ Du-Dpdx=0
Q

for every ¢ € C3°(Q).
Claim: (u,v) = / Du-Duvdx is an inner product in Wol’z(Q).
Q

Reason. We show that (u,u) =0 implies that u = 0 almost everywhere in Q. We
note that

(u,u)z/Du-Dudxz/ |Du|2dx,
Q Q

29
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which shows that (u,u) = 0 implies that Du = 0 almost everywhere in Q. We apply

the Poincaré inequality, see Remark 1.38, to obtain
/ Iulzdx < c(diamQ)2/ |Du|2dx =0,
Q Q

for every u € WO1 2(Q). This show that that u = 0 almost everywhere in Q. The

other properties of inner product are clear (exercise). n

Claim: F(v) = —/ Dg-Duvdx is a bounded linear functional on WOI’Z(Q).
Q

Reason. It is clear that F is a linear operator. By Holder’s inequality we have

/Dg-Dvdx s/ |[Dg-Dv|dx
Q Q

2 : 2 :
s/ IDgIIDvldxs(/ [Dg| dx) (/ |Duv| dx)
Q Q Q

< lgllwreq) ||U||W01,2(Q)

IF(v)l =

for every v e W) (Q). -

By the Riesz representation theorem, there exists a unique w € Wg 2(Q) such
that
F)=(w,v)= / Dw-Dvdx
Q

for every v € Wy*(Q). Thus

/Dw-Dvdxz—/Dg-Dvdx
Q Q

and consequently

/(Dw-Dv+Dg-Dv)dx:/(Dw+Dg)-Dvdx=0
Q Q
for evervaWOI’2(Q). Letu=w+g. Thenu—g:wEWgQ(Q) and
/Du-Dvdxz/(Dw+Dg)-Dvdx=0
Q Q

for every v € WO1 2(Q). In particular, this holds for every v € C5°(Q2). This show that
u is a unique weak solution to the problem

-Au=0 in Q,

u-geW, Q).
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2.2 Hilbert space approach for more gen-
eral elliptic PDEs

Assume that b; =0 for i = 1,...,n. The Riesz representation theorem can be used
to prove the existence of a weak solution to the Dirichlet problem

i,j=1

2.1
ueWA(Q)

{— n Dj(aijDiu)+cu:f

in any bounded open subset Q of R*. More general boundary values can be
considered as in Remark 1.19 (2). To this end, we define a candidate for an inner
product in WO1 2(Q) as

n
(u,v)z/ ( Z a;;D;uD;v+cuv|dx. (2.2)
o \i,j=1

Recall that the standard inner product in WO1 ’2((2) is obtained by choosing a;; =1,
ifi=j,and a;;=0,ifi#j,and c = 1.

Remark 2.3. By Holder’s inequality, we have

n
/ Z a;jD;uD;v+cuv|dx
Qli,j=1
n
< Z IaijDiuDjvldx+/ lcuv|dx
i,j=1JQ Q

n
Z ||aij||L°°(Q)||Diu||L2(Q)||DiU||L2(Q) + ||C||L°°(Q)||u||L2(Q)||U||L2(Q)
i,j=1

N

N

n
Z ||aij||L°°(Q)||u||W1,2(Q)||U||W1,2(Q) + ||C||L°°(Q)||u||W1,2(Q)||U||Wl,2(Q)
1,j=1

n
( Y laijlizeoq) + ||C||L°°(Q)) lwllwregllvilyieg) < oo.
i,j=1

This shows that the integrand in (2.2) is an integrable function with finite integral.

Thus (u,v) in (2.2) is a finite number whenever u, v € Wg’Q(Q). Next we show
that (2.2) really is an inner product under a certain condition on function c.

Lemma 2.4. There exists a constant ¢y = cg(A,n) < 0 such that if ¢ = ¢g, then
(2.2) defines an inner product in Wé 2(Q).

THE MORAL: Itisimportant to have cg <0 so that the case ¢ =0 is included
in the theory. The proof below shows that ¢ = 0 is immediate, but the point is that
we can do better than that.
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Proof. We show that (u,u) =0 implies u = 0 when ¢ = ¢¢. To prove this, we recall

the Poincaré inequality
/ |u|2dx < u/ IDuIde, U= c(diamQ)2,
Q Q

which holds true for every u € Wo1 ’Z(Q), see Remark 1.38. By the ellipticity condi-
tion, see Definition 1.7, we have

n
(u,u):/ ( Z aijD,-uDju+c|u|2) dx
Q

i,j=1

2/1/ |Du|2dx+co/ Iulzdx

Q Q
p) A

:—/|Du|2dx+—/ |Du|2dx+co/|u|2dx
2 Jqo 2 Ja Q

A A
2—/ |Du|2dx+(—+co)/ |u|2dx
2 Ja 2p Q

2

Zalu
210y

where

a:min{%,ﬁ+co}. (2.5)

In particular, this shows that (u,u)=0. If c=cg > —%, then a > 0 and it follows

that (u,u) = 0 implies ||u||W =0 and thus u = 0. The other properties of an

1,
P

inner product are clear (exercise). a

Remark 2.6. For the norm induced by the inner product (2.2) we have

n
||u||2=(u,u>=/ ( Z aijDiuDju+c|u|2) dx

Q\i,j=1

<A | |Dul?dx+|c ul?dx < Bllul® ,
/Q| | l ”oo/Q| | Bl ||W01,2(Q)

with f =max{A, | clle}. Thus

Valulyieg, < lul < VBlulysq),

for every u € Wol’p(Q), where «a is as in (2.5). This shows that | - ||W1,2(Q) and |||
0

are equivalent norms in WO1 2Q)ife= co-

Lemma 2.7. Let W\Ol 2(Q) be Wol 2(Q) with the inner product given by (2.2). Then

F(v)z/ fvdx
Q

is a bounded linear functional on Wol ’2(9).

Remark 2.8. Note that F(v) = (f,v)Lz(Q), where (-,-)72q) is the standard inner
product in L2(Q).
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Proof. Holder’s inequality and the proof of Lemma 2.4 imply

[l e oo

1
< ||f||L2(Q)||U||W01,2(Q) < ﬁ”f”[ﬂ(g)”v”,

|F(v)| =

where « is given by (2.5). a

Theorem 2.9. Assume that Q is a bounded and open subset of R” and f € L2(Q).

There exists cg < 0 such that (2.1) has a unique weak solution for every ¢ = cg.

THE MORAL: There exists a unique solution to the Dirichlet problem with
zero boundary values in the Sobolev sense in any bounded set.

Proof. By Definition 1.18, a function u € Wé ’2(9) is a weak solution to (2.1) if
n
{u,v) =/ ( Z aijDiuDjv+cuv) dxz/ fudx
alij=1 Q
for every v € C3°(Q2). Here we used the inner product defined by (2.2). By Lemma
2.7

F(U):/ fde: (f,U>L2(Q)

Q

is a bounded linear functional on /VVOI 2(Q). Note that Wol ’Z(Q) is a Banach space,

because | - ||W1,2(Q) and || - || are equivalent norms in Wo1 ’2(9), see Remark 2.6.
0

Thus W3’2(Q) is a Hilbert space when ¢ = ¢¢ given by Lemma 2.4. By the Riesz
representation theorem, there exists a unique u € W\Ol 2(Q) such that

n
F(v)=<u,v)=/ ( > aijD,-uDjv+cuv) dx
a\ij=1

for every v € VV\OLZ(Q). By Remark 2.6, we have W\Ow(ﬂ) c WOI’Z(Q). Thus u €
Wg’2(Q). By Remark 2.6 again, we have C{°(Q) < WOI’Z(Q) c VV\(}’Z(Q) and thus

n
/(Z aijDiuDjv+cuv)dx=/fvdx
alij=1 Q

for every v € C3°(Q). a

Example 2.10. Let Q c R" be any bounded open set and f € L2(Q). By Theorem
2.9 there exists a unique weak solution to the Dirichlet problem

~Au=f in Q,
ue Wy (Q),

that is, u € WOI’Z(Q) and

/Du-D(pdxz/f(pdx
Q Q
for every @ € C3°(Q).
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Example 2.11. Let Q c R” be any bounded open set, Lu = —Au, f € L2(Q) and
g € WH2(Q). By Remark 1.19 (2) a weak solution to the Dirichlet problem

-Au=f in Q,
12 (2.12)
u-geWy (Q),
can be obtained by consideringw =u—-ge€ WO1 2(Q) and the problem
-Aw=Ff in Q,
Lo (2.13)
w e Wy (Q),

with f = f—Lg = f + Ag. By Theorem 2.9 there exists a unique weak solution
w e W (Q) to (2.13), that s,

/Dw-D(pdxz/f(pdx—/Dg-D(pdx
Q Q Q

or equivalently
/(Dw +Dg)-Dpdx = / fodx
Q Q

for every ¢ € C3°(Q2). This means that u =w + g is the unique solution of (2.12).
Thus u € WH2(Q) is a weak solution of (2.12) if and only if —Au = f in weak sense
and u — g € Wy ().

Example 2.14. Let Q c R” be any bounded open set, f € L2(Q) and ¢ = ¢o. By
Theorem 2.9 there exists a unique weak solution to the problem

-Au+cu=f in Q,
u e W (Q),

that is, u € Wy () and

/Du-D(pdx+/cu<pdx=/f(pdx
Q Q Q

Example 2.15. Letn=1,Q=(0,2),c=0=5b,f=1and

0,1
a(x):{x, x€(0,1],

for every ¢ € C3°(Q).

1, xe(1,2).

Consider the problem
Lu(x)=f(x), x€Q,
u(0)=u(2)=0.

Observe that L is not uniformly elliptic.
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By solving
Lu(x) = —(a(x)u'(x)) = f(x) =1

in (0,1) and (1,2) respectively, we obtain

1

—x+cilnx+co, x€(0,1],
u(x) =
—§x2+03x+04, x€(1,2).

By the boundary conditions and requiring continuity at x = 1, we obtain

- 1

—1x?+3x-3, xe(L,2)

However, this is not a weak solution of the problem (exercise).
Example 2.16. Let Q =(0,2) and

1, x€(0,1],

f(x)=a(x)= {
0, x€I[1,2).

Consider the problem
Lu(x)=f(x), x€Q,
u(0)=u(2)=0.

Observe that L is not uniformly elliptic. Then
1,2
—-5x“+x, x€(0,1],
ui(x) = { z

—x2+3x-1, x€[l,2),

and

1,2
—-sx“+x, x€(0,1],
ugx)=4 2 .
1-35x, x€l[1,2),

are weak solutions to Lu = f (exercise).

THE MORAL: Ifthe operator is not uniformly elliptic, a weak solution of a

boundary value problem is not necessarily unique.

Example 2.17. Let n =1, Q =(0,71), a =1, b =0, ¢ = —4. The operator L is
uniformly elliptic, but the corresponding bilinear form

B[u,v]=/ (u' (@' (x) - du(x)v(x)) dx
0

is not positive definite on W(} 2(Q). For example, if u(x) = sinx, then

3

Blu,u] =/ ((cosx)? — 4(sinx)?) dx = — 5
0
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In particular, the bilinear form B[u,v] is not an inner product on Wh2(Q).

Claim: Let f(x) = sin(2x). Then the problem

Lu(x)=f(x), x€Q,
u(0)=0=u(n),

does not have any solutions.

Reason. Let u € W)*(Q). An integration by parts gives
Blu,v] = /0 ’ (&' (2’ (x) - 4u(x)v(x)) dax
= /0” (2u/(x) cos(2x) — 4u(x)sin(2x)) dx
= /Oﬂ (2u(x)cos(2x)) dx
=0# /0 " (sin@)? dx

= / fx)v(x)dx,
0

when v(x) = sin(2x) € WOl ’Z(Q). Thus there does not exist a function u € WO1 ’Z(Q) for
which

B[u,v]=/f(x)v(x)dx for every veWol’z(Q).
Q

Observe that the corresponding homogeneous problem

Lu(x)=0, xe€Q,
u(0) =0 = u(n),

has infinitely many solutions u(x) = asin(2x), a € R.

Remark 2.18. For a general operator L defined by (1.4), there is a bilinear form

n n
B[u,v]:/ ( Z aijDiuDjv+ZbiDiuv+cuv dx,
Q =1

i,j=1 i

where u,v € Wol’z(Q). If the functions b;, i = 1,...,n are not all equal to zero,
then the bilinear form is not symmetric, that is, Blu,v] # Blv,u] and the Riesz
representation theorem cannot be applied as such, since Bl[:,-] is not an inner
product. In this case we may apply the Lax-Milgram theorem, which is a slightly
extended version of the Riesz representation theorem, see [1, Theorem 2.3], [2,
Theorem 3, p. 321], [8, Theorem 8.3] and [16, Theorem 2.3.2]. These results
cover the case ¢ = cg = 0. The general case can be investigated by the Fredholm
alternative, see [1, Theorem 3.2], [2, Theorem 4, p. 323], [8, Theorem 8.6] and
[16, Theorem 2.3.3].. Some features are visible in the following one-dimensional
example.
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Example 2.19. Let n=1, Q=(0,l), with [ >0, and consider the problem

Lu(x)=-u"(x)+cu(x)=0, x€Q,
u(0)=u(l)=0.

This is a particular case of the so-called Sturm-Liouville problem, which arises,
for example, in the separation of variables technique. We solve this problem
by finding the constants ¢ (eigenvalues) for which the problem has nontrivial
solutions (eigenfunctions). We consider three cases.

Then ¢ = p? for some u > 0 and the general solution of the equation
u" =cuis

u(x) = ¢y sinh(ux) + ca cosh(ux), c1,c2€R.

Recall that sinhx = %(ex —e ¥) and coshx = %(ex +e7¥). Since u(0) =0 gives co =0
and u(l) = 0 gives c1 sinh(ux) = 0, we conclude that ¢; = cg = 0. In this case we

only have the trivial solution u = 0.
Then the equation reduces to " = 0 with the general solution

u(x)=cix+cg, c1,c2€R.

The boundary conditions ©(0) = «(l) =0 imply ¢; =c2 =0 and u =0.
Then ¢ = —u? for some y > 0 and the general solution of the equation
u" =cuis
u(x) = c1 sin(ux) + ce cos(ux), ci1,co2€R.
Hence, u(0) = 0 implies cg = 0 and u(l) = 0 implies cj sin(ux) = 0. If we assume

c1 #0, we obtain sin(ux) = 0, and the possible values of u > 0 are

k
ﬂk:T”, EeZ\{0).

Thus for every & € Z\ {0} we may choose ¢ = — uz = —(}"’l—”)2 and have a nontrivial

solution

up(x)= sin(?) .

Note that the trivial solution u = 0 is also a solution to the problem.

2.3 Direct methods in the calculus of vari-
ations for the Laplace equation

Recall from Example 1.20 that a function u € WH2(Q) is a weak solution to Au =0
in Q, if
/ Du-Dpdx=0
Q

for every ¢ € C3°(Q).
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The next lemma shows that, in the definition of a weak solution, the class of

test functions can be taken to be the Sobolev space with zero boundary values.

Lemma 2.20. If u € W2(Q) is a weak solution to the Laplace equation, then
/ Du-Dvdx=0
Q

for every v e Wg’z(Q).

Proof Let v; € CP(Q), i = 1,2,..., be such that v; — v in W2(Q). Then by the

Cauchy-Schwarz inequality and Hélder’s inequality, we have

/Du‘Dvdx—/Du-Dvidx
Q Q

/Du -(Dv—-Dv;)dx
Q

s/ |Du||Dv —Duv;|dx
Q

2 : 2 :
s(/ |Du| dx) (/ |Dv —Du;| dx) -0
Q Q

Du-Dvdx=1lim [ Du-Dv;dx=0.
Q i—oo J O

as i — oco. Thus

Remark 2.21. Assume that Q c R” is bounded and g € W2(Q). If there exists a
weak solution u € W1-2(Q) to the Dirichlet problem

Au=0 in Q,
1,2
u—-geWy(Q),

then the solution is unique. Observe that the boundary values are taken in the
Sobolev sense.

Reason. Let u; e Wh2(Q), with u;—ge W&’Q(Q), and ug € W2(Q), with ug—g €
Wg ’2(9), be solutions to the Dirichlet problem above. By Lemma 2.20

/Dul-Dvdxzo and /Dug-Dvdx=0

Q Q

for every v e WO1 2(Q) and thus
/(Dul—Dug)-Dvdxzo for every veWol’p(Q).
Q

Since
1,2
ur—ug=@w1-g—(uzg—g)e Wy (Q),
—_——— ——
Wyl () €W, (Q)

we may choose v = u1 —ug and conclude

/IDul—Duzlzdxz/(Du1—Duz)-(Dul—Duz)dxzo.
Q Q
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This implies Du1 —Dug = 0 almost everywhere in Q. By the Poincaré inequality,

see Remark 1.38, we have
/ |y — u2|2dx < cdiam(Q)Z/ |Duq —Du2|2dx =0.
Q Q

This implies u; —ug = 0 < u; = ug almost everywhere in Q. This is a PDE
proof of uniqueness and in the proof of Theorem 2.35 we shall see a variational

argument for the same result. n

Next we consider a variational approach to the Dirichlet problem for the

Laplace equation.

Definition 2.22. Assume that g € WH2(Q). A function u € W2(Q) with u —g €

WO1 2(Q) is a minimizer of the variational integral

I(u)=/ \Dul?dx
Q

with boundary values g, if

/IDuI2dxs/|Dv|2dx
Q Q

for every v € W(Q) with v — g € Wy *(Q).

THE MORAL: A minimizer u minimizes the variational integral I(x) in the

class of functions with given boundary values, that is,
/ IDu|?dx = inf{/ IDv|%2dx:ve WH(Q),v-ge W(}’z(ﬂ)} .
Q Q

If there is a minimizer, then infimum can be replaced by minimum.

Theorem 2.23. Assume that g € W %(Q) and u € W 2(Q) with u - g € Wy 2(Q).
Then
/ IDul?dx = inf{/ IDvi2dx:veW3(Q),v-ge W01’2(Q)}
Q Q

if and only if u is a weak solution to the Dirichlet problem

Au=0 in Q,
1,2
u—-geWy i (Q).

THE MORAL: Afunction is a weak solution to the Dirichlet problem if and
only if it is a minimizer of the corresponding variational integral with the given

boundary values in the Sobolev sense.
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Proof. Assume that v € W2(Q) is a minimizer with boundary values g €
WL2(Q). We use the method of variations by Lagrange. Let ¢ € C’(Q) and e eR.
Then (v +ep)—ge€ W(}’Z(Q) and

/|D(u+£(p)|2dx=/(Du+eD<p)-(Du+£D(p)dx
Q Q

=/ |Du|2dx+2£/ Du-D(pdx+£2/ |D(p|2dx
Q Q Q
=1i(e).

Since u is a minimizer, i(¢) has minimum at € = 0, which implies that i'(0) = 0.

Clearly
i'(e)zZ/Du-D(pdx+2£/ IDy|?dx
Q Q
and thus
i'(0)= 2/ Du-Dpdx=0.
Q
This shows that
/ Du-Dpdx=0
Q

for every ¢ € C3°(Q).
Assume that u € W12(Q) is a weak solution to Au =0 withu—g e W&’z(Q)
and let v e WH2(Q) with v — g € W, *(Q). Then

/|Du|2dx=/|D(v—u)+Du|2dx
Q Q
=/(D(v—u)+Du)-(D(v—u)+Du)dx
Q
=/ |D(U—u)|2dx+2/D(v—u)'Dudx+/ Dul®dx.
Q Q Q

Since

1,2
v—u=(w-g) - (u-g) e Wy (Q),
—— ==
W, P(Q) Wy ()

by Lemma 2.20 we have
/Du ‘-D(v—-u)dx=0
Q

and thus

/|Du|2dx=/|D(u—u)|2dx+/|Du|2dx>/|Du|2dx
Q Q Q Q

for every v e WH2(Q) withv—g € WJ’Q(Q). Thus u is a minimizer. a

Next we give an existence proof using the direct methods in the calculus
variations. This means that, instead of the PDE, the argument uses the variational

integral.
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Theorem 2.24. Assume that Q is a bounded open subset of R”. Then for every
g € WH2(Q) there exists a unique minimizer u € Wh2(Q) with u —g € W01’2(Q),

which satisfies

/IDuI2dx:inf{/ |Dv|2dx:uer’Z(Q),v—geW(}’z(Q)}.
Q Q

THE MORAL: The Dirichlet problem for the Laplace equation has a unique

solution with Sobolev boundary values in any bounded open set.

WARNING: Itis not clear whether the solution to the variational problem
attains the boundary values pointwise.

Proof. Since I(x) = 0, in particular, it is bounded from below in W2(Q) and
since u is a minimizer, g€ W2(Q)and g—g=0¢ W01’2(Q), we note that

Osmzinf{/ |Du|2dx:u€W1’2(Q),u—geWg’z(Q)}s/ IDg|?dx < co.
Q Q

The definition of infimum then implies that there exists a minimizing sequence
u; € WhA(Q) with u; — g € Wy (Q), i = 1,2,..., such that

lim IDuiIdezm.
1—00 Q

The existence of the limit implies the sequence (I(x;)) is bounded. Thus there

exists a constant M < oo such that

I(ui):/ \Du;?dx<M forevery i=12,...,
Q
By the Poincaré inequality, see Remark 1.38, we obtain

/lui—gl2dx+/ ID(u; - )|*dx
Q Q

scdiam(Q)Q/ ID(ui—g)Izdx+/ ID(u; — g)%dx
Q Q
s(cdiam(Q)2+1)/ |Du; —Dg|*>dx

Q

2/ |Du,-|2dx+2/ |Dg|2dx)
Q Q

M+/ |Dg|2dx) < oo
Q

< (cdiam(Q)? + 1)

< c(diam(Q)? + 1)

for every i = 1,2,... This shows that (u; — g) is a bounded sequence in WOI’Z(Q).
By sequential weak compactness of Wo1 ’Z(Q) there is a subsequence (u;, —g)
and a function u € WH2(Q), withu—g € Wol’z(Q), such that u;, — u weakly in L2(Q)
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auik
Ox;
L2-norm with respect to weak convergence, we have

and — 37”]_, j=1,...,n, weakly in L?(Q) as £ — co. By lower semicontinuity of

/IDuIzdxsliminf/ IDuikI2dx:lim IDul-|2dx.
Q k Q Q

—00 1—00

Since u € W12(Q), with u —-g€ WOI’Q(Q), we have

m</|Du|2dxslim IDu;*dx=m
Q

i—oo /o

which implies

/ |Du|?>dx =m.
Q
Thus u is a minimizer.

To show uniqueness, let u; € W12(Q), with u;—g € W(}’2(Q) and ug €
Wh2(Q), with ug—g € W&’Z(Q) be minimizers of I(u) with the same boundary
function g € WL2(Q). Assume that uq # ug, that is, [{x € Q:u1(x) # ug(x)}| > 0. By

the Poincaré inequality, Remark 1.38, we have
0< / luq— uzlzdx < cdiam(Q)Z/ [Du1 —Duzlzdx
Q Q
and thus [{x € Q:Du(x) # Dus(x)}| > 0. Let v = “13%2 Then v € WH(Q) and

1 1
v—-g= —(ul—g)+—(u2—g)€W§’2(Q)~
2 —

2
12 12
eWy () eWy ()

By strict convexity of & — |£ |2 we conclude that
9 1 9 1 2
|Duv]| <§|Du1| +§|Du2| on {xe€Q:Dui(x)#Dus(x)}.

Since {x € Q: Dui(x) # Dus(x)}| > 0 and using the fact that both u; and ug are

minimizers, we obtain

1 1 1 1
/IDvlzdx<—/ |Du1|2dx+—/ |Du2|2dx=—m+—m=m.
Q 2 Ja 2 /o 2 2

Thus I(v) < m. This is a contradiction with the fact that u; and ug are minimiz-

ers. Od

Remarks 2.25:
(1) This approach generalizes to other variational integrals as well. Indeed,
the proof above is based on the following steps:
(a) Choose a minimizing sequence.
(b) Use coercivity

lwillwreq) — 0o = I(u;) — co.

to show that the minimizing sequence is bounded in the Sobolev space.
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(c) Use reflexivity to show that there is a weakly converging subsequence.
(d) Use lower semicontinuity of the variational integral to show that the
limit is a minimizer.
(e) Use strict convexity of the variational integral to show uniqueness.
(2) If we consider C%(Q) instead of W2(Q) in the Dirichlet problem above,
then we end up having the following problems. If we equip C2(Q) with the

supremum norm
lulle2qqy = lullneo@) + 1D Ul ooy + 1D ull o),

where D2y is the Hessian matrix of second order partial derivatives, then
the variational integral is not coercive nor the space is reflexive. Indeed,
when n =2 it is possible to construct a sequence of functions for which the
supremum tends to infinity, but the L2 norm of the gradients tends to zero.
The variational integral is not coersive even when n = 1. If we try to obtain
coercivity and reflexivity in C2(Q) by changing norm to ||u|ly12(q) then we
lose completeness, since the limit functions are not necessarily in C2(Q).
The Sobolev space seems to have all desirable properties for existence of
solutions to PDEs.

2.4 Direct methods in the calculus of vari-
ations for more general elliptic PDEs

The variational integral related to the PDE

n
- Z Dj(a;jDiu)+cu=f (2.26)
i,j=1

is

1 n
I(v):§/ ( > aijDiijv+cv2) dx—/fvdx
2 iy=1 ¢ (2.27)

1
= —/ (ADv-Dv +cvz) dx—/ fuvdx,
2Ja Q
where A = A(x) = (a;j(x)) is an n x n matrix. The PDE (2.26) is called the Euler-

Lagrange equation of the variational integral (2.27).
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Remark 2.28. By Holder’s inequality, we have

i,j=1

1
< = Z ||aij||Lm(Q)/ |Dv|2dx+—/|c||v|2dx+
2 Q 2 /a

i,j=1

1 n

[I(v)| = —/ Z aijDiijv+cv2 dx—/fvdx
2 Ja Q
1 n

/fvdx
Q

L 1
<5 X ||aij||Loo(Q)||Dv||iz(Q)+§||c||Loo(m||v||§2(m+ ol L2l Iiz2c)
i,j=1

n
< 3 ( Z la;jllzo) + ||C||L°°(Q)) ”U”%VLZ(Q) + ||U||W1,2(Q)||f||L2(Q) < o0.
i,j=1

This shows that the integrand in (2.27) is an integrable function with finite
integral for every v e W1-2(Q).

Example 2.29. The variational integral related to Serrin’s example in Section 1.5
is
x|

2
I(w) = / (IDv(x)I2 +o (i -Dv(x)) ) dx,
B(0,1) |

a(n—a)

with o = Toe-i®

> 0. Observe that the integrand
2

x

x .5) )

||

€2 < Flx,&) < 1+ 0)Ef2,

F(x,8) = (|<f|2 +o

satisfies

where o > 0 can be made arbitrarily small by choosing a > 0 small enough.

Definition 2.30. A function u € Wé ’Q(Q) is a minimizer of (2.27) with zero bound-

ary values, if I(u) < I(v) for every v € WOI’Z(Q).

THE MORAL: A minimizer u minimizes the variational integral I(u) in the
class of functions with zero boundary values, that is,

I(w) = inf{Iw):0 e Wy (@)}

If there is a minimizer, then infimum can be replaced by minimum.

Remark 2.31. For nonzero boundary values g € WH2(Q), we may consider
I(w) = inf{l(v) weWH(Q),v-ge W01’2(Q)} .

Thus a function u € Wh2(Q) is a minimizer of (2.27) with boundary values g €
WL2(Q), if I(u) < I(v) for every v e W-A(Q) with v — g € W *(Q2). We consider zero
boundary values case in the argument below, but the methods apply to nonzero

boundary values as well (exercise).
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Theorem 2.32. If u € WO1 2(Q) is a minimizer of (2.27), then it is a weak solution

to (2.27).

THE MORAL: A minimizer of a variational integral with given boundary

values in the Sobolev sense is a weak solution to the Dirichlet problem for the

corresponding Euler-Langrange equation.

Proof. Let ¢ € C3°(Q2) and € € R. Then

Iw)<I(u+ep)

2

iy=1

=i(e).

Since u is a minimizer, i(¢) has a minimum at ¢ = 0, which implies that i’(0) = 0.

A direct computation shows that
. 1 L 2
i(e) = 5 Y aij(DiuDju+eD;iuD p+eD;pD u+e°D;pD;¢p)dx
Qi,j=1
1
+—/ c(u2+2£u<p+£2(p2)dx—/(fu+£f(p)dx.
2Ja Q

Thus

1 n
i'(e)== Z aij (DiuDj(p+Di(iju+2£Di(ij(p) dx
Qij=1

+/c(u(p+£(p2)dx—/f(pdx
Q Q

and we obtain
1 n
i’(0)=—/ Y aij(DiuDjp+D;pDju) dx+/cu(pdx—/f(pdx.
2 Ja\i7= Q Q
Asa;;=aj; and i'(0) = 0, we obtain

1 n
i’(0)=—/2 > aijDiuDj(pdx+/cu(pdx—/f(pdx
2 Ja Q Q

i,j=1

n
:/ ( > a,-jDiuDj<p+cu(p) dx—/f(pdx:O
Q Q

i,j=1

for every ¢ € C°(Q). This shows that u is a weak solution to (2.26).

:1/ ( Y aijDi(u+8(p)Dj(u+€(P)+C(u+£(P)2) dx—/f(u+5</’)dx
A Q

a

Lemma 2.33. Assume that f € L2(Q). The variational integral (2.27) is bounded
from below in Wg ’Q(Q) provided ¢ = ¢g, where cg is as in the proof of Lemma 2.4.
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THE MORAL: We already know that |I(v)| < oo for every W01’2(Q). The lemma

asserts that there is a constant m such that I(v) = m for every WO1 ’2(Q), that is,
. . 1,2
inf{I(v):v e Wy (@)} > —co.

This excludes the case that the infimum is —oo.

Proof. By the ellipticity condition, see Definition 1.7, we have

1 & 1
Iv=={ ) aijDiijvdx+—/cv2dx—/fvdx
2 2 Ja Q

Qi,j=1
A 1
>—/|Dvl2dx+—/cv2dx— /fvdx
2 Ja 2 Ja Q
A
2—/ |Dv|2dx+c—0/v2dx—/ Ifllvldx (c=cp)
2 Ja 2 Ja Q

A 1
2—/ |Dv|2dx+@/vzdx—f/vzdx——/dex
2 Q 2 2 Q 2e Q

(0 < (\/_v - —f) =ev? - 2vf + %fz, see Corollary 1.52

1(A
>—( +co— e)/v dx——/f dx (Poincaré inequality)
Q

>——/f dx (/1+Co 0]

for every v € WOI’Z(Q), when € > 0 is chosen so small that ﬁ +c9g—€>0. This
is possible, since in the proof of Lemma 2.4 we have cg > —%, or equivalently,
% +co>0. O

Remark 2.34. From the proof we see that

I(U)>—/IDU| de+ $2°° / 2olx——/f dx

which implies that
10131200 = /Q lof? dx+ /Q IDvl?dx < c1lf 1172, + 2l )

for every v € Wo1 ’2(Q). Here c; and c2 are independent of v. In particular, this
shows that

llv ||W1,2(Q) —00=I(v) — co.

This property is called coercivity.

Theorem 2.35. There exists a constant cg such that the variational integral

(2.27) has a minimizer u € W(}’2(Q) for every f € L%(Q) when ¢ = ¢y.
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THE MORAL: By Theorem 2.32, every minimizer is a solution to the Euler-
Lagrange equation and Theorem 2.35 gives a variational proof of the existence of
a solution to the Dirichlet problem. This approach does not use the Hilbert space

structure and, as we shall see, it generalizes to nonlinear PDEs as well.

Proof: By Lemma 2.33, the variational integral I(v) is bounded from below in
Wg’2(Q) and hence

inf I(v)
veW, 2(Q)

is a finite number. The definition of infimum implies that there exists a minimizing
sequence uj € WOI’Z(Q), k=1,2,..., such that

lim I(uz)= inf I(v).
k—oo0 veW,(Q)

The existence of the limit limy,_.o, (1) implies the sequence (I(u1)) is bounded,
that is,
HuplsM, k=12,...,

for some constant M < co. By Remark 2.34, we see that
lur 2y < Cc1lf 172, +c2M, k=12,...,

which shows that (u;) is a bounded sequence in Wo1 2(Q).

By the sequential weak compactness of W12(Q) there exists a subsequence
(ug,;) and a function u in Wg’2(Q) such that up, — u and Duy, — Du weakly in
L?(Q) as | — co. This implies that

lim/fukldxz/fudx.

By the ellipticity condition, see Definition 1.7, we have

/ ( Z a;jD;i(up, —u)Dj(up, —u) +c(uy, —u)z) dx
Q

i,j=1

BA/ ID(uk,—u)Ide+/c(ukl—u)2dx>0
Q Q

from which we conclude that

n
/ ( Z aijDiulejukl +cu2kl) dx
Q

i,j=1

n n
22/ ( Z aijDiuleju+cuklu) dx—/ ( Z aijDiuDju+cu2 dx.
Q\i,j=1 Q\i,j=1
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Since D;uy, — D;u weakly in L%(Q), i =1,...,n, and a;;D ju € L%(Q), we obtain

n
lilminf/ ( Y aijDiup,Djup, +cuil) dx
Q

- i,j=1

n n
22lilminf/ ( Z aijDiuleju+cuklu) dx—/ ( Z aijDiuDju+Cu2 dx
Q Q

—ee Jali=1 ij=1

n
:/ ( Z aijDiuDju+cu2) dx.
Q

ij=1
Thus
I(u)=— Y a;jDiuDju+cu®|dx— [ fudx
2 Ja\i7= Q
1 n
< —liminf/ Z a;jDiup,Djuy, +cu% —fug, | dx
2 -0 Jq ij=1 !
=liminfI(ug,)
l—o0
= lim I(up),
k—o0
and finally
inf I(w)<I(u)< lim I(up)= inf I(v)
veW (@) koo veW (@)
from which we conclude that
I(w)= inf I(v).
veW (@) O

Remark 2.36. The proof above is based on the following steps:

(1) Choose a minimizing sequence.

(2) Use coercivity, see Remark 2.34 to show that the minimizing sequence is
bounded in the Sobolev space.

(3) Use reflexivity to show that there is a weakly converging subsequence.
(4) Use lower semicontinuity of the variational integral to show that the limit
is a minimizer.

(5) Use strict convexity of the variational integral to show uniqueness.

Next we discuss an abstract version of the existence result. Let X be a Banach
space. We begin with recalling some definitions.

Definition 2.37.
(1) We say that x € X, k=1,2,..., converges weakly to x € X if x*(x3) — x*(x)
as k — oo for every x* € X*. Here X* denotes the dual of X.
(2) By the Eberlein-Shmulyan theorem a Banach space is reflexive if and only

if every bounded sequence has a weakly converging subsequence.
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(3) A function I : X — R is sequentially weakly lower semicontinuous, if
I(u) < likminfl(uk)

whenever u;, — u weakly in X.

(4) A function I : X — R is coercive, if
lugllx —oco=I(ug) — oo

as k — oo.

(5) A function I : X — R is convex, if
IHA-tx+ty) <A -8)I(x)+¢I(y)
for every x,y € X and t €[0,1]. I is strictly convex if
HA-dx+ty) <A -8)I(x)+tI(y)
for every x,y€ X, x # y and t € (0,1).

Theorem 2.38. Assume that I : X — R is a coercive, sequentially weakly lower
semicontinuous and strictly convex variational integral on a reflexive Banach
space X. Then there exists a unique u € X such that

I(u) = inf I(v).
veX

Proof. We show that m = inf,cx I(v) is finite. Assume, for a contradiction,
that it is not, in which case m = —oco. By the definition of infimum, there exists a
sequence (up) such that I(up) — —oo as k — oco. If (1) is a bounded sequence in X,
by reflexivity, it has a weakly converging subsequence such that u;,, — u weakly
as [ — oo for some u € X. Since I is sequentially weakly lower semicontinuous, we
have

I(w) <liminfI(uy,;) = —oco
[—o00

and thus I(z) = —oo, which is a contradiction with the fact that |I(x)| < co. Thus
(u) is an unbounded sequence in X and there exists a subsequence (u,) such that
lug, Il — oo as I — oco. By coercivity, I(uy,) — oo as I — oco. This is a contradiction

with I(up) — —oo as k& — co. Thus

m = inf I(v) > —oo.
veX

Let (uz) be a minimizing sequence such that I(u) - m as £ — oco. As a
converging sequence of real numbers (I(uy)) is bounded. We show that (u;) is a
bounded sequence in X. Assume, for a contradiction, that it is unbounded. Then
there exists a subsequence (up,) such that [ug, || — oo as [ — co. By coercivity,

I(u,;) — oo as I — oo. This is a contradiction with I(uy) - m <ocoas k —oo.
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(3)| Since (up) is a bounded sequence in X, by reflexivity, it has a weakly
converging subsequence (up,) such that [luz, || — u as I — oo for some u € X. Since

I is sequentially weakly lower semicontinuous, we have
I(u) <liminfl(ug,) < lim I(ug)=m
k—o0 k—o0

and

m<I(u)< lim I(ug)=m.
k—o0

This shows that I(z) = m and that u is a minimizer.
To show that the minimizer is unique assume, for a contradiction, that
u1 € X and ug € X are minimizers with u; # ug. We consider

u=—-ui1+ —=-us.

2 2
Since u1 # ug, by strict convexity
1 1 1 1
Iw)=1 (§u1 + §u2 < 51(u1)+ §I(u2) =m.

Thus I(z) < m and this is a contradiction with the fact that u1 is a minimizer.
A similar argument applies for ug as well. Thus u; = u2 and the minimizer is

unique. a

THE MORAL: The variational approach is based on Banach space techniques.
This applies to nonlinear variational integrals as well.

Example 2.39. Let n=1and Q=(0,1) and
11 14
I(w)= / (§u(x)2 +(1—u’(x)2)2) dx, ueWy Q).
0

Claim: This variational problem does not have a solution, that is, there does not
exist a function u € WO1 ’4(Q) such that

Iw) =inf{I@):ve Wy @)}

Reason. Let u € WO1 4Q). By the Sobolev embedding we may assume that u
is continuous. Since the integrand is nonnegative, we have I(x) = 0 for every
ueE W01’4(Q). We show that I(z) > 0 for every u € W(}A(Q). To see this, we note that
if u(x) = 0 for every x € Q, then I() =1> 0. If u is not identically zero, then there
exists & € N such that

|{x€ Q:ulx)| > %H >0.

Thus
11 11
I(u)=/ (—u(x)2+(1—u’(x)2)2) dx;/ “u(x)?dx
0 2 0 2

1(1)2 )
25(%) erQlu(x)|>E}|>0
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Consider a sequence of sawtooth functions u; € W01’4(Q), Jj=1,2,..., such that

1
luj(x)] < o j=1,2,..., and |u;.(x)| =1 for almost every x€Q.

Then

1

I(uj)= / ( w;(x)? +(1- u(x)z)z)dx / %uj(x)de
0

/%(—) dx—0 as j—oo.

m= inf I(v)=0.
veW Q)

N

This implies that

Since I(u) > 0 for every u € Wg ’4(9), there does not exist a function u € WO1 ’4(Q)
such that I(x)=0=m. -

THE MORAL: A minimizer may not exist, if the variational integral is not

sequentially weakly lower semicontinuous.
Example 2.40. Letn=1,Q=(-1,1), g:Q—R, g(x) =x, and
1
I(w) = / u'(x)%x* dx,
-1

where u € WH2(Q) such that u —g € W01’2(Q). Again, we may assume that u is
continuous and u(-1)=-1 and u(1) =1.

Claim: This variational problem does not have a solution, that is, there does not
exist a function u € W12(Q) withu —g € Wol’z(Q) such that

I(w) = inf{l(v) weWL2(Q),v-ge W01’2(Q)} .
Reason. Let0<e<land u,:Q—R,

_15 xE[—l,—E],
ue(x)=9%, xe(-¢,e),

1, xe(g1].

Then u, € W-(Q) with u, — g € Wy *(Q)

€01 2 125 23
Osl(u5)=/ (—) x4dx=—2i=i—>0 as ¢£—0.
_e\€ e« b 5

Since I(v) = 0 for every v € WH2(Q), we conclude that

m= inf{I(v) weWL2(Q),v-ge Wol’z(Q)} - 0.
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Thus the infimum of the variational integral is zero.
Let u € Wh2(Q) with u — g € Wy 2(Q). Let ¢j € C®(Q), j = 1,2,..., such that
@j—uin Wb2(Q) and

lim ¢;(x) = u(x) forevery xe€Q.
J—00

Since u(1)—u(—1)=1-(-1) =2 and u is continuous, there exist x, y € Q such that
u(x)—u(y) = 1. Thus

1<u(x)-—uly)= }irgo(wj(x) —@ji(y)
X X 1
=lim | (p;))'@®)dt< lim / (@) (D) dt < / lu'(t)|d.
Jj—oo Jy J—oo Jy -1
This implies that there exists 2 € N such that

[{xeQ:lu' () > £} >0

and consequently

1
I(u)=/ u'(x)2x4dx>/ u'(x)?x* dx
-1 {xeQ:lu'(x)|> %}

u'(x)?xtdx

™8

j=1 /{er:|u'(x)|>,1}n{er:2J<|x|<21‘+1}
1

jok?

WV
[agf

@ |freQ: Wl > Hn{re:2 <l <2774 >0,

since at least one of the terms in the sum is positive. Since I(u) > 0 for every
u € W2(Q), there does not exist a function u € W2(Q) such that I(u)=0=m. m

We observe that I is not coercive, since

1
£ 1 2 2
”ue”WI,Z(Q) = ||(ug)'||L2(Q) = (/ (E) dx)

—£&

1 1

2¢)2 2\2

= o) = ; — 00 as E—’O,
£

but I(u.) — 0 as € — 0. Note that the integrand F(¢) = &2x% is convex.

THE MORAL: A minimizer may not exist, if the variational integral is not

coercive.

Remark 2.41. We consider the Dirichlet problem for the Laplace equation in the
unit disc in the two-dimensional case. Let Q = B(0,1) be the unit disc in R? and
assume that g € C(0Q)) is a continuous function on the boundary. The problem is
to find u € C2(Q) N C(Q) such that

Au=0 in Q,
u=g on 0Q.
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This problem can be solved by separation of variables with Fourier series in
polar coordinates. Recall that any point in the plane can be uniquely determined
by its distance from the origin r and the angle 6 that the line segment from the

origin to the point forms with the x1-axis, that is,

(x1,x9) = (rcos0,rsin0), (xl,xg)EIRz, O<r<oo, -n<f<m,

where r2 = x% + x% and tanf = z—? In polar coordinates, we have

Q={r,0):0<r<l,-n<f<n} and 0Q={1,0):—-n<6<m}.

The two-dimensional Laplace operator in polar coordinates is

0u 10u 1 d%u

Au=—— =t ——
u ar2 ror r?200%’

O<r<oo, —-m<O<m.

By separation of variables, we obtain

+ Y 1/ (a;cos(j0) + b;sin(j6)),
j=1

ao
u(r,0)=—

(r,0) 9
where a; and b; are the Fourier cosine and sine coefficients of g, respectively.
If Z;‘;l(la il +1b;1) < oo, the series converges uniformly in Q and its derivatives
converge uniformly on compact subsets of Q. Thus u € C2(Q)NC(Q) and u = g on
0Q. This shows that u is a classical solution to the Dirichlet problem in the unit

disc.

2n pp 1
/ |Du|2dx=/ / (Iur|2+—2|u9|2)rdrd0
B(0,p) o Jo r

=m Y jp¥ (a5 +b3).
j=1
If we choose )
00 ,.2]!
u(r,0) = Z 5 sin(j!6),
j=1J
then the boundary function is
x 1
g0 =u(,0)= Z = sin(j!16).
j=1J

In this case
/ |Du|2dx=nz,—4=oo
B(0,1) =17

and thus v ¢ W12(Q).

THE MORAL: The classical solution of the Dirichlet problem with continuous
boundary values may fail to belong to W12(Q).
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Remark 2.42. Let n =2 and Q = B(0,1) \ {0}. Consider the Dirichlet problem

Au=0 in Q,
u=g on 0Q,

where g(x) = 1—|x|. Note that g € W-2(Q) N C(Q). Then u : Q — R, u(x) = 0 is the
weak solution with boundary values g, thatis, u —g e WO1 2(Q). Observe that

0=limu(x) #limg(x) = 1.
x—0 x—0

THE MORAL: The boundary values of a weak solution to a Dirichlet problem
are not necessarily attained in the classical sense.

2.5 Unigueness

Let us briefly the discuss uniqueness question. To this end, we need a useful
lemma.

Lemma 2.43. Ifu e WO1 2(Q) is a weak solution of (2.1), then

n
/(Z aijDiuDjv+cuv)dx=/fvdx
Q\i,j=1 Q

for every v e W01’2(Q).

THE MORAL: The advantage of this result is that we may use WO1 2(Q)
functions as test functions in the definition of a weak solution instead of C3°(Q2)
functions, see Definition 1.18. Especially, we can use a weak solution itself as a

test function. The result holds also under the assumption u € W2(Q).

Proof. Let ¢, € CP(Q), k=1,2,..., such that ¢ — v in W12(Q) as £ — co. Then

'/ aijDiuDj(pkdx—/aijDiuDjvdx
Q Q

= ‘/ a;jD;u(D g, —Djv)dx
Q
< llaijleollDiullpeyllDjor —DjvliL2q) — 0,

ask—o0,1,j=1,...,n. Thus

n n
/ Z aijDiuDjvdx: lim Z aijDiuqu)kdx.
Qij=1 k—oo /0521

Similar arguments show that

/cuvdx: lim [ cugpdx
Q k—oo Jo
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and

/fvdxz lim/f(pkdx.
Q k—oo Jq

By the definition of a weak solution, see Definition 1.18, we have
n
/ ( Z aijDiuDj(pk +cu<pk) dxz/ f(pkdx
Q\i,j=1 Q
for every k =1,2,..., since ¢, € C7°(C2). This implies that

n n
/ ( Z aijDiuDjv+cuv) dxzklim ( Z a;jD;uD ;o +cu<pk) dx
Q

=1 s, =1

= lim/f(pkdx:/fvdx. a

Theorem 2.44. The solution of (2.1) is unique, provided ¢ = ¢y, where cg is as in

the proof of Lemma 2.4.

Proof Let ui,ug€ WO1 ’Z(Q) be weak solutions. By Lemma 2.43
n
/ ( Z aijDiulev+cu1v) dxz/ fvdx
Q\i,j=1 Q
and

n
/(Z aijDiuszv+cu2v) dx=/fvdx
Q Q

ij=1
for every v € WO1 2(Q). By subtracting the equations from each other and choosing

1,2
v=u1—ug€Wy"(Q), we have

n
/ ( > aij(Diul_Diuz)(Djul_Dju2)+0(u1_u2)(u1_u2)) dx=0
alij=1

With the ellipticity property, see Definition 1.7, this implies that
/1/ [Duq —Du2|2dx+/ clug— uz)2 dx<0.
Q Q

By using the fact that ¢ > —% and the Poincaré inequality, as in the proof of

Lemma 2.4, we have
2 A 2 A 2
clui—uo)dx=z—— | (u1—u9)*dx=—-——= | |Dui—Dus|“dx.
Q 2u Ja 2 Ja
By combining these estimates, we conclude that
A
——/ [Du1 —Duzlzdxs / c(uq —u2)2dx < —/l/ |Duq —Du2|2dx.
2 Ja Q Q

Thus
/ IDul—DuQIdeZO and / c(ul—ug)zdxzo.
Q Q

This implies u; = ug almost everywhere in Q. d
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2.6 Comparison and maximum principles
In this section we show that the same technique as in the proof of uniqueness
gives certain versions of comparison and maximum principles.

Theorem 2.45 (Comparison principle). Assume that u, w € WH2(Q) are weak

solutions of (2.1) and ¢ > co. If (u —w), € Wy *(Q), then u <w in Q.

THE MORAL: The assumption (v —w); € Wé’Q(Q) means that u <w on 0Q in
Sobolev space sense. Thus the comparison principle asserts that if a solution is
above another on the boundary, then it is above also inside the domain.

Proof. The idea is the same as in the proof of the uniqueness. By Lemma 2.43

n
/(Z aiijuDiv+cuv)dx=/fvdx
al; Q

i,j=1

and

n
/(Z aiijwDiv+cwv) dx:/fvdx
al; Q

1,j=1

for every v e WO1 2(Q). By subtracting the equations from each other we have

n
Z a;;D;j(u-w)D;v+clu—-wrdx=0.
Qi,j=1

We choose v =(u—w); € W01’2(Q) and obtain

0=/ ( > aiij(u—w)Di(u—w)++c(u—w)3) dx
Q

ij=1
> / ADw-w), 12+ c(u —w)? dx.
Q
Since ¢ = —% and by the Poincaré inequality, see Remark 1.38, we have
0= / AlD(u — w)+|2 +c(u— w)?r dx
Q
2 A 2
= / AMD(u—w). | — 2—(u —w)idx
Q H
A
> / AMDw - w), >ddx - —/ ID(u—-w),|?dx
Q 2 Ja

A
= —/ |D(u — w)+|2dx.
2 Ja
By the Poincaré inequality, we have
0 s/ (u—-w),2dx s,u/ ID(u—w),|?dx <0.
Q Q

This implies that (z —w); = 0 almost everywhere in Q, that is, u < w almost

everywhere in Q. d
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Remark 2.46. The proof above shows that if u, w € W12(Q) are sub- and superso-

lutions respectively, that is,
n
/ Y aijDjuD;v+cuvdx < / fvdx
Qi j=1 Q

and

n
Z aiijwDiv+cwvdx>/fvdx
Qij=1 Q

for every v e W,*(Q) with v >0, and (u - w); € Wy (), then u <w in Q.

Theorem 2.47 (Weak maximum principle). Let u € WH2(Q) be a weak solu-
tion of (2.1) with f =0 and ¢ = 0. Then

esssupu <supuy.
Q Q.

THE MORAL: The maximum principle asserts, roughly speaking, that a
solution attains its maximum on the boundary of the domain. More precisely, a

solution cannot attain a strict maximum inside the domain.

Proof. Set M = supgqu+ =0. Then (u—-M), € Wol’z(Q). To see this, choose a
decreasing sequence [; — M so that (u—1;); =(u+ —1;)+ € W(}’Z(Q). Since Q is
bounded, it follows that u —; — u—M in WH2(Q). This implies

(w-1))y — w-M), inWHQ)

and thus (u — M), € Wy *(Q).
We use v =(u— M), as a test function and obtain

n
/ (Z aiijuDiv+cuv) dx=0
Q

ij=1

and the constant function M is a weak supersolution, that is,

n
/(Z aiijMDiv+ch) dx:/chdeO.
alij=1 Q

Here we used M, c,v = 0. We subtract these from each other and conclude that

)L/ ID(u — M), |? +c(u— M) dx <0.
Q

From this it follows that u < M almost everywhere in Q. a



Higher order regularity

In the previous chapter, we proved existence of a solution by weakening the
definition of a solution. In this chapter we study the regularity of weak solutions:
are weak solutions of the PDE

Lu=f inQ,

where L is as in (1.4), smoother than Wli’cz(Q) under suitable assumptions on
the coefficients and on the source term f? Are they classical solutions to the
problem? Example 1.5 shows that this is not true under the L*°-assumption on
the coefficients, so that additional assumptions have to be imposed. Our main
result shows that if the coefficients are smooth and the source term f is smooth,
then the solution is smooth.

3.1 Poisson equation

Consider the Poisson equation

-Au=f in R

58
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A formal computation using the integration by parts shows that

2 2 w 62u 2
fedx= (Au) dx=/ —| dx
R" R" R? ; axiz
2 0%u | (& 0%u L 0%u 0%u
=/ Z—z .Z_Z dxz.Z/ — T dx
R \;=1 Bxi =1 axj ij=1Jme axi (?xj

n 63 9 n 62 62
=—2/ 2“—“dx=z/ Ly
R 6xi axj ij ij=1Jmn axiaxj axiaxj

ij=1
2
T d%u
=/ Z ( ) dx = IDzulzdx,
R j=1 Bxlaxj Rn
where
u _%u
8x2 Tt 0x0xy,
8%y 8%u
D2y = Ox90x1 " 0Ox20x,
u Pu
0x,0x1 " dx2

is the matrix of the second derivatives and
2

D2up? = i ( %u ) .

THE MORAL: This formal argument suggests that the second derivative of a
solution to the Poisson equation —Au = f belongs to L2(R") if f € L2(R").

The argument above can be localized. Let B(x,2r) be a ball in R* and let
n € C3°(B(x,2r) be a cutoff function with 0 <n <1, n=11in B(x,r). Let v =nu.
Then
2

/ 2 12 i 0*u
|D*u| dyz/ ( ) dy
B(x,r) Blx,r) ig=1\0%;0x;

2

L d%v )
< dy
/B(x,Zr)i,Jz_’l (axiaxj

= —/ (Av)? dy.
B(x,2r)

Since
Av =AMu)=nAu+2Dn- Du+uln,
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by applying the inequality (a + b + ¢)? <3P(a? + bP +¢P), a,b,c =0, p =1, we have
/ (Av)zdyz/ (nAu +2Dn-Du+uln)?dy
B(x,2r) B(x,2r)

s/ (InAul|+2\Dn||Dul + lul|An)? dy
B(x,2r)

<32 (/ |nAu|2dy+/ (2|Dn||Du|)2dy+/ |uAn|2dy)
B(x,2r) B(x,2r) B(x,2r)

sc/ (lul® +|Aul® + |Dn?|Dul?) dy,
B(x,2r)

with ¢ = 36 supB(x,Zr)(n2 +|An|?). Integrating by parts twice and applying the
inequality 2ab < a? + b% we have

1
/ |Dn|2|Du|2dy=—/ |Dn|2uAudy+—/ uw?A(IDn1?)dy
B(x,2r) B(x,2r) 2 JB2n

< c/ (u® +(Auw)?) dy,
B(x,2r)

with ¢ = supB(x,Q,)(anl2 + A(IDnI2)). It follows that

/ |D2u|2dy<c/ (u2+(Au)2) dy
B(x,r) B(x,2r)

=c/ (u®+£?%) dy.
B(x,2r)

For the gradient we have

/ |Du|2dy</ ID(nu)IZdy:/ D(nu)-D(nu)dy.
B(x,r) B(x,2r) B(x,2r)

We note that
D(nu)-D(nu) = u®Dn-Dn+Dn%u)-Du

and obtain

/ |Du|2dys/ uan-Dndy+/ Du'D(nzu)dy.
B(x,r) B(x,2r) B(x,2r)

Since —Au = f, we have

/ Du-D(nZu)dy:/ nufdy,
B(x,2r) B(x,2r)

which implies that

/ |Du|2dy</ |u|2|Dn|2dy+/ lullfldy
B(x,r) B(x,2r) B(x,2r)

1 1
s/ |u|2|Dn|2dy+—/ |u|2dy+—/ Fi2dy
B(x,2r) 2 JBx,2r) 2 JB(x,2r)

SC/ (lu®+1£1%) dy,
B(x,2r)
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with ¢ = SupB(x’Zr) |Dn|2 + %
By combining the estimates above, we have
2
”u”WZQ(B(x,r)) = ”u”L2(B(x,r)) + ||Du”L2(B(x,r)) + D u”L2(B(x,r))
<c (lulp2@e,m + 1 lL2mem)
where ¢ only depends on the radius r.
THE MORAL: This formal argument suggests that a solution to the Poisson
equation —Au = f belongs to Wli’f([RZ”) if fe LIQOC([R").

Next we apply these estimates recursively. This is called a bootstrap argument.

By the previous computation, the L2-norm of the second derivatives
of u can be estimated by the L2-norm of f.

By differentiating the PDE, we have

_A(a_u): 6(Au)_ﬁ k=1,...,n,

oxy )~ Oxp T Oxp,’
that is,
~Az =T,
where s _of
uza and fza, k=1,...,n.

Thus the partial derivatives satisfy a similar PDE. By the same method as in
Step 1, we can estimate the L2-norm of the third derivatives of u by the first
derivatives of f.

Continuing this way, we see that the L2-norm of the (m + 2)"¢ deriva-
tives of u can be controlled by the L2-norm of the m** derivatives of f for
m=0,1,2,.... In particular, if f € C3°(R"), then u € W™2(R") for every m=1,2,...,
and thus u € C*°(R").

THE MORAL: This formal argument suggests that u has two more derivatives
than f.

Observe, however, that we assumed that u is smooth in the iterative process
above, and thus it is not really a proof for smoothness. Next we want to make
this heuristic idea more precise. There are two standard approaches to the higher
regularity theory:

(1) Schauder estimates f € C%%(Q) = u € C%%(Q), 0<a <1, and
(2) Calderén-Zygmund estimates f € L?(Q) = u € W22(Q).

We shall focus on the Calderén-Zygmund estimates. For the Schauder estimates,
we refer to [1, Chapter 2], [4, Chapter 2], [6, Chapter 3],[7, Chapter 5], [8, Chapter
6], [11, Chapter 3] and [16, Chapter 6]. First we give three examples which show
that the claim “u has two derivatives more than f” is not always true.
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Examples 3.1:

o))

(2)

3

Let u:R? - R,
u(x,y) = (x* — y»)log(x® + %), (x,5) #(0,0).

Then

d%u 9 9 82 x? —y?

a—xQ(x,y) =2log(x” + y°) + 1 - (xz Ty ) , (x,9)#(0,0),
and

2 2 2 _ .2

u B 9 9 8y x“—y
6—y2(x,y) = —2log(x” +y*) — e (x2 )2 ) , (x,y)#(0,0).
Thus ) )
6 u 2 6 u 2

so that u ¢ W2°(R2). However, we have

8%u 2%u 3c2—y2
Au(x,y) = ﬁ(x,y) + a—yz(x,y) =8 (m) 5 (x,y) # (0,0)

and f = Au € L°(R?). Thus f € L™°(R?) does not necessarily imply that
u € W2(R?),
Let u :R? — R,

ulx,y) = (2 - y*)log|log(x? + y*), (x,y)#(0,0).

Then u ¢ CLL(R?) and f = Au € C(R?). Thus f € C(R?) does not necessarily
imply that u € C2(R?).
Let u:R? — R,
1
u(x,y) =loglog m, (x,y) #(0,0).

In polar coordinates with r? = x% + y2, we have

1
u(r)=loglog—, u,(r)= , r#0,

r rlogr

and
1 logr+1 1 1
A = —Uu,=- =— , 0.
wr) = (r) r r r2(logr)?  r2logr r2(logr)? r#

Then

1

2 1
/ Audx:—2n/ dr <oo
B(O,}) o rlogr

and thus Au € L1(B(0, %)). However, we have

62u 1 1 aZu 1 1
WGEL (B(0,3)) and 6—y2€L (B(0,3))

so that u ¢ W>1(B(0, 3)). The correspoding example in R”, n = 2, can be
1-n

constructed by considering a function u(r) with u,(r) = TO?.
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3.2 Difference quotients

The proof of the main result of this section uses difference quotients and thus this
approach is called the difference quotient method. We recall the definition and
basic properties of difference quotients.

Definition 3.2. Let f € Llloc(Q) and Q' € Q. The k" difference quotient is

fx+hep)—f(x)
h )

for x € )’ and & € R such that 0 < |A| < dist(Q’,8Q). We denote

DI f(x)= k=1,...,n,

D"f =(D"f,...,Dhp).

THE MORAL: Note that the definition of the difference quotient makes sense
at every x € QQ whenever 0 < |h| < dist(x,0Q). If Q =R"”, then the definition makes

sense for every h # 0.

The following properties of the difference quotients follow directly from the
definition.

Lemma 3.3.

(1) If f,g € L*[R") are compactly supported functions, then

/R ) f(@)D}g(x)dx =~ /R ) gD fx)dx, k=1,...,n.
(2) If f has weak partial derivatives D;f,i=1,...,n, then
D;D!f=D!D;f, ik=12,..,n.
(8) If f,g € L3R"), then
DMfg)=g" (D} f(x)+ f(x)D} g(x),

where g"(x) = g(x + hey,).

Proof:

| ronteed= [ fufEt
R” R”

_/ glx+hep)f (x) dx—/ glx)f (x)
e h o h
_ [ 8@f(x—hep) ., [ g)f(x)
- / , h dx / h

:_/ (x)f(x—hek)—f(x)
.8 (—h)

dx

dx.
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Let ¢ € C°(R"). Then

he0Q fx+hep)—f(x) d¢
Yl e S
1 PN NY)
=7 ( o f(x+hek)6xi (x)dx . f(x)axi (x)dx)
1

=——( D;f(x+hep)p(x)dx— Dif(x)(p(x)dx)
h RTL [Rn

_ _/ Dif(x"‘hek)—Dif(x)(p

Y (x)dx

=— / DID;fp(x)dx.
[Rn

fx+her)g(x+her) - fx)g(x)
h

1
= ﬁ((f(x+hek)g(x+hek)—f(x)g(x+hek))

+(f(0)g(x + hep) - f(x)g(x))

D(fg)=

+h - +h —
=g(x+hek)f(x er)—f(x) +f(x)g(x ep) —g(x)
h h
=g" @D} f(x)+ f(x)Dlg(x). O
We recall a characterization of the Sobolev spaces by integrated difference
quotients.
Theorem 3.4.

(1) Assume u € WHP(Q), 1 < p < oo. Then for every Q) € Q, we have
ID"ullLr () < clDullLe()

for some constant ¢ = c¢(n, p) and all 0 < |A| < dist(Q/,0Q).
(2) Ifu e LP(Q"), 1< p <00, and there is a constant ¢ such that

ID*wl Loy <c
for all 0 < |A| < dist(Q’,8Q), then u € WHP(Q') and
IDulrry<ec.

Proof. See Sobolev spaces. a

3.3 Difference quotient method

We assume that QQ cR” is a bounded open set and we consider a PDE of the type
n n
Lu=- ) Dj;jDiu)+) bDiu+cu=f,
i,j=1 i=1
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see (1.4). We continue to require the uniform ellipticity condition, see Definition 1.7
and we will make additional assumptions about the smoothness of the coefficients

a;j,b; and c.
Theorem 3.5 (Second order interior estimate). Assume that
a;;€CHQ), b;,ceL™Q), i,j=1,....,n, and feL*Q).

Let u € W2(Q) be a weak solution of Lu = f in Q, where L is as in (1.4). Then
ue Wi’cz(Q) and for every Q' € Q, we have

||u||W2,2(Q/) sc (”f”L2(Q) + ”u”L2(Q))a

where the constant ¢ depends only on Q/, Q and the coefficients of L.

THE MORAL: This regularity result asserts that the weak solution that
assumed to belong to W12(Q) is more regular and belongs to Wli’cz(Q), if the
coefficients a;; € C 1(Q). In addition, this result comes with an estimate. Example
1.5 shows that this cannot hold under the assumption a;; € L>(Q2). Note that no
boundary conditions are assumed, so that this regularity result applies to PDEs

with Dirichlet, Neumann or other boundary conditions.

Remarks 3.6:
(1) Note that we do not require u € W(} ’Z(Q), that is, we are not assuming that

u =0 on 9Q in the Sobolev sense.

(2) The claim u € W>%(Q) implies that u actually solves the PDE almost

loc
everywhere in Q, that is,

Lu(x)=f(x) for almost every xeQ.

Reason. By the definition of the second order weak derivative gives

n n
/f(pdx:/ ( Z aijDiuDj(p+ZbiDiu(p+Cu(p
Q Q i=

ij=1 i=1

dx

n n
:/ (_ > Dj(aijDiu)(P+ZbiDiu(p+cu(p) dx
a\ ij=1 i-1

and consequently
n n
/(— > Dj(aijDiu)+ZbiDiu+cu—f)(pdxz/(Lu—f)(pdsz
al ij=1 i=1 Q

for every ¢ € C°(Q). This implies that Lu — f = 0 almost everywhere in
Q. [ ]
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Proof Choose Q" such that Q' € Q" € Q. Let n € C3*(Q") be a cutoff function
suchthatn=1in Q' and0<n<1.
Let u be a weak solution of Lu = f in Q. Then by Lemma 2.43,

n j—
Z aijDiuDjvdx=/ fuvdx 3.7
i,j=1JQ Q

for every v € Wo1 ’2(9), where
_ n
f:f—ZbiDiu—cu.
i=1

We point out that Lemma 2.43 holds also without assumption that b; =0, i =
1,...,n (exercise).
(3)|Use
v=-D;"?Dlu), k=1,..n,

as a test function in (3.7), where

u(x+hep)—u(x)

DZu(x) = 7

is a difference quotient with |A| > 0 small enough. Observe that v € WO1 ’Z(Q) for
small enough |h| > 0. We write the resulting expression as A = B for

n j—
A= Z a;;D;uD;vdx and Bz/fvdx.
ij=1JQ Q

For A we have

n

A=-Y [ ayDuD;(D;*GPD}w)dx  (Lemma 3.3 (2)

in=1/a
=D;MD;(n?Dhw))

n
Y. | DMa;jD;uw)D;(n*Dlu)dx (Lemma 3.3 (1))
i,j=1/Q

n
Y Q(a?jDZ(Diu)Dj(nQDZu)

ij=1
+(D}ai)D;uD;n*D}u)) dx (Lemma 3.3 (3))
n
=Y [ a\D}DuwDD jum’ dx
i,j=1/Q
n
+_Zl Q(a’;jDZ(Diu)Dzuanjn (Leibniz)
1,]=

+(DPa;)D;uDMDjum? + (DZaij)DiuDZu2nDjn) dx
=A1+As.
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Recall that a?j (x) = a;j(x+hey). The uniform ellipticity (see Definition 1.7) implies
that .
A=) | aiiDyDwDyDjun’ dx > A/anlDZDuF dx.

i,j=1
On the other hand, by using the properties a;; € L*(Q), DZaij e L®(Q), n> <nin
Q and Young’s inequality with ¢, see Corollary 1.52, with p =2, we have

|As| sc/ (11D} DulID}ul + nIDEDuliDul +nID} uliDul) dx

Q

sce/ *ID}Duldx+c(e) | (IDhu?+Dul?) dx
Q Q//

SCS/ nZIDZDuIde+c(£)/ |Du|2dx.
Q Q

In the last inequality we used the fact that

IIDZuIILz(Q//) $C||DU||L2(Q), k= 1,...,71,

for some constant ¢ = c(n, p) and all 0 < || < dist(Q"”,0Q2), see Theorem 3.4 (1). By

choosing € >0 so that ce = %,

we have
A
Aol < —/ nQIDZDulzdx+c/ |Du|2dx.
2 Ja Q
This gives the lower bound
A= A1 - |A2|

A
>A [ ®ID"Du?dx-= | n?\D?Dul?dx—c | |Dul?dx
k 2 k
Q Q Q

A
=_/n2|1),’;Du|2dx—c/ \Dul?dx.
2 Ja Q

We estimate B by using Young’s inequality with ¢, see Corollary 1.52, and
n
f- Z biDiu—--cu

obtain
|B|</ |?||v|dx:/
Q Q i=1

< c/(lfl +|Du|+ |uv|dx
Q

lv|dx

scs/ |v|2dx+c(5)/(|f|+|Du|+|u|)2dx
Q Q

scg/ |v|2dx+c(£)/(|f|2+|u|2+IDulz)dx,
Q Q
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where
/|v|2dx: |v|2dx:/ \D; " (1’ DPu)® dx
Q Q” QH
sC/ |D(n2D§;u)|2dx=c/ ID(?D ) dx
Q QH
< (2 h 2 nha -
< nIDnlIDyul +n°|D(Dyw)l dx (Leibniz)
Q/l
SC/ n2|Dnl2|DZu|2dx+c/ 174|D2Du|2dx
QH QH
so/ IDuIde+c/ UQIDZDuIde. (174<172)
Q Q//

Thus
IBIsce/nleZDuIde+c(£)/(|f|2+|u|2+IDu|2)dx.
Q Q

By choosing € > 0 so that ce = %, we obtain
A
Bl < —/ D" Dul?dx + c/ (f 12+ ul?+|Dul?)dx.
4 /o Q
A combination of estimates from (4) and (5) gives

A
_/172|D2Du|2dx—c/ |Du|2dx<A
2 Ja Q

A
=B<—/n2|D§;Du|2dx+c/(|f|2+|u|2+|Du|2)dx.
4 /o Q
Thus

/ |D§;Du|2dx</n2|D’,;Du|2dxsc/(|f|2+|u|2+|Du|2)dx
Q Q Q

for £ =1,...,n and all sufficiently small || # 0. The characterization of Sobolev
spaces by integrated difference quotients, see Theorem 3.4 (2), implies Du €
W12(Q') and thus u € W22(Q') with the estimate

lwllwzzqn <c (”f”L2(Q) + ||u||W1,2(Q)) .

This is almost what we want except that there is the Sobolev norm |u|y12q)
instead of ||u || 2(q) on the right-hand side.

To complete the proof, choose a cutoff function 1 € C{°(Q2) such that n=1
on Q" and 0 << 1. By Lemma 2.43 we may apply

v=nueWy(Q)

as a test function in (3.7), that is,

n p—
Z aijDiuDj(n2u)dx:/f172udx.
i,j=1/Q Q
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Now

n n
Y [ aijDiuD;*w)dx= Y | aijDiu(n*D,u+2unD,n)dx
ij=1/0Q ij=1/0

n
Y [ aijDiu2unD ndx
ij=1J0

>

2/1/ 172|Du|2dx—
Q

where

n
Z aijDiuZunDjndx
i,j=1JQ

n
<c Z nIDiuIIuldeC/17|Du||u|dx.
i,j=1/Q Q

Thus

n
Z aijDiuDj(T)Zu)de/l/172|Du|2dx—c/17|Du||u|dx.
ij=1J0 Q Q

On the other hand, we can use Young’s inequality with ¢ to obtain

/FnZudeC/(|f|+|Du|+|u|)UZde
Q Q

<C£/ n2|Du|2dx+c(£)/ |u|2dx+c/ If1?dx.
Q Q Q

Choosing £ > 0 such that ce = % and combining the previous estimates, we have

/n2|Du|2dx<c/(|f|2+|u|2) dx+c/17|u||Du|dx,
Q Q Q

where the last term can again be estimated by Young’s inequality as
c/ nlullDul|dx < ce/ 172|Du|2dx+c(£)/ Iulzdx.
Q Q Q

By choosing ¢ > 0 such that ce = %, we finally have

1
/nleuIdesc/(|f|2+Iulz)dx+—/n2|DuI2dx+c/ ludx,
Q Q 2 /o Q

which implies

IDulzdxs/nleulzdxsc/(|f|2+|u|2)dx. (3.8)
Q' Q Q

The argument in (6), with Q replaced by Q”, combined with (7) gives

"u”WZ,Z(Qr) <cC (”f"LZ(QH) + ||u ||W1,2(Q//)) .

sc (”f"LZ(Q) + ||u||L2(Q)) .

This completes the proof. d

THE MORAL: The proofis based on choosing appropriate test functions. In
step (2) we use v = —D,;h(nzDZu), k=1,...,n, and in step (7) we use v = 172u as
a test function in (3.7). These are the only points in the proof where we use the
PDE.
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Remark 3.9. The proof of the previous theorem gives an extremely useful energy
estimate (Caccioppoli estimate). Assume that Q < R" is a bounded open set,
a;j,bi,ce L*(Q),i,j=1,...,nand f € L2(Q). Let u € WH2(Q) be a weak solution
of Lu = f in Q, where L is as in (1.4). Then by (3.8), there exists a constant
¢ =c(1,Q') such that

|Du|2dx<c/(|f|2+|u|2)dx,
o Q
whenever )’ € Q. Observe, that Poincaré inequality states that

/|u|2dx<c(diamQ)2/|Dul2dx
Q Q

1,2 . . . .
for every u € Wy*(Q). Thus the energy estimate above is a reverse Poincaré

inequality.

3.4 A bootstrap argument

Motivation: Our goal is to use Theorem 3.5 recursively provided the coefficients
and the right-hand side of the PDE are smooth enough. To this end, we would like
to show that weak derivatives of a weak solution are solutions to certain PDE as
well. Assume that a;; are constants, b; =0,%,j=1,...,n,c=0and f = 0. Then we

have . N
Lu=- Z Dj(a;;D;u) =~ Z a;jDiD;u=0.
i,j=1 i,j=1
Let y € C°(€2) and choose
@p=DryeCyQ), k=1,...,n,

as a test function in the definition of a weak solution. This gives

n
Z aijDiuDj(pdx =0.
Qi,j=1

Recall that by Theorem 3.5 we have u € Wli’cz(Q) and thus
DrueW-Q), k=1,..,n.

By the definition of the weak derivative, that is, integration by parts, this gives

Z (aijDiu)(DjDkw)dxz Z (aijDiu)(Dijw)dx
i,j=14Q i,j=1JQ

n
=— Z Dk(aijDiu)Djwdx
i,j=1/Q

n
=- Z (aijDkDiu)DjI//dx
i,j=1/Q

n
= - Z aijD,-(Dku)Dju/dx=0.
Qi j=1
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THE MORAL: This means that Dyu, k =1,...,n, is a weak solution to the
same PDE as u. This procedure can be iterated and used to show smoothness of

weak solutions.

Next we extend this argument to more general PDEs.

Theorem 3.10 (Higher order interior estimate). Let m be a nonnegative in-

teger. Assume that
aij,bi,ceC™NQ), i,j=1,...,n, and feW™%Q).

Let u € WH2(Q) be a weak solution of Lu = f in Q, where L is as in (1.4). Then
ue W{::z’z(Q) and for every Q' € Q, we have

lwllymszeqy <c (||f||Wm,2(Q) + ||u||L2(Q)) >

where the constant ¢ depends only on ', Q and the coefficients of L.

THE MORAL: This regularity result asserts that a weak solution belongs
locally to a higher order Sobolev space, if the coefficients and the right-hand side
of the PDE are smooth enough. In addition, this result comes with an estimate.
In this sense u has two more derivatives than f. Thus the degree of regularity

can be increased stepwise provided the data is smooth.

Proof. We prove the claim by induction on m. The case m = 0 follows from
Theorem 3.5.
Let u € Wh2(Q) be a weak solution of Lu = f in Q. Assume that for some

.. 2,2
nonnegative integer m, we have u € Wl':; “(Q) and

” u ||Wm+2,2(Q/) <c (”f”Wm,Z(Q) + ” u ”LZ(Q)) (311)

for every Q' € Q, where the constant ¢ depends only on Q', Q and the coefficients
of L. We shall show that the claim holds for m + 1. To this end, assume that

aij,bi,c€C™2(Q), i,j=1,...,n, and feW™ Q). (3.12)

Recall that by the induction hypothesis we have u € Wl':cJ'Q’z(Q).
@ Assume that Q' € Q" € Q. Let a be any multi-index with |a|=m + 1. Let
¢ e CP(Q") and use

¢=(-1"D%
as a test function in
n n
/ Z a;jD;uD;p+ Z biDiup+cup|dx =/ fodx.
Q i= Q

ij=1 i=1



CHAPTER 3. HIGHER ORDER REGULARITY 72

This gives
n n
Y (—1)'“'/ai,-DiuD,(D“¢)dx+ Z(—l)'“'/ b;D;uD®pdx
i,j=1 Q i=1 Q

+(—1)'“'/cuD“gbdx:(—l)'“'/fD“gbdx.
Q Q

After a number of integrations by parts, we obtain

/(Za”D uD; (,D+ZbDugb+cu(p)dx /f(pdx,
Q Q

i,j=1

where & = D% € WH2(Q") and

F=D%f- ¥ (;)

n
vy - Z Dj (DaiﬁaijDﬁDiu)
<a,fZa

i,j=1

n
+Y. D Pv,DPDju+D*PcDPu
i=1

(3.13)

where (g) = ﬁv(%ﬁ)' This shows that @ is a weak solution to
Li=f in Q"
By (3.13), (3.11) and (3.12) we conclude that f € L2(Q") with
||f||L2(QH) <cC (”f”W"H'LQ(Q) + ||u”L2(Q))-
Theorem 3.5 implies & € W22(Q)') with the estimate
”ﬁ”WZ’Z(Q/) <c (”f~”L2(Q//) + ||ﬁ||L2(QI/))
<c (||f||Wm+1,2(Q) + ” u ”L2(Q)) .
This holds true for every multi-index a with |a|=m+1 and & = D%u. This implies
u e Wm*32(Q)) and
||ullwm+3,2(Q/) < ||lt||Wm+2,2(Q/) + IIDau ||W2,2(Q/)
<cC (||f||wm,2(g) + ||u||L2(Q)) +c ("f”W"H'LQ(Q) + ||u||L2(Q))
<c (“f”W””lvz(Q) + ” u ||L2(Q)) .

This completes the proof. d

Remark 3.14. By the higher order Sobolev embedding, we obtain that u € C1(Q)
when 2(m +2) > n and v € C%(Q) when 2m > n. Thus

ﬂ Wm+2 2 COO(Q)

loc

Theorem 3.10 can be applied recursively with m = 0,1,2,... to conclude smoothess

of a weak solution if the data is smooth.
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Theorem 3.15 (Smoothness). Assume that
a;j,b;,ceC®(Q), i,j=1,...,n, and feC™(Q).

Let u € Wh2(Q) be a weak solution of Lu = f in Q, where L is as in (1.4). Then
u e C*®(Q).

THE MORAL: A weak solution is smooth if the data is smooth. Note that
no boundary conditions are assumed, so that this regularity result applies to
PDEs with Dirichlet, Neumann or other boundary conditions. Moreover, it shows
that possible singularities on the boundary do not propagate inside the domain.
Observe that these regularity results are based on estimates that are proved from
structural ellipticity properties of the PDE. Thus the result holds for a whole class
of PDEs instead of a particular PDE.

Remark 3.16. For the corresponding estimates up to the boundary, we refer to [2],
p. 336-345.

Remark 3.17. We discuss very formally Hilbert’s XIXth problem (1900) on the
calculus of variations. For a detailed presentation, we refer to [4, Chapter 3].

Consider the variational integral
I(v)= / F(Dv)dx,
Q

where F' is smooth and uniformly convex and O < R” is an open set. Roughly
speaking Hilbert’s XIXth problem is the following: Is it true that all local mini-
mizers of the variational integral above are smooth? Let u € Wﬁ)’f(ﬂ) be a weak

solution to the associated Euler-Lagrange equation
—divA(Du)=0

with A = (Aq,...,,A,), A;(&) = %F(E), 1=1,2,...,n. Let us assume that u is

smooth enough so that it satisfies

62 2

- 3 (<L FDuy) 2

(x)=0 in Q.
ij=1 acfiafj axiaxj

Let us consider this as a linear PDE with the coefficients

2

0 oL
a;j(x)= mF(Du(x)), i,j=1,...,n.

By the uniform convexity, the coefficient matrix A = (a;;(x)) is satisfies the elliptic-
0,a

ity condition. Moreover, if u € Cﬁ;g(Q), thena;; € C)

(Q). By Schauder estimates,
we have

ueChi(Q) = a;j € Cpi(Q) = u e CLNQ.
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We can then apply a bootstrap argument and obtain
ueCH Q)= DueCri(Q) = a;;€ CLH Q) = ue CoH(Q)
= .= u e C®Q)

Later we shall show that a weak solution u € Wli’cz(Q) is locally Hélder continuous,

which is required in the initial step in the boostrap argument.



Local Holder continuity

In the previous chapter we discussed regularity of weak solutions under smooth-
ness assumptions on the coefficients, but this chapter focuses regularity of weak
solutions under the assumption that the coefficients are only bounded and mea-
surable functions. We give a treatment of a remarkable De Giorgi-Nash-Moser

result that weak solutions of the equation

n
—div(ADu) = - Z Dj(a;jD;u)=0 in Q (4.1)
i,7=1

are locally Holder continuous under the ellipticity assumption

n
MEP< Y aij&ig < AlE?, 0<A<A,
i,j=1
for almost every x € O and every ¢ € R”. See Definitions 1.7 and 1.18 for precise
definitions. This result was proved by De Giorgi and Nash independently in the
1950’s and it is one of the major results in PDEs. We shall consider Moser’s proof
of this result. Throughout we assume that a;; € L*°(Q), i,j =1,...,n, that is, the
coefficients are only bounded and measurable functions. Instead of the general
equation (1.4), we only consider the case b; =0,i=1,...,n,c=0and f =0 in this
chapter. Essential features and challenges of the theory are already visible in this

case.

4,1 Super- and subsolutions

Motivation: Assume that u € C2(Q), a; j € CL(Q) satisfies

n
- Z Dj(a;jD;u)=0 in Q.
ig=1

75
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Let ¢ € C3°(Q) with ¢ = 0. Then we can integrate by parts and obtain
n n
0< - Z Dj(aijDiu)(pdxz Z aijDiuDj(pdx
Q gj=1 Qi,j=1

for every ¢ € C°(Q).
On the other hand, if

n
Z aijDiuquodx =0
Qij=1
for every ¢ € C°(Q) with ¢ =0, then
n
/— Z Dj(aijDiu)(pdeO
Q ij=1
for every ¢ € C3°(Q2) with ¢ = 0 and consequently

n
- Z Dj(aijDiu)>0 in Q.
i,j=1

THE MORAL: A function u € C%(Q) is a classical supersolution of (4.1) if
and only if it is a weak supersolution of (4.1) in the sense of the definition below.
Observe that the negative sign in front of the second order terms disappears after
integration by parts.

Definition 4.2. u € Wli’cz(Q) is a weak supersolution of (4.1), if
n
Z aij(x)DiuDj(pdx =0
Qi,j=1
for every ¢ € C3°(Q2) with ¢ = 0. For a subsolution, we require
n
/ Z aij(x)DiuDj(pdx <0
Qi,j=1

for all such test functions.

THE MORAL: Every weak solution is a weak super- and subsolution. The
advantage is that the properties of super- and subsolutions can be considered
separately.

Remarks 4.3:
(1) By Lemma 2.43, a function u € Wﬁ)’f(Q) is a weak supersolution (subsolu-

tion and solution, respectively) in Q if and only if

n
/ Z aijDiuDjvdx =0
Qi,j=1

for every v e W(} 2(Q) with v > 0 almost everywhere in Q (exercise).



CHAPTER 4. LOCAL HOLDER CONTINUITY 77

2) ue Wﬁ)’f(Q) is a weak solution if and only if it is both super- and subsolution

in Q (exercise).
(3) u is a weak supersolution if and only if —u is a weak subsolution (exercise).
Lemma 4.4. Ifue Wli’f(Q) is a weak subsolution of (4.1), then u* = max{u,0} is

a weak subsolution in Q.

THE MORAL: The class of weak subsolutions is closed with respect to trun-
cation from below. The class of weak solutions does not have the corresponding

property.

Proof. By properties of Sobolev spaces, we have u™* € Wli’cz(Q). Let ¢ € C3°(Q2) with
¢ = 0. Denote
vp =min{ku’,1}, k=1,2,....

Then (v;) is an increasing sequence, 0<vp <1,k=1,2,...,
lim vz (%) = Y weQiu>01(x), x€L,
k—o0
and we choose vy € WO1 2(Q) as a test function. Notice that v =0 and that

kD;u almost everywhere in {x € Q:0 < ku(x) < 1},
DjUk =

0 almost everywhere in {x € Q:ku(x) =1} u{x € Q: u(x) <0}.

The Leibniz rule gives

n
0= Z aijDiuDj(vk(p)dx

Qi j=1
n
=/ Z a;jD;u(pD jvp +viDjp)dx
Qij=1
n n
=k a;ioD;uD;udx+ a;ivpD;uD ;pdx.
/{er:0<u(x)<%}i,]Z::1 PRI Qi,jzz'l LORTIHEP

The previous estimate together with the ellipticity implies that

n n
Y aijUkDiUDj(des_k/ ¢ 2 aiDiuDjudx
Qi1 {xeQ:0<ulx)<g} i,j=1

s—kﬂt/ . ¢!Dul?dx<0.
{x€Q:0<u(x)<E}

Since
n n
Y aijvrDiuDjp|< Y laijllvelID;ullD el
i,j=1 1,j=1
n
< Y llaijlizeo@ D j@l oo Diul
1,j=1
n
<c Y IDjule LYQ),
ij=1
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we may use the Lebesgue dominated convergence theorem to conclude that

n n
/ > aijD,-u+Dj(pdx=/ lim ) ajjvpD;uDjpdx
Q Q

ij=1 kmooij=1
n
= lim Z aijvpD;uDjpdx <0
k—o0 Qij=1
for every ¢ € C°(Q) with ¢ 2 0. |

THE MORAL: The proofis based on a clever choice of a test function.

Remark 4.5. The following versions of the previous result are left as exercises.

(1) If u is a weak subsolution, then max{u,k}, & € Z, is a weak subsolution.

(2) If u,v are weak subsolutions, then max{u,v} is a weak subsolution.

(3) If u is a weak supersolution, then min{u,k}, 2 € Z, is a weak supersolution.

(4) If u,v are weak supersolutions, then min{u,v} is a weak supersolution.

(5) If u is a weak subsolution and f € C2(R) with £(0)=0, /" =0 (f is convex)
and f' =0, then f ou is a weak subsolution.

(6) If u is a weak supersolution and f € C2(R) with f(0) =0, f" <0 (f is
concave) and /' =0, then fou is a weak supersolution.

(7) If u is a weak solution and f € C2(R) is convex, then fou is a weak

subsolution.

In properties (5)—(7) we assume f € C2(R) is such that the chain rule holds for
fou.

THE MORAL: The classes of super- and subsolutions are more flexible than
solutions. In particular, super- and subsolutions can be modified as above. The

corresponding modifications are not possible in the class of weak solutions.

4.2 Caccioppoli estimates

Next we prove a Caccioppoli type energy estimate. The purpose of Caccioppoli
type estimates is to provide estimates for the gradient of the solutions with respect
to the function itself. A combination of a Caccioppoli type estimate and Sobolev
embedding provides us reverse Holder inequalities. In many cases the PDE is
used only to prove Caccioppoli estimates and the rest of the argument applies to
all functions that satisfy the corresponding estimate. This is a powerful method,

since it applies to a whole class of PDEs simultaneously.
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Theorem 4.6. Assume that u € Wli’f(Q) is a weak subsolution of (4.1) in Q. There

exists a constant ¢ = ¢(A, A) such that

/(pZIDuIdeSC/uQID(plzdx
Q Q

for every ¢ € C°(Q).

THE MORAL: The energy estimate above asserts that if u is small in average,
the gradient of « is small in average. This contains nontrivial information about
a weak solution, since by considering highly oscillating functions with small

amplitude we note that this is not true for arbitrary functions u € Wli’cz(ﬂ).

Proof. Let ¢ € C3°(Q2) and define v = pue WO1 2(Q). Then v is compactly supported
in Q and

Djvz(pszu+2(puDj<p, Jj=1,...,n,

. . . . 1,2
almost everywhere in (). Since u is a weak solution and v € W (Q2), we have

n
0= Z a;;D;uD;vdx

Qi j=1
n n
=/(p2 Z aijDiuDjudx+2/ ou Z a;jDiuDjpdx.
Q  igj=1 Q  ij=1

This implies that

n
t/ﬁ¢2 2: a;jDiuDjudx<2
Q  ij=1

n
/(pu Y aijD;juDjpdx
Q  iy=1

n
<2 [ lgllul Y llaijlzo@DiullD el dx
Q ij=1

< C/ lpllullDul|D¢l|dx.
Q

Next we first apply the uniform ellipticity condition to the previous estimate,
and then we use Young’s inequality with epsilon to have

A/ @?|Dul?dx < c/ lpllul|DullDg|dx
Q Q

A
s—/<p2IDuI2dx+c/u2|D<p|2dx.
2 Ja Q

Both terms on the right-hand side are finite, since u € Wli’cz(Q) and ¢ € C3°(Q).
The claim follows by absorbing the first term on the right-hand side. d

By the Poincaré inequality in Remark 1.43, we have

/ lu—upeon®dy Sch/ \Dul*dy
B(x,2r) B(x,2r)

for every u € Wlif(Q). As a consequence of the energy estimate, we obtain the

following reverse Poincaré inequality for weak solutions. Compare to Remark 3.9.
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Lemma 4.7. Assume that u € Wli’cz(Q) is a weak subsolution of (4.1) in Q. There

exists a constant ¢ = ¢(A, A) such that

C
/ IDulPdx< — lu—upe on®dx
B(z,r) r® JB(z,2r)

for every ball B(z,r) with B(z,2r) € Q.

Proof. Let ¢ € C3°(B(z,2r)) be a cutoff function with 0<¢ <1, ¢ =11in B(z,r) and
[De| < 5 Then u —up2r) € WL2(B(z,2r)) is a weak solution to (4.1) in B(z,2r).

Theorem 4.6 implies

/ |Du|2dxs/ <p2|D(u—uB(Z,2r))|2dx
B(z,r) B(z,2r)

<c / lu - up(.2m|*ID@I? dx
B(z,2r)

c
<5 | — u3(2’2,)|2 dx. O
r® JB(z,2r)
Next we discuss a Caccioppoli estimate for weak subsolutions. Observe, that

the result also holds for weak solutions.

Theorem 4.8 (Caccioppoli estimate for subsolutions). Assume thatu € Wli’cz(Q)
is a weak subsolution of (4.1) in Q and let a > 0. Then there exists ¢ = ¢(1, A) such
that

_ C
/ u® 1|Du|2<p2alacs—2
{xeQ:u(x)>0} A% J{xeQu(x)>0}

for every ¢ € C3°(Q) with ¢ = 0.

ua+1|D(pI2dx

Proof By Lemma 4.4 we may assume that u = u*. We would like to apply u%¢?
as a test function, but it is not clear that this function belongs to WO1 2(Q). Thus

we modify the test function in the following manner. Let
— n2mi a —
v =@ min{u”, ku} k=1,2,...,

Observe that vy, € W01’2(Q) and wp =20,k =1,2,.... Moreover, (1) is an increasing
sequence,
Jim y(x) = u(x)%(x)?, xeQ,

and
Dy, = 2¢(D jp)min{u®, ku} +(D;min{u®, kubp?, j=1,...,n.

Since u is a weak subsolution, we have
n
0= Z a;;D;uDjydx
Qij=1

n n
= Z aijDiu(Djmin{u“,ku})(pzdx+2 Z aijD;u(D jp)pmin{u®, ku}dx.
Qi,j=1 Qij=1
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Denote
Qr={xeQ:0<u%x)<kulx), k=12,....

Notice that D ju = 0 almost everywhere in the set where u = 0. Therefore we have

) au®1p ju almost everywhere in Qp,
D;min{u®, ku} =
kDj;u almost everywhere in Q\ Qp.

The previous inequality implies that

n n
a Y aijDiuDjuu®te*dx+k Y a;jD;uDjup®dx
Q=1 Q\Qy ij=1

<2

n
/(pmin{u“,ku} Z aijDiuDjpdx
Q ij=1

n n
<20/ ou® Z IDiuIIDj(pIdx+2kc/ pu Z ID;ullD;pldx
Qp ij=1 Q\Qy ij=1

SC/ (pu“lDuIID(pIdx+kc/ pu|Dul||Dyp|dx.
Qk Q\Qk

Next we first apply the uniform ellipticity condition to the previous estimate,

and then we use Young’s inequality with epsilon (exercise) to have
a/L/ u“_llDulz(pzdx+k7L/ IDu|?¢®dx
Q Q\Qy,
sc/ (pu“lDuIID(pldx+kc/ gu|Dul||Dy|dx
o}t o\,

A Ak
<& uafllDu|2(p2dx+—/ IDu?¢p®dx
2 Jq, 2 Jaoq,

+£/ u“+1ID(p|2dx+ck/ u?Dy|?dx.
aJao, a\Q,

Since u®* <ku in Qp and u € Wﬁ)’cz(Q), we have

/ u“_llDul2<p2dx<k |Du|2(p2dx<oo
Qp Q

and
/ |Du|2(p2dxs/ IDul?¢p?dx < oo,
O\Q;, Q

so that these terms can be absorbed into the left-hand side. This gives

a/ u“_llDuI2(p2dx+k/ |Du|2<p2dx
o o\Q,

SE/ u“+1|D(p|2dx+ck/ u?|Dy%dx,
a o, o\,

where
k/ uQID(plzdxs/ uDp?dx—0 as k— oo,
Q\Qy, O\,
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a

since ku < u® in Q\ Q;. Here we may assume that u"‘*llD(pl2 € Ll(Q), since

otherwise the claim is clear. Consequently

/ u“_llDulz(pzdxzklim u“_llDuIZ(pzdx
Q

—o0 /),

u2|D<p|2dx)

. c ck
< lim (—2/ u D dx+ —
k—oo\ @ Q, a

O\Qy,

c
—2/ u“ 1 Dy|?dx.
a® Jao
The last equality follows from the Lebesgue dominated convergence theorem. O

Theorem 4.9 (Caccioppoli estimate for supersolutions). Assume that u €
Wﬁ)’f(ﬂ), u = 0, is a weak supersolution of (4.1) in Q and let @ < 0. Then there
exists ¢ = ¢(A,A) such that

C
/ u DuPp?dx < — u“ Dy dx
{(xeQ:u(x)>0} lal® JixeQ:u)>0)

for every ¢ € C°(Q) with ¢ = 0.

THE MORAL: Thisis the same estimate as in Theorem 4.8 for negative values
of a.

Proof Let up =u+ %, k=1,2,..., and apply ug(p2 € WOI’Q(Q) as a test function.
Then
D(ufp?®) =20 ;o) +aul ' Djup)g®, j=1,...,n.

Since u is a weak supersolution, we have
= 2
0< Z aijDiuDj(u,‘:(p )dx
Qi,j=1

n n
=2/ puy, Z aijDiuquodx+a/ (pzu,‘:_l Z aijD;uD judx.
Q ij=1 Q ij=1

By using the previous equation and ellipticity, we obtain the estimate

1 n
/(p2ug_1IDul2dxsz/(pzuZ_IZaijDiuDjudx
Q Q

iJ
2 n
S——— (pu,‘: Z aijDiuDj(pdx
a/l Q i,j=1

slc—l/(puZIDullD(pldx (a;; € L(Q)
alJjo

a-1 a+l
:I%/(pukf u,” |DullDyldx
Q

1
s—/ (pzu,‘f_llDuIde+L2/ uZ”ID(plzdx. (Young with €)
2 Ja lal® Ja
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Thus
c
/(pZug 1|Du|2dsz/Qu,‘§+llD<p|2dx.

By the monotone and dominated convergence theorem, we conclude that

/ 20 Y Du?dx = /hm (,02 a1 1Dy dx

= lim (pzu,‘:fllDulzdx
k—o0

. 4
< lim —2/ ui ' Dgl* dx
k—oolal® /o

|06|2/ lim uk+1|D(p|2dx

c
s—z/ u* Dl dx.
lal* Ja

Observe that if @ +1 < 0, we may use the monotone convergence theorem in taking
the limit inside the integral. If -1 < a < 0, then ul‘:“ < (u+1)*"! and we may

apply the dominated convergence theorem. a

Theorem 4.10 (Logarithmic Caccioppoli inequality). If u > 0 is a weak su-
persolution of (4.1) in Q, then there exists ¢ = ¢(1, A) such that

/(plelogulzdeC/ ID(plzdx
Q Q

for every ¢ € C°(QQ), ¢ = 0.

THE MORAL: Thisis auniform bound for the logarithm of the gradient, since
the right hand side is independent of u.

Proof. Theorem 4.9 with @ = -1 gives

Du 2
/¢2|Dlogul2dx=/ 21Dl dx<c/|D<p| dx.
Q Q o

4.3 Integral averages

Our goal is to obtain estimates for the maximum and the minimum of a solution to
a PDE. Since functions in Sobolev spaces are defined only up to a set of measure

zero, we recall the definition of essential supremum and infimum.

Definition 4.11. Let A c R” be a Lebesgue measurable set and f : A — [—00,00]
a Lebesgue measurable function. The essential supremum of f is
esssup f(x) =inf{M : f(x) < M for almost every x € A}
x€A
=inf{M :|[{x€ A : f(x) > M}| = 0}
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and the essential infimum of f is

essjqnff(x) =sup{m : f(x) = m for almost every x € A}
XE.

=sup{m:{xe€ A :|f(x)| <m}| =0}.

THE MORAL: Essential supremum is supremum outside sets of measure zero.

Remark 4.12. Observe that for the standard supremum we have

supf(x)=inf{M :{x€ A : f(x) > M} = p}.
x€A

Analogously, essential infimum is infimum outside sets of measure zero.
in[f"f(x) =sup{m:{xeA:f(x)<m}=¢}.
XE.

Moreover,

f(x)<esssupf(x) for almostevery x€A
x€A

and
f(x)=ess li4nf f(x) for almost every x€A.
X€E

The integral average of f in A, 0 < |A| < 0o, is denoted by

]gfdxzill/Afdx.

Let —-co<p<g<oo, p#0, qg#0 and assume that 0 < |A| < co. By Holder’s, or

Jensen’s, inequality

1 1
essinflfls(J[ Iflpdx)p S(][ Iflqu)q <esssup|f|.
A A A A

Thus the integral average is an increasing function of the power.

Theorem 4.13. Let f : A — [-00,00] be a Lebesgue measurable function and
0<|A| <oo. Then

1
(1) lim (J[ Iflpdx)p =esssup|f| and
p—oolJA A

@) lim (][ |f|—de)7p = essinf|f].
p—ool\Ja A

THE MORAL: This gives a method to derive estimates for supremum and
infimum by uniform estimates for integral averages with powers. The Moser

iteration technique is based on this observation.
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Remark 4.14. The integral average can be replaced with the integral.

Proof: Assume that esssup, |f| <oo. Then

/Iflpdeesssuplflp/1dx:|A|(esssup|f|)p,
A A A A

which implies that for every p, 1 < p < oo,

1
(][ Iflpdx)p <esssup|f|
A A

and, in particular, that

1

limsup(][ Iflpdx)P <esssup|f|.
A A

p—00

This clearly holds true also in the case esssupy |f| = co.
Denote E) ={x € A :|f(x)| > A}. For every A with 0 < A <esssupy, |f|, we have
|E 2] > 0. Since |f|? = AP in E ), we obtain

AP|E,| < Iflpdxs/lflpdx.
E, A

By taking the pth root we have

L 1
AME, |7 s(/ |f|de)p.
A

1
Observe that for any E; with 0 < |E ;| < oo, we have |[E;|? — 1 as p — co. Thus

7
A< liminf(/ |f1P dx)
p—0oo A
1
As 0 <|A| < oo, we have also that |[A|» — 1 as p — oo and thus
1
A< 1iminf(][ IfIP dx)p .
p—oo \Ja
By letting A — esssupy |f|, we obtain
1
esssup|f| sliminf(][ Iflpdx)p .
A p—oo A

All together we have now proved that

1 1
esssup|f] sliminf(][ Iflpdx)p slimsup(][ Iflpdx)P <esssuplf|,
A p—© A A A

p—o0

which implies that the limit exists and

1
esssup|f| = lim (][ Iflpdx)p.
A p—co\Ja
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(2)| Clearly
/ |fI7P dx < (essinf|f|)P|A|,
A A
and thus )
(][ |f|—de) " > essinflf].
A A

By letting p — oo we see that

liminf(][ Ifl_pdx) ? = essinf|f].
p—oo A A

Let F ={x € A :|f(x)] < A}. For every A > essinfy, ||, we have |[F,| > 0 and by
using the fact that |f|™” = AP in F;, we obtain

/l_pIFAIS/ Ifl_pdxs/ IfI"P dx.
F, A

This is equivalent to

AR P > (/ |f|‘de) ’
A

_1
As |Fy| » — 1 as p — oo, we conclude

_1 _1
A = limsup (/ lfI7? dx) - limsup (][ IfI7P dx) ?
p—00 A p—00 A
Since this holds for every A > essinfy |f|, we obtain

essinf|f| = limsup (][ IfI7P dx) ?
A A

p—oo

a

Remark 4.15. Part (2) of the theorem above could be also proved by applying the

part (1) to the function ﬁ

The following result is sometimes useful in the Moser iteration technique. We
will not apply it later, but we discuss it for the sake of curiosity.

Theorem 4.16. Let f : A — [—00,00] be a Lebesgue measurable function with
JA IfIP0 dx < oo for some 0 < pg < oo and 0 < |A| <oco. Then

1
lim (][ |f|de)p _ ofaloglfldx
p—0\JAa

Proof. Let I :[0,po] — [0,00), I(p) = {4 |fIP dx, with the interpretation 1(0) = 1.
We observe that |£|? <max{1,|f|P} € LY(A), 0 < p < po, and that I is a continuous

function by the dominated convergence theorem.
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We show that I is differentiable at p 0. For a fixed parameter ¢ > 0, consider
the function g; : [0, pol — R, g:(p) = . The function p — tP is convex, so that
the function p — g;(p) is increasing and

=logt.
p=0

d
li =—1tP
lim :(p) dp

By the monotone convergence theorem, we have

I I(0 p_ 1
I'0) = lim 1) -1 _ ][ /1
p— —0 p—»O
lim |f| d _][ log|f|dx.
ApP—0
Here we use the convention
0P-1
lim| | =—lim — = —oco =1og|0|
p=0 p p—0p

This shows that I'(0) exists and I'(0) = £, log|f|dx, with the interpretation that
I'(0) may be —oco.
On the other hand, we have

1
(][ 1P dx)!’  ohlogfalfPdx _  Llogl(p) _ ,L0ogI(p)-logZ(0))
A

By the chain rule

_I'0)
)

d
—logI
dp ogl(p)

:I'(O):][ log|f|dzx.
A

p=0

Form this we conclude

lim (][ |f|de) = oI _ falogifidx

4.4 Estimates from above

The next result shows that a weak subsolution to an elliptic PDE with measurable
coefficients is locally bounded from above. The proof is based on the Moser
iteration technique together with a Caccioppoli inequality and a Sobolev inequality.
Sometimes this result is called the weak maximum principle, since it gives an
estimate of the supremum in terms of positive powers of integral averages. This
is a counterpart of the mean value property of subharmonic functions for more
general PDEs.
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Theorem 4.17 (Local boundedness from above). Assume that u € Wli’cz(Q) is
a weak subsolution of (4.1) in Q and let § > 1. There exists constants ¢ =
c(n,A, A, B) and T = 7(n) > 0 such that

R T
esssupu’ SC(( ) ][ (u+)ﬁdy)
B(x,r) R-r) JBwR)

whenever B(x,R)E€Q,0<r<R.

==

THE MORAL: Bychoosing R =2r, we have

1 1

B B
esssupusesssuplﬁsc(][ (u+)ﬁdy) sc(][ Iulﬁdy)
B(x,r) B(x,r) B(x,2r) B(x,2r)

whenever B(x,2r) € 2. Weak subsolutions are locally bounded from above. Ob-
serve that for § =2, and by Hélder’s inequality also for 0 < <2, the assumption
ue Wlif(Q) implies that the integral average on the right-hand side is finite. It
follows from the result that the integral average on the right-hand side is finite
for every 8> 0.

Proof. Assume that u € Lﬁ) (). Observe that for § =2, and by Hélder’s inequality

also for 0 < § < 2, this follows from the assumption u € Wli’cz(ﬂ). By Lemma 4.4,

we may assume that z = u*. Choose a cutoff function ¢ € C3°(B(x,R)) with ¢ = 1
4

in B(x,7), 0 <@ <1and [Dg| < z%;. By the Caccioppoli estimate, Theorem 4.8, we

/\(pD(ug”Zdy:/’gug_lDu
Q Q
ﬁ 2
=(§) /Quﬁ_leulzthdy

ﬁ 2
= (—) / uP2DuPp®dy
2) JixeQ:u(x)>0}

2
<c(A,A) (i) / uP|IDp2dy
ﬁ -1 {xeQ:u(x)>0}

:c(/l,A)(i)Q/uﬁlD(plzdy.
B-1) Ja

have

22
p°dy

By the Leibniz rule,
B
bl

ID(pu?)| <D (u?)| +|ut Dy

and thus
/\D(<pu§)|2dy<2(/ |(pD(ug)|2dy+/|ugD<P|2dy)
Q Q Q

B 2 i 2
SC(A,A)((—) +1)/ |u2D(p| dy.
p-1 Q
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Notice that

] - Bt sy

(B-1)?
By the Sobolev inequality in Theorem 1.44, we obtain

1 1
£, ) <ol i)
B(x,R) B(x,R)

1

2 1 2 2

sc(n,A,A)R(( pr ) ][ |u§D(p|2dy) ,
p-1 B(x,R)

where x > 1 is defined, for example, by

By combining the previous estimates and using the properties of the cutoff func-

tion, we obtain the estimate

1 1
( ][ WP dy) X _ (IB(x,R)I s dy)xﬁ
Blx,r) [B(x,)| JBx,R)

1
i 2 [
< c(nd, N (E) ﬁ(R2(@) ][ |u§D<p|2dy) (4.18)
r B-1) JBuRr
< c(n,/l,A)% (I—E)ﬁ (
=

26+1 2
SR fn @)
p-1R-r B(x,R)

This is a reverse Holder inequality. Observe that from u € Lfo (), we may

==

conclude that u € L'l(olz (QQ) with x > 1. This gives us a bootstrap method to increase
the level of local integrability stepwise. In particular, starting from g = 2, we may
iterate (4.18) and conclude that u € Lﬁ (Q) for every 1 < f <oo. Thus all integrals
in this proof are finite.

We show that the claim of Theorem 4.17 holds for By > 1. Note that if o >1
and B = By, then

26+1 2Bp+1
Prl_2hotl_ (o)
-1 po-—-1
and by (4.18) there exists a constant ¢ = c¢(n,1, A, Bo) such that

1 n 2
< (L o0f)
B(x,r) r] \R-r B(x,R)

for every = Bo.

==

We apply this estimate recursively. Let ro =R and

R-r
ok

rp=r+ k=1,2,....
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Then

2k+1R
<2 and Tk <

r<rpi1<rp<R, <
Th+l re—rp+1 R-r

for every £ =0,1,2,....

By (4.19) we have

1 2
o kst G e
B(x,r1) R-r Blx,r0)

where ¢ = c(n, A, A, Bo).

Step 2| By applying (4.19) twice we have

1 2 1

n 2 Kp, xBo

(][ uKZﬁOdy)K2ﬁ0 SC%2%(2 R) ’ (][ uKﬁOdy) o
B(x,rg) R-r B(x,r1)

2 2 1

2,2 n,an 2.22( R \BTxhy Bo

< cPo*Po 2P0t *po -2ﬁo+xﬁ0( ) o (][ uﬁody) ‘.
B(x,ro)

“m‘,_‘

R-r
Step % | By applying (4.19) recursively we have
k

1
% 2 vk _1 noyk _1 2 i
(][ uKkﬁO dy) o < C%Z‘E1 ki1 .20 Lic1 1 -2ho0 Lictja1
B(x,rz)

o R
. u”dy
R-r B(x,ro)

for every k =1,2,.... Let us compute the sums that appear in (4.20). The sum of a

(4.20)

geometric series gives

i 1 kﬁmi 11 x
ilei71 l'leiil_]_—%_K—]_’

and by recognizing the derivative of a geometric series we obtain

Eod oo & 1
2 lei—l_(l—%)z'

i-1
i=1K i=

Hence we conclude from (4.20) that

_1 _1
lim (][ u" o dy) «*Po < lim ((r_k)n][ ux" o dy) <o
k—oo B(x,r) k—oco\\ 1 B(x,ry)

_K_ 1
Sc( R )ﬁo’“l(][ uﬂody)ﬁo,
R-r B(x,ro)

where ¢ = ¢(n,A, A, Bo). By Theorem 4.13, we conclude that u is essentially
bounded in the ball B(x,r) and

1

L

esssupu(x) = lim (][ ux"po dy)K Fo
B(x,r)

x€B(x,r) k—oo

1
2K B
R 1 Bo
<c ( ) ][ uPody|
R-r B&.R)
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where ¢ = c(n,A, A, o). This implies the claim with 7 = 2—’(1 The claim follows

pr
from this, since we denoted u =u*. a

Remark 4.21. For n > 2, by the proof of Theorem 4.17, we may choose x = "5 and

thusrz%zn. Fornz2,theproofgivesr=%=4>2=n.

Corollary 4.22 (Local boundedness). Assume that u € Wli’cz(Q) is a weak so-
lution of (4.1) in Q and let > 1. There exists constants ¢ = c(n,A, A, ) and
7 =1(n)> 0 such that

1
R \ B
esssuplulsc(( ) ][ Iulﬁdy)
B(x,r) R-r] JBuR)

whenever B(x,R)€Q,0<r<R.

THE MORAL: Bychoosing R =2r and =2, we have

1
2
esssupIuISC(][ |u|2dy)
B(x,r) B(x,2r)

whenever B(x,2r) € Q. In particular, every weak solution is locally bounded.

Proof. By Lemma 4.4, u™* € Wli’f(Q) is a weak subsolution and thus by Theorem
4.17 we have u* € L§? (Q) with

1
R \ ki
esssupu” sc(( ) ][ (u+)ﬁdy) ,
Bx,r) R-r) JB@p)

where ¢ = c(n,A, A, B). On the other hand, since u is a weak solution —u is a weak

solution as well. Again by Lemma 4.4, (~u)" =u" € Wﬁ)’f(Q) is a weak subsolution,
and by Theorem 4.17 we have u~ € L (Q2) with

v B
][ WP dy) ,
B(x,R)

(). Moreover,

-

esssupu < c((

B(x,r) R-r

where ¢ = c(n,A, A, B). This shows that u=u™ —u~ ELT(?C

esssup|u|=esssup(u” +u") <esssupu’ +esssupu”
B(x,r) B(x,r) B(x,r) B(x,r)

1

) fneras) wel(75) L)

< (w™)yrd + W) d

C((R—’” B(x,R)u Y ‘Wr=r B(x,R)u Y
1
) L)
<c luld s
((R—r B(x,R) Y

where ¢ = c(n, A, A, B). a

==
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Remark 4.23. The example at the end of Section 1.5 shows that there may exist
unbounded weak solutions, if the assumption u € Wli’f(Q) is relaxed. Let us discuss
this issue in more detail. We consider the function in (1.33) in the two-dimensional

case, that is, n =2 and 0 < e < 1. In this case we have u : B(0,1) — R,
w(x) = ulxy,x9) = x1lal 1 7°

We have u € WhP(Q), for 1 < p < 2=, but u ¢ WP (Q), for p = % In particular

1+e?
u ¢ W2(Q). However, as in Section 1.5, we see that

2
/ Z a;;D;uD;pdx=0
BO,1)i =1

for every ¢ € C°(B(0, 1)), where
XiX; ..
aij(x)=5ij+(a—1)W, i,j=1,2,

and a = E% In this sense u is a (very) weak solution to

2
— Z Dj(aijD,-u)zo
i,j=1

in B(0,1), but u ¢ WH2(Q) for every 0 < & < 1. Clearly the function u is not locally
bounded.

The uniform ellipticity condition in Definition 1.7 is satisfied with A =1 and
A =a. Observe that A > 1 can be made arbitrarily close to one by choosing 0 <e <1
close enough to one. Thus for every A > 1, there exists an unbouded (very) weak

solution to an elliptic equation.

THE MORAL: The previous examples show that for every 1 < p <2, there
exists an unbounded (very) weak solution u € WHP(Q) to an elliptic equation, in
the above sense. This shows that the assumption u € Wli’f(Q) in Corollary 4.22 is

essentially sharp.

We will next present a technical lemma, which will be used in proving that
Theorem 4.17 actually holds for all 8> 0.

Lemma 4.24. Let v :[0,7] — R be a nonnegative bounded function. If there
exists A >0, a >0 and 0 < £ < 1 such that

Y(r)<AR-r) *+e¥R)
for every 0 <r <R < T, then there exists ¢ = c(a,¢) such that
Y(r)scAR-r)" %

for everyOsr<R<T.
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Proof. Let0<71<1,t9g=r and
tisi=t;i +1-D7t'R-r), i=0,1,2,....

Then r<t;<tj;y1 <R foreveryi=0,1,2,... and

W(to) < eW(t1)+A(t1—to) (assumption)
=e¥Y(t)+AQ-1)*"R-1)"" (definition of ¢;)
<e(eV(ta)+A(ta—t1) H+AQ-1)  YR-r) ¢ (assumption)

=2W(te)+eAT “A1-1) *"R-1)*+A(1-1) “R-r)"" (definition of ¢;)
=2W(ty) +A(L-7)"“(R-1) % e % +1).

Recursively, we obtain

k-1
Y(r) = Y(to) < Wt + AR -1 (A1) Y elr7i®
i=0

for every £ =1,2,.... Since ¥ is bounded, here *W¥(¢;) — 0 as & — oco. By choosing

7 =1(¢, ) with T% < 1, we conclude that

E-1
Y(r) < lim [e"P(t) + AR -1 *1A-1) ) elr™i@
koo i=0
=c(a,e)A(R-r)"“.

Here the first term on the right-hand side converges to zero because V¥ is bounded.OJ

Lemma 4.25. Theorem 4.17 and Corollary 4.22 hold for every > 0.

THE MORAL: Wecan choose the power >0 as close to zero as we want in

Theorem 4.17 and Corollary 4.22. This will be useful in Harnack estimates below.
Proof. We may assume that 0 < < 1, since for § > 1 the results are covered
by Theorem 4.17 and Corollary 4.22 respectively. By Remark 4.21 we may also

assume that 7 = 7(n) = n in Theorem 4.17. Let B(x,R) €Q,0<r <R <T. Since
B(x,R) € Q, Theorem 4.17 implies

1
R Y 2
esssupu’ sc(( ) / (u+)2dy)
Bx,r) R-r) JB@xR)
. ;
c ( ) ][ (ut)P(esssupu®)PPdy
R-r] JBwR) B(x,R)

1
R Y 2 p
c(( ) ][ (u+)ﬁdy) (esssupu™)i~2,
R—r) JpuRr) B(x.R)

N
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where ¢ = c(n,A, A, B). Let 0 < e < 1. By Young’s inequality

; 1
c(n,/l,/\,ﬁ)(( R ) ][ (u+)ﬁdy)2(esssupu+)1—§
R-r) JBupR)

B(x,R)
T
][ (WP dy)
B(x,R)

==

<ceesssupu’ +c(n,A, A, B,€)
B(&,R)

R-r

=l

<ceesssuput +AR-r) P,
B(x,R)

where .

A= c(n,A,A,ﬁ,s)Tr_Tn (/ w*)P dy)ﬁ < oo.

B(x,T)
Here we used the facts that 7 = n and that by Theorem 4.17 we have u* € LT ().
It is important to use T instead of R above, since x is not allowed to depend on R.
Without loss of generality, we may assume that 7' > 0. Let ¥(0) =0 and

W(r)=esssupu”’ <esssupu’ <oo
B(x,r) B(x,T)

for every 0 <r < T. By Lemma 4.24 we obtain
%
esssupu’ <c(n,A,A,B,eR—r) BT P (/ (u+)’6dy)
B(x,T)

B(x,r)
1
T \* B
<c(n,A,A,ﬁ,e)(( ) ][ (u*)ﬁdy)
R-r) JBum

whenever 0 <r <R <T. By choosing R =T we conclude that Theorem 4.17 holds

for every > 0. Finally, the proof of Corollary 4.22 together with the knowledge
that Theorem 4.17 holds for every 8 > 0 shows that also Corollary 4.22 holds for
every > 0. a

4.5 Estimates from below

The following property of super- and subsolutions gives us a tool to apply Theorem
4.17 to obtain a lower bound for the infimum of supersolutions in terms of negative

powers of integral averages.

1

Lemma 4.26. If u = £ > 0 is a weak supersolution of (4.1) in Q, thenv =+ is a

weak subsolution in Q.
Proof. Since v = % and u =€ > 0, we have 0 < €2v < u and by the chain rule
D;v= —u_2Diu, i=1,...,n,

almost everywhere in Q. Thus £2|Dv| < |Du| almost everywhere in Q) and so
ve WAQ).
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Let ¢ € C2(Q), ¢ > 0. If y = u~2¢, then y € W, *(Q) and
Djw=-2u"®Djup+u2D;p, j=1,...,n,
and

n
0< Z aijDiuDju/dx
Qi j=1

n n
=2 u? Y a;jD;uDjupdx+ [ Y. a;ju"?D;uD;pdx
Q i,j=1 Qi j=1

n
S—/ Z aijDiijq)dx
Qi,j=1

for every ¢ € C°(Q), ¢ = 0. Here we used the facts that

n
/u_3 Y aijDiuDjuq)de/'l/ u 3 Dul?pdx =0
Q i,j=1 Q

and Djv=-u"2D;u,i=1,...,n. a
Next we discuss a version of Theorem 4.17 for supersolutions.

Lemma 4.27. Let u = 0 be a weak supersolution of (4.1) in Q. There exists
constants ¢ = ¢(n,A, A, ) and 7 = 7(n) > 0 such that

R Y -
(( ) ][ ufﬁdy) < cessinfu
R-r B(x,R) B(x,r)

whenever B(x,R)EQ,0<r<R.

==

THE MORAL: Bychoosing R =2r we have

1
B
(][ ufﬁdy) < cessinfu
B(x,2r) B(x,r)

whenever B(x,2r) € Q.

Proof. Without loss of generality, we may assume that

1
B
(][ u P dy) > 0.
B(x,R)

Since we can add constants to weak supersolutions, the function u; = u + %,
1
E’
subsolution. By Theorem 4.17 and Lemma 4.25, we have

r B\
]{B(x,R)(u_lk) dy) ’

k=1,2,..., is a weak supersolution. By Lemma 4.26, k=1,2,...,1s a weak

1 (( R
esssup— <¢
B(x,r) up R—r
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where ¢ = c(n, A, A, B), or equivalently

() £ L
u, dy <c|esssup —
R-r] JBwpR) Bx,y) Uk

= cessinfuy
B(x,r)

1
= infu+—|.
c(essmu k)

B(x,r)

The claim follows from the monotone convergence theorem by letting £ — oo, since

1 1
B _ B
0<(][ uf’sdy) :(lim][ ukﬂdy)

B(x,R) k—oo | B(x,R)

1

_ B

= lim (][ ukﬁdy) .
k—oo\JB(x,R)

Remark 4.28. Another way to prove Lemma 4.27 is to run the Moser iteration tech-
nique as in the proof of Theorem 4.17 using Theorem 4.9 for weak supersolutions.
This approach completely avoids Lemma 4.26 (exercise).

4.6 Harnack’s inequality

Recall that Harnack’s inequality for nonnegative solutions of the Laplace equation
can be proved by the mean value property. If u = 0 is a weak solution to (4.1) in Q,
then by Theorem 4.17 there exist a constant ¢ = ¢(n, A, A, B) such that

==

esssupusc(][ uﬁdy)
B(x,r) B(x,2r)

and by Lemma 4.27 we have

1
i
(][ u_ﬁdy) < cessinfu,
B(x,2r) B(x,r)

whenever B(x,2r) € Q. Next we prove the missing inequality

1
3 _
oo <l %o
B(x,2r) B(x,2r)

THE MORAL: This is a reverse Holder inequality, since by Holder’s, or

==

Jensen’s, inequality we always have

_1 1
7o) <, 70
B(x,r) B(x,r)

Reverse Hoélder inequalities are very powerful tools in harmonic analysis and
PDEs.
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With the reverse Hoélder inequality above, we obtain

==

esssupusc(][ uﬁdy)
B(x,r) B(x,2r)

1
B
sc(][ u_ﬁdy) < cessinfu
B(x,2r)

B(x,r)

whenever B(x,2r) @ Q. This is Harnack’s inequality for nonnegative weak solu-
tions. Harnack’s inequality states that locally the supremum of a positive solution
is bounded by a constant times the infimum of the solution. However, since a
function u € Wli’cz(Q) is defined only up to a set of measure zero, we consider
the essential supremum and infimum. For a continuous function, these can be
replaced by the standard supremum and infimum.

The only missing piece is the passage over zero. We shall use the theory
of BMO functions, in particular, the John-Nirenberg lemma, to overcome this
problem. For the theory of BMO functions we refer to the Harmonic Analysis
course.

In the theory of BMO it is more convenient to use cubes instead of balls. This

is just a technical point and we could work either with cubes or balls throughout.

Definition 4.29. A closed cube is a bounded interval in R”, whose sides are

parallel to the coordinate axes and equally long, that is,
Q=lay,b1lx---xlan,b,l
with b1 —a1=...=b, —a,. The side length of a cube @ is denoted by /(®). In case
we want to specify the center, we write
Qx,)={yeR":|y; —x;| < = 1,...,n
for a cube with center at x € R* and side length / > 0. Clearly

Q(x,)|=1" and diam(Q(x,1))=/nl.

Assume then that u = 0 is a weak solution to (4.1) in Q. Denote

1
vkzlog(u+lz), k=1,2,....

Then u + % = % >0,k=1,2,...,1is a solution to (4.1). Let Q(x,2]) € Q and take a
cutoff function ¢ € C°(Q(x,21)), 0 < ¢ < 1 such that ¢ = 1 on Q(x,1) and [D¢| < %’L)
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By the logarithmic Caccioppoli estimate, Theorem 4.10, we have

1
/ IkaIQdyz/ u+—)
Qxl) Qx,D) k
<[

< Q(p k

sc(A,A)/ IDpdy

Q
c(n,A,A)

< — 7 7 7

x

2

Dlog dy

2

Dlog dy

1dy
12 Qx.20)

=c(n, A, 2, E=1,2,....

In particular, this implies that |Duvg| € L%OC(Q). On the other hand, since u + % = %
and u € L2 (Q), we conclude that vy, € LIQOC(Q). This implies that vy € Wﬁ)’f(ﬂ),

loc

k=1,2,.... By the Poincaré inequality we have

][ lve _(Uk)Q(x,l)|2 dy< C(n)l2][ \Duy 12 dy
Qx,l) Q(x,l)
<c(n, A, N2 2 =c(n,A,N), k=12,...,

for every cube Q(x,[) such that Q(x,2]) € Q. By Hélder’s, or Jensen’s, inequality

1
2 2
][ [ve — (Wr)gun| dy < (J[ [vr — R dy) <c<oo, k=1,2,...,
Q) Q(x,l)

for every cube Q(x,!) such that Q(x,2/) € Q with ¢ = ¢(n,1,A). Observe, that the
constant c¢ is independent of u and k. This shows that v, is of bounded mean
oscillation (BMO) over such cubes. By the exponential integrability result for
BMO-functions, there exist y =y(n,1,A) >0 and ¢ = ¢(n) < oo, such that

][ V1V R)Qe| dy<ec, k=1,2,...,
Qx,l)

for every cube @(x,[) such that Q(x,2]) € Q. This implies that

J[ eVvk dy][ e "hdy < c(n)J[ ek dy][ e hdy
B(x,r) B(x,r) Q(x,2r) Q(x,2r)

= c(n) eY(Uk_(vk)Q(x,Zr)) dy)[ e_y(vk ~(Wr)Q(,2r) dy
Q(x,2r) Q(x,2r)

2
< c(n)(][ eV1VE=(k)Qe 2n)] dy) <cln), k=1,2,...,
Q(x,2r)

whenever Q(x,4r) € Q). We note that Q(x,4r) c B(x,2\/nr), so that Q(x,4r) € Q
if B(x,2\/nr) € Q. Thus the estimate above holds whenever B(x,2\/nr) € Q.
Observe that the constants in the estimate above are independent of £ € N. Since
p
u+leL

1oc(€2), we can apply both dominated and monotone convergence theorems
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to conclude that
YooY
d y)

1
¥ 1
(][ uydy)y = lim (][ (u+—
Bx,r) k—oo \JB(x,r) k
1

= lim (][ elvk dy) !
k—00\JB(x,r)

_1
<c(n) lim (][ e YU dy) ! (4.30)
B(x,r)

k—o0

) 1i 1\77 d _%
an kﬂl 00(f;(x,r) (u k) y)

= c(n)(][ u'dy
B(x,r)

Y

whenever B(x,2\/nr) € Q.

Theorem 4.31 (Harnack’s inequality). Assume that u = 0 is a weak solution
to (4.1) in Q. Then there exists a constant ¢ = ¢(n,A, A) such that

esssupu < cessinfu
B(x,r) Blx,r)

for every ball B(x,r) such that B(x,2r) € Q.

THE MORAL: Harnack’s inequality is a quantitative version of the strong
maximum principle. It asserts that if u = 0 is a nontrivial weak solution in B(x, 2r),
then it does not only hold that u > 0 in B(x,r) but we also have u > c™! SUPB(; ) U
in B(x,r).

Proof. By Theorem 4.17, Lemma 4.25, Lemma 4.27 and (4.30), there exist y =
y(n,A,A)>0 and ¢ = ¢(n, A, A) such that

1 _1
Y Y
esssupuSc(][ uydy) SC(][ u_Ydy) < cessinfu (4.32)
B(x,r) B(x,2r) B(x,2r) B(x,r)

whenever B(x,2/nr) € Q.
Assume then that B(x,r) is a ball with B(x,2r) € Q2. We apply a chaining

N
that x; € B(x,r), i = 1,...,N, B; \Bis1 # ®,i = 1,..., N~ 1, and B(x,r) < UY, B;.

argument. Let p =

and B; = B(xj,p), i =1,...,N, be finitely many balls such
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Then B(x;,2v/np)c B(x,2r) €Q, i =1,...,N. By (4.32), we have

esssupu = max{ess supu,esssup u}
B;UB;1 B; Bis1

<c max{essinfu, essinfu}
B; Bi+1

<cessinfu <cesssupu
BinBi1 BinBj1

< cmin{ess sup u,esssup u}
B; Bii1
<c? min{essinfu,essinfu}
B; i+1
=c?essinfu, i=1,....N—1.
B;UB;+1

By applying this estimate recursively, we obtain

esssupu < esssupu < N esz,vsinfu < ¢V essinfu.
B(x,r) Uy, B; U, B; Blx,r) 0

Remarks 4.33:

(1) Harnacks’ inequality is a uniform estimate in the sense that the constant
in Harnack’s inequality does not depend on the radius of the ball. The
requirement B(x,2r) € Q is chosen for convenience, but the proof shows
that we could assume B(x,or) € Q for any ¢ > 1. In this case the constant

in Harnack’s inequality also depends on o.

(2) By a chaining argument Harnack’s inequality gives the pointwise estimate

esst/up us<c es?zjnfu.
for almost every points x,y € Q' where Q' € Q) is a connected set. This
means that the values of nonnegative weak solution are comparable in
Q'. Thus if u is small (or large) somewhere in Q' it is small (or large)
everywhere in Q'. In particular, if (y) = 0 for some y € Q, then u(x) = 0 for

every x € Q. The assumption u = 0 is essential in the result.

4.7 Local HOlder continuity

Next we shall prove that Harnack’s inequality implies that weak solutions of (4.1)
are locally Holder continuous after a possible redefinition on a set of measure zero.
Observe that a weak solution belongs to Wlt’cz(Q) and is defined only up to a set of
measure zero and a function in Wli’cz(Q) is not necessarily continuous.

Assume u € Wlf)’cz(Q) is a weak solution to (4.1) and B(x,2R) € Q2. We denote

m(r)=essinfu,
(x,r)
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M(r)=esssupu,
B(x,r)

and the oscillation of u by

osc u=M(r)—m(r).
(x,r

By Corollary 4.22, we have —oo < m(r) < M(r) < co for 0 <r < R. Since constants
can be added to weak solutions, we see that the functions u — m(2r) and M(2r)—u
are weak solutions of (4.1) as well. Notice that u —m(2r)=0 and M2r)-u =0
in B(x,2r). By Harnack’s inequality, Theorem 4.31, there exists a constant ¢ =
c(n,A,A)> 1 such that

M(r)—m(2r) = esssup(u — m(2r))
B(x,r)

< cessinf(u — m(2r))
=c(m(r)—m(2r))

for 0 <r <R. A similar argument gives

M@2r)—m(r)=esssup(M((2r)—u)
B(x,r)
< cessinf(M(2r)—u)
B(x,r)
=c(M2r)-M(r))
for 0 <r < R. By combining these estimates we have

M(r)—-mQ@2r)+ MQ2r)—m(r)<c(m(r)—mQ@r)+ MQ2r)— M(r)),

which is implies
-1
M) - m(r) < S—= (M(2r) - m©2r)),
c+1

that is,
0SC USY O0SC U (4.34)
B(x,r) B(x,2r)
for y = % with 0 <y < 1. This is an oscillation decay estimate.

THE MORAL: Harnacks’ inequality implies oscillation decay.

For 0 <r <R, we may choose i such that

- <rs—.
Qi+l 9

Then by iterating (4.34), we obtain
i 1,r\a
0SC US 0SC USY 0SC US— (—) 0sC U, (4.35)
Br)  po R, B(x,R) Yy \R/ B(x,R)
o
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where y = y(n,1,A), a = —}g?z/, 0 <r <R and B(x,2R) € Q. The last inequality

follows, because

r 1 1 i+1
R g9l ” (5)
implies that ot
i> :)i’; -1,

and as y <1, we have

. . log(r/R)
yl=ellogr < e(log(1/2> ~1)logy _ 1 (L)a
v \R

Let B(z,10r) € Q and x,y € B(z,r), x # y. Denote R =4r. Then 0 < 2|x—y| < 2-2r =
4r =R and B(x,2R) = B(x,2-4r) = B(x,8r) c B(z,9r) € Q. By (4.35), there exists a

constant ¢ = ¢(n,A,A), such that

0SC U

2|x -yl )“
Blx,47)

lu(x)—u(y)| <  osc usc(
4r

B(x,2lx—yl)

le—y1\* lc— y\¢
sc( Y osc u<c Y esssup|ul,
r B(z,57) r B(z,5r)

for almost every x,y € B(z,r). By Corollary 4.22, there exists ¢ = ¢(n,A,A) such

that )
9 bl
lul“dy| <oo.
B(x0,10r)

Thus for every z € Q) there exists r = r(z) > 0 such that B(z,10r) € Q and a constant
c=c(n,A, A\, z) such that

esssuplul<c
B(xo,5r)

lw(x) — u(y)l < clx—y|%,

for almost every x,y € B(z,r). Observe that r and ¢ may depend on z, but a =
a(n,A,A) is independent of z. This implies that u is locally Holder continuous by
redefining it on a set of measure zero. The argument to show that there exists
a locally Holder continuous representative is similar as in the proof of Morrey’s

inequality.

Theorem 4.36 (Local Hoélder continuity). Every weak solution of (4.1) is lo-

cally Holder continuous.

THE MORAL: Oscillation decay implies local Hélder continuity.

Remark 4.37. The example in Section 1.5 shows that for every 0 < a <1 there
exists a weak solution to an elliptic equation such that the weak gradient is un-
bounded. This shows that local Holder continuity is essentially the best regularity
result we can hope for a general elliptic equation with bounded and measurable
coefficients.
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Remark 4.38. Let Q = B(0,r) and y € dB(0,r). The Poisson kernel for the ball
B(0,r) gives the function

1 2 1.2
w(x) = re —|x|

= B(0,r).
na(n)r |x—y|* x€B(O,r)

Then Au(x) =0 for every x € Q, but is not Hélder continuous in Q for any 0 < a < 1.

Reason. If u is Holder continuous in Q for some 0 < a < 1, then it is Hoélder
continuous in Q with the same a. This implies that u € L®(Q). This is not

possible, since u ¢ L°°(Q). However, u is locally Holder continuous in Q. n

THE MORAL: Weak solutions are locally Hélder continuous, but not in general
Holder continuous in the whole domain.

Finally we show that Harnack’s inequality implies that weak solutions of (4.1)

satisfy the strong maximum principle.

Theorem 4.39 (Strong maximum principle). If a weak solution of (4.1) at-
tains its maximum in a connected open set (2, then it is a constant function.

Proof. If there exists xg € Q such that
u(xp) = maxu(x),
xe€Q)

then u(xg) — u(x) is a nonnegative weak solution in Q. By Harnack’s inequality,
Theorem 4.31, we have

sup (u(xg)—ux))<c min (u(xg)—u(x))=0
x€B(x0,r) x€B(xo,r)

whenever B(xg,2r) € Q. Thus u(xg) — u(x) = 0 for every x € B(xo,r).
Let x € Q. Since Q is connected, a point x can be connected to the point x¢ with
a finite chain of balls B(x;,r;), i =0,1,...,N, such that x5y =x and

B(x;,ri)nB(xj+1,ri+1)#®, 1=1,....N-1

and B(x;,2r)cQ for every i =0,1,...,N. By using Harnack’s inequality in every
ball, we have u(x) = u(xp). a
Remarks 4.40:
(1) An analogous argument gives a strong minimum principle as well.
(2) The strong maximum principle implies the standard maximum principle:
if u € C(Q) is a weak solution in a bounded open set Q, then

maxu =maxu.
Q 1)

Theorem 4.41 (Comparison principle). Let u and v be weak solutions in Q.
By Theorem 4.36 we may assume that they both are continuous functions in Q. If
Q'éQandu<vondQ thenu<vin Q'
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Proof Asu<vondQ,u—v<0ondQ'. The partial differential equation in (4.1)
is linear and therefore u —v is a weak solution in Q. The maximum principle,
Theorem 4.39, implies that

ma}x(u —-v)= ma/x(u -0v)<0.
Q 0Q

Therefore u —v <0in Q' and thus « <v in Q'. O

Remark 4.42. This argument uses the linearity, but the result holds true also for

certain nonlinear partial differential equations.



Gradient estimates

5.1 Maximal functions

In this section it is more convenient to use cubes instead of balls. A closed cube
is a bounded interval in R”, whose sides are parallel to the coordinate axes and
equally long, see Definition 4.29. First we introduce an appropriate maximal

function on cubes.

Definition 5.1. Let 1< p <oo, let @9 = R" be a cube, and assume that f € L”(Q)
is a nonnegative function. The noncentered maximal function Mgo f on Qg is
defined as

1
Mg, f(x)=sup (][ f(y)P dy)p ,
Q3x \Jq

where the supremum is taken over all cubes @ c Q¢ with x € @.

For p = 1, we have the standard Hardy-Littlewood maximal function on @
and we denote Méof =Mg,f. Observe that

M2, f() = (Mq,(fP)@)?

for every x € @y, so that in principle it would be enough to consider the standard
Hardy-Littlewood maximal function. However, the new notation turns out to be
useful below. For a sign changing function f, we consider |f| in the definition

above. By the Lebesgue differentiation theorem and Hélder’s inequality
f(x)sMgof(x) sMZ)Of(x), l1<sp<g<oo,

for almost every x € Qq. Let f,g € LY(Qo) and x € Q. It follows immediately from
the definition that Mg, f(x) = 0,

Mgo(f +g)(x) < Mgof(x)+MgOg(x),

105
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and
Mg, (af)x)=aMy f(x)

for every a = 0. It is enough to assume that f : @9 — [0,00] is a measurable
function in the definition above, but the assumption f € LP(Q) guarantees that
the integral averages are finite. We prove a weak type estimate for the maximal

function.

Lemma 5.2. Let 1 <p <oo and let @y = R” be a cube. Assume that f € LP(Qy) is
a nonnegative function. There exist a constant ¢ = ¢(n) (we may take c(n)=2-5")
such that

C
erQ:Aﬂ’ﬂxhﬁﬂs——/‘ Fx)P dax (5.3)
0" tP ) ixeQo:f(x)>L})

for every t > 0.
Proof LetE;={x€Qo: M go f(x) > t}. By the definition of the maximal function,
for every x € E;, there exits a cube @, such that x € @, < @ and
1
P
( fy)Pd y) >t
Qx

Thus & ={Q, : x € E;} is a collection of subcubes of @¢ and

EtC U Q

QeF

By a Vitali type covering theorem, there exists a countable subcollection of pair-
wise disjoint cubes Q(x;,l;) € &F,i=1,2,..., such that

UQcGQmjm.

QeF i=1
Thus
o0 o0
ltx € Qo : Mg f(x)>tH < |J @xi,50:)| =5" }_ 1Q(xi, )|

i=1 i=1
5n o0

<— Z fPdy (5.4)
tP i 3JQe 1)
571.

<— | f(y»Pdy.
tP Jq,

Let

0, otherwise.

Then f < f + £, which implies that

’4 P
MQof(x) < MQO

~ t ~ t
f+§)(x)sM§0f(x)+§
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for every x € R*. Consequently,
~ t
{x €@y :Mgof(x) >tlc {ero :Mgof(x) > 5}.
Observe that
e ) s 1pE t\1-p
@) = Xiyequ:fira/ @ @) PP < (5) fG",
which implies f € LY(Qy). By (5.4) we have

ltx € Qo : Mg, f(x)>t} <

~ t
(xeQo: Mb flx)> 5}‘
.5 _
< fx)Pdx (5.5)
t Qo 0

2.5"
= / f(x)? dx.
t JixeQo:f@)=4)

The following Calderén-Zygmund decomposition will be extremely useful in

harmonic analysis.

Theorem 5.6. Let @ be a cube in R” and assume that f € LY(@Qy) is a nonnega-
tive function. Then for every ¢ = fQo f(y)dy there are countably many subcubes

Q;,i1=12,..., of @ such that

(1) the interiors of @;,i=1,2,..., are pairwise disjoint,
Q) t< JCQi f(y)dy<2'tforevery i =1,2,... and
(3) f(x)<t for almost every x € Qo \U?2, @;.

The collection of cubes @;, i =1,2,..., is called the Calderén-Zygmund cubes in Q¢
at level ¢.

THE MORAL: A cube can be divided into good and bad parts so that in the
good part (complement of the Calderén-Zygmund cubes) the function is small and
in the bad part (union of the Calderén-Zygmund cubes) the integral average of
a function is in control. Note that the Calderén-Zygmund cubes cover the set
{x € Q : |f(x)| > t}, up to a set of measure zero, and thus the bad part contains
the set where the function is unbounded. Next we discuss a reverse weak type

inequality for this maximal operator.

Lemma 5.7. Let 1 <p <oo and let @y = R” be a cube. Assume that f € L?(Qy) is
a nonnegative function. There exists a constant ¢ = c¢(n) (we may take c(n) =2")
such that

f(x)desctPerQO:Mg fx) >t} (5.8)
{xeQo:f (x)>1} 0

whenever tP = fQo f»Pdy.
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Proof. By the Calder6n-Zygmund lemma for f? at the level ¢t and obtain a
collection subcubes @;, i =1,2,..., of Qg such that the interiors of @;,i=1,2,...,

are pairwise disjoint,
tP <][ fPdy<2"t? forevery i=1,2,...
Q;

and

fx)<t for almostevery xeQo\|JQ;.
i=1

This implies

/ f@Pdxe<) [ f@Pdx=)1Q:I+ fx)Pdx
{xeQo:f (x)>1} i=1/Q; i=1 Qi

oo
<2"tP ) 1Q;|=2"¢P
i=1

GQ;’
i=1

<2"tP|{x € Qo Mg, fP(x) > t*}].

In the last inequality we applied the fact that Mg, f?(x) >t if x € Q € Dyp. ]

5.2 A general self-improvement result

Let E c R" be a y-measurable set with yu(E) < co and let f be a nonnegative

p-measurable function on E. For short, we denote the distribution set as
{f>t}={xeE:f(x)>1t}.

By Cavalieri’s principle, we have

/f(x)qd,u(x)zq/ 7 udf > )dt, 0<q<oo.
E 0

Next we discuss a truncated version of Cavalieri’s principle.

Lemma 5.9. Let p be a measure in R*. Let E c R” be a u-measurable set with
H(E) < oo and let f be a nonnegative y-measurable function on E. For 0 < ¢ <oo

and 0 < ¢ < t1 <oo, we have

/ f(x)? du(x)
{to<f<t1}

t1
= q/ t97 udf > ) de + td ulf > toh) -t ulif > t1}).
t

0

(5.10)

Proof: Cavalieri’s principle implies

/ f@)?du(x) = q/ 1t < £ < tdnif > thdt,
{to<f<ti} 0
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where

/ 9 uto < F <t ni{f > thde
0
t1

to

:/ tq’lu({t0<fst1})dt+/ t9 e < £ <t1)dt
0 to
q

¢ t1
= ?Oﬂ({to <fs< t1})+/ 9t < £ <t1)dt.

to
Since {t < f <t1} ={f >} \ {f > t1} and the measures of the sets are finite by the

assumption u(E) < oo, we obtain
plt < f<t1) =plf > ) —pdf > 1)

for every tg <t <t;. Consequently

t1
/ tq_lu({t <f<t1)dt
t

0

t1 t1
:/ tq_lu({f>t})dt—u({f>t1})/ 19 tdt
t to

0

" 4
:/ t7 udf > thdt - udf > t1}).
to q
The claim follows by combining the equations above. a

The next lemma is a core of the self-improving result for reverse Hoélder

inequalities.

Lemma 5.11. Let 1 < p <oo and let @9 < R™ be a cube. Assume that f,g € LP(Qy)

are nonnegative functions and that there exist ¢ty =0 and ¢1 > 1 such that

fx)Pdx<cq (tp—l flx)dx+ / g(x)P dx) (5.12)
{g>t}

{f>t} {f>t}

for every tg <t <oo. Let ¢ > p with clg%’l’ < 1. Then there exists a constant

c=c(p,q,c1) such that

fx)ldx<c (tg—p fx)? dx+ / g(x)? dx) .
Qo Qo Qo

THE MORAL: Weassume that f,g € LP(Q¢) satisfy a uniform estimate over
the distribution sets in (5.12) for every ¢ = ¢¢. This implies that f € L?(Q¢) for
some ¢ > p and, consequently f is integrable to a higher power than assumed in
the beginning. This is an example of a phenomenon called higher integrability or

self-improvement.

Proof. Clearly

fx)dx =/ fx)? dx+/ fx)dx
Qo {f<to} {f>to} (5.13)

< tg_p / fx)P dx+ / f(x)?dx.
{f<to} {f>to}
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It suffices to estimate the second integral on the right-hand side. Let ¢ > t¢. Using
equation (5.10) with the exponent ¢ — p > 0 and the measure u(E) = f g [Pdxfora
measurable E c R", we obtain

/ fx)dx= / F)TP dp(x)
{to<f<t1} {to<f<t1}

i1
=(g-p) [ P! fx)P dxdt
to {f>t
+tg_p/ f(x)pdx—t‘i_p/ fx)P dx.
{f>to} {f>t1}

Assumption (5.12) implies

t1
/ ga—p-1 Fl)? dxdt
to {f>t}

t1 t1
scl/ 972 f(x)dxdt+cl/ tq_p_l/ g(x)? dxdt.
t {g>t}

0 {f>t} to

By (5.10), with the exponent ¢ —1 > 0 and the measure u(E) = fEfdx for a
measurable E c R”, we obtain

t1
/ 1972 fx)dxdt
to {f>t}

1 -
s—( / f)dx+¢97" / f(x)dx).
9~ 1 Utto<r<in) if>t1)

On the other hand, with the measure u(E) = f g &P dx for a measurable E c R", we
have

t1 o
/ tq‘p_l/{ }g(x)p dxdt s/o tP (g > thdt
t g>t

0

1
=—— [ g Pdu(x)
U A

1
=— gx)? dx.
9—D JQo

Consequently

/ f)?dx< ey L / F@) dx+ 7P / f)P dx
{to<f<t1} q-1 {to<f<ti} {f>to}

+(c1q_p —1) t'{fp/ f(x)pdx+cl/ gx)?dx,
g-1 {f>t1} Qo

where we also applied the estimate

(5.14)

p-1
/ flx)dx < / f(x)(@) de=1t7 " / fx)? dx.
{F>t1} (f>t1} i1 (F>t1)

Since
/ F@)7 dx<d]{tg < £ < t1)] < £11Qol <0,
{to<f<t1}
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we obtain from (5.14) that

(1—c1q_p)/ f(x)qustg_p/ F@)P dx
q_l {to<f<t1} {f>to}

(e =2 -1)#{‘1’/ f(x)de+c1/ @) dx.
g-1 {F>t1} Qo

Here 0 < 1—013%11’ <1, and thus

/ fx)?dx
{to<f<t1}

< ctg_p/ fx)P dx — t‘{_p/ fx)P dx+ c/ gx)?dx
{f>to} {f>t1} Qo

< ctg_p/ fx)P dx+ c/ gx)?dx,
{f>to} Qo

with ¢ = ¢(p,q,c1) = 1. This upper bound does not depend on ¢1, and by letting

t1 — oo and using Fatou’s lemma, we obtain

/ fx)dx< ctg_p / fx)P dx+ c/ gx)? dx.
{f>to} {f>to} Qo

Finally, by (5.13), we arrive at

f(x)qusc(p,q,cl)(tg_p/ f(x)pdx+/
Qo

Qo

gx)? dx) ,
Qo

which is the required estimate. d

5.3 Reverse HOlder inequalities

Next we discuss reverse Holder inequalities. Let 1 < p <oo and let @y cR” be a
cube. Assume that f € L?(Qg) is a nonnegative function. By Holder’s or Jensen’s

]gf(x)dxs (]{2 f(x)pdx)zl)

for every cube @ c @o. We are interested in functions that satisfy an inequality to

inequality

the reverse direction. Assume that there exists a constant ¢; such that

1
(][ f(x)pdx)p scl][ fx)dx
Q Q

for every cube @ < @¢. This kind of functions occur in Harnack’s inequality for
nonnegative weak solutions of a PDE, see Theorem 4.31 and in the theory of
Muckenhoupt weights in harmonic analysis. By the following Gehring lemma,
a uniform reverse Holder inequality implies a stronger uniform reverse Holder

inequality.
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Theorem 5.15 (The Gehring lemma (1973)). Let 1 < p <oo and let @y =R" be
a cube. Assume that f € LP(Q¢) is a nonnegative function and that there exists a

constant c¢q such that

1
(][ f(x)de)" scl]l fx)dx (5.16)
Q Q

for every cube @ < @o. Then there exist an exponent g = g(n,p,c1) > p and a

constant ¢ = ¢(n, p,c1) such that

1
(][ f(x)qu)q <c ][ fx)dx (5.17)
Q Q

for every cube @ < Q.

THE MORAL: A uniform reverse Holder inequality is self-improving. Since
we assume that f € L1(Qo), by (5.16) we have f € L?(Q). By (5.17) we have
f € L1(Qo) for some g > p and, consequently f is integrable to a higher power than
assumed in the beginning. Gehring’s lemma applies to f € Llloc(R”) that satisfy
(5.16) for every cube @ — R". This phenomenon is called local higher integrability.

Proof. 1t suffices to prove that (5.17) holds for @ = Q9. We may clearly assume
that fg, > 0. Let M 50 f be the maximal function in Definition 5.1. By the reverse
Holder inequality in (5.16), we have

Mgof(x) <c1Mg,f(x) for every x € Q. (5.18)

By Lemma 5.7 and (5.18), we have

/ f(x)pdxs2”tp|{x€Q0:Mg fx) >t}
(x€Qo:f (x)>1} 0

t
< 2"'tP {xEQO ‘Mg, f(x) > —H

c1

for every
3
t=tg= ( f(x)P dx) . (5.19)
Qo

On the other hand, by Lemma 5.2, we have

t 2.5"
XE€Qo: Mg, f(x)>—¢|<c1 fx)dx
C1 b JxeQo:f(x)> L)

for every t > 0. Denote F; = {x € Q¢ : f(x) > t}. Then

)P dx<2™t? {ero ‘Mg, f(x)> i}’
F, c1

<c 2715 ep1 / flx)dx

=ctP1 [ Fflx)dx
s
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with ¢ = c(n,p,c1).
On the other hand, we have

/ fx)P dx = / F@)P () dx <Pt / fx)dx,
F% \F; F% \Fy F

t
3
and combination of the estimates above shows that
¢\P1
f(x)deSC(n,cl)(—) flx)dx
2 F ‘

Fy
2

for ¢ = ty. We apply Lemma 5.11, with g =0, and obtain q¢ = q(n,p,c1) > p and a
constant ¢ = c¢(n, p,c1) such that

fx)¥dx < ctgfp f(x)P dx.
Qo Qo
Finally (5.19) and (5.16) give

41

f)ldx<c ( Fx)P dx) ! Fx)P dx
Qo Qo Qo
g -1
SC(][ f(x)pdx)pIQol(/ f(x)pdx) / f(x)P dx
Qo Qo Qo (5.20)
q
—¢ (][ F@)P dx)” Qo]
Qo
q
< clQol ( f(x)dx) .
Qo
This proves (5.17) for Q. O

For the gradient of a weak solution to a PDE, we usually have a weaker reverse
Holder inequality of type

1
( ][ Fx)P dx) <o ][ fx)dx
Q) Q.20

for every cube Q(z,1) with Q(z,2]) c Q. The difference compared to (5.16) is that
there is a larger cube on the right-hand side. Next we discuss a self-improving
result for a general class of weak reverse Holder inequalities.

Theorem 5.21. Let 1 < p <oco and ¢; >0, and let Q c R” be an open set. There
exist 0 =0(n,p) >0, g =q(n,p,c1)>p and ¢ = c(n,p,c1) = 1 such that, if f,g €
Lﬁ) .(Q) are nonnegative functions satisfying

1
(][ f(x)pdx)p <c
Q(z,D)

1

][ flx)dx + (][ g(x)? dx);
Q(z,21) Q(z,21)

1
+9(][ f(x)pdx)p,
Q(z,21)

(5.22)
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for every cube Q(z,l) with Q(z,2l) < Q, then

1 1
( ][ f(x)? dx)q < c( ][ f(x)P dx)p p
Q(z,0) Q(z,21)

for every cube Q(z,l) with Q(z,21) c Q.

1
][ 2! dx) T (5.23)
Q(z,21)

THE MORAL: We assume that f € L?(Q) satisfies a uniform weak reverse
Hoélder inequality in (5.22). This implies that f € LY(Qq) for some ¢ > p and,
consequently f is integrable to a higher power than assumed in the beginning.
Moreover, there is a uniform weak reverse Holder type estimate with the exponent

q > p. Thus a uniform weak reverse Holder inequality is self-improving.

Remarks 5.24:

(1) If we assume

1
(][ f(x)pdx)p SCl][ fx)dx
Q(z,D) Q(z,21)
instead of (5.22), that is g =0, we have

1 1
( ][ fx)? dx) ‘<e ( ][ F(x)P dx)p
Q(z,D) Q(z,2])

in (5.23).
(2) The inequality

1 1
(][ f(x)? dx)p <c ][ fx)dx+ (][ g(x)? dx)p
Q(z,0) Q(2,2]) Q(2,2])

correspoding the case 0 =0, clearly implies (5.22) and thus the result also

2

applies in this case.

Proof. Let Qo = Q(xp,lo) be a cube with 60 c Q. We begin by constructing a
specific Whitney type decomposition # of Q. Let

Qi =Q(x0,(1-27Hlp), i=1,2,....

We divide each @; into (2!*1—2)" dyadic subcubes of @, with common side length
271y, which have pairwise disjoint interiors and cover @;. Denote this collection
by &;. We define recursively a collection #;, i = 1,2,..., of cubes by setting #; = %
and

Wii1={Q € Fis1:QNQ = @ for every Q € #;}

for every i =1,2,.... Let # =U;2; #;. The cubes in # have pairwise disjoint
interiors and they they cover the interior of @¢ and thus they cover @ up to
measure zero. Moreover, if @ = Q(z,r) € #, then the doubled cube Q(z,2r) is a
subset of Q.
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Let f,g € L (Q) be nonnegative functions such that (5.22) holds for some

loc

0 <6 <1, to be specified later, and let

1
to = ( ][ Fx)P dx) " <. (5.25)
Qo

Without loss of generality, we may assume that ¢ > 0.
Let t = ty. For € #', we have

][ fx)Pdx< 1 fx)P dx = @ fxPdx<agt?, (5.26)
Q Q1 JqQ, Q1 Jg,

where ag = % > 1. Define functions f and g in the interior of @ by setting

_1 _1
fx)= an f(x) and g(x)= an g(x),

for every x € @ € #. Clearly 0 < f < f and 0 < g < g almost everywhere in @, and
thus £,5 € LP(Qo).
Let @ € #. By (5.26), we have

][ Fx)Pdx<tP,
Q
and Lemma 5.7 gives
/  f@Pdx<cm)tP|xeQ My fx)>}]. (5.27)
{xe@Q:f (x)>t}

To estimate the right-hand side of (5.27), let x € @ and let @, = Q(z4,7x) € @ be
a subcube of @ containing x. Then the construction above guarantees that the
doubled cube Q(z,,2r,) is contained in @y =, and (5.22) implies

_ 5 -1 7
( f)? dy) =ay” (][ f)?P dy)
Q. Q.

_1
< clan

1

][ Fy)dy+ ( ][ g(y)P dy) '
Q(zx,2ry) Q(zx,2ry)

1

_1 7

+9an (][ f(y)pdy)p.
Q(zy,2ry)

It is easy to see that the cube Q(z,,2r,) intersects at most those cubes in #

(5.28)

which have a nonempty intersection with . In particular, there exists a cube
Q' =Q(x',r") e W which touches @ and satisfies

f(y);(aQ/)_flif(y) and g‘(y)z(aQ/)_?l’g(y)

for almost every y € Q(z,,2r,). Moreover, by the construction of the cubes, we have
Q cQ(x',5r"). This implies |Q| < |Q(x',5r')| = 5"|Q’'| and consequently ag' <5"aq.
From this we obtain

][ f(y)dys(5”aQ)71'][ f(ndy.
Q(2x,21y)

Q(zy,2ry)
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A similar reasoning shows that

=

5 1
][ g(y)de)p <(5"aq)? (][ §(y)”dy)
Q(24,2ry) Q(24,2ry)

and

(][ f(y)de)% s(snaQﬁ(][ f(y)de)‘%.
Q(zx,2ry) Q(zx,2ry)

By substituting the estimates above to (5.28)

1

][ fdy+ (][ )y dy) ’
Q(zx,2ry) Q(zx,2ry)

1
+5%6(][ Pl dy)"
Q(2x,2ry)

and taking supremum over all cubes @, as above, we have

1
( Fy)P dy)p <5rcy
Q.

My fx)<5pc1Mq,f(x)+5P c1My §(x)+570M flx)

for every x € @. This implies

{er:Mgf(x)>t}ch(EuFuG),

where

5p C1

~ 1 ¢
E:{xEQO:MQOf(x)>§ L }
b 1t
F= xEQ():MQ g(x)>—n— ,
0 35176‘1

— AP F 1t
G—{xEQO.MQOf(.’XI)>§% .

Lety=vy(n,p)=3- 55. Lemma 5.2 implies

< c(n)m/ ~ fx)dx,
{xeQo:f (x)

1 ¢
>2y21}

~ t
|E| = {erO:MQof(x)>E}

c1t\? _
sc(n)(y—l) / gx)Pdx, (5.29)
t {(xeQo:8(x)>1 L}

2 7e1

0\?P
<c(n) (Y—) / gx)P dx.
t {erO:g(x)>% YLH}

_ t
|F| = {x €Qo :Mgog(x) > —}
Yel1

_ t
|G| = {xe Qo :Msog(x) > 7’_9}

By (5.27) we have

/  f@Pdx<ctP1QNEUFUG) (5.30)
{xe@Q:f (x)>t}
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for every W € #'. By summing (5.30) over all cubes @ € # and applying (5.29), we

obtain
/ _ f@Pdx<cmtP|lEUF UG <c(n)tP(E|+|F|+|G])
{x€Qo:f (x)>t}
sc(n,p,cﬂtp_l/ ~ fx)dx
{xeQo:f (x)>7t} (5.31)

+C(n”pycl) g(x)pdx
{x€Qo:8(x)>7t}

+cln,p)o? / B f(x)P dx,
{xe@Qo:f (x)>1t}

where

1 1 1
0<t=1(n, ,c):—max{ R }<1.
p-c1 2 Y(n7p)9 Y(n,p)01

On the other hand, we have

/ Fx)P dx = / F@)P f(x)dx
{x€Q0:1t<f(x)st} {x€Q0:1t<f(x)st}

<tP1 / ~ Flx)dx.
{xeQo:f (x)>1t}
By adding (5.31) and (5.32) and reorganizing terms, we arrive at
(l—c(n,p)Op)/ ~ Flx)P dx
{xeQo:f (x)>1t}
<cln,p,c1) ((n)ﬁ—l / B Flx)dx + / S(x)Pdx|.
{xeQo:f (x)>1t} {x€Qo:8(x)>Tt}

Recall that here t = ¢t( was arbitrary. Also note that the term that is absorbed into
the left-hand side is finite, since f e LP(Qy).
Let 0 <0 =0(n,p) <1 be so small that

(5.32)

1
1-c(n,p)o? = 3

Lemma 5.11, applied for the functions £,g € LP(Qo), and the estimates f < f,
g < g imply the existence of ¢ = q(n,p,c1) > p such that

/ fx)dx<c ((Tto)q_p/ f(x)P dx +/ glx)? dx)
Qo Qo Qo

= ctg_p fx)P dx+ c/ gx)?dx
Qo Qo

with ¢ = ¢(n,p,c1). Here we used the fact that 7 = 7(n, p,c1). By (5.25) and (5.22),

we obtain

a_
pl

f(x)? dx) [P dx+ c/ gx)dx

Qo

-1
f(x)? dx) fx)? dx+ c/ g(x)dx
Qo Qo

/?(x)quSC(

Qo Qo Qo

sc( qudQ;@m(
Qo Qo

q
=C|Qo|(][ f(x)pdx)p +c/ g(x)?dx,
Qo Qo
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which gives

1 1 1
( Fx)? dx) "<e ( f(x)? dx) "ye (][ g(x)? dx) !
Qo Qo Qo

with ¢ =c(n,p,c1).

Finally, it follows from the construction of # that @1 = @(xo, %0) is divided to
2" cubes @ € # with the side length %0 Since ag = % = 4" for these cubes, it
holds by the definition of f that

flx)= 47%f(x) for every x€@Q1.

Hence we conclude that

1 1 1
( f(x)? dx) "<e ( f(x)? dx) "ye (][ g(x)? dx) !
Q1 Qo Qo

with ¢ = ¢(n,p,c1). This is the desired inequality for the cube Q(z,r) = @1, and the
proof is complete. (

Remark 5.33. By covering cubes in (5.22) with balls by the Vitali 5r-covering
lemma, and covering balls in the final inequality by dyadic cubes, we obtain the
following variant of Theorem 5.21. Let 1 <p <oo, ¢1 >0, 1 <711,T2 <00, and
let Q < R” be an open set. There exist 0 = 6(n,p,71) >0, q = q(n,p,c1,71) > p
and ¢ =c(n,p,c1,71,72) =1 such that if f,g € LiC(Q) are nonnegative functions
satisfying
1
p
(][ f(x)pdx) <cy
B(z,r)

1

][ 2(x)P dx) !
B(z,711)

1

][ fx)dx+
B(z,T17)
P

+9(][ f(x)pdx) ,
B(z,T11)

for every ball B(z,r), with B(z,71r) € Q, then

1
(][ f(x)qu)q sc(][ fx)? dx
B(z,r) B(z,tor)

for every ball B(z,r) with B(z,79r) c Q.

1 1
! +c(][ g(x)qu)q
B(z,T2or)

5.4 Local higher integrability of the gra-
dient

We begin with a local higher integrability result for the gradient of a weak solution,
showing that a weak solution u € le(l)f(Q) to an elliptic partial differential belongs
23(()) for some 6 > 0. The proof

C

to a slightly higher Sobolev space, that is, u € Wli
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is based on the energy estimate in Lemma 4.7 and a Sobolev—Poincaré inequality
in Theorem 1.40, which give a reverse Holder inequality for the weak gradient.
Local higher integrability then follows from the self-improvement property of

reverse Holder inequalities, see Theorem 5.21.

Theorem 5.34. Assume that u € Wli’cz(Q) is a weak solution to (4.1) in Q. There
exists 6 =8(n,A,A) >0 such that |Dul| € Lfo :6(9). Moreover, there exists a constant
c=c(n,A,A) such that

1

1
755 3
(][ |Du|2+5dx) SC(][ |Du|2dx)
B(z,r) B(z,2r)

whenever B(z,2r) € Q.

THE MORAL: We assume that u € Wli’cz(Q) and show that Du € L2+9(Q) for

loc
some 6 > 0 and, consequently Du is integrable to a higher power than assumed in

the beginning. Moreover, there is a uniform weak reverse Holder type estimate.

Proof Let g = 2% . Observe that 1< ¢ <2 for n>2. Since u € Wli’f(Q) c Wll’q(Q),

n+2° oc

by Theorem 1.40, we have

1 1
1 1
(][ Iu—uB(Lgr)lzdx) <c(n)r (][ IDqudx)q (5.35)
B(z,2r) B(z,2r)

whenever B(z,2r) € Q. By Lemma 4.7 and (5.35), we obtain

1 1
3 A, A 2
(][ |Du|2dx) < u(][ Iu—uB(Z’gr)I2dx)
B(z,r) r B(z,2r)

1

sc(n,/l,A)(][ IDqudx)q.
B(z,2r)

Let f =|Du|?. The estimate above can be rewritten as

( ][ Flx) dx)i <c(n,A,A) Fx)dx
B(z,r) B(z,2r)

for every B(z,2r) € Q. Remark 5.33, see also Theorem 5.21, asserts that there
exists 6 =d(n,A,A)>0 and ¢ = c¢(n,A,A) such that

q q
2+6 + 2+6
(][ |Du|2+5dx)2 :(][ f(x)zTé alx)2
B(z,r) B(z,r)
< c][ fx)dx
B(z,2r)

= c][ [Dul|?dx
B(z,2r)

and, since 1 < g <2, we conclude that

1 1 1
75 7 3
(][ |Du|2+6dx) SC(][ IDqudx) SC(][ |Du|2dx)
B(z,r) B(z,2r) B(z,2r)

for every B(z,2r) € Q.
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Remark 5.36. We shall consider the example in Section 1.5 in the two-dimensional
case, thatis,n =2 and 0 < a < 1. See also Chen and Wu [1, p. 189] and Giaquinta [5,
p- 157]. In Section 1.5 we showed that the function u : B(0,1) — R,

u(x) = ulxy,x9) = x1 x|

is a weak solution to )
- Z Dj(aijDiu)zo
i,j=1
in B(0,1), where
a(2—-a)xixj
1-a)? |x2’
Estimate in (1.32) implies that the uniform ellipticity condition in Definition 1.7

is satisfied with

a;j(x)=06;;+ i,j=1,2.

9_
A=1 and A=1+22"9
(1-a)?
By solving the equation above with respect to a, we obtain
A%-1
a= A2

Observe that @ < 1 can be made arbitrarily close to one by choosing A > 1 large
enough.
By (1.29), we have

Diu(x) =6;1lx* —axix;lx| %72, i=1,2,

where D;u, i = 1,2, is the weak partial derivative of u. A similar computation as
in Section 1.5 shows that

|Dul? dx < oo
B(0,1)

for2<p<%and

2
/ [Du|« dx = co.
B(0,1)

The exponent % > 2 can be made as close to two as we wish by choosing a < 1 close

enough to one, or equivalently, choosing A > 1 large enough.

THE MORAL: The previous example shows that the higher integrability
exponent § in Theorem 5.34 is not very large and depends on the ellipticity
constants. In particular, for every § > 0, there exists a solution to an elliptic
equation, with a large enough ellipticity constant A > 1, such that |Du| ¢ le(:;‘s(Q).

In this sense, Theorem 5.34 is sharp.

Corollary 5.37. Assume that u € Wﬁ)’f(Q) is a weak solution to (4.1) in Q. There
exists 8 = 6(n, A, A) > 0 such that u € W-2"0(Q).

loc
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THE MORAL: We assume that u € Wli’f(Q) and show that u € VVI:})’Cera(Q) for
some 6 > 0 and, consequently u belongs to a higher Sobolev space than assumed
in the beginning.

Proof. By Theorem 1.40, we obtain g = g(n) > 2 such that

1
2
][ |Du|2 dx)
B(z,r)

q
(][ Iu—uB(z,r)qux) <c(n)r
B(z,r)

for every B(z,r) @ Q, which implies

1 1
q 7 q g
lulfdx| < lu—uperlidx] +lupenrl
B(z,r) B(z,r)
3

<c(n)r (][ |Du|2dx) +|ulB,r) < oo.
B(z,r)

Since u € Wli’cz(Q), we have |u|p(,,r) < oo. This shows that u € quoc(Q) for some
q = q(n)> 2. Together with Theorem 5.34 this implies that u € Wli’czw(Q) for some

0=6(n,A,A)>0. d

Remark 5.38. Corollary 4.22 asserts that a weak solution to (4.1) is locally bounded
and Theorem 4.36 asserts that a weak solution is continuous. Both facts imply

o0
u ELloc

tive proof of the previous corollary.

(Q). This fact together with Theorem 5.34 can be used to give an alterna-

2.5 Higher integrability up to the bound-
ary

Next we consider a global higher integrability result over the entire open set Q.
In the argument we need the following variant of the energy estimate given in
Theorem 4.6.

Theorem 5.39. Assume that Q c R” is a bounded open set and let g € Wh2(Q).
Let u € Wh2(Q) is a weak solution of (4.1) in Q with u —g € W01’2(Q). There exists
a constant ¢ = ¢(A, A) such that

/(p2|Du|2dxsc/|u—g|2|D(p|2dx+/¢2|Dg|2dx
Q Q Q

for every ¢ € C°(R™).

THE MORAL: Observe that the support of the test function ¢ in the following
lemma need not be a compact subset of 2. This gives us estimates up to the
boundary.
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Proof. Let ¢ € C3°(R") and define v = ¢*(u—g). Sinceu—-ge Wg’z(Q), we have
vE W01’2(Q). Moreover,

Djv=¢*(Dju-D;g)+2¢p(u-gDjp, j=1,...,n,

almost everywhere in Q. Since u is a weak solution and v € WO1 ’Z(Q), we have

n
0= Z aijDiuDjvdx

Qij=1
9 n n
:/ Y a,-jDiu(Dju—ng)dx+2/ p(u—g) Y a;jDiuD pdx.
Q  gy=1 Q ij=1

This implies that

n
/(p2 Z aijDiuDjudx
Q  iy=1

n n
<2 /(p(u—g) Z a;jD;uD;pdx|+ /(p2 Z a;jD;uD;gdx
Q i,j=1 Q  ij=1
n 2 n
<2/ lpllu-gl ), ||aij||L°°(Q)|Diu||Dj(ﬂ|dx+/(P Y llaijlie@lDiullD gldx
Q ij=1 Q  ij=1

< c(/ |<p||u—g||Du||D<p|dx+/ (P2|Du||Dg|dx)-
Q Q

Next we first apply the uniform ellipticity condition to the previous estimate,

and then we use Young’s inequality with epsilon to have
)L/ @*|Dul?dx < c/ lpllu —gIIDuIID(pIdx+/ ¢*|Du||Dg|dx
Q Q Q

A
s—/(pQIDu|2dx+c/ |u—g|2|D(p|2dx+c/(pleglzdx.
2 Ja Q Q

Both terms on the right-hand side are finite, since u € Wli’cz(Q) and ¢ € C3°(Q).
The claim follows by absorbing the first term on the right-hand side. O

We state a global higher integrability result on open sets whose complement
satisfies the following measure density condition. This is a relatively standard

regularity assumption on the domain in the theory of PDEs.

Definition 5.40. A set E c R” satisfies the measure density condition, if there

exists a constant y, with 0 <y <1, such that

|ENB(x,r)| = v|B(x,r)| (5.41)
for every x € E and r > 0.
THE MORAL: A setsatisfying the measure density condition is thick in the

sense that every ball centered in the set contains at least certain percentage points
of the set.
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Remarks 5.42:

(1) If Q cR"™ is an open set with a smooth boundary, that is, the boundary is
locally represented by a graph of a smooth function, then R*\Q satisfies the
measure density condition. The same holds true for Lipchitz boundaries.
One advantage of the measure density condition is that it also applies to
sets whose boundary is not represented by a graph of a function.

(2) If Q cR" is an open set such that R" \ Q satisfies the measure density
condition, by the Lebesgue differentiation theorem the boundary of Q has

Lebesgue measure zero.

The next result is a global version of Theorem 5.34.

Theorem 5.43. Let QQ c R" be a bounded open set such that the complement
R™\ Q satisfies the measure density condition with a constant y. Assume that
g € Whs(Q) for some s > 2 and that u € W2(Q) is a weak solution to (4.1) in Q
withu-ge W&’Z(Q). There exists 6 =6(n,A,A,s,y) >0, with 2+ 6§ < s, such that
IDu| € L2*9(Q). Moreover, there exists a constant ¢ = ¢(n, s, ) such that

1 1 1
755 2 745
(/ |Du|2+5dx)2 <c (/ IDulzdx) + /IDgIer‘sdx)2 ]
Q Q Q

THE MORAL: Ifthe domain and the boundary value function are smooth

enough, then the gradient of the solution to the Dirichlet problem is integrable to
a higher power over the entire domain than assumed in the beginning. Moreover,

this result comes with a weak reverse Holder type estimate.

Proof: Let B(z,r) be a ball with Imﬁ R"\Q) # 3. Let ¢ € C3°(B(z,2r))
be a cutoff function such that ¢ =1in B(z,r),0<s ¢ <1 and |[Dg| < g Since Q is
bounded, we have g € W15(Q) c W12(Q). By Lemma 5.39, there exists a constant
¢ =c(A,A) such that

/ IDulzdxs/goplDulzdx
B(z,r)nQ Q

C
< |u—g|2dx+c/ IDglzdx.
" JB(z,2r)nQ B(z,2r)nQ

(5.44)

As in the proof of Theorem 5.34, let g = % Then 1< g <2 for n = 2. Holder’s
inequality implies u — g € WO1 2(Q) c WO1 ‘4(Q). By considering the zero extension
v e WH(R™) of u — g € Wy '(Q), defined by

u-—-g, in Q,
U:
0, in R"\Q,

we have v = 0 almost everywhere in R” \ Q. Since B(z,2r)N(R" \ Q) # @, there
exists a point y € B(z,2r) N (R" \ Q). By the fact that v = 0 almost everywhere in
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R”\ Q and the measure density property, we obtain
l{x € B(y,4r) :v(x) = 0}| = |B(y,4r) n(R" \ Q)| = v|B(y,4r)|.

Since v € W14(R"), by Theorem 1.47, there exists a constant ¢ = ¢(n,y) such that

1 1
2, )2 g
v|“dx| <ecr |Dv|?dx| .
B(y,4r) B(y,4r)

Since v = u — g almost everywhere in 2, v = 0 almost everywhere in R* \ Q and

B(y,4r) c B(z,6r), there exists a constant ¢ = ¢(n,y), such that

1 1
1 1 2 2
—(————- |u—gﬂdﬂ sf(f w@dﬂ
r \IB(z,1)| /B,2rna 7 \JB(y,4r)

1 1

= 1 a

SC(][ IDvlqu)q =c(— |Du—Dg|qu)q
Bly.dr) IB(y,4r)| JB(y,arn0

1

<c R AN
|B(2,61)| /B(z 6rn0

1 1
. L L
( IDuﬂd%q+ |Dgﬁdﬂ2

|B(2,67)| JB(z,6rnQ

By (5.44) and the estimates above, there exists a constant ¢ = c(n,A,A,y) such
that

1
1 2
|Du|2 dx)
( |B(z,m)| JB(zrna

1 1
c 1 9 2 1 9 2
< - lu—g| dx) +c( IDg| dx) (5.45)
r (|B(Z,7‘)| B(2,2r)nQ |B(z,7)| JB(z,2rn02
1 1
1 q 1 3
<cl||—=—— |Du|qu) +| — |D |2dx)
(IB(Z 671 JB(z,6rn0 |B(2,6r)| /B(z,6rn0Q g

whenever B(z,2r)Nn(R*\ Q) # @.
Assume then that B(z,r) is a ball with B(z,2r)n (R* \ Q) = @, that is,
B(z,2r) € Q. By the proof of Theorem 5.34, we have

|Dul*dx| <c [Dul?dx| .
B(z,r) B(z,2r)

with ¢ = e(n,A,A). From this we conclude that (5.45) is also valid when B(z,2r)n
(R*\ Q) = ¢. This implies that (5.45) holds for every ball B(z,r) c R".
Let f =|Dul?yq and A =|Dg|?yq. By (5.45) there exists a constant ¢ =

c(n, A, A,y) such that
q
2 2
][ ha dx)
B(z,6r)

g
(][ f%dx)ZSC ][ fdx+
B(z,r) B(z,6r)

for every B(z,r) c R". By Remark 5.33, there exists 6 = d(n, A, A,s,y), with 2+ < s,
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and ¢ = c(n,A, A,y) such that

1
1 75
[ |Du|2+5dx)
(IB(ZJ)I B(z,)nQ
1 1
1 P =0
<cl||—— |Du|2dx) +(— |D I2+5dx)
(IB(2,2r)| B(2,2r)nQ |B(z,2r)| B(z,2r)nQ g

for every B(z,r) c R". The claim follows by considering a ball B(z,r) with z € 0Q
and r = diam(Q). d

Corollary 5.46. Let Q < R” be a bounded open set such that the complement
R™\ Q satisfies the measure density condition with a constant y. Assume that
g € WI5(Q) for some s > 2 and that u € WH2(Q) is a weak solution to (4.1) in Q
withu-ge W&’2(Q). There exists § =6(n, A, A,s,y) >0, with 2+ 0 < s, such that
ue W1’2+6(Q).

Proof Sinceu-—ge WO1 ’2(Q), Corollary 1.37 implies that there exists ¢ = q(n,s) > 2,
with ¢ <s, such that

1 1

(/ Iu—glqu)q sc(n,p,s,Q)(/ |Du—Dg|2dx)2 < o0.
Q Q

It follows that

1 1 1
(/Iulqu)qs(/lu—glqu)q+(/|g|qu)q<oo
Q Q Q

and thus u € L2+%(Q) for some & = 6(n,s) > 0. Together with Theorem 5.43 this
implies that u € W52*9(Q) for some & = 5(n, A, A,s,7) > 0. O
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