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1
Weak solutions

1.1 Euler-Lagrange equation
Second order elliptic equations of divergence type appear in the calculus of varia-
tions, which studies minimizers of certain integrals modeling, for example, the
energy of a system. The underlying function space is usually assumed to be a
Sobolev space, but we begin with a brief introduction under the assumption that
minimizers exist and that all appearing functions are smooth. Later we consider
the corresponding problems in Sobolev spaces and show that the minimizers are
not necessarily smooth.

Let Ω⊂Rn be a bounded open set with a smooth boundary and let

F :Ω×R×Rn →R, F = F(x,ζ,ξ)

be a smooth function. Smoothness in a compact set Ω means that the function
and its all partial derivatives have continuous extensions from Ω to Ω. Consider a
variational integral

I(v)=
ˆ
Ω

F(x,u(x),Dv(x))dx

for smooth functions v :Ω→R satisfying the boundary condition

u = g on ÇΩ.

A function u ∈ C∞(Ω) is a minimizer of the variational integral I(·) above with the
boundary values g, if

I(u)É I(v)

for every v ∈ C∞(Ω) with v = g on ÇΩ. In particular, we have
ˆ
Ω

F(x,u(x),Du(x))dx É
ˆ
Ω

F(x,u(x)+ϕ(x),D(u(x)+ϕ(x))dx

1
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for every ϕ ∈ C∞
0 (Ω). Let

i(ε)= I(u+εϕ), ε ∈R.

If u is a minimizer, and since u+εϕ= g on ÇΩ, the function i(ε) has a minimum
at ε= 0, which implies that i′(0)= 0. Since

i(ε)= I(u+εϕ)=
ˆ
Ω

F
(
x,u(x)+εϕ(x),Du(x)+εDϕ(x)

)
dx,

a direct computation by applying the chain rule and switching the order of differ-
entiation and integration shows that

i′(ε)=
ˆ
Ω

(
n∑

i=1

Ç

Çξi
F

(
x,u(x)+εϕ(x),Du(x)+εDϕ

) Çϕ
Çxi

(x)

+ Ç

Çζ
F

(
x,u(x)+εϕ(x),Du(x)+εDϕ(x)

)
ϕ(x)

)
dx.

By setting ε= 0, we conclude that

0= i′(0)=
ˆ
Ω

(
n∑

i=1

Ç

Çξi
F (x,u(x),Du(x))

Çϕ

Çxi
(x)+ Ç

Çζ
F (x,u(x),Du(x))ϕ(x)

)
dx.

Since ϕ has a compact support in Ω, an integration by parts gives
ˆ
Ω

(
−

n∑
i=1

Ç

Çxi

(
Ç

Çξi
F (x,u(x),Du(x))

)
+ Ç

Çζ
F (x,u(x),Du(x))

)
ϕ(x)dx = 0

for every ϕ ∈ C∞
0 (Ω). This implies that u is a solution to the partial differential

equation

−
n∑

i=1

Ç

Çxi

(
Ç

Çξi
F (x,u(x),Du(x))

)
+ Ç

Çζ
F (x,u(x),Du(x))= 0 in Ω,

or equivalently

−div A(x,u(x),Du(x))+B(x,u(x),Du(x))= 0 in Ω,

where

A = A(x,u(x),Du(x))=
(
Ç

Çξ1
F(x,u(x),Du(x)), . . . ,

Ç

Çξn
F(x,u(x),Du(x))

)
and

B = B(x,u(x),Du(x))= Ç

Çζ
F (x,u(x),Du(x)) .

Note that by the chain rule we have

−
n∑

i, j=1

(
Ç2

ÇξiÇξ j
F (x,u(x),Du(x))

)
Ç2u

ÇxiÇx j
(x)+ Ç

Çζ
F (x,u(x),Du(x))= 0 in Ω.

This is the Euler-Lagrange equation associated with the variational integral I(·).
Observe that this is a nonlinear second order partial differential equation of
divergence form. Moreover, we have

Ç2

ÇξiÇξ j
F (x,u(x),Du(x))= Ç2

Çξ jÇξi
F (x,u(x),Du(x)) , i. j = 1,2, . . . ,n,
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so that the coefficient matrix is symmetric. Convexity assumptions are needed to
show existence and uniqueness of minimizers in the calculus of variation. More
precisely, assume that there exists θ > 0 such that

n∑
i, j=1

Ç2

ÇξiÇξ j
F(x,ζ,ξ)ξiξ j Ê θ|ξ|2

for every x ∈Ω, ζ ∈ R and ξ ∈ Rn. This condition asserts that the mapping ξ 7→
F(x,ζ,ξ) is uniformly convex for every x ∈Ω and ζ ∈R.

Example 1.1. Let

F(x,ζ,ξ)= 1
2
|ξ|2.

Then
Ç

Çξi
F(x,ζ,ξ)= 1

2
Ç

Çξi
|ξ|2 = 1

2
Ç

Çξi

∞∑
i=1

ξ2
i = ξi, i = 1,2, . . . ,n,

and Ç
Çζ

F(x,ζ,ξ)= 0. Thus the Euler-Lagrange equation associated with the varia-
tional integral

I(v)= 1
2

ˆ
Ω
|Dv(x)|2 dx

is

−
n∑

i=1

Ç

Çxi

(
Ç

Çξi
F (x,u(x),Du(x))

)
=−

n∑
i=1

Ç

Çxi

(
Çu
Çxi

(x)
)

=−
n∑

i=1

Ç2u
Çx2

i
(x)=−∆u(x)= 0 in Ω.

In other words, a minimizer with the boundary values g is a solution to the
Dirichlet problem ∆u = 0 in Ω,

u = g on ÇΩ.

for the Laplace equation.

Example 1.2. The Euler-Lagrange equation associated with the variational inte-
gral

I(v)= 1
2

ˆ
Ω
|Dv(x)|2 dx−

ˆ
Ω

f (x)v(x)dx

is the Poisson equation −∆u = f (exercise).

Example 1.3. Let

F(x,ζ,ξ)= 1
2

(
n∑

i, j=1
ai j(x)ξiξ j + cζ2

)
−ζ f (x),

where A = A(x)= (ai j(x)) is a symmetric n×n matrix and c ∈R. Then

Ç

Çξi
F(x,ζ,ξ)=

n∑
j=1

ai j(x), i = 1,2, . . . ,n,
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and
Ç

Çζ
F(x,ζ,ξ)= cζ− f (x)

Thus the Euler-Lagrange equation associated with the variational integral

I(v)= 1
2

ˆ
Ω

(
n∑

i, j=1
ai j(x)

Çv
Çxi

(x)
Çv
Çx j

(x)+ cv(x)2
)

dx−
ˆ
Ω

f (x)v(x)dx

= 1
2

ˆ
Ω

(
ADv(x) ·Dv(x)+ cv(x)2

)
dx−

ˆ
Ω

f (x)v(x)dx,

is

−
n∑

i, j=1

Ç

Çx j

(
ai j

Çu
Çxi

)
+ cu = f in Ω.

These lectures discuss the divergence type partial differential equation in the
example above. The uniform convexity condition on the variational integral leads
to the uniform ellipticity condition on the coefficients ai j, i, j = 1,2, . . . ,n. This
condition is applied in the proof of the existence of a solution and in the regularity
theory for weak solutions to elliptic partial differential equations with bounded
measurable coefficients.

1.2 Second order divergence type PDEs

Let Ω ⊂ Rn be a bounded open set. We consider the Dirichlet boundary value
problem Lu = f in Ω,

u = g on ÇΩ,

where u :Ω→ R is the unknown function. Here f , g :Ω→ R are given functions
and L denotes a second order (linear) partial differential operator of the form

Lu(x)=−
n∑

i, j=1
D j(ai j(x)D iu(x))+

n∑
i=1

bi(x)D iu(x)+ c(x)u(x) (1.4)

for given coefficient functions ai j,bi and c, i, j = 1, . . . ,n. Here we denote the
partial derivatives as

D iu(x)= Çu
Çxi

(x), i = 1, . . . ,n.

The operator can be written as

Lu(x)=−div(A(x)Du(x))+b(x) ·Du(x)+ c(x)u(x)
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where

A(x)=


a11(x) . . . an1(x)
a12(x) . . . an2(x)

...
. . .

...
a1n(x) . . . ann(x)


is an n×n matrix and b(x) = (b1(x), . . . ,bn(x)) is a column vector. The negative
sign in front of the second order terms disappears after integration by parts and
in the definition of weak solutions later. We say that (1.4) is of divergence form
and we assume the symmetry condition

ai j(x)= a ji(x) for almost every x ∈Ω, i, j = 1, . . . ,n. (1.5)

Under this assumption the eigenvalues of the symmetric n× n matrix A(x) =
(ai j(x)) are real numbers.

Remark 1.6. In the constant coefficient case when every ai j, i, j = 1, . . . ,n, is
constant, we may always assume that ai j = a ji. To see this observe that D jD iu =
D iD ju and we may replace both ai j and a ji by 1

2 (ai j +a ji), which does not change
the operator (exercise).

Definition 1.7. We say that the operator L in (1.4) is uniformly elliptic, if there
exists constants 0<λÉΛ<∞ such that

λ|ξ|2 É
n∑

i, j=1
ai j(x)ξiξ j ÉΛ|ξ|2

for almost every x ∈Ω and every ξ ∈Rn.

T H E M O R A L : The uniform ellipticity condition gives uniform bounds for the
speed of diffusion to each direction. In particular, the diffusion does not extinct or
blow up.

Remark 1.8. The ellipticity condition implies that the coefficient functions ai j,
i, j = 1, . . . ,n, are nonnegative and essentially bounded. To see this, let i 6= j and
choose ξ= (ξ1, . . . ,ξn) ∈Rn such that ξi = ξ j = 1 and ξk = 0 for k 6= i, j. Then

n∑
i, j=1

ai j(x)ξiξ j = ai j(x)+a ji(x)= 2ai j(x)

and thus 0 < 2ai j(x) É Λ for almost every x ∈Ω. For the diagonal element, we
choose ξ= (ξ1, . . . ,ξn) ∈Rn such that ξi = 1 and ξk = 0 for k 6= i. Then

n∑
i, j=1

ai j(x)ξiξ j = aii(x)

and thus 0< aii(x)ÉΛ for almost every x ∈Ω. It follows that

‖ai j‖L∞(Ω) ÉΛ, i, j = 1, . . . ,n.
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Remark 1.9. The ellipticity condition can be written in the form

λ|ξ|2 É A(x)ξ ·ξÉΛ|ξ|2

for almost every x ∈Ω and every ξ ∈Rn. In particular, this implies that for almost
every point x ∈Ω the symmetric matrix A(x)= (ai j(x)) is strictly positive definite
and the real eigenvalues λi(x), i = 1, . . . ,n, of A(x) satisfy

λÉλi(x)ÉΛ, for every x ∈Ω, i = 1, . . . ,n.

Example 1.10. If A(x)= I, bi = 0, and c = 0, we have the Poisson equation

Lu(x)=−div(A(x)Du(x))=−divDu(x)=−
n∑

i=1

Ç2u
Çx2

i
(x)=−∆u(x)= f (x).

For f = 0, we have the Laplace equation ∆u = 0.

Remark 1.11. It is rather standard in the PDE theory that the variables are not
written down explicitly in functions unless there is a specific reason to do so. This
makes expressions shorter and, hopefully, more readable.

Remark 1.12. We shall focus on the the case p = 2, but it is possible to consider
nonlinear variational integrals

I(v)=
ˆ
Ω

F(x,Dv)dx,

where F :Ω×Rn →R satisfies the structural conditions

(1) F(·,ξ) is measurable for every ξ ∈Rn,

(2) F(x, ·) is strictly convex and differentiable for every x ∈Ω and

(3) there exist constants 0<αÉβ<∞ such that

α|ξ|p É F(x,ξ)Éβ|ξ|p

for every x ∈Ω and ξ ∈Rn with 1< p <∞.

On the other hand, we may consider nonlinear PDEs of the form

−div A(x,Du)= 0,

where A :Ω×Rn →Rn satisfies the structural conditions

(1) A(·,ξ) is measurable for every ξ ∈Rn,

(2) A(x, ·) is continuous for every x ∈Ω,

(3) |A(x,ξ)| É a|ξ|p−1 for every x ∈Ω and ξ ∈Rn,

(4) A(x,ξ) ·ξÊ cξ|p for every x ∈Ω and ξ ∈Rn and

(5) (A(x,ξ′)− A(x,ξ)) · (ξ′−ξ)> 0 for every x ∈Ω and ξ′ 6= ξ ∈Rn.
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Let F satisfy (1)–(3) above and A = (A1, . . . , , An),

A i(x,ξ)= Ç

Çξi
F(x,ξ), i = 1,2, . . . ,n.

Then

−div A(x,Du(x))=−
n∑

i=1

Ç

Çx

(
Ç

Çξi
F(x,Du(x))

)
= 0

is the Eular-Lagrange equation associated with the variational integral

I(v)=
ˆ
Ω

F(x,Dv)dx

and A satisfies (1)–(5) above with a = 2pβ and c = α, see [14, Lemma 2.95] and
[14, Theorem 2.98].

Example 1.13. Remark 1.11 covers the p-Laplace equation

−div(|Du|p−2Du)= 0,

is the Euler-Lagrange equation associated with the p-Dirichlet integral

I(v)=
ˆ
Ω
|Dv|p dx.

For this we refer to [13] and [14].

Example 1.14. Let A(x)= (ai j(x)) be a symmetric matrix of bounded measurable
functions satisfying the ellipticity condition

λ|ξ|2 É A(x)ξ ·ξÉΛ|ξ|2

for almost every x ∈Ω and every ξ ∈Rn with 0<λÉΛ<∞. Let

F(x,ξ)= 1
p
(
A(x)ξ ·ξ) p

2 , 1< p <∞,

and
I(v)=

ˆ
Ω

F(x,Dv)dx = 1
p

ˆ
Ω

(
A(x)Dv(x) ·Dv(x)

) p
2 dx.

Then F satisfies (1)–(3) in Remark 1.11 and the associated Euler–Lagrange equa-
tion is

−div A(x,Du)=−div
((

A(x)Du(x) ·Du(x)
) p

2 −1 A(x)Du(x)
)= 0

with
A(x,ξ)= (

A(x)ξ ·ξ) p
2 −1 A(x)ξ,

see [14, Example 2.101].
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1.3 Physical interpretation
Consider a fluid moving with velocity b = (b1, . . . ,bn) in a domain in Rn and let
u = u(x, t) describe the concentration of a chemical in the fluid at point x at
moment t. Observe that the concentration changes in time. Assume that the total
amount of chemical in any subdomain Ω′ ⊂Ω changes only because of inward or
outward flux through the boundary ÇΩ′. This gives

Ç

Çt

ˆ
Ω′

u dx =
ˆ
ÇΩ′

aDu ·νdS−
ˆ
ÇΩ′

ub ·νdS. (1.15)

where ν= ν(x) = (ν1(x), . . . ,νn(x)) is the outward pointing unit normal vector on
ÇΩ′ and

Du(x) ·ν(x)= Çu
Çν

(x), x ∈ ÇΩ′,

is the outward normal derivative of u and a > 0 is the diffusion constant. The first
integral on the right-hand side describes how much chemical comes in through the
boundary by diffusion by assuming that the flux is proportional to the gradient,
but in the opposite direction, that is, the flow is from higher concentration to
lower. Note that Du(x) ·ν(x) > 0, x ∈ ÇΩ, if the concentration outside is greater
than inside. The second integral on the right-hand side describes the amount of
chemical that moves through the boundary by advection, that is, is transported by
the flux. The negative sign is explained by the fact that ν is an outward pointing
unit normal.

By the Gauss-Green theorem
ˆ
Ω′

D iu(x)dx =
ˆ
ÇΩ′

u(x)νi(x)dS(x), i = 1, . . . ,n,

By differentiating under integral and using the Gauss-Green theorem in (1.15)
we obtain ˆ

Ω′
ut dx =

ˆ
ÇΩ′

aDu ·νdS−
ˆ
ÇΩ′

ub ·νdS

=
ˆ
ÇΩ′

a
n∑

i=1
(D iu)νi dS−

ˆ
ÇΩ′

n∑
i=1

ubiνi dS

=
n∑

i=1

(ˆ
ÇΩ′

a(D iu)νi dS−
ˆ
ÇΩ′

ubiνi dS
)

=
n∑

i=1

(ˆ
Ω′

D i(aD iu)dx−
ˆ
Ω′

D i(ubi) dx
)

=
ˆ
Ω′

a
n∑

i=1
D i(D iu)dx−

ˆ
Ω′

n∑
i=1

D i(ubi) dx

=
ˆ
Ω′

a divDu dx−
ˆ
Ω′

div(ub)dx

=
ˆ
Ω′

a∆u dx−
ˆ
Ω′

div(ub)dx.
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Since this holds for every Ω′ ⊂Ω, we conclude that u satisfies the parabolic PDE

ut − a∆u︸︷︷︸
diffusion

+div(ub)︸ ︷︷ ︸
advection

= 0.

The derivation of the PDE above was done in the case when a is constant,
which means that the diffusion does not depend on the location of the point x in
the domain Ω. If the diffusion is not uniform in the domain, that is, the coefficient
a depends on the location x ∈ Ω, then a is a function of x. If the diffusion is
not isotropic in the sense that it is faster to some directions than others, then
the constant diffusion matrix A(x) = aI can be replaced with a more general
symmetric matrix A(x)= (ai j(x)). This leads to

Ç

Çt

ˆ
Ω′

u dx =
n∑

i, j=1

ˆ
ÇΩ′

(ai jD iu)ν j dS−
n∑

i=1

ˆ
ÇΩ′

ubiνi dS, i, j = 1, . . . ,n.

and the PDE becomes

ut −
n∑

i, j=1
D j(ai jD iu)︸ ︷︷ ︸
diffusion

+
n∑

i=1
D i(biu)︸ ︷︷ ︸

advection

= 0.

If the total amount of u is not conserved, then additional term cu for a creation
or depletion of chemical, for example, in chemical reactions, and external source f
appear. Then we have the nonhomogeneous PDE

ut −
n∑

i, j=1
D j(ai jD iu)︸ ︷︷ ︸
diffusion

+
n∑

i=1
D i(biu)︸ ︷︷ ︸

advection

=− cu︸︷︷︸
decay

+ f︸︷︷︸
source

.

Here ai j = ai j(x), bi = bi(x), c = c(x) and f = f (x) are functions of x. This PDE
can be used to model physical systems including chemical concentration, heat
propagation and mass transport. If the system is in equilibrium in the sense that
the solution does not depend on time, then ut = 0 and we obtain the elliptic PDE

−
n∑

i, j=1
D j(ai jD iu)+

n∑
i=1

D i(biu)+ cu = f ,

where ai j, bi, c and f are smooth enough functions for i, j = 1, . . . ,n. Observe that
if we apply the Leibniz rule to the advection term we obtain

−
n∑

i, j=1
D j(ai jD iu)+

n∑
i=1

biD iu+
(

n∑
i=1

D ibi + c

)
u = f .

and thus we have a PDE of type

Lu =−
n∑

i, j=1
D j(ai jD iu)+

n∑
i=1

biD iu+ cu = f , (1.16)
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where L is a second order divergence type operator as in (1.4). A function u ∈ C2(Ω)
is a classical solution of (1.16), if it satisfies the PDE at every point x ∈Ω. In order
to be able to show the existence of solutions for general coefficient functions ai j,
bi, c and f , i, j = 1, . . . ,n, we consider a weaker notion of solution.

T H E M O R A L : In order to understand the physical interpretation of a PDE
it is better to consider an integrated version of a PDE instead of the pointwise
version.

Remark 1.17. A nondivergence form operator

Lu =−
n∑

i, j=1
ai jD i ju+

n∑
i=1

biD iu+ cu

can be written as

Lu =−
n∑

i, j=1
D j(ai jD iu)+

n∑
i=1

(
bi +

n∑
j=1

D jai j

)
D iu+ cu.

T H E M O R A L : A PDE in nondivergence form can be written in divergence
form and vice versa. The main advantage of divergence form is in the arguments
that are based on integration by parts.

1.4 Definition of weak solution

Sobolev space methods are important in existence results for PDEs. Let u ∈ C2(Ω)
be a classical solution to the Laplace equation

∆u =
n∑

j=1

Ç2u
Çx2

j
= 0

and let ϕ ∈ C∞
0 (Ω). An integration by parts gives

0=
ˆ
Ω
ϕ∆u dx =

ˆ
Ω
ϕdivDu dx =

ˆ
Ω

n∑
j=1

Ç2u
Çx2

j
ϕdx

=
n∑

j=1

ˆ
Ω

Ç2u
Çx2

j
ϕdx =−

n∑
j=1

ˆ
Ω

Çu
Çx j

Çϕ

Çx j
dx =−

ˆ
Ω

Du ·Dϕdx

for every ϕ ∈ C∞
0 (Ω). Conversely, if u ∈ C2(Ω) and

ˆ
Ω

Du ·Dϕdx = 0 for every ϕ ∈ C∞
0 (Ω),

then by the computation above
ˆ
Ω
ϕ∆u dx = 0 for every ϕ ∈ C∞

0 (Ω).
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This implies that ∆u = 0 in Ω. This shows that of u ∈ C2(Ω), then ∆u = 0 in Ω if
and only if ˆ

Ω
Du ·Dϕdx = 0 for every ϕ ∈ C∞

0 (Ω).

T H E M O R A L : There are second order derivatives in the definition of a classical
solution to the Laplace equation, but in the definition above is enough to assume
that only first order weak derivatives exist.

It is useful to define the meaning of a PDE even if u ∉ C2(Ω) and the coefficients
ai j ∉ C1(Ω). There are two main motivations for a definition of a weak solution to
a PDE.

(1) Weak solutions are sometimes more accessible than classical solutions.

(2) In some cases the classical solution does not exist at all. Thus weak
solutions may be the only solutions to the problem.

The general strategy in existence theory for PDEs is to weaken to the notion of a
solution so that a problem has a solution. Regularity theory studies whether the
PDE is strong enough to give extra regularity to a weak solution. It is natural to
begin with existence theory so that we know that the PDE has enough solutions.

Assumption: We consider L is as in (1.4) and make a standing assumption that
Ω⊂Rn is a bounded open set,

ai j,bi, c ∈ L∞(Ω), i, j = 1, . . . ,n

and
f ∈ L2(Ω).

Moreover, we assume that symmetry condition in (1.5) and the ellipticity condition
in Definition 1.7 hold true. These assumptions will not be repeated at every
occasion. Sometimes we assume more smoothess on the coefficients or on the
domain or set some of coefficients to zero, but these will be specified case by case.

Motivation: If u ∈ C2(Ω), ai j ∈ C1(Ω) and ϕ ∈ C∞
0 (Ω) then we can integrate by

parts and Lu = f gives
ˆ
Ω

fϕdx =
ˆ
Ω

(
−

n∑
i, j=1

D j(ai jD iu)+
n∑

i=1
biD iu+ cu

)
ϕdx

=
ˆ
Ω

(
n∑

i, j=1
(ai jD iu)D jϕ+

n∑
i=1

biD iuϕ+ cuϕ

)
dx

for every ϕ ∈ C∞
0 (Ω). Observe that there are only first order derivatives of u and

no derivatives of the coefficients ai j in the integral above.
On the other hand, if

ˆ
Ω

(
n∑

i, j=1
(ai jD iu)D jϕ+

n∑
i=1

biD iuϕ+ cuϕ

)
dx =

ˆ
Ω

fϕdx
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for every ϕ ∈ C∞
0 (Ω), then

ˆ
Ω

(
−

n∑
i, j=1

D j(ai jD iu)+
n∑

i=1
biD iu+ cu− f

)
ϕdx = 0

for every ϕ ∈ C∞
0 (Ω) and consequently Lu(x)= f (x) for every x ∈Ω.

T H E M O R A L : A function u ∈ C2(Ω) is a classical solution of (1.16) if and only
if it is a weak solution of (1.16) in the sense of the definition below. Observe that
the negative sign in front of the second order terms disappears after integration
by parts.

Next we define a weak solution to the Dirichlet problemLu = f in Ω,

u = 0 on ÇΩ,

so that the solution itself belongs to a Sobolev space and the boundary values are
taken in the Sobolev sense.

Definition 1.18. A function u ∈W1,2
0 (Ω) is a weak solution of Lu = f in Ω, where

L is as in (1.4), if
ˆ
Ω

(
n∑

i, j=1
ai jD iuD jϕ+

n∑
i=1

biD iuϕ+ cuϕ

)
dx =

ˆ
Ω

fϕdx

for every ϕ ∈ C∞
0 (Ω).

T H E M O R A L : The definition of a weak solution is based on integration by
parts. A classical solution satisfies the PDE pointwise, but a weak solution
satisfies the PDE in integral sense. There are second order derivatives in the
definition of a classical solution, but in the definition above is enough to assume
that only first order weak derivatives exist. This is compatible with Sobolev spaces.

Remarks 1.19:
(1) Observe that it is enough to assume that u ∈W1,2

loc (Ω) in the definition of
weak solution. This gives a local notion of solution without any boundary
conditions, so that this definition applies to PDEs with Dirichlet, Neumann
or other boundary conditions. This local definition is useful when we study
regularity of solutions inside the domain. However, solutions are not
unique without fixing the boundary values.

(2) A solution u ∈ W1,2(Ω) to the Dirichlet problem with nonzero boundary
values g ∈W1,2(Ω), Lu = f in Ω,

u− g ∈W1,2
0 (Ω),
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can be obtained by considering w = u−g ∈W1,2
0 (Ω), which is a weak solution

of the problem Lw = f in Ω,

w ∈W1,2
0 (Ω),

with f = f −Lg. Both approaches lead to the same result (exercise).

Example 1.20. A function u ∈W1,2
loc (Ω) is a weak solution to the Laplace equation

∆u = 0 in Ω, if
ˆ
Ω

Du ·Dϕdx =
ˆ
Ω

n∑
i=1

D iu D iϕdx = 0 for every ϕ ∈ C∞
0 (Ω). (1.21)

A function u ∈ W1,2(Ω) is a weak solution to ∆u = 0 in Ω with boundary values
g ∈W1,2(Ω), if u− g ∈W1,2

0 (Ω) and it satisfies (1.21).

Example 1.22. Let f ∈ L2(Ω). A function u ∈ W1,2
loc (Ω) is a weak solution to the

Poisson equation −∆u = f in Ω, ifˆ
Ω

Du ·Dϕdx =
ˆ
Ω

fϕdx for every ϕ ∈ C∞
0 (Ω). (1.23)

A function u ∈ W1,2
0 (Ω) is a weak solution to −∆u = f in Ω with zero boundary

values, if it satisfies (1.23).

Example 1.24. Let n = 1, Ω= (0,2), b = 0= c, a = 1 and

f (x)=
1, x ∈ (0,1],

2, x ∈ (1,2).

Consider the problem Lu(x)= f (x), x ∈Ω,

u(0)= 0= u(2),

with Lu(x)=−(au(x))′ =−u′′(x). By solving

Lu(x)=−u′′(x)= f (x)=
1, x ∈ (0,1],

2, x ∈ (1,2),

in the subintervals (0,1) and (1,2) respectively, and requiring that the solution u
belongs to C1(Ω), we obtain

u(x)=
− 1

2 x2 + 5
4 x, x ∈ (0,1],

−x2 + 9
4 x− 1

2 , x ∈ (1,2).

We observe that u ∈ C1(Ω), but u ∉ C2(Ω). In particular, u is not a classical solution
to the problem above.

Claim: u is a weak solution.
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Reason. The first task is to show that u ∈W1,2(Ω) and u ∈W1,2
0 (Ω), which is left

as an exercise. Let 0< ε< 1 and ϕ ∈ C∞
0 (Ω). Since u is a classical solution to

Lu(x)=−u′′(x)= f (x)

when x ∈ (0,1−ε)∪ (1+ε,2), using integration by parts, we haveˆ
(0,1−ε)∪(1+ε,2)

f (x)ϕ(x)dx =−
ˆ

(0,1−ε)∪(1+ε,2)
u′′(x)ϕ(x)dx

=
ˆ

(0,1−ε)∪(1+ε,2)
u′(x)ϕ′(x)dx

− (
u′(1−ε)ϕ(1−ε)−0+0−u′(1+ε)ϕ(1+ε)) .

By the Lebesgue dominated convergence theorem

lim
ε→0

ˆ
(0,1−ε)∪(1+ε,2)

f (x)ϕ(x)dx =
ˆ

(0,2)
f (x)ϕ(x)dx

and
lim
ε→0

ˆ
(0,1−ε)∪(1+ε,2)

u′(x)ϕ′(x)dx =
ˆ

(0,2)
u′(x)ϕ′(x)dx.

Moreover, since u ∈ C1(Ω), we have

u′(1−ε)ϕ(1−ε)−u′(1+ε)ϕ(1+ε)→ 0

as ε→ 0. Thusˆ
(0,2)

u′(x)ϕ′(x)dx =
ˆ

(0,2)
f (x)ϕ(x)dx for every ϕ ∈ C∞

0 (Ω).
■

T H E M O R A L : Even if the coefficients are smooth and the operator is uniformly
elliptic, the weak solution does not necessarily belong to C2(Ω). In particular, the
problem does not necessarily have a classical solution.

Example 1.25. Let n = 1, Ω= (0,2), f = 1, b = 0= c,

a(x)=
1, x ∈ (0,1],

2, x ∈ (1,2).

Consider the problem Lu(x)= f (x), x ∈Ω,

u(0)= 0= u(2),

where Lu(x)=−(a(x)u′(x))′. By solving the equation in the subintervals (0,1) and
(1,2) respectively, as well as requiring suitable conditions at x = 1, we obtain

u(x)=
− 1

2 x2 + 5
6 x, x ∈ (0,1],

− 1
4 x2 + 5

12 x+ 1
6 , x ∈ (1,2).

We observe that u ∉ C1(Ω). However, u is a weak solution to the above problem
(exercise).
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T H E M O R A L : If the coefficients are not smooth, the weak solution does not
necessarily belong to C1(Ω). In particular, the problem does not have a classical
solution and the weak solution does not even have the first order derivatives in
the classical sense.

1.5 Serrin’s example
We begin with reconsidering Serrin’s example of a pathological weak solution, see
[17]. See also Meyers [15], Chen and Wu [1, p. 189] and Giaquinta [5, p. 157]. This
example shows that under the assumption that ai j ∈ L∞(Ω), i, j = 1, . . . ,n, the best
result we can hope for is that weak solutions are locally Hölder continuous. See
also Remark 4.23, Remark 4.37 and Remark 5.36 below.

(1) Let n Ê 2 and 0<α< 1. We claim that the function u :Rn →R,

u(x)= u(x1, . . . , xn)= x1|x|−α (1.26)

is a classical solution to

−
n∑

i, j=1
D j(ai j(x)D iu(x))= 0 for every x ∈Rn \{0}, (1.27)

where
ai j(x)= δi j + α(n−α)

(1−α)(n−1−α)
xix j

|x|2 , i, j = 1, . . . ,n. (1.28)

Here δi j is the Kronecker delta

δi j =
1, j = i,

0, j 6= i.

By the chain rule, we have

D i(|x|r)= D i

(√
x2

1 + x2
2 + ...+ x2

n

)r
= D i

(
x2

1 + x2
2 + ...+ x2

n
) r

2

= r
2

(
x2

1 + x2
2 + ...+ x2

n
) r

2−1 ·2xi = rxi
(
x2

1 + x2
2 + ...+ x2

n
) r−2

2

= rxi

(√
x2

1 + x2
2 + ...+ x2

n

)r−2
= rxi|x|r−2, i = 1, . . . ,n,

for every r ∈R and x 6= 0. For i 6= 1, this implies

D iu(x)= D i(x1|x|−α)= x1 · (−α)xi|x|−α−2 =−αx1xi|x|−α−2.

For i = 1, we have

D1u(x)= D1(x1|x|−α)= x1 · (−α)x1|x|−α−2 +|x|−α = |x|−α−αx2
1|x|−α−2.

This gives
D iu(x)= δi1|x|−α−αx1xi|x|−α−2, i = 1, . . . ,n. (1.29)
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Let
b = α(n−α)

(1−α)(n−1−α)
.

A direct computation gives

ai jD iu(x)=
(
δi j +b

xix j

|x|2
)(
δi1|x|−α−αx1xi|x|−α−2)

= δi jδi1|x|−α+δi1bxix j|x|−α−2 −δi jαx1xi|x|−α−2 −αbx1x2
i x j|x|−α−4,

for i, j = 1, . . . ,n. We observe that

n∑
i, j=1

D j(ai j(x)D iu(x))=
n∑

j=1
D j

(
n∑

i=1
ai j(x)D iu(x)

)
,

where

n∑
i=1

ai j(x)D iu(x)

=
n∑

i=1

(
δi jδi1|x|−α+δi1bxix j|x|−α−2 −δi jαx1xi|x|−α−2 −αbx1x2

i x j|x|−α−4)
= δ1 j|x|−α+bx1x j|x|−α−2 −αx1x j|x|−α−2 −αbx1x j|x|−α−4

n∑
i=1

x2
i

= δ1 j|x|−α+bx1x j|x|−α−2 −αx1x j|x|−α−2 −αbx1x j|x|−α−4|x|2

= δ1 j|x|−α+ (b−α−αb)x1x j|x|−α−2, j = 1, . . . ,n.

For j 6= 1, this implies

D j

(
n∑

i=1
ai j(x)D iu(x)

)
= D j

(
δ1 j|x|−α+ (b−α−αb)x1x j|x|−α−2)

= (b−α−αb)x1
(|x|−α−2 + x j(−α−2)x j|x|−α−4)

= (b−α−αb)x1

(
|x|−α−2 − (α+2)x2

j |x|−α−4
)
.

For j = 1, we have

D1

(
n∑

i=1
ai1(x)D iu(x)

)
= D1

(
δ11|x|−α+ (b−α−αb)x2

1|x|−α−2)
=−αx1|x|−α−2 + (b−α−αb)

(
2x1|x|−α−2 + x2

1(−α−2)x1|x|−α−4)
=−αx1|x|−α−2 + (b−α−αb)x1

(
2|x|−α−2 − (α+2)x2

1|x|−α−4)
.

This implies

D j

(
n∑

i=1
ai j(x)D iu(x)

)
=−δ1 jαx1|x|−α−2 + (b−α−αb)x1

(
(1+δ1 j)|x|−α−2 − (α+2)x2

j |x|−α−4
)
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for j = 1, . . . ,n. By summing up, we obtain

n∑
j=1

D j

(
n∑

i=1
ai j(x)D iu(x)

)

=
n∑

j=1
(−δ1 jαx1|x|−α−2 + (b−α−αb)x1((1+δ1 j)|x|−α−2 − (α+2)x2

j |x|−α−4))

=
n∑

j=1
−δ1 jαx1|x|−α−2 +

n∑
j=1

(b−α−αb)x1(1+δ1 j)|x|−α−2

−
n∑

j=1
(b−α−αb)x1(α+2)x2

j |x|−α−4

=−αx1|x|−α−2 + (b−α−αb)x1|x|−α−2
n∑

j=1
(1+δ1 j)

− (b−α−αb)x1(α+2)|x|−α−4
n∑

j=1
x2

j

=−αx1|x|−α−2 + (b−α−αb)x1|x|−α−2(n+1)− (b−α−αb)x1(α+2)|x|−α−2

= (−α+ (b−α−αb)(n+1)− (b−α−αb)(α+2)) x1|x|−α−2.

By (1.27), this expression should be equal to 0 for every x 6= 0. This is possible if

−α+ (b−α−αb)(n+1)− (b−α−αb)(α+2)= 0

⇐⇒−α+bn+b−αn−α−αbn−αb−bα−2b+α2 +2α+α2b+2αb = 0

⇐⇒ bn+b−αbn−αb−bα−2b+α2b+2αb =α+αn+α−α2 −2α

⇐⇒ b(n+1−αn−2+α2)=αn−α2.

This implies

b = αn−α2

n−1−αn+α2 = α(n−α)
(1−α)(n−1−α)

,

and this is precisely how b was defined.
(2) The coefficients ai j, i, j = 1, . . . ,n, in (1.28) can be represented as a sym-

metric matrix

A(x)=


a11(x) · · · a1n(x)
a21(x) · · · a2n(x)

...
. . .

...
an1(x) · · · ann(x)

=



1+b
x2

1
|x|2 b x1x2

|x|2 · · · b x1xn
|x|2

b x1x2
|x|2 1+b

x2
2

|x|2 · · · b x2xn
|x|2

...
...

. . .
...

b x1xn
|x|2 b x2xn

|x|2 · · · 1+b x2
n

|x|2

 . (1.30)

We observe that b = α(n−α)
(1−α)(n−1−α) is positive, since 0<α< 1 and n Ê 2.

We show that the coefficients ai j are bounded for every i, j = 1, . . . ,n. By (1.28)
and the triangle inequality

|ai j(x)| =
∣∣∣∣δi j + α(n−α)

(1−α)(n−1−α)
xix j

|x|2
∣∣∣∣É 1+

∣∣∣∣b xix j

|x|2
∣∣∣∣

= 1+b
|xi||x j|
|x|2 É 1+b

|x||x|
|x|2 = 1+b, i, j = 1, . . . ,n,
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for every x ∈Rn \{0}. This implies that

max
i, j

‖ai j‖L∞(Rn) É 1+b. (1.31)

(3) Next we show that (1.27) is uniformly elliptic. We claim that

|ξ|2 É
n∑

i, j=1
ai j(x)ξiξ j É (1+b)|ξ|2 (1.32)

for every x ∈R\{0} and ξ ∈Rn. This implies that the uniform ellipticity condition
in Definition 1.7 is satisfied with

λ= 1 and Λ= 1+ α(n−α)
(1−α)(n−1−α)

.

Observe that Λ > 1 can be made arbitrarily close to 1 by choosing α > 0 small
enough.

We begin with the lower bound. To this end, we observe that
n∑

i, j=1
ai j(x)ξiξ j =

n∑
j=1

ξ j

n∑
i=1

(ai j(x)ξi)=
n∑

j=1
ξ j

n∑
i=1

(
δi jξi +b

xix j

|x|2 ξi

)

=
n∑

j=1
ξ j

(
ξ j +

bx j

|x|2
n∑

i=1
xiξi

)
=

n∑
j=1

ξ2
j +

b
|x|2

n∑
j=1

x jξ j

n∑
i=1

xiξi

= |ξ|2 + b
|x|2 (x ·ξ)2 Ê |ξ|2,

since b > 0 and (x · ξ)2 Ê 0. This proves the left-hand inequality in (1.32). The
right-hand side inequality in (1.32) follows from the Cauchy-Schwarz inequality,
since

n∑
i, j=1

ai j(x)ξiξ j = |ξ|2 + b
|x|2 (x ·ξ)2 É |ξ|2 + b

|x|2 |x|
2|ξ|2 = |ξ|2 +b|ξ|2 = (1+b)|ξ|2.

We discuss a matrix version of (1.32). Since

ξT A(x)ξ=
n∑

i, j=1
ai j(x)ξiξ j,

we have
|ξ|2 É ξT A(x)ξÉ (1+b)|ξ|2 for every x ∈R and ξ ∈Rn.

This implies
ξT A(x)ξÊ |ξ|2 > 0 for every ξ 6= 0

and thus the matrix A(x) is positive definite. This implies that the the matrix
A(x) has n positive eigenvalues, with multiplicities. Let v 6= 0 be an eigenvector of
A(x) corresponding to the eigenvalue λ> 0. Then

vT A(x)v = vTλv =λvT v =λ|v|2

=⇒ |v|2 É vT A(x)v =λ|v|2 É (1+b)|v|2

=⇒ 1ÉλÉ 1+b.
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This shows that all eigenvalues of A(x) belong to the interval [1,1+b].
Since equality occurs in the Cauchy-Schwarz inequality, if the vectors are

linearly dependent, we have

xT A(x)x =
n∑

i, j=1
ai j(x)xix j = |x|2 + b

|x|2 (x · x)2 = (1+b)|x|2.

We claim that x 6= 0 is an eigenvector of A(x) corresponding to the eigenvalue 1+b.
By a direct computation, we show that

A(x)x = (1+b)x,

that is, 

1+b
x2

1
|x|2 b x1x2

|x|2 · · · b x1xn
|x|2

b x1x2
|x|2 1+b

x2
2

|x|2 · · · b x2xn
|x|2

...
...

. . .
...

b x1xn
|x|2 b x2xn

|x|2 · · · 1+b x2
n

|x|2




x1

x2
...

xn

= (1+b)


x1

x2
...

xn


The jth row of the product on the left-hand side is

x j +b
x2

1x j

|x|2 +b
x2

2x j

|x|2 + ...+b
x2

nx j

|x|2 = x j + x j
b

|x|2
n∑

i=1
x2

i

= x j

(
1+ b

|x|2 · |x|2
)
= (1+b)x j, j = 1, . . . ,n,

which clearly is the same as the corresponding row on the right-hand side.
The trace, that is the sum of the diagonal elements, of a square matrix equals

to the sum of the eigenvalues. In this case

tr(A(x))=
n∑

i=1
1+b

x2
i

|x|2 = n+b
∑n

i=1 x2
i

|x|2 = n+b.

Since 1+b is an eigenvalue of A(x), the sum of all other eigenvalues
n−1∑
i=1

λi = n+b− (1+b)= n−1.

We proved above that all eigenvalues of A(x) belong to the interval [1,1+b]. This
implies that all other n−1 eigenvalues of A(x), except 1+b, are equal to 1. Thus
the characteristic polynomial of the matrix A(x) is

det(A−λI)= (−1)n(λ− (1+b))(λ−1)n−1.

(4) Let u be as in (1.26). We claim that u ∈ W1,2
loc (Rn). First we show that

u ∈ L2
loc(R

n). For every r > 0, we haveˆ
B(0,r)

|u(x)|2 dx =
ˆ

B(0,r)
|x1|2|x|−2α dx É

ˆ
B(0,r)

|x|2|x|−2α dx

=
ˆ

B(0,r)
|x|2(1−α) dx =ωn−1

ˆ r

0
ρ2(1−α)ρn−1 dρ

= 1
2(1−α)+n

ρ2(1−α)+n
∣∣∣∣r

0
= 1

2(1−α)+n
r2(1−α)+n <∞,
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since 2(1−α)+n > 0.
Next we show that D iu ∈ L2

loc(R
n), i = 1, . . . ,n. By (1.29), we have

D iu(x)= δi1|x|−α−αx1xi|x|−α−2, i = 1, . . . ,n,

for every x 6= 0. It is an exercise to show that D iu, i = 1, . . . ,n, is the weak partial
derivative of u in Rn. For every r > 0, we haveˆ

B(0,r)
|D iu(x)|2 dx =

ˆ
B(0,r)

∣∣|x|−α−αx2
1|x|−α−2∣∣2 dx

=
ˆ

B(0,r)

(|x|−α ∣∣1−αx2
1|x|−2∣∣)2

dx

=
ˆ

B(0,r)
|x|−2α ∣∣1−αx2

1|x|−2∣∣2 dx.

We note that

1Ê 1−αx2
1|x|−2 Ê 1−α|x|2|x|−2 = 1−α> 0

=⇒ ∣∣1−αx2
1|x|−2∣∣É 1

=⇒ ∣∣1−αx2
1|x|−2∣∣2 É 1.

Thus ˆ
B(0,r)

|D iu(x)|2 dx É
ˆ

B(0,r)
|x|−2α dx =ωn−1

ˆ r

0
ρ−2αρn−1 dρ

= 1
n−2α

ρn−2α
∣∣∣∣r

0
= 1

n−2α
rn−2α <∞.

Since D iu is bounded in Rn \ B(0, r), we conclude that D iu ∈ L2
loc(R

n), i = 1, . . . ,n.
(5) Since u is a classical solution to

−
n∑

i, j=1
D j(ai j(x)D iu(x))= 0 for every x ∈Rn \{0},

we have ˆ
Rn

n∑
i, j=1

ai jD iuD jϕdx =
ˆ
Rn\{0}

n∑
i, j=1

ai jD iuD jϕdx = 0

for every ϕ ∈ C∞
0 (Rn \{0}).

Assume then that ϕ ∈ C∞
0 (Rn). Let 0< r < 1

2 and let η ∈ C∞
0 (B(0,2r)) be a cutoff

function with

0É ηÉ 1, η= 1 in B(0, r) and |Dη| É 2
r

.

Then (1−η)ϕ ∈ C∞
0 (Rn \{0}) and thus

0=
ˆ
Rn

n∑
i, j=1

ai jD iuD j((1−η)ϕ)dx

=
ˆ
Rn

n∑
i, j=1

(1−η)ai jD iuD jϕdx−
ˆ
Rn

n∑
i, j=1

ϕai jD iuD jηdx.
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We observe that∣∣∣∣∣
ˆ
Rn

n∑
i, j=1

ϕai jD iuD jηdx

∣∣∣∣∣É n∑
i, j=1

ˆ
Rn

|ϕ||ai j|D iu||D jη|dx

É ‖ϕ‖L∞(Rn) max
i, j

‖ai j‖L∞(Rn)

n∑
i, j=1

ˆ
Rn

|D iu||D jη|dx

É ‖ϕ‖L∞(Rn) max
i, j

‖ai j‖L∞(Rn)
2
r

n∑
i, j=1

ˆ
B(0,2r)

|D iu|dx

É ‖ϕ‖L∞(Rn) max
i, j

‖ai j‖L∞(Rn)
2
r

n∑
i, j=1

(ˆ
B(0,2r)

|D iu|2 dx
) 1

2 |B(0,2r)| 1
2

É cr
n−2

2

(ˆ
B(0,2r)

|Du|2 dx
) 1

2 → 0 as r → 0.

Thus

0= lim
r→0

(ˆ
Rn

n∑
i, j=1

(1−η)ai jD iuD jϕdx−
ˆ
Rn

n∑
i, j=1

ϕai jD iuD jηdx

)

= lim
r→0

ˆ
Rn

n∑
i, j=1

(1−η)ai jD iuD jϕdx

=
ˆ
Rn

n∑
i, j=1

lim
r→0

(1−η)ai jD iuD jϕdx

=
ˆ
Rn

n∑
i, j=1

ai jD iuD jϕdx

for every ϕ ∈ C∞
0 (Rn). Here we used the fact that

lim
r→0

(1−η(x))= 1 for every x ∈Rn \{0}

and the dominated convergence theorem with the integrable majorant

|(1−η)ai jD iuD jϕ| É |ai jD iuD jϕ|
É ‖Dϕ‖L∞(Rn) max

i, j
‖ai j‖L∞(Rn)|Du| ∈ L1(Rn).

T H E M O R A L : A weak solution in (1.26) to a uniformly elliptic equation with
bounded coefficients in (1.27) is locally Hölder continuous with the exponent 1−α
(exercise), but the weak gradient is unbounded in every neighbourhood of the
origin. In particular, the gradient is not continuous. Thus a weak solution is
not smoother than locally Hölder continuous without further assumptions on the
coefficients.

(6) Next we modify the example to justify the assumption that u ∈ W1,2
loc (Ω)

from the point of view of regularity theory. Let n Ê 2 and 0< ε< 1. The function
u : B(0,1)→R,

u(x)= u(x1, . . . , xn)= x1|x|1−n−ε (1.33)
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is a classical solution to

−
n∑

i, j=1
D j(ai j(x)D iu(x))= 0 for every x ∈ B(0,1)\{0},

where
ai j(x)= δi j + (a−1)

xix j

|x|2 , i, j = 1, . . . ,n, (1.34)

and
a = n−1

ε(ε+n−2)
.

This problem is essentially the same as in (1.26), (1.27) and (1.28) with α replaced
by 1−ε.

a−1= n−1
ε(ε+n−2)

−1= n−1−ε(ε+n−2)
ε(ε+n−2)

= n−1−ε2 −εn+2ε
ε(ε+n−2)

= (1−ε)(n−1+ε)
ε(ε+n−2)

.

By inserting α= 1−ε we have a−1= α(n−α)
(1−α)(n−1−α) which equals b in the step (1).

It is an exercise to show that the coefficients are bounded and that the uniform
ellipticity condition in Definition 1.7 is satisfied with λ= 1 and Λ= a.

We have (exercise)
u ∈W1,p(Ω), p < n

n+ε−1
.

Observe that p < 2, when n Ê 2, and thus

u ∉W1,2(Ω) for every 0< ε< 1.

However, as in the step (5), we see that
ˆ

B(0,1)

n∑
i, j=1

ai jD iuD jϕdx = 0

for every ϕ ∈ C∞
0 (B(0,1)) (exercise). In this sense u is a weak solution to

−
n∑

i, j=1
D j(ai jD iu)= 0 in B(0,1),

but u ∉ W1,2(Ω) for every 0 < ε < 1. Clearly the function u is neither locally
bounded nor has a local maximum principle. See also Remark 4.23 below.

This example can be used, moreover, to show that the Dirichlet problem need
not have a unique solution. In fact, let v ∈W1,2(Ω) be the unique weak solution
with the same boundary values on ÇΩ as u. Then u− v = 0 on ÇΩ, but u− v is
not identically zero in Ω. This shows that the identically zero function and v−u
are weak solutions to the Dirichlet problem with zero boundary values. Thus the
problem has two solutions corresponding to the same data, provided we give up
the requirement that these solutions belong to W1,2(Ω).
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T H E M O R A L : Local boundedness, uniqueness and maximum principle may
not hold without the assumption that a weak solution belongs to W1,2

loc (Ω). Thus
the usual requirement that a weak solution belongs to W1,2

loc (Ω) is an essential
part of the theory.

1.6 Sobolev-Poincaré inequalities
We recall several versions of the Sobolev inequality. These results will be applied
throughout. We begin with the Gagliardo-Nirenberg-Sobolev inequality.

Theorem 1.35. Let 1É p < n and p∗ = np
n−p . There exists c = c(n, p) such that

(ˆ
Rn

|u|p∗
dx

) 1
p∗ É c

(ˆ
Rn

|Du|p dx
) 1

p

for every u ∈W1,p(Rn).

T H E M O R A L : The Sobolev-Gagliardo-Nirenberg inequality implies that
W1,p(Rn) ⊂ Lp∗

(Rn), when 1 É p < n. More precisely, W1,p(Rn) is continuously
imbedded in Lp∗

(Rn), when 1 É p < n. Observe that p∗ > p. This is the Sobolev
embedding theorem for 1É p < n.

Remark 1.36. Let 1É p < n and let Ω⊂Rn be an open set. By considering the zero
extension of u to the complement of Ω, Theorem 1.35 implies that

(ˆ
Ω
|u|p∗

dx
) 1

p∗ É c(n, p)
(ˆ
Ω
|Du|p dx

) 1
p

for every u ∈ W1,p
0 (Ω). This is a version of the Sobolev-Gagliardo-Nirenberg

inequality for Sobolev spaces with zero boundary values.

Next we discuss a version of the Sobolev-Gagliardo-Nirenberg inequality for
the full range 1É p <∞.

Theorem 1.37. Let 1 É p < ∞, let Ω ⊂ Rn be an open set with |Ω| < ∞, and
assume that u ∈ W1,p

0 (Ω). Let 1 É q É p∗ = np
n−p , for 1 É p < n, and 1 É q <∞ for

n É p <∞. There exists a constant c = c(n, p, q) such that

(ˆ
Ω
|u|q dx

) 1
q É c|Ω| 1

n− 1
p + 1

q
(ˆ
Ω
|Du|p dx

) 1
p
.

T H E M O R A L : Let Ω⊂ Rn be an open set with |Ω| <∞. If u ∈W1,p
0 (Ω), then

u ∈ Lq(Ω) for some q > p.
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Proof. Extend u as zero outside Ω. Then Du(x) = 0 for almost every x ∈ Rn \Ω.
Assume first that 1 É p < n. Hölder’s inequality and the Gagliardo-Nirenberg-
Sobolev inequality imply(ˆ

Ω
|u|q dx

) 1
q É |Ω| 1

n− 1
p + 1

q
(ˆ
Ω
|u|

np
n−p dx

) n−p
np

É c(n, p)|Ω| 1
n− 1

p + 1
q
(ˆ
Ω
|Du|p dx

) 1
p
.

Assume then that n É p <∞. If q > p, choose 1< p̃ < n satisfying q = np̃
n−p̃ . By

the first part of the proof and Hölder’s inequality, we obtain(ˆ
Ω
|u|q dx

) 1
q É c(n, p, q)|Ω| 1

n− 1
p̃ + 1

q
(ˆ
Ω
|Du| p̃ dx

) 1
p̃

É c(n, p, q)|Ω| 1
n− 1

p + 1
q
(ˆ
Ω
|Du|p dx

) 1
p
.

Finally, if q É p, the claim follows from the previous case for some q̃ > q and
Hölder’s inequality on the left-hand side. ä

Remark 1.38. A Poincaré inequality for Sobolev functions with zero boundary
values follows from Theorem 1.37 by choosing q = p. Assume that Ω ⊂ Rn is a
bounded open set and let 1É p <∞. There is a constant c = c(n, p) such that

ˆ
Ω
|u|p dx É c|Ω| p

n

ˆ
Ω
|Du|p dx É cdiam(Ω)p

ˆ
Ω
|Du|p dx

for every u ∈W1,p
0 (Ω).

Next we discuss a Sobolev-Poincaré inequality on balls.

Theorem 1.39. Let 1 É p < n, let Ω ⊂ Rn be an open set and assume that u ∈
W1,p

loc (Ω). There exists a constant c = c(n, p) such that

(×
B(x,r)

|u−uB(x,r)|p
∗

d y
) 1

p∗ É cr
(×

B(x,r)
|Du|p d y

) 1
p

for every ball B(x, r)bΩ.

The next theorem gives a general Sobolev-Poincaré inequality for Sobolev
functions.

Theorem 1.40. Let 1 É p < ∞, let Ω ⊂ Rn be an open set, and assume that
u ∈W1,p

loc (Ω). Let 1É q É p∗ = np
n−p for 1É p < n and 1É q <∞ for n É p <∞. There

exists a constant c = c(n, p, q) such that(ˆ
B(x,r)

|u−uB(x,r)|q d y
) 1

q É cr
(ˆ

B(x,r)
|Du|p d y

) 1
p

(1.41)

for every ball B(x, r)bΩ.
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T H E M O R A L : The Sobolev-Poincaré inequality asserts that the mean oscil-
lation of a function in a Sobolev space is uniformly bounded by the mean value
of the gradient over balls. In other words, if the gradient is small in average,
the function does not oscillate too much. Moreover, there is a gain in the sense
that the exponent q on the left-hand side is bigger than the exponent p on the
right-hand side. The result holds for the full range 1É p <∞ and not only for the
Sobolev exponent p∗.

Proof. By the Soblev-Poincaré inequality with the Sobolev conjugate exponent, for
1É p < n, there exists a constant c = c(n, p) such that(ˆ

B(x,r)
|u−uB(x,r)|

np
n−p d y

) n−p
np = cr−

n−p
p

(ˆ
B(x,r)

|u−uB(x,r)|
np

n−p dy
) n−p

np

É cr1− n
p

(ˆ
B(x,r)

|Du|p d y
) 1

p

= cr
(ˆ

B(x,r)
|Du|p d y

) 1
p

.

(1.42)

For 1É p < n, inequality (1.41) follows from (1.42) and Hölder’s inequality on the
left-hand side.

In the case p Ê n we proceed as in the proof of Theorem 1.37. For q > p Ê n,
there exists 1 < s < n such that q = ns

n−s , and (1.41) follows from (1.42) with
exponent s and an application of Hölder’s inequality on the right-hand side. For
q É p, the claim follows from the previous case and Hölder’s inequality on the
left-hand side. ä

Remark 1.43. By choosing q = p in Theorem 1.40, we obtain a Poincaré inequality
on balls. Let 1 É p <∞, let Ω⊂ Rn be an open set and assume that u ∈W1,p

loc (Ω).
There exists c = c(n, p) such that(×

B(x,r)
|u−uB(x,r)|p d y

) 1
p É cr

(×
B(x,r)

|Du|p d y
) 1

p

for every B(x, r)bΩ.

It is enough to consider constant functions to see that it is not possible to
replace the mean oscillation by the mean value on the right-hand side of (1.41) for
a function u ∈W1,p

loc (Ω), that is, in general we cannot replace

(ˆ
B(x,r)

|u−uB(z,r)|q d y
) 1

q

by (ˆ
B(x,r)

|u(x)|q d y
) 1

q
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in (1.41). However, this is possible for functions u ∈ W1,p
0 (B(x, r)). This result

follows from Corollary 1.37, but we give an alternative proof which is based on
the Sobolev-Poincaré inequality (1.41). This technique can be adapted to other
situations as well, see Theorem 1.47 below.

Theorem 1.44. Let B(x, r)⊂Rn. Let 1É q É p∗ = np
n−p for 1É p < n and 1É q <∞

for n É p <∞. There exists a constant c = c(n, p, q) such that(ˆ
B(x,r)

|u|q d y
) 1

q É cr
(ˆ

B(x,r)
|Du|p d y

) 1
p

(1.45)

for every u ∈W1,p
0 (B(x, r)).

Proof. We may assume that q > 1 since the claim for q = 1 follows from Hölder’s
inequality. Consider first the case. Then u = 0 in B(x,2r) \ B(x, r). By Hölder’s
inequality

|uB(x,2r)| É
ˆ

B(x,2r)
|u|χB(x,r)(x)d y

É
( |B(x, r)|
|B(x,2r)|

)1− 1
q
(ˆ

B(x,2r)
|u|q d y

) 1
q

= (2−n)1−
1
q

(ˆ
B(x,2r)

|u|q dy
) 1

q
.

(1.46)

Using Minkowski’s inequality, the Sobolev-Poincaré inequality from Theorem 1.40
for B(x,2r) and (1.46), we obtain(ˆ

B(x,2r)
|u|q d y

) 1
q É

(ˆ
B(x,2r)

|u−uB(x,2r)|q d y
) 1

q +|uB(x,2r)|

É c(n, p, q)r
(ˆ

B(x,2r)
|Du|p d y

) 1
p + (2−n)1−

1
q

(ˆ
B(x,2r)

|u|q d y
) 1

q <∞.

Since (2−n)1−
1
q < 1, the second term on the right-hand side can be absorbed to the

left-hand side, and thus(ˆ
B(x,2r)

|u|q d y
) 1

q É c(n, p, q)r
(ˆ

B(x,2r)
|Du|p d y

) 1
p

.

Finally, the mean value integrals on both sides can be taken with respect to B(x, r)
since u = 0 and Du = 0 in B(x,2r)\ B(x, r). ä

It is also possible to replace the mean oscillation by the mean value on the
left-hand side of (1.41) for a function u ∈ W1,p

loc (Ω) do not necessary have zero
boundary values but that vanish in a large subset.

Theorem 1.47. Let 1 É p < ∞, let Ω ⊂ Rn be an open set, and assume that
u ∈ W1,p

loc (Ω). Let B(x, r) b Ω be a ball. Assume that u = 0 in a set E ⊂ B(x, r)
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satisfying |E| Ê γ|B(x, r)| with 0 < γ É 1. Let 1 É q É p∗ = np
n−p for 1 É p < n, and

1É q <∞ for n É p <∞. There exists a constant c = c(n, p, q,γ) such that(ˆ
B(x,r)

|u|q d y
) 1

q É cr
(ˆ

B(x,r)
|Du|p dy

) 1
p

. (1.48)

Proof. We may assume that q > 1 since the claim for q = 1 follows from Hölder’s
inequality. By Hölder’s inequality

|uB(x,r)| =
∣∣∣∣ˆ

B(x,r)
u dy

∣∣∣∣É ˆ
B(x,r)

|u|d y=
ˆ

B(x,r)
|u|χB(x,r)\E d y

É
( |B(x, r)\ E|

|B(x, r)|
)1− 1

q
(ˆ

B(x,r)
|u|q d y

) 1
q

É (1−γ)1−
1
q

(ˆ
B(x,r)

|u|q d y
) 1

q
.

(1.49)

Since 0 É (1− γ)1− 1
q < 1. Using Minkowski’s inequality, the Sobolev-Poincaré

inequality in Theorem 1.40 and (1.49), we obtain(ˆ
B(x,r)

|u|q d y
) 1

q É
(ˆ

B(x,r)
|u−uB(x,r)|q d y

) 1
q +|uB(x,r)|

É c(n, p, q)r
(ˆ

B(x,r)
|Du|p d y

) 1
p + (1−γ)1−

1
q

(ˆ
B(x,r)

|u|q d y
) 1

q <∞.

Since 0É (1−γ)1− 1
q < 1, the second term on the right-hand side can be absorbed

to the left-hand side, and we conclude that there exists a constant c = c(n, p, q,γ)
such that (ˆ

B(x,r)
|u|q d y

) 1
q É cr

(ˆ
B(x,r)

|Du|p dy
) 1

p
. ä

1.7 Young’s inequality
Before stating the main results of this chapter, we recall two useful versions of
Young’s inequality.

Lemma 1.50 (Young’s inequality). Let 1< p <∞ and a,b Ê 0, then

ab É ap

p
+ bp′

p′ ,

where 1
p + 1

p′ = 1 or equivalently p′ = p
p−1 .

Remark 1.51. Young’s inequality for p = 2 follows immediately from

(a−b)2 Ê 0⇐⇒ a2 −2ab+b2 Ê 0⇐⇒ a2

2
+ b2

2
Ê ab Ê 0.
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Lemma 1.52 (Young’s inequality with ε). Let 1 < p < ∞, a,b Ê 0 and ε > 0.
Then

ab É εap + cbp′
,

where
c = c(ε, p)= (pε)−

1
p−1

p−1
p

Proof. We apply Young’s inequality to ã = (pε)
1
p a and b̃ = (pε)−

1
p b. This gives

ab = (pε)
1
p a(pε)−

1
p b

É pεap

p
+ (pε)−

p′
p

bp′

p′

= εap + (pε)−
1

p−1
p−1

p
bp′

. ä

Remark 1.53. For p = 2, a,b Ê 0 and ε> 0, we have

ab É εa2 + 1
4ε

b2.

Remark 1.54. It is essential that ε can be chosen as small as we please. We shall
use the inequality in the following context. Suppose that f ∈ Lp(A) and g ∈ Lp(A)
and that ˆ

A
| f |p dx É c

ˆ
A
| f |p−1|g|dx

for some constant c > 0.
Then by applying Young’s inequality with ε we obtain

ˆ
A
| f |p dx É c

ˆ
A
| f |p−1|g|dx

É cε
ˆ

A
| f |(p−1)· p

p−1 dx+ c(ε, p)
ˆ

A
|g|p dx.

Now we can move the Lp-integral of f to the left-hand-side and obtain

(1− cε)
ˆ

A
| f |p dx É c(ε, p)

ˆ
A
|g|p dx.

If 1− cε> 0 or equivalently ε< 1
c , then the estimate above implies that

ˆ
A
| f |p dx É c(ε, p)

1− cε

ˆ
A
|g|p dx.



2
Existence results

In this chapter we discuss two methods to show that a weak solution to a PDE
exists under very general conditions. The first method is a Hilbert space approach
which applies to linear PDEs only. Then we consider direct methods in the calculus
of variations, which is a Banach space approach and applies to nonlinear PDEs as
well.

2.1 Hilbert space approach for the Laplace

equation

Let Ω ⊂ Rn be a bounded open set and let g ∈ W1,2(Ω). Consider the Dirichlet
problem −∆u = 0 in Ω,

u− g ∈W1,2
0 (Ω).

Recall trom Example 1.20 that a function u ∈ W1,2(Ω) is a weak solution to the
problem above, if u− g ∈W1,2

0 (Ω) and
ˆ
Ω

Du ·Dϕdx = 0

for every ϕ ∈ C∞
0 (Ω).

Claim: 〈u,v〉 =
ˆ
Ω

Du ·Dv dx is an inner product in W1,2
0 (Ω).

Reason. We show that 〈u,u〉 = 0 implies that u = 0 almost everywhere in Ω. We
note that

〈u,u〉 =
ˆ
Ω

Du ·Du dx =
ˆ
Ω
|Du|2 dx,

29
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which shows that 〈u,u〉 = 0 implies that Du = 0 almost everywhere in Ω. We apply
the Poincaré inequality, see Remark 1.38, to obtain

ˆ
Ω
|u|2 dx É c(diamΩ)2

ˆ
Ω
|Du|2 dx = 0,

for every u ∈ W1,2
0 (Ω). This show that that u = 0 almost everywhere in Ω. The

other properties of inner product are clear (exercise). ■

Claim: F(v)=−
ˆ
Ω

D g ·Dv dx is a bounded linear functional on W1,2
0 (Ω).

Reason. It is clear that F is a linear operator. By Hölder’s inequality we have

|F(v)| =
∣∣∣∣ˆ
Ω

D g ·Dv dx
∣∣∣∣É ˆ

Ω
|D g ·Dv|dx

É
ˆ
Ω
|D g||Dv|dx É

(ˆ
Ω
|D g|2 dx

) 1
2
(ˆ
Ω
|Dv|2 dx

) 1
2

É ‖g‖W1,2(Ω)‖v‖W1,2
0 (Ω)

for every v ∈W1,2
0 (Ω). ■

By the Riesz representation theorem, there exists a unique w ∈W1,2
0 (Ω) such

that
F(v)= 〈w,v〉 =

ˆ
Ω

Dw ·Dv dx

for every v ∈W1,2
0 (Ω). Thus

ˆ
Ω

Dw ·Dv dx =−
ˆ
Ω

D g ·Dv dx

and consequently
ˆ
Ω

(Dw ·Dv+D g ·Dv)dx =
ˆ
Ω

(Dw+D g) ·Dv dx = 0

for every v ∈W1,2
0 (Ω). Let u = w+ g. Then u− g = w ∈W1,2

0 (Ω) and
ˆ
Ω

Du ·Dv dx =
ˆ
Ω

(Dw+D g) ·Dv dx = 0

for every v ∈W1,2
0 (Ω). In particular, this holds for every v ∈ C∞

0 (Ω). This show that
u is a unique weak solution to the problem−∆u = 0 in Ω,

u− g ∈W1,2
0 (Ω).
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2.2 Hilbert space approach for more gen-

eral elliptic PDEs
Assume that bi = 0 for i = 1, . . . ,n. The Riesz representation theorem can be used
to prove the existence of a weak solution to the Dirichlet problem−∑n

i, j=1 D j(ai jD iu)+ cu = f

u ∈W1,2
0 (Ω)

(2.1)

in any bounded open subset Ω of Rn. More general boundary values can be
considered as in Remark 1.19 (2). To this end, we define a candidate for an inner
product in W1,2

0 (Ω) as

〈u,v〉 =
ˆ
Ω

(
n∑

i, j=1
ai jD iuD jv+ cuv

)
dx. (2.2)

Recall that the standard inner product in W1,2
0 (Ω) is obtained by choosing ai j = 1,

if i = j, and ai j = 0, if i 6= j, and c = 1.

Remark 2.3. By Hölder’s inequality, we have

ˆ
Ω

∣∣∣∣∣ n∑
i, j=1

ai jD iuD jv+ cuv

∣∣∣∣∣ dx

É
n∑

i, j=1

ˆ
Ω
|ai jD iuD jv|dx+

ˆ
Ω
|cuv|dx

É
n∑

i, j=1
‖ai j‖L∞(Ω)‖D iu‖L2(Ω)‖D iv‖L2(Ω) +‖c‖L∞(Ω)‖u‖L2(Ω)‖v‖L2(Ω)

É
n∑

i, j=1
‖ai j‖L∞(Ω)‖u‖W1,2(Ω)‖v‖W1,2(Ω) +‖c‖L∞(Ω)‖u‖W1,2(Ω)‖v‖W1,2(Ω)

=
(

n∑
i, j=1

‖ai j‖L∞(Ω) +‖c‖L∞(Ω)

)
‖u‖W1,2(Ω)‖v‖W1,2(Ω) <∞.

This shows that the integrand in (2.2) is an integrable function with finite integral.

Thus 〈u,v〉 in (2.2) is a finite number whenever u, v ∈W1,2
0 (Ω). Next we show

that (2.2) really is an inner product under a certain condition on function c.

Lemma 2.4. There exists a constant c0 = c0(λ,n) É 0 such that if c Ê c0, then
(2.2) defines an inner product in W1,2

0 (Ω).

T H E M O R A L : It is important to have c0 É 0 so that the case c = 0 is included
in the theory. The proof below shows that c Ê 0 is immediate, but the point is that
we can do better than that.
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Proof. We show that 〈u,u〉 = 0 implies u = 0 when c Ê c0. To prove this, we recall
the Poincaré inequality

ˆ
Ω
|u|2 dx Éµ

ˆ
Ω
|Du|2 dx, µ= c(diamΩ)2,

which holds true for every u ∈W1,2
0 (Ω), see Remark 1.38. By the ellipticity condi-

tion, see Definition 1.7, we have

〈u,u〉 =
ˆ
Ω

(
n∑

i, j=1
ai jD iuD ju+ c|u|2

)
dx

Êλ
ˆ
Ω
|Du|2 dx+ c0

ˆ
Ω
|u|2 dx

= λ

2

ˆ
Ω
|Du|2 dx+ λ

2

ˆ
Ω
|Du|2 dx+ c0

ˆ
Ω
|u|2 dx

Ê λ

2

ˆ
Ω
|Du|2 dx+

(
λ

2µ
+ c0

)ˆ
Ω
|u|2 dx

Êα‖u‖2
W1,p

0 (Ω)
,

where
α=min

{
λ
2 , λ

2µ + c0

}
. (2.5)

In particular, this shows that 〈u,u〉 Ê 0. If c Ê c0 >− λ
2µ , then α> 0 and it follows

that 〈u,u〉 = 0 implies ‖u‖W1,p
0 (Ω) = 0 and thus u = 0. The other properties of an

inner product are clear (exercise). ä

Remark 2.6. For the norm induced by the inner product (2.2) we have

‖u‖2 = 〈u,u〉 =
ˆ
Ω

(
n∑

i, j=1
ai jD iuD ju+ c|u|2

)
dx

ÉΛ
ˆ
Ω
|Du|2 dx+‖c‖∞

ˆ
Ω
|u|2 dx Éβ‖u‖2

W1,2
0 (Ω)

,

with β=max{Λ,‖c‖∞}. Thus

p
α‖u‖W1,2

0 (Ω) É ‖u‖ É
√
β‖u‖W1,2

0 (Ω),

for every u ∈W1,p
0 (Ω), where α is as in (2.5). This shows that ‖ · ‖W1,2

0 (Ω) and ‖ · ‖
are equivalent norms in W1,2

0 (Ω) if c Ê c0.

Lemma 2.7. Let Ŵ1,2
0 (Ω) be W1,2

0 (Ω) with the inner product given by (2.2). Then

F(v)=
ˆ
Ω

f v dx

is a bounded linear functional on Ŵ1,2
0 (Ω).

Remark 2.8. Note that F(v) = 〈 f ,v〉L2(Ω), where 〈·, ·〉L2(Ω) is the standard inner
product in L2(Ω).
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Proof. Hölder’s inequality and the proof of Lemma 2.4 imply

|F(v)| =
∣∣∣∣ˆ
Ω

f v dx
∣∣∣∣É (ˆ

Ω
| f |2 dx

) 1
2
(ˆ
Ω
|v|2 dx

) 1
2

É ‖ f ‖L2(Ω)‖v‖W1,2
0 (Ω) É

1p
α
‖ f ‖L2(Ω)‖v‖,

where α is given by (2.5). ä

Theorem 2.9. Assume that Ω is a bounded and open subset of Rn and f ∈ L2(Ω).
There exists c0 É 0 such that (2.1) has a unique weak solution for every c Ê c0.

T H E M O R A L : There exists a unique solution to the Dirichlet problem with
zero boundary values in the Sobolev sense in any bounded set.

Proof. By Definition 1.18, a function u ∈W1,2
0 (Ω) is a weak solution to (2.1) if

〈u,v〉 =
ˆ
Ω

(
n∑

i, j=1
ai jD iuD jv+ cuv

)
dx =

ˆ
Ω

f v dx

for every v ∈ C∞
0 (Ω). Here we used the inner product defined by (2.2). By Lemma

2.7
F(v)=

ˆ
Ω

f v dx = 〈 f ,v〉L2(Ω)

is a bounded linear functional on Ŵ1,2
0 (Ω). Note that Ŵ1,2

0 (Ω) is a Banach space,
because ‖ · ‖W1,2

0 (Ω) and ‖ · ‖ are equivalent norms in W1,2
0 (Ω), see Remark 2.6.

Thus Ŵ1,2
0 (Ω) is a Hilbert space when c Ê c0 given by Lemma 2.4. By the Riesz

representation theorem, there exists a unique u ∈ Ŵ1,2
0 (Ω) such that

F(v)= 〈u,v〉 =
ˆ
Ω

(
n∑

i, j=1
ai jD iuD jv+ cuv

)
dx

for every v ∈ Ŵ1,2
0 (Ω). By Remark 2.6, we have Ŵ1,2

0 (Ω) ⊂ W1,2
0 (Ω). Thus u ∈

W1,2
0 (Ω). By Remark 2.6 again, we have C∞

0 (Ω)⊂W1,2
0 (Ω)⊂ Ŵ1,2

0 (Ω) and thus
ˆ
Ω

(
n∑

i, j=1
ai jD iuD jv+ cuv

)
dx =

ˆ
Ω

f v dx

for every v ∈ C∞
0 (Ω). ä

Example 2.10. Let Ω⊂Rn be any bounded open set and f ∈ L2(Ω). By Theorem
2.9 there exists a unique weak solution to the Dirichlet problem−∆u = f in Ω,

u ∈W1,2
0 (Ω),

that is, u ∈W1,2
0 (Ω) and ˆ

Ω
Du ·Dϕdx =

ˆ
Ω

fϕdx

for every ϕ ∈ C∞
0 (Ω).
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Example 2.11. Let Ω ⊂ Rn be any bounded open set, Lu = −∆u, f ∈ L2(Ω) and
g ∈W1,2(Ω). By Remark 1.19 (2) a weak solution to the Dirichlet problem−∆u = f in Ω,

u− g ∈W1,2
0 (Ω),

(2.12)

can be obtained by considering w = u− g ∈W1,2
0 (Ω) and the problem−∆w = f in Ω,

w ∈W1,2
0 (Ω),

(2.13)

with f = f −Lg = f +∆g. By Theorem 2.9 there exists a unique weak solution
w ∈W1,2

0 (Ω) to (2.13), that is,
ˆ
Ω

Dw ·Dϕdx =
ˆ
Ω

fϕdx−
ˆ
Ω

D g ·Dϕdx

or equivalently ˆ
Ω

(Dw+D g) ·Dϕdx =
ˆ
Ω

fϕdx

for every ϕ ∈ C∞
0 (Ω). This means that u = w+ g is the unique solution of (2.12).

Thus u ∈W1,2(Ω) is a weak solution of (2.12) if and only if −∆u = f in weak sense
and u− g ∈W1,2

0 (Ω).

Example 2.14. Let Ω ⊂ Rn be any bounded open set, f ∈ L2(Ω) and c Ê c0. By
Theorem 2.9 there exists a unique weak solution to the problem−∆u+ cu = f in Ω,

u ∈W1,2
0 (Ω),

that is, u ∈W1,2
0 (Ω) and

ˆ
Ω

Du ·Dϕdx+
ˆ
Ω

cuϕdx =
ˆ
Ω

fϕdx

for every ϕ ∈ C∞
0 (Ω).

Example 2.15. Let n = 1, Ω= (0,2), c = 0= b, f = 1 and

a(x)=
x, x ∈ (0,1],

1, x ∈ (1,2).

Consider the problem Lu(x)= f (x), x ∈Ω,

u(0)= u(2)= 0.

Observe that L is not uniformly elliptic.
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By solving
Lu(x)=−(a(x)u′(x))′ = f (x)= 1

in (0,1) and (1,2) respectively, we obtain

u(x)=
−x+ c1 ln x+ c2, x ∈ (0,1],

− 1
2 x2 + c3x+ c4, x ∈ (1,2).

By the boundary conditions and requiring continuity at x = 1, we obtain

u(x)=
−x, x ∈ (0,1],

− 1
2 x2 + 5

2 x−3, x ∈ (1,2).

However, this is not a weak solution of the problem (exercise).

Example 2.16. Let Ω= (0,2) and

f (x)= a(x)=
1, x ∈ (0,1],

0, x ∈ [1,2).

Consider the problem Lu(x)= f (x), x ∈Ω,

u(0)= u(2)= 0.

Observe that L is not uniformly elliptic. Then

u1(x)=
− 1

2 x2 + x, x ∈ (0,1],

−x2 + 5
2 x−1, x ∈ [1,2),

and

u2(x)=
− 1

2 x2 + x, x ∈ (0,1],

1− 1
2 x, x ∈ [1,2),

are weak solutions to Lu = f (exercise).

T H E M O R A L : If the operator is not uniformly elliptic, a weak solution of a
boundary value problem is not necessarily unique.

Example 2.17. Let n = 1, Ω = (0,π), a = 1, b = 0, c = −4. The operator L is
uniformly elliptic, but the corresponding bilinear form

B[u,v]=
ˆ π

0

(
u′(x)v′(x)−4u(x)v(x)

)
dx

is not positive definite on W1,2
0 (Ω). For example, if u(x)= sin x, then

B[u,u]=
ˆ π

0

(
(cos x)2 −4(sin x)2

)
dx =−3π

2
.
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In particular, the bilinear form B[u,v] is not an inner product on W1,2(Ω).

Claim: Let f (x)= sin(2x). Then the problemLu(x)= f (x), x ∈Ω,

u(0)= 0= u(π),

does not have any solutions.

Reason. Let u ∈W1,2
0 (Ω). An integration by parts gives

B[u,v]=
ˆ π

0

(
u′(x)v′(x)−4u(x)v(x)

)
dx

=
ˆ π

0

(
2u′(x)cos(2x)−4u(x)sin(2x)

)
dx

=
ˆ π

0
(2u(x)cos(2x))′ dx

= 0 6=
ˆ π

0
(sin(2x))2 dx

=
ˆ π

0
f (x)v(x)dx,

when v(x)= sin(2x) ∈W1,2
0 (Ω). Thus there does not exist a function u ∈W1,2

0 (Ω) for
which

B[u,v]=
ˆ
Ω

f (x)v(x)dx for every v ∈W1,2
0 (Ω).

■

Observe that the corresponding homogeneous problemLu(x)= 0, x ∈Ω,

u(0)= 0= u(π),

has infinitely many solutions u(x)= asin(2x), a ∈R.

Remark 2.18. For a general operator L defined by (1.4), there is a bilinear form

B[u,v]=
ˆ
Ω

(
n∑

i, j=1
ai jD iuD jv+

n∑
i=1

biD iuv+ cuv

)
dx,

where u, v ∈ W1,2
0 (Ω). If the functions bi, i = 1, . . . ,n are not all equal to zero,

then the bilinear form is not symmetric, that is, B[u,v] 6= B[v,u] and the Riesz
representation theorem cannot be applied as such, since B[·, ·] is not an inner
product. In this case we may apply the Lax-Milgram theorem, which is a slightly
extended version of the Riesz representation theorem, see [1, Theorem 2.3], [2,
Theorem 3, p. 321], [8, Theorem 8.3] and [16, Theorem 2.3.2]. These results
cover the case c Ê c0 Ê 0. The general case can be investigated by the Fredholm
alternative, see [1, Theorem 3.2], [2, Theorem 4, p. 323], [8, Theorem 8.6] and
[16, Theorem 2.3.3].. Some features are visible in the following one-dimensional
example.
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Example 2.19. Let n = 1, Ω= (0, l), with l > 0, and consider the problemLu(x)=−u′′(x)+ cu(x)= 0, x ∈Ω,

u(0)= u(l)= 0.

This is a particular case of the so-called Sturm-Liouville problem, which arises,
for example, in the separation of variables technique. We solve this problem
by finding the constants c (eigenvalues) for which the problem has nontrivial
solutions (eigenfunctions). We consider three cases.

c > 0 Then c = µ2 for some µ > 0 and the general solution of the equation
u′′ = cu is

u(x)= c1 sinh(µx)+ c2 cosh(µx), c1, c2 ∈R.

Recall that sinh x = 1
2 (ex − e−x) and cosh x = 1

2 (ex + e−x). Since u(0)= 0 gives c2 = 0
and u(l) = 0 gives c1 sinh(µx) = 0, we conclude that c1 = c2 = 0. In this case we
only have the trivial solution u = 0.

c = 0 Then the equation reduces to u′′ = 0 with the general solution

u(x)= c1x+ c2, c1, c2 ∈R.

The boundary conditions u(0)= u(l)= 0 imply c1 = c2 = 0 and u = 0.
c < 0 Then c = −µ2 for some µ > 0 and the general solution of the equation

u′′ = cu is
u(x)= c1 sin(µx)+ c2 cos(µx), c1, c2 ∈R.

Hence, u(0) = 0 implies c2 = 0 and u(l) = 0 implies c1 sin(µx) = 0. If we assume
c1 6= 0, we obtain sin(µx)= 0, and the possible values of µ> 0 are

µk = kπ
l

, k ∈Z\{0}.

Thus for every k ∈Z\{0} we may choose c =−µ2
k =−( kπ

l )2 and have a nontrivial
solution

uk(x)= sin
(

kπx
l

)
.

Note that the trivial solution u = 0 is also a solution to the problem.

2.3 Direct methods in the calculus of vari-

ations for the Laplace equation

Recall from Example 1.20 that a function u ∈W1,2(Ω) is a weak solution to ∆u = 0
in Ω, if ˆ

Ω
Du ·Dϕdx = 0

for every ϕ ∈ C∞
0 (Ω).
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The next lemma shows that, in the definition of a weak solution, the class of
test functions can be taken to be the Sobolev space with zero boundary values.

Lemma 2.20. If u ∈W1,2(Ω) is a weak solution to the Laplace equation, thenˆ
Ω

Du ·Dv dx = 0

for every v ∈W1,2
0 (Ω).

Proof. Let vi ∈ C∞
0 (Ω), i = 1,2, . . . , be such that vi → v in W1,2(Ω). Then by the

Cauchy-Schwarz inequality and Hölder’s inequality, we have∣∣∣∣ˆ
Ω

Du ·Dv dx−
ˆ
Ω

Du ·Dvi dx
∣∣∣∣= ∣∣∣∣ˆ

Ω
Du · (Dv−Dvi)dx

∣∣∣∣
É
ˆ
Ω
|Du||Dv−Dvi|dx

É
(ˆ
Ω
|Du|2 dx

) 1
2
(ˆ
Ω
|Dv−Dvi|2 dx

) 1
2 → 0

as i →∞. Thus ˆ
Ω

Du ·Dv dx = lim
i→∞

ˆ
Ω

Du ·Dvi dx = 0. ä

Remark 2.21. Assume that Ω⊂Rn is bounded and g ∈W1,2(Ω). If there exists a
weak solution u ∈W1,2(Ω) to the Dirichlet problem∆u = 0 in Ω,

u− g ∈W1,2
0 (Ω),

then the solution is unique. Observe that the boundary values are taken in the
Sobolev sense.

Reason. Let u1 ∈W1,2(Ω), with u1 − g ∈W1,2
0 (Ω), and u2 ∈W1,2(Ω), with u2 − g ∈

W1,2
0 (Ω), be solutions to the Dirichlet problem above. By Lemma 2.20

ˆ
Ω

Du1 ·Dv dx = 0 and
ˆ
Ω

Du2 ·Dv dx = 0

for every v ∈W1,2
0 (Ω) and thus
ˆ
Ω

(Du1 −Du2) ·Dv dx = 0 for every v ∈W1,p
0 (Ω).

Since
u1 −u2 = (u1 − g)︸ ︷︷ ︸

∈W1,2
0 (Ω)

− (u2 − g)︸ ︷︷ ︸
∈W1,2

0 (Ω)

∈W1,2
0 (Ω),

we may choose v = u1 −u2 and concludeˆ
Ω
|Du1 −Du2|2 dx =

ˆ
Ω

(Du1 −Du2) · (Du1 −Du2)dx = 0.
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This implies Du1 −Du2 = 0 almost everywhere in Ω. By the Poincaré inequality,
see Remark 1.38, we have

ˆ
Ω
|u1 −u2|2 dx É cdiam(Ω)2

ˆ
Ω
|Du1 −Du2|2 dx = 0.

This implies u1 − u2 = 0 ⇐⇒ u1 = u2 almost everywhere in Ω. This is a PDE
proof of uniqueness and in the proof of Theorem 2.35 we shall see a variational
argument for the same result. ■

Next we consider a variational approach to the Dirichlet problem for the
Laplace equation.

Definition 2.22. Assume that g ∈ W1,2(Ω). A function u ∈ W1,2(Ω) with u− g ∈
W1,2

0 (Ω) is a minimizer of the variational integral

I(u)=
ˆ
Ω
|Du|2 dx

with boundary values g, if
ˆ
Ω
|Du|2 dx É

ˆ
Ω
|Dv|2 dx

for every v ∈W1,2(Ω) with v− g ∈W1,2
0 (Ω).

T H E M O R A L : A minimizer u minimizes the variational integral I(u) in the
class of functions with given boundary values, that is,

ˆ
Ω
|Du|2 dx = inf

{ˆ
Ω
|Dv|2 dx : v ∈W1,2(Ω), v− g ∈W1,2

0 (Ω)
}

.

If there is a minimizer, then infimum can be replaced by minimum.

Theorem 2.23. Assume that g ∈ W1,2(Ω) and u ∈ W1,2(Ω) with u− g ∈ W1,2
0 (Ω).

Then ˆ
Ω
|Du|2 dx = inf

{ˆ
Ω
|Dv|2 dx : v ∈W1,2(Ω), v− g ∈W1,2

0 (Ω)
}

if and only if u is a weak solution to the Dirichlet problem∆u = 0 in Ω,

u− g ∈W1,2
0 (Ω).

T H E M O R A L : A function is a weak solution to the Dirichlet problem if and
only if it is a minimizer of the corresponding variational integral with the given
boundary values in the Sobolev sense.
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Proof. =⇒ Assume that u ∈ W1,2(Ω) is a minimizer with boundary values g ∈
W1,2(Ω). We use the method of variations by Lagrange. Let ϕ ∈ C∞

0 (Ω) and ε ∈R.
Then (u+εϕ)− g ∈W1,2

0 (Ω) and
ˆ
Ω
|D(u+εϕ)|2 dx =

ˆ
Ω

(Du+εDϕ) · (Du+εDϕ)dx

=
ˆ
Ω
|Du|2 dx+2ε

ˆ
Ω

Du ·Dϕdx+ε2
ˆ
Ω
|Dϕ|2 dx

= i(ε).

Since u is a minimizer, i(ε) has minimum at ε = 0, which implies that i′(0) = 0.
Clearly

i′(ε)= 2
ˆ
Ω

Du ·Dϕdx+2ε
ˆ
Ω
|Dϕ|2 dx

and thus
i′(0)= 2

ˆ
Ω

Du ·Dϕdx = 0.

This shows that ˆ
Ω

Du ·Dϕdx = 0

for every ϕ ∈ C∞
0 (Ω).

⇐= Assume that u ∈W1,2(Ω) is a weak solution to ∆u = 0 with u− g ∈W1,2
0 (Ω)

and let v ∈W1,2(Ω) with v− g ∈W1,2
0 (Ω). Then

ˆ
Ω
|Dv|2 dx =

ˆ
Ω
|D(v−u)+Du|2 dx

=
ˆ
Ω

(D(v−u)+Du) · (D(v−u)+Du)dx

=
ˆ
Ω
|D(v−u)|2 dx+2

ˆ
Ω

D(v−u) ·Du dx+
ˆ
Ω
|Du|2 dx.

Since
v−u = (v− g)︸ ︷︷ ︸

∈W1,2
0 (Ω)

− (u− g)︸ ︷︷ ︸
∈W1,2

0 (Ω)

∈W1,2
0 (Ω),

by Lemma 2.20 we have ˆ
Ω

Du ·D(v−u)dx = 0

and thus ˆ
Ω
|Dv|2 dx =

ˆ
Ω
|D(v−u)|2 dx+

ˆ
Ω
|Du|2 dx Ê

ˆ
Ω
|Du|2 dx

for every v ∈W1,2(Ω) with v− g ∈W1,2
0 (Ω). Thus u is a minimizer. ä

Next we give an existence proof using the direct methods in the calculus
variations. This means that, instead of the PDE, the argument uses the variational
integral.
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Theorem 2.24. Assume that Ω is a bounded open subset of Rn. Then for every
g ∈ W1,2(Ω) there exists a unique minimizer u ∈ W1,2(Ω) with u− g ∈ W1,2

0 (Ω),
which satisfiesˆ

Ω
|Du|2 dx = inf

{ˆ
Ω
|Dv|2 dx : v ∈W1,2(Ω), v− g ∈W1,2

0 (Ω)
}

.

T H E M O R A L : The Dirichlet problem for the Laplace equation has a unique
solution with Sobolev boundary values in any bounded open set.

W A R N I N G : It is not clear whether the solution to the variational problem
attains the boundary values pointwise.

Proof. (1) Since I(u)Ê 0, in particular, it is bounded from below in W1,2(Ω) and
since u is a minimizer, g ∈W1,2(Ω) and g− g = 0 ∈W1,2

0 (Ω), we note that

0É m = inf
{ˆ

Ω
|Du|2 dx : u ∈W1,2(Ω), u− g ∈W1,2

0 (Ω)
}
É
ˆ
Ω
|D g|2 dx <∞.

The definition of infimum then implies that there exists a minimizing sequence
ui ∈W1,2(Ω) with ui − g ∈W1,2

0 (Ω), i = 1,2, . . ., such that

lim
i→∞

ˆ
Ω
|Dui|2 dx = m.

The existence of the limit implies the sequence (I(ui)) is bounded. Thus there
exists a constant M <∞ such that

I(ui)=
ˆ
Ω
|Dui|2 dx É M for every i = 1,2, . . . ,

(2) By the Poincaré inequality, see Remark 1.38, we obtain

ˆ
Ω
|ui − g|2 dx+

ˆ
Ω
|D(ui − g)|2 dx

É cdiam(Ω)2
ˆ
Ω
|D(ui − g)|2 dx+

ˆ
Ω
|D(ui − g)|2 dx

É (cdiam(Ω)2 +1)
ˆ
Ω
|Dui −D g|2 dx

É (cdiam(Ω)2 +1)
(
2
ˆ
Ω
|Dui|2 dx+2

ˆ
Ω
|D g|2 dx

)
É c(diam(Ω)2 +1)

(
M+
ˆ
Ω
|D g|2 dx

)
<∞

for every i = 1,2, . . . This shows that (ui − g) is a bounded sequence in W1,2
0 (Ω).

(3) By sequential weak compactness of W1,2
0 (Ω) there is a subsequence (uik −g)

and a function u ∈W1,2(Ω), with u−g ∈W1,2
0 (Ω), such that uik → u weakly in L2(Ω)
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and
Çuik
Çx j

→ Çu
Çx j

, j = 1, . . . ,n, weakly in L2(Ω) as k →∞. By lower semicontinuity of
L2-norm with respect to weak convergence, we have

ˆ
Ω
|Du|2 dx É liminf

k→∞

ˆ
Ω
|Duik |2 dx = lim

i→∞

ˆ
Ω
|Dui|2 dx.

Since u ∈W1,2(Ω), with u− g ∈W1,2
0 (Ω), we have

m É
ˆ
Ω
|Du|2 dx É lim

i→∞

ˆ
Ω
|Dui|2 dx = m

which implies ˆ
Ω
|Du|2 dx = m.

Thus u is a minimizer.
(4) To show uniqueness, let u1 ∈ W1,2(Ω), with u1 − g ∈ W1,2

0 (Ω) and u2 ∈
W1,2(Ω), with u2 − g ∈ W1,2

0 (Ω) be minimizers of I(u) with the same boundary
function g ∈W1,2(Ω). Assume that u1 6= u2, that is, |{x ∈Ω : u1(x) 6= u2(x)}| > 0. By
the Poincaré inequality, Remark 1.38, we have

0<
ˆ
Ω
|u1 −u2|2 dx É cdiam(Ω)2

ˆ
Ω
|Du1 −Du2|2 dx

and thus |{x ∈Ω : Du1(x) 6= Du2(x)}| > 0. Let v = u1+u2
2 . Then v ∈W1,2(Ω) and

v− g = 1
2

(u1 − g)︸ ︷︷ ︸
∈W1,2

0 (Ω)

+1
2

(u2 − g)︸ ︷︷ ︸
∈W1,2

0 (Ω)

∈W1,2
0 (Ω).

By strict convexity of ξ 7→ |ξ|2 we conclude that

|Dv|2 < 1
2
|Du1|2 + 1

2
|Du2|2 on {x ∈Ω : Du1(x) 6= Du2(x)}.

Since |{x ∈Ω : Du1(x) 6= Du2(x)}| > 0 and using the fact that both u1 and u2 are
minimizers, we obtain

ˆ
Ω
|Dv|2 dx < 1

2

ˆ
Ω
|Du1|2 dx+ 1

2

ˆ
Ω
|Du2|2 dx = 1

2
m+ 1

2
m = m.

Thus I(v)< m. This is a contradiction with the fact that u1 and u2 are minimiz-
ers. ä
Remarks 2.25:

(1) This approach generalizes to other variational integrals as well. Indeed,
the proof above is based on the following steps:

(a) Choose a minimizing sequence.

(b) Use coercivity
‖ui‖W1,2(Ω) →∞=⇒ I(ui)→∞.

to show that the minimizing sequence is bounded in the Sobolev space.
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(c) Use reflexivity to show that there is a weakly converging subsequence.

(d) Use lower semicontinuity of the variational integral to show that the
limit is a minimizer.

(e) Use strict convexity of the variational integral to show uniqueness.

(2) If we consider C2(Ω) instead of W1,2(Ω) in the Dirichlet problem above,
then we end up having the following problems. If we equip C2(Ω) with the
supremum norm

‖u‖C2(Ω) = ‖u‖L∞(Ω) +‖Du‖L∞(Ω) +‖D2u‖L∞(Ω),

where D2u is the Hessian matrix of second order partial derivatives, then
the variational integral is not coercive nor the space is reflexive. Indeed,
when n Ê 2 it is possible to construct a sequence of functions for which the
supremum tends to infinity, but the L2 norm of the gradients tends to zero.
The variational integral is not coersive even when n = 1. If we try to obtain
coercivity and reflexivity in C2(Ω) by changing norm to ‖u‖W1,2(Ω) then we
lose completeness, since the limit functions are not necessarily in C2(Ω).
The Sobolev space seems to have all desirable properties for existence of
solutions to PDEs.

2.4 Direct methods in the calculus of vari-

ations for more general elliptic PDEs
The variational integral related to the PDE

−
n∑

i, j=1
D j(ai jD iu)+ cu = f (2.26)

is

I(v)= 1
2

ˆ
Ω

(
n∑

i, j=1
ai jD ivD jv+ cv2

)
dx−

ˆ
Ω

f v dx

= 1
2

ˆ
Ω

(
ADv ·Dv+ cv2)

dx−
ˆ
Ω

f v dx,

(2.27)

where A = A(x) = (ai j(x)) is an n×n matrix. The PDE (2.26) is called the Euler-
Lagrange equation of the variational integral (2.27).
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Remark 2.28. By Hölder’s inequality, we have

|I(v)| =
∣∣∣∣∣1
2

ˆ
Ω

(
n∑

i, j=1
ai jD ivD jv+ cv2

)
dx−

ˆ
Ω

f v dx

∣∣∣∣∣
É 1

2

n∑
i, j=1

‖ai j‖L∞(Ω)

ˆ
Ω
|Dv|2 dx+ 1

2

ˆ
Ω
|c||v|2 dx+

∣∣∣∣ˆ
Ω

f v dx
∣∣∣∣

É 1
2

n∑
i, j=1

‖ai j‖L∞(Ω)‖Dv‖2
L2(Ω) +

1
2
‖c‖L∞(Ω)‖v‖2

L2(Ω) +‖v‖L2(Ω)‖ f ‖L2(Ω)

É 1
2

(
n∑

i, j=1
‖ai j‖L∞(Ω) +‖c‖L∞(Ω)

)
‖v‖2

W1,2(Ω) +‖v‖W1,2(Ω)‖ f ‖L2(Ω) <∞.

This shows that the integrand in (2.27) is an integrable function with finite
integral for every v ∈W1,2(Ω).

Example 2.29. The variational integral related to Serrin’s example in Section 1.5
is

I(v)=
ˆ

B(0,1)

(
|Dv(x)|2 +σ

(
x
|x| ·Dv(x)

)2)
dx,

with σ= α(n−α)
(1−α)(n−1−α) > 0. Observe that the integrand

F(x,ξ)=
(
|ξ|2 +σ

(
x
|x| ·ξ

)2)
satisfies

|ξ|2 É F(x,ξ)É (1+σ)|ξ|2,

where σ> 0 can be made arbitrarily small by choosing α> 0 small enough.

Definition 2.30. A function u ∈W1,2
0 (Ω) is a minimizer of (2.27) with zero bound-

ary values, if I(u)É I(v) for every v ∈W1,2
0 (Ω).

T H E M O R A L : A minimizer u minimizes the variational integral I(u) in the
class of functions with zero boundary values, that is,

I(u)= inf
{

I(v) : v ∈W1,2
0 (Ω)

}
.

If there is a minimizer, then infimum can be replaced by minimum.

Remark 2.31. For nonzero boundary values g ∈W1,2(Ω), we may consider

I(u)= inf
{

I(v) : v ∈W1,2(Ω), v− g ∈W1,2
0 (Ω)

}
.

Thus a function u ∈ W1,2(Ω) is a minimizer of (2.27) with boundary values g ∈
W1,2(Ω), if I(u)É I(v) for every v ∈W1,2(Ω) with v− g ∈W1,2

0 (Ω). We consider zero
boundary values case in the argument below, but the methods apply to nonzero
boundary values as well (exercise).
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Theorem 2.32. If u ∈W1,2
0 (Ω) is a minimizer of (2.27), then it is a weak solution

to (2.27).

T H E M O R A L : A minimizer of a variational integral with given boundary
values in the Sobolev sense is a weak solution to the Dirichlet problem for the
corresponding Euler-Langrange equation.

Proof. Let ϕ ∈ C∞
0 (Ω) and ε ∈R. Then

I(u)É I(u+εϕ)

= 1
2

ˆ
Ω

(
n∑

i, j=1
ai jD i(u+εϕ)D j (u+εϕ)+ c(u+εϕ)2

)
dx−

ˆ
Ω

f (u+εϕ)dx

= i(ε).

Since u is a minimizer, i(ε) has a minimum at ε= 0, which implies that i′(0)= 0.
A direct computation shows that

i(ε)= 1
2

ˆ
Ω

n∑
i, j=1

ai j
(
D iuD ju+εD iuD jϕ+εD iϕD ju+ε2D iϕD jϕ

)
dx

+ 1
2

ˆ
Ω

c(u2 +2εuϕ+ε2ϕ2)dx−
ˆ
Ω

( f u+ε fϕ)dx.

Thus

i′(ε)= 1
2

ˆ
Ω

n∑
i, j=1

ai j
(
D iuD jϕ+D iϕD ju+2εD iϕD jϕ

)
dx

+
ˆ
Ω

c(uϕ+εϕ2)dx−
ˆ
Ω

fϕdx

and we obtain

i′(0)= 1
2

ˆ
Ω

(
n∑

i, j=1
ai j

(
D iuD jϕ+D iϕD ju

))
dx+

ˆ
Ω

cuϕdx−
ˆ
Ω

fϕdx.

As ai j = a ji and i′(0)= 0, we obtain

i′(0)= 1
2

ˆ
Ω

2
n∑

i, j=1
ai jD iuD jϕdx+

ˆ
Ω

cuϕdx−
ˆ
Ω

fϕdx

=
ˆ
Ω

(
n∑

i, j=1
ai jD iuD jϕ+ cuϕ

)
dx−

ˆ
Ω

fϕdx = 0

for every ϕ ∈ C∞
0 (Ω). This shows that u is a weak solution to (2.26). ä

Lemma 2.33. Assume that f ∈ L2(Ω). The variational integral (2.27) is bounded
from below in W1,2

0 (Ω) provided c Ê c0, where c0 is as in the proof of Lemma 2.4.
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T H E M O R A L : We already know that |I(v)| <∞ for every W1,2
0 (Ω). The lemma

asserts that there is a constant m such that I(v)Ê m for every W1,2
0 (Ω), that is,

inf
{

I(v) : v ∈W1,2
0 (Ω)

}
>−∞.

This excludes the case that the infimum is −∞.

Proof. By the ellipticity condition, see Definition 1.7, we have

I(v)= 1
2

ˆ
Ω

n∑
i, j=1

ai jD ivD jv dx+ 1
2

ˆ
Ω

cv2 dx−
ˆ
Ω

f v dx

Ê λ

2

ˆ
Ω
|Dv|2 dx+ 1

2

ˆ
Ω

cv2 dx−
∣∣∣∣ˆ
Ω

f v dx
∣∣∣∣

Ê λ

2

ˆ
Ω
|Dv|2 dx+ c0

2

ˆ
Ω

v2 dx−
ˆ
Ω
| f ||v|dx (c Ê c0)

Ê λ

2

ˆ
Ω
|Dv|2 dx+ c0

2

ˆ
Ω

v2 dx− ε

2

ˆ
Ω

v2 dx− 1
2ε

ˆ
Ω

f 2 dx(
0É

(p
εv− 1p

ε
f
)2 = εv2 −2vf + 1

ε
f 2, see Corollary 1.52

)
Ê 1

2

(
λ

µ
+ c0 −ε

)ˆ
Ω

v2 dx− 1
2ε

ˆ
Ω

f 2 dx (Poincaré inequality)

Ê− 1
2ε

ˆ
Ω

f 2 dx
(
λ

µ
+ c0 −ε> 0

)

for every v ∈ W1,2
0 (Ω), when ε > 0 is chosen so small that λ

µ
+ c0 − ε > 0. This

is possible, since in the proof of Lemma 2.4 we have c0 > −λ
µ

, or equivalently,
λ
µ
+ c0 > 0. ä

Remark 2.34. From the proof we see that

I(v)Ê λ

2

ˆ
Ω
|Dv|2 dx+ c0 −ε

2

ˆ
Ω

v2 dx− 1
2ε

ˆ
Ω

f 2 dx

which implies that

‖v‖2
W1,2(Ω) =

ˆ
Ω
|v|2 dx+

ˆ
Ω
|Dv|2 dx É c1‖ f ‖2

L2(Ω) + c2I(v)

for every v ∈ W1,2
0 (Ω). Here c1 and c2 are independent of v. In particular, this

shows that
‖v‖W1,2(Ω) →∞=⇒ I(v)→∞.

This property is called coercivity.

Theorem 2.35. There exists a constant c0 such that the variational integral
(2.27) has a minimizer u ∈W1,2

0 (Ω) for every f ∈ L2(Ω) when c Ê c0.
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T H E M O R A L : By Theorem 2.32, every minimizer is a solution to the Euler-
Lagrange equation and Theorem 2.35 gives a variational proof of the existence of
a solution to the Dirichlet problem. This approach does not use the Hilbert space
structure and, as we shall see, it generalizes to nonlinear PDEs as well.

Proof. (1) By Lemma 2.33, the variational integral I(v) is bounded from below in
W1,2

0 (Ω) and hence
inf

v∈W1,2
0 (Ω)

I(v)

is a finite number. The definition of infimum implies that there exists a minimizing
sequence uk ∈W1,2

0 (Ω), k = 1,2, . . ., such that

lim
k→∞

I(uk)= inf
v∈W1,2

0 (Ω)
I(v).

The existence of the limit limk→∞ I(uk) implies the sequence (I(uk)) is bounded,
that is,

|I(uk)| É M, k = 1,2, . . . ,

for some constant M <∞. By Remark 2.34, we see that

‖uk‖2
W1,2(Ω) É c1‖ f ‖2

L2(Ω) + c2M, k = 1,2, . . . ,

which shows that (uk) is a bounded sequence in W1,2
0 (Ω).

(2) By the sequential weak compactness of W1,2(Ω) there exists a subsequence
(ukl ) and a function u in W1,2

0 (Ω) such that ukl → u and Dukl → Du weakly in
L2(Ω) as l →∞. This implies that

lim
l→∞

ˆ
Ω

f ukl dx =
ˆ
Ω

f u dx.

By the ellipticity condition, see Definition 1.7, we have

ˆ
Ω

(
n∑

i, j=1
ai jD i(ukl −u)D j(ukl −u)+ c(ukl −u)2

)
dx

Êλ
ˆ
Ω
|D(ukl −u)|2 dx+

ˆ
Ω

c(ukl −u)2 dx Ê 0

from which we conclude that
ˆ
Ω

(
n∑

i, j=1
ai jD iukl D jukl + cu2

kl

)
dx

Ê 2
ˆ
Ω

(
n∑

i, j=1
ai jD iukl D ju+ cukl u

)
dx−

ˆ
Ω

(
n∑

i, j=1
ai jD iuD ju+ cu2

)
dx.
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Since D iukl → D iu weakly in L2(Ω), i = 1, . . . ,n, and ai jD ju ∈ L2(Ω), we obtain

liminf
l→∞

ˆ
Ω

(
n∑

i, j=1
ai jD iukl D jukl + cu2

kl

)
dx

Ê 2liminf
l→∞

ˆ
Ω

(
n∑

i, j=1
ai jD iukl D ju+ cukl u

)
dx−

ˆ
Ω

(
n∑

i, j=1
ai jD iuD ju+ cu2

)
dx

=
ˆ
Ω

(
n∑

i, j=1
ai jD iuD ju+ cu2

)
dx.

Thus

I(u)= 1
2

ˆ
Ω

(
n∑

i, j=1
ai jD iuD ju+ cu2

)
dx−

ˆ
Ω

f u dx

É 1
2

liminf
l→∞

ˆ
Ω

(
n∑

i, j=1
ai jD iukl D jukl + cu2

kl
− f ukl

)
dx

= liminf
l→∞

I(ukl )

= lim
k→∞

I(uk),

and finally
inf

v∈W1,2
0 (Ω)

I(v)É I(u)É lim
k→∞

I(uk)= inf
v∈W1,2

0 (Ω)
I(v)

from which we conclude that

I(u)= inf
v∈W1,2

0 (Ω)
I(v).

ä

Remark 2.36. The proof above is based on the following steps:

(1) Choose a minimizing sequence.

(2) Use coercivity, see Remark 2.34 to show that the minimizing sequence is
bounded in the Sobolev space.

(3) Use reflexivity to show that there is a weakly converging subsequence.

(4) Use lower semicontinuity of the variational integral to show that the limit
is a minimizer.

(5) Use strict convexity of the variational integral to show uniqueness.

Next we discuss an abstract version of the existence result. Let X be a Banach
space. We begin with recalling some definitions.

Definition 2.37.

(1) We say that xk ∈ X , k = 1,2, . . . , converges weakly to x ∈ X if x∗(xk)→ x∗(x)
as k →∞ for every x∗ ∈ X∗. Here X∗ denotes the dual of X .

(2) By the Eberlein-Shmulyan theorem a Banach space is reflexive if and only
if every bounded sequence has a weakly converging subsequence.
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(3) A function I : X →R is sequentially weakly lower semicontinuous, if

I(u)É liminf
k→∞

I(uk)

whenever uk → u weakly in X .

(4) A function I : X →R is coercive, if

‖uk‖X →∞=⇒ I(uk)→∞

as k →∞.

(5) A function I : X →R is convex, if

I((1− t)x+ ty)É (1− t)I(x)+ tI(y)

for every x, y ∈ X and t ∈ [0,1]. I is strictly convex if

I((1− t)x+ ty)< (1− t)I(x)+ tI(y)

for every x, y ∈ X , x 6= y and t ∈ (0,1).

Theorem 2.38. Assume that I : X → R is a coercive, sequentially weakly lower
semicontinuous and strictly convex variational integral on a reflexive Banach
space X . Then there exists a unique u ∈ X such that

I(u)= inf
v∈X

I(v).

Proof. (1) We show that m = infv∈X I(v) is finite. Assume, for a contradiction,
that it is not, in which case m =−∞. By the definition of infimum, there exists a
sequence (uk) such that I(uk)→−∞ as k →∞. If (uk) is a bounded sequence in X ,
by reflexivity, it has a weakly converging subsequence such that ukl → u weakly
as l →∞ for some u ∈ X . Since I is sequentially weakly lower semicontinuous, we
have

I(u)É liminf
l→∞

I(ukl )=−∞

and thus I(u)=−∞, which is a contradiction with the fact that |I(u)| <∞. Thus
(uk) is an unbounded sequence in X and there exists a subsequence (ukl ) such that
‖ukl‖→∞ as l →∞. By coercivity, I(ukl )→∞ as l →∞. This is a contradiction
with I(uk)→−∞ as k →∞. Thus

m = inf
v∈X

I(v)>−∞.

(2) Let (uk) be a minimizing sequence such that I(uk) → m as k →∞. As a
converging sequence of real numbers (I(uk)) is bounded. We show that (uk) is a
bounded sequence in X . Assume, for a contradiction, that it is unbounded. Then
there exists a subsequence (ukl ) such that ‖ukl‖ →∞ as l →∞. By coercivity,
I(ukl )→∞ as l →∞. This is a contradiction with I(uk)→ m <∞ as k →∞ .
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(3) Since (uk) is a bounded sequence in X , by reflexivity, it has a weakly
converging subsequence (ukl ) such that ‖ukl‖→ u as l →∞ for some u ∈ X . Since
I is sequentially weakly lower semicontinuous, we have

I(u)É liminf
k→∞

I(ukl )É lim
k→∞

I(uk)= m

and
m É I(u)É lim

k→∞
I(uk)= m.

This shows that I(u)= m and that u is a minimizer.
(4) To show that the minimizer is unique assume, for a contradiction, that

u1 ∈ X and u2 ∈ X are minimizers with u1 6= u2. We consider

u = 1
2

u1 + 1
2

u2.

Since u1 6= u2, by strict convexity

I(u)= I
(

1
2

u1 + 1
2

u2

)
< 1

2
I(u1)+ 1

2
I(u2)= m.

Thus I(u) < m and this is a contradiction with the fact that u1 is a minimizer.
A similar argument applies for u2 as well. Thus u1 = u2 and the minimizer is
unique. ä

T H E M O R A L : The variational approach is based on Banach space techniques.
This applies to nonlinear variational integrals as well.

Example 2.39. Let n = 1 and Ω= (0,1) and

I(u)=
ˆ 1

0

(
1
2

u(x)2 + (1−u′(x)2)2
)

dx, u ∈W1,4
0 (Ω).

Claim: This variational problem does not have a solution, that is, there does not
exist a function u ∈W1,4

0 (Ω) such that

I(u)= inf
{

I(v) : v ∈W1,4
0 (Ω)

}
.

Reason. Let u ∈ W1,4
0 (Ω). By the Sobolev embedding we may assume that u

is continuous. Since the integrand is nonnegative, we have I(u) Ê 0 for every
u ∈W1,4

0 (Ω). We show that I(u)> 0 for every u ∈W1,4
0 (Ω). To see this, we note that

if u(x)= 0 for every x ∈Ω, then I(u)= 1> 0. If u is not identically zero, then there
exists k ∈N such that ∣∣{x ∈Ω : |u(x)| > 1

k
}∣∣> 0.

Thus

I(u)=
ˆ 1

0

(
1
2

u(x)2 + (1−u′(x)2)2
)

dx Ê
ˆ 1

0

1
2

u(x)2 dx

Ê 1
2

(
1
k

)2 ∣∣{x ∈Ω : |u(x)| > 1
k
}∣∣> 0.
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Consider a sequence of sawtooth functions u j ∈W1,4
0 (Ω), j = 1,2, . . . , such that

|u j(x)| É 1
2 j , j = 1,2, . . . , and |u′

j(x)| = 1 for almost every x ∈Ω.

Then

I(u j)=
ˆ 1

0

(
1
2

u j(x)2 + (1−u′
j(x)2)2

)
dx =

ˆ 1

0

1
2

u j(x)2 dx

É
ˆ 1

0

1
2

(
1
2 j

)2
dx → 0 as j →∞.

This implies that
m = inf

v∈W1,4
0 (Ω)

I(v)= 0.

Since I(u) > 0 for every u ∈ W1,4
0 (Ω), there does not exist a function u ∈ W1,4

0 (Ω)
such that I(u)= 0= m. ■

T H E M O R A L : A minimizer may not exist, if the variational integral is not
sequentially weakly lower semicontinuous.

Example 2.40. Let n = 1, Ω= (−1,1), g :Ω→R, g(x)= x, and

I(u)=
ˆ 1

−1
u′(x)2x4 dx,

where u ∈ W1,2(Ω) such that u− g ∈ W1,2
0 (Ω). Again, we may assume that u is

continuous and u(−1)=−1 and u(1)= 1.
Claim: This variational problem does not have a solution, that is, there does not
exist a function u ∈W1,2(Ω) with u− g ∈W1,2

0 (Ω) such that

I(u)= inf
{

I(v) : v ∈W1,2(Ω), v− g ∈W1,2
0 (Ω)

}
.

Reason. Let 0< ε< 1 and uε :Ω→R,

uε(x)=


−1, x ∈ [−1,−ε],
x
ε
, x ∈ (−ε,ε),

1, x ∈ (ε,1].

Then uε ∈W1,2(Ω) with uε− g ∈W1,2
0 (Ω)

0É I(uε)=
ˆ ε

−ε

(
1
ε

)2
x4 dx = 1

ε2
2ε5

5
= 2ε3

5
→ 0 as ε→ 0.

Since I(v)Ê 0 for every v ∈W1,2(Ω), we conclude that

m = inf
{

I(v) : v ∈W1,2(Ω), v− g ∈W1,2
0 (Ω)

}
= 0.
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Thus the infimum of the variational integral is zero.
Let u ∈ W1,2(Ω) with u− g ∈ W1,2

0 (Ω). Let ϕ j ∈ C∞(Ω), j = 1,2, . . . , such that
ϕ j → u in W1,2(Ω) and

lim
j→∞

ϕ j(x)= u(x) for every x ∈Ω.

Since u(1)−u(−1)= 1− (−1)= 2 and u is continuous, there exist x, y ∈Ω such that
u(x)−u(y)Ê 1. Thus

1É u(x)−u(y)= lim
j→∞

(ϕ j(x)−ϕ j(y))

= lim
j→∞

ˆ x

y
(ϕ j)′(t)dt É lim

j→∞

ˆ x

y
|(ϕ j)′(t)|dt É

ˆ 1

−1
|u′(t)|dt.

This implies that there exists k ∈N such that∣∣{x ∈Ω : |u′(x)| > 1
k
}∣∣> 0

and consequently

I(u)=
ˆ 1

−1
u′(x)2x4 dx Ê

ˆ
{x∈Ω:|u′(x)|> 1

k }
u′(x)2x4 dx

=
∞∑
j=1

ˆ
{x∈Ω:|u′(x)|> 1

k }∩{x∈Ω:2− jÉ|x|<2− j+1}
u′(x)2x4 dx

Ê
∞∑
j=1

1
k2 (2− j)4

∣∣∣{x ∈Ω : |u′(x)| > 1
k
}∩{

x ∈Ω : 2− j É |x| < 2− j+1
}∣∣∣> 0,

since at least one of the terms in the sum is positive. Since I(u) > 0 for every
u ∈W1,2(Ω), there does not exist a function u ∈W1,2(Ω) such that I(u)= 0= m. ■

We observe that I is not coercive, since

‖uε‖W1,2(Ω) Ê ‖(uε)′‖L2(Ω) =
(ˆ ε

−ε

(
1
ε

)2
dx

) 1
2

=
(

2ε
ε2

) 1
2 =

(
2
ε

) 1
2 →∞ as ε→ 0,

but I(uε)→ 0 as ε→ 0. Note that the integrand F(ξ)= ξ2x4 is convex.

T H E M O R A L : A minimizer may not exist, if the variational integral is not
coercive.

Remark 2.41. We consider the Dirichlet problem for the Laplace equation in the
unit disc in the two-dimensional case. Let Ω= B(0,1) be the unit disc in R2 and
assume that g ∈ C(ÇΩ) is a continuous function on the boundary. The problem is
to find u ∈ C2(Ω)∩C(Ω) such that∆u = 0 in Ω,

u = g on ÇΩ.



CHAPTER 2. EXISTENCE RESULTS 53

This problem can be solved by separation of variables with Fourier series in
polar coordinates. Recall that any point in the plane can be uniquely determined
by its distance from the origin r and the angle θ that the line segment from the
origin to the point forms with the x1-axis, that is,

(x1, x2)= (r cosθ, rsinθ), (x1, x2) ∈R2, 0< r <∞, −πÉ θ <π,

where r2 = x2
1 + x2

2 and tanθ = x2
x1

. In polar coordinates, we have

Ω= {(r,θ) : 0< r < 1, −πÉ θ <π} and ÇΩ= {(1,θ) :−πÉ θ <π}.

The two-dimensional Laplace operator in polar coordinates is

∆u = Ç2u
Çr2 + 1

r
Çu
Çr

+ 1
r2
Ç2u
Çθ2 , 0< r <∞, −πÉ θ <π.

By separation of variables, we obtain

u(r,θ)= a0

2
+

∞∑
j=1

r j (a j cos( jθ)+b j sin( jθ)
)
,

where a j and b j are the Fourier cosine and sine coefficients of g, respectively.
If

∑∞
j=1(|a j|+ |b j|) <∞, the series converges uniformly in Ω and its derivatives

converge uniformly on compact subsets of Ω. Thus u ∈ C2(Ω)∩C(Ω) and u = g on
ÇΩ. This shows that u is a classical solution to the Dirichlet problem in the unit
disc.

ˆ
B(0,ρ)

|Du|2 dx =
ˆ 2π

0

ˆ ρ

0

(
|ur|2 + 1

r2 |uθ|2
)

r dr dθ

=π
∞∑
j=1

jρ2 j(a2
j +b2

j ).

If we choose

u(r,θ)=
∞∑
j=1

r2 j!

j2 sin( j!θ),

then the boundary function is

g(θ)= u(1,θ)=
∞∑
j=1

1
j2 sin( j!θ).

In this case ˆ
B(0,1)

|Du|2 dx =π
∞∑
j=1

j!
j4 =∞

and thus u ∉W1,2(Ω).

T H E M O R A L : The classical solution of the Dirichlet problem with continuous
boundary values may fail to belong to W1,2(Ω).
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Remark 2.42. Let n = 2 and Ω= B(0,1)\{0}. Consider the Dirichlet problem∆u = 0 in Ω,

u = g on ÇΩ,

where g(x)= 1−|x|. Note that g ∈W1,2(Ω)∩C(Ω). Then u :Ω→R, u(x)= 0 is the
weak solution with boundary values g, that is, u− g ∈W1,2

0 (Ω). Observe that

0= lim
x→0

u(x) 6= lim
x→0

g(x)= 1.

T H E M O R A L : The boundary values of a weak solution to a Dirichlet problem
are not necessarily attained in the classical sense.

2.5 Uniqueness
Let us briefly the discuss uniqueness question. To this end, we need a useful
lemma.

Lemma 2.43. If u ∈W1,2
0 (Ω) is a weak solution of (2.1), then

ˆ
Ω

(
n∑

i, j=1
ai jD iuD jv+ cuv

)
dx =

ˆ
Ω

f v dx

for every v ∈W1,2
0 (Ω).

T H E M O R A L : The advantage of this result is that we may use W1,2
0 (Ω)

functions as test functions in the definition of a weak solution instead of C∞
0 (Ω)

functions, see Definition 1.18. Especially, we can use a weak solution itself as a
test function. The result holds also under the assumption u ∈W1,2(Ω).

Proof. Let ϕk ∈ C∞
0 (Ω), k = 1,2, . . ., such that ϕk → v in W1,2(Ω) as k →∞. Then∣∣∣∣ˆ
Ω

ai jD iuD jϕk dx−
ˆ
Ω

ai jD iuD jv dx
∣∣∣∣

=
∣∣∣∣ˆ
Ω

ai jD iu(D jϕk −D jv)dx
∣∣∣∣

É ‖ai j‖∞‖D iu‖L2(Ω)‖D jϕk −D jv‖L2(Ω) → 0,

as k →∞, i, j = 1, . . . ,n. Thus
ˆ
Ω

n∑
i, j=1

ai jD iuD jv dx = lim
k→∞

ˆ
Ω

n∑
i, j=1

ai jD iuD jϕk dx.

Similar arguments show that
ˆ
Ω

cuv dx = lim
k→∞

ˆ
Ω

cuϕk dx
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and ˆ
Ω

f v dx = lim
k→∞

ˆ
Ω

fϕk dx.

By the definition of a weak solution, see Definition 1.18, we have
ˆ
Ω

(
n∑

i, j=1
ai jD iuD jϕk + cuϕk

)
dx =

ˆ
Ω

fϕk dx

for every k = 1,2, . . . , since ϕk ∈ C∞
0 (Ω). This implies that

ˆ
Ω

(
n∑

i, j=1
ai jD iuD jv+ cuv

)
dx = lim

k→∞

ˆ
Ω

(
n∑

i, j=1
ai jD iuD jϕk + cuϕk

)
dx

= lim
k→∞

ˆ
Ω

fϕk dx =
ˆ
Ω

f v dx. ä

Theorem 2.44. The solution of (2.1) is unique, provided c Ê c0, where c0 is as in
the proof of Lemma 2.4.

Proof. Let u1,u2 ∈W1,2
0 (Ω) be weak solutions. By Lemma 2.43

ˆ
Ω

(
n∑

i, j=1
ai jD iu1D jv+ cu1v

)
dx =

ˆ
Ω

f v dx

and ˆ
Ω

(
n∑

i, j=1
ai jD iu2D jv+ cu2v

)
dx =

ˆ
Ω

f v dx

for every v ∈W1,2
0 (Ω). By subtracting the equations from each other and choosing

v = u1 −u2 ∈W1,2
0 (Ω), we have

ˆ
Ω

(
n∑

i, j=1
ai j(D iu1 −D iu2)(D ju1 −D ju2)+ c(u1 −u2)(u1 −u2)

)
dx = 0

With the ellipticity property, see Definition 1.7, this implies that

λ

ˆ
Ω
|Du1 −Du2|2 dx+

ˆ
Ω

c(u1 −u2)2 dx É 0.

By using the fact that c Ê − λ
2µ and the Poincaré inequality, as in the proof of

Lemma 2.4, we haveˆ
Ω

c(u1 −u2)2 dx Ê− λ

2µ

ˆ
Ω

(u1 −u2)2 dx Ê−λ
2

ˆ
Ω
|Du1 −Du2|2 dx.

By combining these estimates, we conclude that

−λ
2

ˆ
Ω
|Du1 −Du2|2 dx É

ˆ
Ω

c(u1 −u2)2 dx É−λ
ˆ
Ω
|Du1 −Du2|2 dx.

Thus ˆ
Ω
|Du1 −Du2|2 dx = 0 and

ˆ
Ω

c(u1 −u2)2 dx = 0.

This implies u1 = u2 almost everywhere in Ω. ä
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2.6 Comparison and maximum principles
In this section we show that the same technique as in the proof of uniqueness
gives certain versions of comparison and maximum principles.

Theorem 2.45 (Comparison principle). Assume that u, w ∈W1,2(Ω) are weak
solutions of (2.1) and c Ê c0. If (u−w)+ ∈W1,2

0 (Ω), then u É w in Ω.

T H E M O R A L : The assumption (u−w)+ ∈W1,2
0 (Ω) means that u É w on ÇΩ in

Sobolev space sense. Thus the comparison principle asserts that if a solution is
above another on the boundary, then it is above also inside the domain.

Proof. The idea is the same as in the proof of the uniqueness. By Lemma 2.43
ˆ
Ω

(
n∑

i, j=1
ai jD juD iv+ cuv

)
dx =

ˆ
Ω

f v dx

and ˆ
Ω

(
n∑

i, j=1
ai jD jwD iv+ cwv

)
dx =

ˆ
Ω

f v dx

for every v ∈W1,2
0 (Ω). By subtracting the equations from each other we have

ˆ
Ω

n∑
i, j=1

ai jD j(u−w)D iv+ c(u−w)v dx = 0.

We choose v = (u−w)+ ∈W1,2
0 (Ω) and obtain

0=
ˆ
Ω

(
n∑

i, j=1
ai jD j(u−w)D i(u−w)++ c(u−w)2+

)
dx

Ê
ˆ
Ω
λ|D(u−w)+|2 + c(u−w)2+ dx.

Since c Ê− λ
2µ and by the Poincaré inequality, see Remark 1.38, we have

0Ê
ˆ
Ω
λ|D(u−w)+|2 + c(u−w)2+ dx

Ê
ˆ
Ω
λ|D(u−w)+|2 − λ

2µ
(u−w)2+ dx

Ê
ˆ
Ω
λ|D(u−w)+|2ddx− λ

2

ˆ
Ω
|D(u−w)+|2 dx

= λ

2

ˆ
Ω
|D(u−w)+|2 dx.

By the Poincaré inequality, we have

0É
ˆ
Ω
|(u−w)+|2 dx Éµ

ˆ
Ω
|D(u−w)+|2 dx É 0.

This implies that (u−w)+ = 0 almost everywhere in Ω, that is, u É w almost
everywhere in Ω. ä
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Remark 2.46. The proof above shows that if u, w ∈W1,2(Ω) are sub- and superso-
lutions respectively, that is,

ˆ
Ω

n∑
i, j=1

ai jD juD iv+ cuv dx É
ˆ
Ω

f v dx

and ˆ
Ω

n∑
i, j=1

ai jD jwD iv+ cwv dx Ê
ˆ
Ω

f v dx

for every v ∈W1,2
0 (Ω) with v Ê 0, and (u−w)+ ∈W1,2

0 (Ω), then u É w in Ω.

Theorem 2.47 (Weak maximum principle). Let u ∈ W1,2(Ω) be a weak solu-
tion of (2.1) with f = 0 and c Ê 0. Then

esssup
Ω

u É sup
ÇΩ

u+.

T H E M O R A L : The maximum principle asserts, roughly speaking, that a
solution attains its maximum on the boundary of the domain. More precisely, a
solution cannot attain a strict maximum inside the domain.

Proof. Set M = supÇΩ u+ Ê 0. Then (u− M)+ ∈ W1,2
0 (Ω). To see this, choose a

decreasing sequence l i → M so that (u− l i)+ = (u+− l i)+ ∈ W1,2
0 (Ω). Since Ω is

bounded, it follows that u− l i → u−M in W1,2(Ω). This implies

(u− l i)+ → (u−M)+ in W1,2(Ω)

and thus (u−M)+ ∈W1,2
0 (Ω).

We use v = (u−M)+ as a test function and obtain

ˆ
Ω

(
n∑

i, j=1
ai jD juD iv+ cuv

)
dx = 0

and the constant function M is a weak supersolution, that is,

ˆ
Ω

(
n∑

i, j=1
ai jD j MD iv+ cMv

)
dx =

ˆ
Ω

cMv dx Ê 0.

Here we used M, c,v Ê 0. We subtract these from each other and conclude that

λ

ˆ
Ω
|D(u−M)+|2 + c(u−M)2+ dx É 0.

From this it follows that u É M almost everywhere in Ω. ä



3
Higher order regularity

In the previous chapter, we proved existence of a solution by weakening the
definition of a solution. In this chapter we study the regularity of weak solutions:
are weak solutions of the PDE

Lu = f in Ω,

where L is as in (1.4), smoother than W1,2
loc (Ω) under suitable assumptions on

the coefficients and on the source term f ? Are they classical solutions to the
problem? Example 1.5 shows that this is not true under the L∞-assumption on
the coefficients, so that additional assumptions have to be imposed. Our main
result shows that if the coefficients are smooth and the source term f is smooth,
then the solution is smooth.

3.1 Poisson equation
Consider the Poisson equation

−∆u = f in Rn.

58
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A formal computation using the integration by parts shows that

ˆ
Rn

f 2 dx =
ˆ
Rn

(∆u)2 dx =
ˆ
Rn

(
n∑

i=1

Ç2u
Çx2

i

)2

dx

=
ˆ
Rn

(
n∑

i=1

Ç2u
Çx2

i

)(
n∑

j=1

Ç2u
Çx2

j

)
dx =

n∑
i, j=1

ˆ
Rn

Ç2u
Çx2

i

Ç2u
Çx2

j
dx

=−
n∑

i, j=1

ˆ
Rn

Ç3u
Çx2

i Çx j

Çu
Çx j

dx =
n∑

i, j=1

ˆ
Rn

Ç2u
ÇxiÇx j

Ç2u
ÇxiÇx j

dx

=
ˆ
Rn

n∑
i, j=1

(
Ç2u

ÇxiÇx j

)2

dx =
ˆ
Rn

|D2u|2 dx,

where

D2u =



Ç2u
Çx2

1
. . . Ç2u

Çx1Çxn

Ç2u
Çx2Çx1

. . . Ç2u
Çx2Çxn

... . . .
...

Ç2u
ÇxnÇx1

. . . Ç2u
Çx2

n


is the matrix of the second derivatives and

|D2u|2 =
n∑

i, j=1

(
Ç2u

ÇxiÇx j

)2

.

T H E M O R A L : This formal argument suggests that the second derivative of a
solution to the Poisson equation −∆u = f belongs to L2(Rn) if f ∈ L2(Rn).

The argument above can be localized. Let B(x,2r) be a ball in Rn and let
η ∈ C∞

0 (B(x,2r) be a cutoff function with 0 É η É 1, η = 1 in B(x, r). Let v = ηu.
Then

ˆ
B(x,r)

|D2u|2 d y=
ˆ

B(x,r)

n∑
i, j=1

(
Ç2u

ÇxiÇx j

)2

d y

É
ˆ

B(x,2r)

n∑
i, j=1

(
Ç2v

ÇxiÇx j

)2

d y

=−
ˆ

B(x,2r)
(∆v)2 dy.

Since
∆v =∆(ηu)= η∆u+2Dη · Du+u∆η,
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by applying the inequality (a+b+ c)p É 3p(ap +bp + cp), a,b, c Ê 0, p Ê 1, we have
ˆ

B(x,2r)
(∆v)2 d y=

ˆ
B(x,2r)

(η∆u+2Dη ·Du+u∆η)2 dy

É
ˆ

B(x,2r)
(|η∆u|+2|Dη||Du|+ |u||∆η|)2 d y

É 32
(ˆ

B(x,2r)
|η∆u|2 d y+

ˆ
B(x,2r)

(2|Dη||Du|)2 d y+
ˆ

B(x,2r)
|u∆η|2 d y

)
É c
ˆ

B(x,2r)

(|u|2 +|∆u|2 +|Dη|2|Du|2)
dy,

with c = 36supB(x,2r)(η2 + |∆η|2). Integrating by parts twice and applying the
inequality 2ab É a2 +b2 we have

ˆ
B(x,2r)

|Dη|2|Du|2 d y=−
ˆ

B(x,2r)
|Dη|2u∆u dy+ 1

2

ˆ
B(x,2r)

u2∆(|Dη|2)d y

É c
ˆ

B(x,2r)

(
u2 + (∆u)2

)
d y,

with c = supB(x,2r)(|Dη|2 +∆(|Dη|2)). It follows that
ˆ

B(x,r)
|D2u|2 d yÉ c

ˆ
B(x,2r)

(
u2 + (∆u)2

)
d y

= c
ˆ

B(x,2r)

(
u2 + f 2)

d y.

For the gradient we have
ˆ

B(x,r)
|Du|2 dyÉ

ˆ
B(x,2r)

|D(ηu)|2 d y=
ˆ

B(x,2r)
D(ηu) ·D(ηu)d y.

We note that
D(ηu) ·D(ηu)= u2Dη ·Dη+D(η2u) ·Du

and obtainˆ
B(x,r)

|Du|2 d yÉ
ˆ

B(x,2r)
u2Dη ·Dηd y+

ˆ
B(x,2r)

Du ·D(η2u)d y.

Since −∆u = f , we have
ˆ

B(x,2r)
Du ·D(η2u)d y=

ˆ
B(x,2r)

η2uf dy,

which implies that
ˆ

B(x,r)
|Du|2 d yÉ

ˆ
B(x,2r)

|u|2|Dη|2 d y+
ˆ

B(x,2r)
η2|u|| f |d y

É
ˆ

B(x,2r)
|u|2|Dη|2 d y+ 1

2

ˆ
B(x,2r)

|u|2 d y+ 1
2

ˆ
B(x,2r)

| f |2 d y

É c
ˆ

B(x,2r)

(|u|2 +| f |2)
d y,
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with c = supB(x,2r) |Dη|2 + 1
2 .

By combining the estimates above, we have

‖u‖W2,2(B(x,r)) = ‖u‖L2(B(x,r)) +‖Du‖L2(B(x,r)) +‖D2u‖L2(B(x,r))

É c
(‖u‖L2(B(x,r)) +‖ f ‖L2(B(x,r))

)
,

where c only depends on the radius r.

T H E M O R A L : This formal argument suggests that a solution to the Poisson
equation −∆u = f belongs to W2,2

loc (Rn) if f ∈ L2
loc(R

n).

Next we apply these estimates recursively. This is called a bootstrap argument.
Step 1 By the previous computation, the L2-norm of the second derivatives

of u can be estimated by the L2-norm of f .
Step 2 By differentiating the PDE, we have

−∆
(
Çu
Çxk

)
=− Ç

Çxk
(∆u)= Ç f

Çxk
, k = 1, . . . ,n,

that is,
−∆u = f ,

where
u = Çu

Çxk
and f = Ç f

Çxk
, k = 1, . . . ,n.

Thus the partial derivatives satisfy a similar PDE. By the same method as in
Step 1, we can estimate the L2-norm of the third derivatives of u by the first
derivatives of f .

Step 3 Continuing this way, we see that the L2-norm of the (m+2)nd deriva-
tives of u can be controlled by the L2-norm of the mth derivatives of f for
m = 0,1,2, . . .. In particular, if f ∈ C∞

0 (Rn), then u ∈Wm,2(Rn) for every m = 1,2, . . .,
and thus u ∈ C∞(Rn).

T H E M O R A L : This formal argument suggests that u has two more derivatives
than f .

Observe, however, that we assumed that u is smooth in the iterative process
above, and thus it is not really a proof for smoothness. Next we want to make
this heuristic idea more precise. There are two standard approaches to the higher
regularity theory:

(1) Schauder estimates f ∈ C0,α(Ω)=⇒ u ∈ C2,α(Ω), 0<α< 1, and

(2) Calderón-Zygmund estimates f ∈ L2(Ω)=⇒ u ∈W2,2(Ω).

We shall focus on the Calderón-Zygmund estimates. For the Schauder estimates,
we refer to [1, Chapter 2], [4, Chapter 2], [6, Chapter 3],[7, Chapter 5], [8, Chapter
6], [11, Chapter 3] and [16, Chapter 6]. First we give three examples which show
that the claim “u has two derivatives more than f ” is not always true.
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Examples 3.1:
(1) Let u :R2 →R,

u(x, y)= (x2 − y2) log(x2 + y2), (x, y) 6= (0,0).

Then

Ç2u
Çx2 (x, y)= 2log(x2 + y2)+ 8x2

x2 + y2 −2
(

x2 − y2

x2 + y2

)
, (x, y) 6= (0,0),

and

Ç2u
Çy2 (x, y)=−2log(x2 + y2)− 8y2

x2 + y2 +2
(

x2 − y2

x2 + y2

)
, (x, y) 6= (0,0).

Thus
Ç2u
Çx2 ∉ L∞(R2) and

Ç2u
Çy2 ∉ L∞(R2)

so that u ∉W2,∞(R2). However, we have

∆u(x, y)= Ç2u
Çx2 (x, y)+ Ç2u

Çy2 (x, y)= 8
(

x2 − y2

x2 + y2

)
, (x, y) 6= (0,0)

and f = ∆u ∈ L∞(R2). Thus f ∈ L∞(R2) does not necessarily imply that
u ∈W2,∞(R2).

(2) Let u :R2 →R,

u(x, y)= (x2 − y2) log | log(x2 + y2)|, (x, y) 6= (0,0).

Then u ∉ C1,1(R2) and f =∆u ∈ C(R2). Thus f ∈ C(R2) does not necessarily
imply that u ∈ C2(R2).

(3) Let u :R2 →R,

u(x, y)= loglog
1

x2 + y2 , (x, y) 6= (0,0).

In polar coordinates with r2 = x2 + y2, we have

u(r)= loglog
1
r

, ur(r)= 1
r log r

, r 6= 0,

and

∆u(r)= urr(r)
1
r

ur =− log r+1
r2(log r)2

+ 1
r2 log r

=− 1
r2(log r)2

, r 6= 0.

Then ˆ
B(0, 1

2 )
∆u dx =−2π

ˆ 1
2

0

1
r log r

dr <∞

and thus ∆u ∈ L1(B(0, 1
2 )). However, we have

Ç2u
Çx2 ∉ L1(B(0, 1

2 )) and
Ç2u
Çy2 ∉ L1(B(0, 1

2 ))

so that u ∉ W2,1(B(0, 1
2 )). The correspoding example in Rn, n Ê 2, can be

constructed by considering a function u(r) with ur(r)= r1−n

log r .
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3.2 Difference quotients
The proof of the main result of this section uses difference quotients and thus this
approach is called the difference quotient method. We recall the definition and
basic properties of difference quotients.

Definition 3.2. Let f ∈ L1
loc(Ω) and Ω′ bΩ. The kth difference quotient is

Dh
k f (x)= f (x+hek)− f (x)

h
, k = 1, . . . ,n,

for x ∈Ω′ and h ∈R such that 0< |h| < dist(Ω′,ÇΩ). We denote

Dh f = (Dh
1 f , . . . ,Dh

n f ).

T H E M O R A L : Note that the definition of the difference quotient makes sense
at every x ∈Ω whenever 0< |h| < dist(x,ÇΩ). If Ω=Rn, then the definition makes
sense for every h 6= 0.

The following properties of the difference quotients follow directly from the
definition.

Lemma 3.3.

(1) If f , g ∈ L2(Rn) are compactly supported functions, then
ˆ
Rn

f (x)Dh
k g(x)dx =−

ˆ
Rn

g(x)D−h
k f (x)dx, k = 1, . . . ,n.

(2) If f has weak partial derivatives D i f , i = 1, . . . ,n, then

D iDh
k f = Dh

k D i f , i,k = 1,2, . . . ,n.

(3) If f , g ∈ L2(Rn), then

Dh
k ( f g)= gh(x)Dh

k f (x)+ f (x)Dh
k g(x),

where gh(x)= g(x+hek).

Proof. (1)

ˆ
Rn

f (x)Dh
k g(x)dx =

ˆ
Rn

f (x)
g(x+hek)− g(x)

h
dx

=
ˆ
Rn

g(x+hek) f (x)
h

dx−
ˆ
Rn

g(x) f (x)
h

dx

=
ˆ
Rn

g(x) f (x−hek)
h

dx−
ˆ
Rn

g(x) f (x)
h

dx

=−
ˆ
Rn

g(x)
f (x−hek)− f (x)

(−h)
dx.
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(2) Let ϕ ∈ C∞
0 (Rn). Then

ˆ
Rn

Dh
k f

Çϕ

Çxi
dx =

ˆ
Rn

f (x+hek)− f (x)
h

Çϕ

Çxi
(x)dx

= 1
h

(ˆ
Rn

f (x+hek)
Çϕ

Çxi
(x)dx−

ˆ
Rn

f (x)
Çϕ

Çxi
(x)dx

)
=− 1

h

(ˆ
Rn

D i f (x+hek)ϕ(x)dx−
ˆ
Rn

D i f (x)ϕ(x)dx
)

=−
ˆ
Rn

D i f (x+hek)−D i f (x)
h

ϕ(x)dx

=−
ˆ
Rn

Dh
k D i fϕ(x)dx.

(3)

Dh
k ( f g)= f (x+hek)g(x+hek)− f (x)g(x)

h

= 1
h

(
( f (x+hek)g(x+hek)− f (x)g(x+hek))

+ ( f (x)g(x+hek)− f (x)g(x))
)

= g(x+hek)
f (x+hek)− f (x)

h
+ f (x)

g(x+hek)− g(x)
h

= gh(x)Dh
k f (x)+ f (x)Dh

k g(x) . ä

We recall a characterization of the Sobolev spaces by integrated difference
quotients.

Theorem 3.4.

(1) Assume u ∈W1,p(Ω), 1É p <∞. Then for every Ω′ bΩ, we have

‖Dhu‖Lp(Ω′) É c‖Du‖Lp(Ω)

for some constant c = c(n, p) and all 0< |h| < dist(Ω′,ÇΩ).

(2) If u ∈ Lp(Ω′), 1< p <∞, and there is a constant c such that

‖Dhu‖Lp(Ω′) É c

for all 0< |h| < dist(Ω′,ÇΩ), then u ∈W1,p(Ω′) and

‖Du‖Lp(Ω′) É c.

Proof. See Sobolev spaces. ä

3.3 Difference quotient method
We assume that Ω⊂Rn is a bounded open set and we consider a PDE of the type

Lu =−
n∑

i, j=1
D j(ai jD iu)+

n∑
i=1

biD iu+ cu = f ,
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see (1.4). We continue to require the uniform ellipticity condition, see Definition 1.7
and we will make additional assumptions about the smoothness of the coefficients
ai j,bi and c.

Theorem 3.5 (Second order interior estimate). Assume that

ai j ∈ C1(Ω), bi, c ∈ L∞(Ω), i, j = 1, . . . ,n, and f ∈ L2(Ω).

Let u ∈ W1,2(Ω) be a weak solution of Lu = f in Ω, where L is as in (1.4). Then
u ∈W2,2

loc (Ω) and for every Ω′ bΩ, we have

‖u‖W2,2(Ω′) É c
(‖ f ‖L2(Ω) +‖u‖L2(Ω)

)
,

where the constant c depends only on Ω′, Ω and the coefficients of L.

T H E M O R A L : This regularity result asserts that the weak solution that
assumed to belong to W1,2(Ω) is more regular and belongs to W2,2

loc (Ω), if the
coefficients ai j ∈ C1(Ω). In addition, this result comes with an estimate. Example
1.5 shows that this cannot hold under the assumption ai j ∈ L∞(Ω). Note that no
boundary conditions are assumed, so that this regularity result applies to PDEs
with Dirichlet, Neumann or other boundary conditions.

Remarks 3.6:
(1) Note that we do not require u ∈W1,2

0 (Ω), that is, we are not assuming that
u = 0 on ÇΩ in the Sobolev sense.

(2) The claim u ∈ W2,2
loc (Ω) implies that u actually solves the PDE almost

everywhere in Ω, that is,

Lu(x)= f (x) for almost every x ∈Ω.

Reason. By the definition of the second order weak derivative gives

ˆ
Ω

fϕdx =
ˆ
Ω

(
n∑

i, j=1
ai jD iuD jϕ+

n∑
i=1

biD iuϕ+ cuϕ

)
dx

=
ˆ
Ω

(
−

n∑
i, j=1

D j(ai jD iu)ϕ+
n∑

i=1
biD iuϕ+ cuϕ

)
dx

and consequently

ˆ
Ω

(
−

n∑
i, j=1

D j(ai jD iu)+
n∑

i=1
biD iu+ cu− f

)
ϕdx =

ˆ
Ω

(Lu− f )ϕdx = 0

for every ϕ ∈ C∞
0 (Ω). This implies that Lu− f = 0 almost everywhere in

Ω. ■
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Proof. (1) Choose Ω′′ such that Ω′ bΩ′′ bΩ. Let η ∈ C∞
0 (Ω′′) be a cutoff function

such that η= 1 in Ω′ and 0É ηÉ 1.
(2) Let u be a weak solution of Lu = f in Ω. Then by Lemma 2.43,

n∑
i, j=1

ˆ
Ω

ai jD iuD jv dx =
ˆ
Ω

f v dx (3.7)

for every v ∈W1,2
0 (Ω), where

f = f −
n∑

i=1
biD iu− cu.

We point out that Lemma 2.43 holds also without assumption that bi = 0, i =
1, . . . ,n (exercise).

(3) Use
v =−D−h

k (η2Dh
k u), k = 1, . . . ,n,

as a test function in (3.7), where

Dh
k u(x)= u(x+hek)−u(x)

h

is a difference quotient with |h| > 0 small enough. Observe that v ∈ W1,2
0 (Ω) for

small enough |h| > 0. We write the resulting expression as A = B for

A =
n∑

i, j=1

ˆ
Ω

ai jD iuD jv dx and B =
ˆ
Ω

f v dx.

(4) For A we have

A =−
n∑

i, j=1

ˆ
Ω

ai jD iuD j

(
D−h

k (η2Dh
k u)

)
︸ ︷︷ ︸
=D−h

k (D j(η2Dh
k u))

dx (Lemma 3.3 (2))

=
n∑

i, j=1

ˆ
Ω

Dh
k (ai jD iu)D j(η2Dh

k u)dx (Lemma 3.3 (1))

=
n∑

i, j=1

ˆ
Ω

(
ah

i jD
h
k (D iu)D j(η2Dh

k u)

+(Dh
k ai j)D iuD j(η2Dh

k u)
)

dx (Lemma 3.3 (3))

=
n∑

i, j=1

ˆ
Ω

ah
i jD

h
k (D iu)Dh

k (D ju)η2 dx

+
n∑

i, j=1

ˆ
Ω

(
ah

i jD
h
k (D iu)Dh

k u2ηD jη (Leibniz)

+(Dh
k ai j)D iuDh

k (D ju)η2 + (Dh
k ai j)D iuDh

k u2ηD jη
)

dx

= A1 + A2.
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Recall that ah
i j(x)= ai j(x+hek). The uniform ellipticity (see Definition 1.7) implies

that

A1 =
n∑

i, j=1

ˆ
Ω

ah
i jD

h
k (D iu)Dh

k (D ju)η2 dx Êλ
ˆ
Ω
η2|Dh

k Du|2 dx.

On the other hand, by using the properties ai j ∈ L∞(Ω), Dh
k ai j ∈ L∞(Ω), η2 É η in

Ω and Young’s inequality with ε, see Corollary 1.52, with p = 2, we have

|A2| É c
ˆ
Ω

(
η|Dh

k Du||Dh
k u|+η|Dh

k Du||Du|+η|Dh
k u||Du|

)
dx

É cε
ˆ
Ω
η2|Dh

k Du|2 dx+ c(ε)
ˆ
Ω′′

(
|Dh

k u|2 +|Du|2
)

dx

É cε
ˆ
Ω
η2|Dh

k Du|2 dx+ c(ε)
ˆ
Ω
|Du|2 dx.

In the last inequality we used the fact that

‖Dh
k u‖L2(Ω′′) É c‖Du‖L2(Ω), k = 1, . . . ,n,

for some constant c = c(n, p) and all 0< |h| < dist(Ω′′,ÇΩ), see Theorem 3.4 (1). By
choosing ε> 0 so that cε= λ

2 , we have

|A2| É λ

2

ˆ
Ω
η2|Dh

k Du|2 dx+ c
ˆ
Ω
|Du|2 dx.

This gives the lower bound

A Ê A1 −|A2|

Êλ
ˆ
Ω
η2|Dh

k Du|2 dx− λ

2

ˆ
Ω
η2|Dh

k Du|2 dx− c
ˆ
Ω
|Du|2 dx

= λ

2

ˆ
Ω
η2|Dh

k Du|2 dx− c
ˆ
Ω
|Du|2 dx.

(5) We estimate B by using Young’s inequality with ε, see Corollary 1.52, and
obtain

|B| É
ˆ
Ω
| f ||v|dx =

ˆ
Ω

∣∣∣∣∣ f −
n∑

i=1
biD iu− cu

∣∣∣∣∣ |v|dx

É c
ˆ
Ω

(| f |+ |Du|+ |u|)|v|dx

É cε
ˆ
Ω
|v|2 dx+ c(ε)

ˆ
Ω

(| f |+ |Du|+ |u|)2 dx

É cε
ˆ
Ω
|v|2 dx+ c(ε)

ˆ
Ω

(| f |2 +|u|2 +|Du|2)dx,
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where ˆ
Ω
|v|2 dx =

ˆ
Ω′′

|v|2 dx =
ˆ
Ω′′

|D−h
k (η2Dh

k u)|2 dx

É c
ˆ
Ω
|D(η2Dh

k u)|2 dx = c
ˆ
Ω′′

|D(η2Dh
k u)|2 dx

É c
ˆ
Ω′′

(
2η|Dη||Dh

k u|+η2|D(Dh
k u)|

)2
dx (Leibniz)

É c
ˆ
Ω′′
η2|Dη|2|Dh

k u|2 dx+ c
ˆ
Ω′′
η4|Dh

k Du|2 dx

É c
ˆ
Ω
|Du|2 dx+ c

ˆ
Ω′′
η2|Dh

k Du|2 dx. (η4 É η2)

Thus
|B| É cε

ˆ
Ω
η2|Dh

k Du|2 dx+ c(ε)
ˆ
Ω

(| f |2 +|u|2 +|Du|2)dx.

By choosing ε> 0 so that cε= λ
4 , we obtain

|B| É λ

4

ˆ
Ω
η2|Dh

k Du|2 dx+ c
ˆ
Ω

(| f |2 +|u|2 +|Du|2)dx.

(6) A combination of estimates from (4) and (5) gives

λ

2

ˆ
Ω
η2|Dh

k Du|2 dx− c
ˆ
Ω
|Du|2 dx É A

= B É λ

4

ˆ
Ω
η2|Dh

k Du|2 dx+ c
ˆ
Ω

(| f |2 +|u|2 +|Du|2)dx.

Thus ˆ
Ω′

|Dh
k Du|2 dx É

ˆ
Ω
η2|Dh

k Du|2 dx É c
ˆ
Ω

(| f |2 +|u|2 +|Du|2)dx

for k = 1, . . . ,n and all sufficiently small |h| 6= 0. The characterization of Sobolev
spaces by integrated difference quotients, see Theorem 3.4 (2), implies Du ∈
W1,2(Ω′) and thus u ∈W2,2(Ω′) with the estimate

‖u‖W2,2(Ω′) É c
(‖ f ‖L2(Ω) +‖u‖W1,2(Ω)

)
.

This is almost what we want except that there is the Sobolev norm ‖u‖W1,2(Ω)

instead of ‖u‖L2(Ω) on the right-hand side.
(7) To complete the proof, choose a cutoff function η ∈ C∞

0 (Ω) such that η= 1
on Ω′′ and 0É ηÉ 1. By Lemma 2.43 we may apply

v = η2u ∈W1,2
0 (Ω)

as a test function in (3.7), that is,

n∑
i, j=1

ˆ
Ω

ai jD iuD j(η2u)dx =
ˆ
Ω

f η2u dx.
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Now
n∑

i, j=1

ˆ
Ω

ai jD iuD j(η2u)dx =
n∑

i, j=1

ˆ
Ω

ai jD iu
(
η2D ju+2uηD jη

)
dx

Êλ
ˆ
Ω
η2|Du|2 dx−

∣∣∣∣∣ n∑
i, j=1

ˆ
Ω

ai jD iu2uηD jηdx

∣∣∣∣∣ ,

where∣∣∣∣∣ n∑
i, j=1

ˆ
Ω

ai jD iu2uηD jηdx

∣∣∣∣∣É c
n∑

i, j=1

ˆ
Ω
η|D iu||u|dx É c

ˆ
Ω
η|Du||u|dx.

Thus
n∑

i, j=1

ˆ
Ω

ai jD iuD j(η2u)dx Êλ
ˆ
Ω
η2|Du|2 dx− c

ˆ
Ω
η|Du||u|dx.

On the other hand, we can use Young’s inequality with ε to obtainˆ
Ω

f η2u dx É c
ˆ
Ω

(| f |+ |Du|+ |u|)η2u dx

É cε
ˆ
Ω
η2|Du|2 dx+ c(ε)

ˆ
Ω
|u|2 dx+ c

ˆ
Ω
| f |2 dx.

Choosing ε> 0 such that cε= λ
2 and combining the previous estimates, we have

ˆ
Ω
η2|Du|2 dx É c

ˆ
Ω

(| f |2 +|u|2)
dx+ c

ˆ
Ω
η|u||Du|dx,

where the last term can again be estimated by Young’s inequality as

c
ˆ
Ω
η|u||Du|dx É cε

ˆ
Ω
η2|Du|2 dx+ c(ε)

ˆ
Ω
|u|2 dx.

By choosing ε> 0 such that cε= 1
2 , we finally have

ˆ
Ω
η2|Du|2 dx É c

ˆ
Ω

(| f |2 +|u|2)dx+ 1
2

ˆ
Ω
η2|Du|2 dx+ c

ˆ
Ω
|u|2 dx,

which implies ˆ
Ω′′

|Du|2 dx É
ˆ
Ω
η2|Du|2 dx É c

ˆ
Ω

(| f |2 +|u|2)dx. (3.8)

(8) The argument in (6), with Ω replaced by Ω′′, combined with (7) gives

‖u‖W2,2(Ω′) É c
(‖ f ‖L2(Ω′′) +‖u‖W1,2(Ω′′)

)
.

É c
(‖ f ‖L2(Ω) +‖u‖L2(Ω)

)
.

This completes the proof. ä

T H E M O R A L : The proof is based on choosing appropriate test functions. In
step (2) we use v =−D−h

k (η2Dh
k u), k = 1, . . . ,n, and in step (7) we use v = η2u as

a test function in (3.7). These are the only points in the proof where we use the
PDE.
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Remark 3.9. The proof of the previous theorem gives an extremely useful energy
estimate (Caccioppoli estimate). Assume that Ω ⊂ Rn is a bounded open set,
ai j, bi, c ∈ L∞(Ω), i, j = 1, . . . ,n and f ∈ L2(Ω). Let u ∈W1,2(Ω) be a weak solution
of Lu = f in Ω, where L is as in (1.4). Then by (3.8), there exists a constant
c = c(λ,Ω′) such that ˆ

Ω′
|Du|2 dx É c

ˆ
Ω

(| f |2 +|u|2)dx,

whenever Ω′ bΩ. Observe, that Poincaré inequality states thatˆ
Ω
|u|2 dx É c(diamΩ)2

ˆ
Ω
|Du|2 dx

for every u ∈ W1,2
0 (Ω). Thus the energy estimate above is a reverse Poincaré

inequality.

3.4 A bootstrap argument
Motivation: Our goal is to use Theorem 3.5 recursively provided the coefficients
and the right-hand side of the PDE are smooth enough. To this end, we would like
to show that weak derivatives of a weak solution are solutions to certain PDE as
well. Assume that ai j are constants, bi = 0, i, j = 1, . . . ,n, c = 0 and f = 0. Then we
have

Lu =−
n∑

i, j=1
D j(ai jD iu)=−

n∑
i, j=1

ai jD jD iu = 0.

Let ψ ∈ C∞
0 (Ω) and choose

ϕ= Dkψ ∈ C∞
0 Ω), k = 1, . . . ,n,

as a test function in the definition of a weak solution. This givesˆ
Ω

n∑
i, j=1

ai jD iuD jϕdx = 0.

Recall that by Theorem 3.5 we have u ∈W2,2
loc (Ω) and thus

Dku ∈W1,2
loc (Ω), k = 1, . . . ,n.

By the definition of the weak derivative, that is, integration by parts, this gives
n∑

i, j=1

ˆ
Ω

(ai jD iu)(D jDkψ)dx =
n∑

i, j=1

ˆ
Ω

(ai jD iu)(DkD jψ)dx

=−
n∑

i, j=1

ˆ
Ω

Dk(ai jD iu)D jψdx

=−
n∑

i, j=1

ˆ
Ω

(ai jDkD iu)D jψdx

=−
ˆ
Ω

n∑
i, j=1

ai jD i(Dku)D jψdx = 0.
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T H E M O R A L : This means that Dku, k = 1, . . . ,n, is a weak solution to the
same PDE as u. This procedure can be iterated and used to show smoothness of
weak solutions.

Next we extend this argument to more general PDEs.

Theorem 3.10 (Higher order interior estimate). Let m be a nonnegative in-
teger. Assume that

ai j, bi, c ∈ Cm+1(Ω), i, j = 1, . . . ,n, and f ∈Wm,2(Ω).

Let u ∈ W1,2(Ω) be a weak solution of Lu = f in Ω, where L is as in (1.4). Then
u ∈Wm+2,2

loc (Ω) and for every Ω′ bΩ, we have

‖u‖Wm+2,2(Ω′) É c
(‖ f ‖Wm,2(Ω) +‖u‖L2(Ω)

)
,

where the constant c depends only on Ω′, Ω and the coefficients of L.

T H E M O R A L : This regularity result asserts that a weak solution belongs
locally to a higher order Sobolev space, if the coefficients and the right-hand side
of the PDE are smooth enough. In addition, this result comes with an estimate.
In this sense u has two more derivatives than f . Thus the degree of regularity
can be increased stepwise provided the data is smooth.

Proof. (1) We prove the claim by induction on m. The case m = 0 follows from
Theorem 3.5.

(2) Let u ∈W1,2(Ω) be a weak solution of Lu = f in Ω. Assume that for some
nonnegative integer m, we have u ∈Wm+2,2

loc (Ω) and

‖u‖Wm+2,2(Ω′) É c
(‖ f ‖Wm,2(Ω) +‖u‖L2(Ω)

)
(3.11)

for every Ω′ bΩ, where the constant c depends only on Ω′, Ω and the coefficients
of L. We shall show that the claim holds for m+1. To this end, assume that

ai j, bi, c ∈ Cm+2(Ω), i, j = 1, . . . ,n, and f ∈Wm+1,2(Ω). (3.12)

Recall that by the induction hypothesis we have u ∈Wm+2,2
loc (Ω).

(3) Assume that Ω′ bΩ′′ bΩ. Let α be any multi-index with |α| = m+1. Let
φ ∈ C∞

0 (Ω′′) and use
ϕ= (−1)|α|Dαφ

as a test function in
ˆ
Ω

(
n∑

i, j=1
ai jD iuD jϕ+

n∑
i=1

biD iuϕ+ cuϕ

)
dx =

ˆ
Ω

fϕdx.
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This gives

n∑
i, j=1

(−1)|α|
ˆ
Ω

ai jD iuD j(Dαφ)dx+
n∑

i=1
(−1)|α|

ˆ
Ω

biD iuDαφdx

+ (−1)|α|
ˆ
Ω

cuDαφdx = (−1)|α|
ˆ
Ω

f Dαφdx.

After a number of integrations by parts, we obtain
ˆ
Ω

(
n∑

i, j=1
ai jD i ũD jφ+

n∑
i=1

biD i ũφ+ cũφ

)
dx =

ˆ
Ω

f̃φdx,

where ũ = Dαu ∈W1,2(Ω′′) and

f̃ = Dα f − ∑
βÉα,β6=α

(
α

β

)[
−

n∑
i, j=1

D j

(
Dα−βai jDβD iu

)

+
n∑

i=1
Dα−βbiDβD iu+Dα−βcDβu

]
, (3.13)

where
(α
β

)= α!
β!(α−β)! . This shows that ũ is a weak solution to

Lũ = f̃ in Ω′′.

By (3.13), (3.11) and (3.12) we conclude that f̃ ∈ L2(Ω′′) with

‖ f̃ ‖L2(Ω′′) É c
(‖ f ‖Wm+1,2(Ω) +‖u‖L2(Ω)

)
.

(4) Theorem 3.5 implies ũ ∈W2,2(Ω′) with the estimate

‖ũ‖W2,2(Ω′) É c
(‖ f̃ ‖L2(Ω′′) +‖ũ‖L2(Ω′′)

)
É c

(‖ f ‖Wm+1,2(Ω) +‖u‖L2(Ω)
)
.

This holds true for every multi-index α with |α| = m+1 and ũ = Dαu. This implies
u ∈Wm+3,2(Ω′) and

‖u‖Wm+3,2(Ω′) É ‖u‖Wm+2,2(Ω′) +‖Dαu‖W2,2(Ω′)

É c
(‖ f ‖Wm,2(Ω) +‖u‖L2(Ω)

)+ c
(‖ f ‖Wm+1,2(Ω) +‖u‖L2(Ω)

)
É c

(‖ f ‖Wm+1,2(Ω) +‖u‖L2(Ω)
)
.

This completes the proof. ä

Remark 3.14. By the higher order Sobolev embedding, we obtain that u ∈ C1(Ω)
when 2(m+2)> n and u ∈ C2(Ω) when 2m > n. Thus

∞⋂
m=0

Wm+2,2
loc (Ω)= C∞(Ω).

Theorem 3.10 can be applied recursively with m = 0,1,2, . . . to conclude smoothess
of a weak solution if the data is smooth.
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Theorem 3.15 (Smoothness). Assume that

ai j, bi, c ∈ C∞(Ω), i, j = 1, . . . ,n, and f ∈ C∞(Ω).

Let u ∈ W1,2(Ω) be a weak solution of Lu = f in Ω, where L is as in (1.4). Then
u ∈ C∞(Ω).

T H E M O R A L : A weak solution is smooth if the data is smooth. Note that
no boundary conditions are assumed, so that this regularity result applies to
PDEs with Dirichlet, Neumann or other boundary conditions. Moreover, it shows
that possible singularities on the boundary do not propagate inside the domain.
Observe that these regularity results are based on estimates that are proved from
structural ellipticity properties of the PDE. Thus the result holds for a whole class
of PDEs instead of a particular PDE.

Remark 3.16. For the corresponding estimates up to the boundary, we refer to [2],
p. 336–345.

Remark 3.17. We discuss very formally Hilbert’s XIXth problem (1900) on the
calculus of variations. For a detailed presentation, we refer to [4, Chapter 3].
Consider the variational integral

I(v)=
ˆ
Ω

F(Dv)dx,

where F is smooth and uniformly convex and Ω ⊂ Rn is an open set. Roughly
speaking Hilbert’s XIXth problem is the following: Is it true that all local mini-
mizers of the variational integral above are smooth? Let u ∈W1,2

loc (Ω) be a weak
solution to the associated Euler-Lagrange equation

−div A(Du)= 0

with A = (A1, . . . , , An), A i(ξ) = Ç
Çξi

F(ξ), i = 1,2, . . . ,n. Let us assume that u is
smooth enough so that it satisfies

−
n∑

i, j=1

(
Ç2

ÇξiÇξ j
F(Du(x))

)
Ç2u

ÇxiÇx j
(x)= 0 in Ω.

Let us consider this as a linear PDE with the coefficients

ai j(x)= Ç2

ÇξiÇξ j
F(Du(x)), i, j = 1, . . . ,n.

By the uniform convexity, the coefficient matrix A = (ai j(x)) is satisfies the elliptic-
ity condition. Moreover, if u ∈ C0,α

loc (Ω), then ai j ∈ C0,α
loc (Ω). By Schauder estimates,

we have
u ∈ C0,α

loc (Ω)=⇒ ai j ∈ C0,α
loc (Ω)=⇒ u ∈ C2,α

loc (Ω).
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We can then apply a bootstrap argument and obtain

u ∈ C2,α
loc (Ω)=⇒ Du ∈ C0,α

loc (Ω)=⇒ ai j ∈ C1,α
loc (Ω)=⇒ u ∈ C3,α

loc (Ω)

=⇒ ·· · =⇒ u ∈ C∞(Ω)

Later we shall show that a weak solution u ∈W1,2
loc (Ω) is locally Hölder continuous,

which is required in the initial step in the boostrap argument.



4
Local Hölder continuity

In the previous chapter we discussed regularity of weak solutions under smooth-
ness assumptions on the coefficients, but this chapter focuses regularity of weak
solutions under the assumption that the coefficients are only bounded and mea-
surable functions. We give a treatment of a remarkable De Giorgi-Nash-Moser
result that weak solutions of the equation

−div(ADu)=−
n∑

i, j=1
D j(ai jD iu)= 0 in Ω (4.1)

are locally Hölder continuous under the ellipticity assumption

λ|ξ|2 É
n∑

i, j=1
ai j(x)ξiξ j ÉΛ|ξ|2, 0<λÉΛ,

for almost every x ∈Ω and every ξ ∈Rn. See Definitions 1.7 and 1.18 for precise
definitions. This result was proved by De Giorgi and Nash independently in the
1950’s and it is one of the major results in PDEs. We shall consider Moser’s proof
of this result. Throughout we assume that ai j ∈ L∞(Ω), i, j = 1, . . . ,n, that is, the
coefficients are only bounded and measurable functions. Instead of the general
equation (1.4), we only consider the case bi = 0, i = 1, . . . ,n, c = 0 and f = 0 in this
chapter. Essential features and challenges of the theory are already visible in this
case.

4.1 Super- and subsolutions

Motivation: Assume that u ∈ C2(Ω), ai j ∈ C1(Ω) satisfies

−
n∑

i, j=1
D j(ai jD iu)Ê 0 in Ω.

75
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Let ϕ ∈ C∞
0 (Ω) with ϕÊ 0. Then we can integrate by parts and obtain

0É
ˆ
Ω
−

n∑
i, j=1

D j(ai jD iu)ϕdx =
ˆ
Ω

n∑
i, j=1

ai jD iuD jϕdx

for every ϕ ∈ C∞
0 (Ω).

On the other hand, if
ˆ
Ω

n∑
i, j=1

ai jD iuD jϕdx Ê 0

for every ϕ ∈ C∞
0 (Ω) with ϕÊ 0, then

ˆ
Ω
−

n∑
i, j=1

D j(ai jD iu)ϕdx Ê 0

for every ϕ ∈ C∞
0 (Ω) with ϕÊ 0 and consequently

−
n∑

i, j=1
D j(ai jD iu)Ê 0 in Ω.

T H E M O R A L : A function u ∈ C2(Ω) is a classical supersolution of (4.1) if
and only if it is a weak supersolution of (4.1) in the sense of the definition below.
Observe that the negative sign in front of the second order terms disappears after
integration by parts.

Definition 4.2. u ∈W1,2
loc (Ω) is a weak supersolution of (4.1), if
ˆ
Ω

n∑
i, j=1

ai j(x)D iuD jϕdx Ê 0

for every ϕ ∈ C∞
0 (Ω) with ϕÊ 0. For a subsolution, we require

ˆ
Ω

n∑
i, j=1

ai j(x)D iuD jϕdx É 0

for all such test functions.

T H E M O R A L : Every weak solution is a weak super- and subsolution. The
advantage is that the properties of super- and subsolutions can be considered
separately.

Remarks 4.3:
(1) By Lemma 2.43, a function u ∈W1,2

loc (Ω) is a weak supersolution (subsolu-
tion and solution, respectively) in Ω if and only if

ˆ
Ω

n∑
i, j=1

ai jD iuD jv dx Ê 0

for every v ∈W1,2
0 (Ω) with v Ê 0 almost everywhere in Ω (exercise).
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(2) u ∈W1,2
loc (Ω) is a weak solution if and only if it is both super- and subsolution

in Ω (exercise).

(3) u is a weak supersolution if and only if −u is a weak subsolution (exercise).

Lemma 4.4. If u ∈W1,2
loc (Ω) is a weak subsolution of (4.1), then u+ =max{u,0} is

a weak subsolution in Ω.

T H E M O R A L : The class of weak subsolutions is closed with respect to trun-
cation from below. The class of weak solutions does not have the corresponding
property.

Proof. By properties of Sobolev spaces, we have u+ ∈W1,2
loc (Ω). Let ϕ ∈ C∞

0 (Ω) with
ϕÊ 0. Denote

vk =min{ku+,1}, k = 1,2, . . . .

Then (vk) is an increasing sequence, 0É vk É 1, k = 1,2, . . . ,

lim
k→∞

vk(x)= χ{x∈Ω:u(x)>0}(x), x ∈Ω,

and we choose vkϕ ∈W1,2
0 (Ω) as a test function. Notice that vkϕÊ 0 and that

D jvk =
kD ju almost everywhere in {x ∈Ω : 0< ku(x)< 1},

0 almost everywhere in {x ∈Ω : ku(x)Ê 1}∪ {x ∈Ω : u(x)É 0}.

The Leibniz rule gives

0Ê
ˆ
Ω

n∑
i, j=1

ai jD iuD j(vkϕ)dx

=
ˆ
Ω

n∑
i, j=1

ai jD iu(ϕD jvk +vkD jϕ)dx

= k
ˆ

{x∈Ω:0<u(x)< 1
k }

n∑
i, j=1

ai jϕD iuD ju dx+
ˆ
Ω

n∑
i, j=1

ai jvkD iuD jϕdx.

The previous estimate together with the ellipticity implies thatˆ
Ω

n∑
i, j=1

ai jvkD iuD jϕdx É−k
ˆ

{x∈Ω:0<u(x)< 1
k }
ϕ

n∑
i, j=1

ai jD iuD ju dx

É−kλ
ˆ

{x∈Ω:0<u(x)< 1
k }
ϕ|Du|2 dx É 0.

Since ∣∣∣∣∣ n∑
i, j=1

ai jvkD iuD jϕ

∣∣∣∣∣É n∑
i, j=1

|ai j||vk||D iu||D jϕ|

É
n∑

i, j=1
‖ai j‖L∞(Ω)‖D jϕ‖L∞(Ω)|D iu|

É c
n∑

i, j=1
|D iu| ∈ L1(Ω),
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we may use the Lebesgue dominated convergence theorem to conclude that
ˆ
Ω

n∑
i, j=1

ai jD iu+D jϕdx =
ˆ
Ω

lim
k→∞

n∑
i, j=1

ai jvkD iuD jϕdx

= lim
k→∞

ˆ
Ω

n∑
i, j=1

ai jvkD iuD jϕdx É 0

for every ϕ ∈ C∞
0 (Ω) with ϕÊ 0. ä

T H E M O R A L : The proof is based on a clever choice of a test function.

Remark 4.5. The following versions of the previous result are left as exercises.

(1) If u is a weak subsolution, then max{u,k}, k ∈Z, is a weak subsolution.

(2) If u,v are weak subsolutions, then max{u,v} is a weak subsolution.

(3) If u is a weak supersolution, then min{u,k}, k ∈Z, is a weak supersolution.

(4) If u,v are weak supersolutions, then min{u,v} is a weak supersolution.

(5) If u is a weak subsolution and f ∈ C2(R) with f (0)= 0, f ′′ Ê 0 ( f is convex)
and f ′ Ê 0, then f ◦u is a weak subsolution.

(6) If u is a weak supersolution and f ∈ C2(R) with f (0) = 0, f ′′ É 0 ( f is
concave) and f ′ Ê 0, then f ◦u is a weak supersolution.

(7) If u is a weak solution and f ∈ C2(R) is convex, then f ◦ u is a weak
subsolution.

In properties (5)–(7) we assume f ∈ C2(R) is such that the chain rule holds for
f ◦u.

T H E M O R A L : The classes of super- and subsolutions are more flexible than
solutions. In particular, super- and subsolutions can be modified as above. The
corresponding modifications are not possible in the class of weak solutions.

4.2 Caccioppoli estimates
Next we prove a Caccioppoli type energy estimate. The purpose of Caccioppoli
type estimates is to provide estimates for the gradient of the solutions with respect
to the function itself. A combination of a Caccioppoli type estimate and Sobolev
embedding provides us reverse Hölder inequalities. In many cases the PDE is
used only to prove Caccioppoli estimates and the rest of the argument applies to
all functions that satisfy the corresponding estimate. This is a powerful method,
since it applies to a whole class of PDEs simultaneously.
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Theorem 4.6. Assume that u ∈W1,2
loc (Ω) is a weak subsolution of (4.1) inΩ. There

exists a constant c = c(λ,Λ) such thatˆ
Ω
ϕ2|Du|2 dx É c

ˆ
Ω

u2|Dϕ|2 dx

for every ϕ ∈ C∞
0 (Ω).

T H E M O R A L : The energy estimate above asserts that if u is small in average,
the gradient of u is small in average. This contains nontrivial information about
a weak solution, since by considering highly oscillating functions with small
amplitude we note that this is not true for arbitrary functions u ∈W1,2

loc (Ω).

Proof. Let ϕ ∈ C∞
0 (Ω) and define v =ϕ2u ∈W1,2

0 (Ω). Then v is compactly supported
in Ω and

D jv =ϕ2D ju+2ϕuD jϕ, j = 1, . . . ,n,

almost everywhere in Ω. Since u is a weak solution and v ∈W1,2
0 (Ω), we have

0=
ˆ
Ω

n∑
i, j=1

ai jD iuD jv dx

=
ˆ
Ω
ϕ2

n∑
i, j=1

ai jD iuD ju dx+2
ˆ
Ω
ϕu

n∑
i, j=1

ai jD iuD jϕdx.

This implies that
ˆ
Ω
ϕ2

n∑
i, j=1

ai jD iuD ju dx É 2

∣∣∣∣∣
ˆ
Ω
ϕu

n∑
i, j=1

ai jD iuD jϕdx

∣∣∣∣∣
É 2
ˆ
Ω
|ϕ||u|

n∑
i, j=1

‖ai j‖L∞(Ω)|D iu||D jϕ|dx

É c
ˆ
Ω
|ϕ||u||Du||Dϕ|dx.

Next we first apply the uniform ellipticity condition to the previous estimate,
and then we use Young’s inequality with epsilon to have

λ

ˆ
Ω
ϕ2|Du|2 dx É c

ˆ
Ω
|ϕ||u||Du||Dϕ|dx

É λ

2

ˆ
Ω
ϕ2|Du|2 dx+ c

ˆ
Ω

u2|Dϕ|2 dx.

Both terms on the right-hand side are finite, since u ∈ W1,2
loc (Ω) and ϕ ∈ C∞

0 (Ω).
The claim follows by absorbing the first term on the right-hand side. ä

By the Poincaré inequality in Remark 1.43, we haveˆ
B(x,2r)

|u−uB(x,2r)|2 d yÉ cr2
ˆ

B(x,2r)
|Du|2 d y

for every u ∈ W1,2
loc (Ω). As a consequence of the energy estimate, we obtain the

following reverse Poincaré inequality for weak solutions. Compare to Remark 3.9.
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Lemma 4.7. Assume that u ∈W1,2
loc (Ω) is a weak subsolution of (4.1) in Ω. There

exists a constant c = c(λ,Λ) such that
ˆ

B(z,r)
|Du|2 dx É c

r2

ˆ
B(z,2r)

|u−uB(z,2r)|2 dx

for every ball B(z, r) with B(z,2r)bΩ.

Proof. Let ϕ ∈ C∞
0 (B(z,2r)) be a cutoff function with 0ÉϕÉ 1, ϕ= 1 in B(z, r) and

|Dϕ| É c
r . Then u−uB(z,2r) ∈ W1,2(B(z,2r)) is a weak solution to (4.1) in B(z,2r).

Theorem 4.6 implies
ˆ

B(z,r)
|Du|2 dx É

ˆ
B(z,2r)

ϕ2|D(u−uB(z,2r))|2 dx

É c
ˆ

B(z,2r)
|u−uB(z,2r)|2|Dϕ|2 dx

É c
r2

ˆ
B(z,2r)

|u−uB(z,2r)|2 dx. ä

Next we discuss a Caccioppoli estimate for weak subsolutions. Observe, that
the result also holds for weak solutions.

Theorem 4.8 (Caccioppoli estimate for subsolutions). Assume that u ∈W1,2
loc (Ω)

is a weak subsolution of (4.1) in Ω and let α> 0. Then there exists c = c(λ,Λ) such
that ˆ

{x∈Ω:u(x)>0}
uα−1|Du|2ϕ2 dx É c

α2

ˆ
{x∈Ω:u(x)>0}

uα+1|Dϕ|2 dx

for every ϕ ∈ C∞
0 (Ω) with ϕÊ 0.

Proof. By Lemma 4.4 we may assume that u = u+. We would like to apply uαϕ2

as a test function, but it is not clear that this function belongs to W1,2
0 (Ω). Thus

we modify the test function in the following manner. Let

ψk =ϕ2 min{uα,ku} k = 1,2, . . . ,

Observe that ψk ∈W1,2
0 (Ω) and ψk Ê 0, k = 1,2, . . .. Moreover, (ψk) is an increasing

sequence,
lim
k→∞

ψk(x)= u(x)αϕ(x)2, x ∈Ω,

and
D jψk = 2ϕ(D jϕ)min{uα,ku}+ (D j min{uα,ku})ϕ2, j = 1, . . . ,n.

Since u is a weak subsolution, we have

0Ê
ˆ
Ω

n∑
i, j=1

ai jD iuD jψk dx

=
ˆ
Ω

n∑
i, j=1

ai jD iu(D j min{uα,ku})ϕ2 dx+2
ˆ
Ω

n∑
i, j=1

ai jD iu(D jϕ)ϕmin{uα,ku}dx.
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Denote
Ωk = {x ∈Ω : 0< uα(x)É ku(x)}, k = 1,2, . . . .

Notice that D ju = 0 almost everywhere in the set where u = 0. Therefore we have

D j min{uα,ku}=
αuα−1D ju almost everywhere in Ωk,

kD ju almost everywhere in Ω\Ωk.

The previous inequality implies that

α

ˆ
Ωk

n∑
i, j=1

ai jD iuD ju uα−1ϕ2 dx+k
ˆ
Ω\Ωk

n∑
i, j=1

ai jD iuD juϕ2 dx

É 2

∣∣∣∣∣
ˆ
Ω
ϕmin{uα,ku}

n∑
i, j=1

ai jD iuD jϕdx

∣∣∣∣∣
É 2c
ˆ
Ωk

ϕuα
n∑

i, j=1
|D iu||D jϕ|dx+2kc

ˆ
Ω\Ωk

ϕu
n∑

i, j=1
|D iu||D jϕ|dx

É c
ˆ
Ωk

ϕuα|Du||Dϕ|dx+kc
ˆ
Ω\Ωk

ϕu|Du||Dϕ|dx.

Next we first apply the uniform ellipticity condition to the previous estimate,
and then we use Young’s inequality with epsilon (exercise) to have

αλ

ˆ
Ωk

uα−1|Du|2ϕ2 dx+kλ
ˆ
Ω\Ωk

|Du|2ϕ2 dx

Éc
ˆ
Ωk

ϕuα|Du||Dϕ|dx+kc
ˆ
Ω\Ωk

ϕu|Du||Dϕ|dx

Éαλ
2

ˆ
Ωk

uα−1|Du|2ϕ2 dx+ λk
2

ˆ
Ω\Ωk

|Du|2ϕ2 dx

+ c
α

ˆ
Ωk

uα+1|Dϕ|2 dx+ ck
ˆ
Ω\Ωk

u2|Dϕ|2 dx.

Since uα É ku in Ωk and u ∈W1,2
loc (Ω), we have

ˆ
Ωk

uα−1|Du|2ϕ2 dx É k
ˆ
Ωk

|Du|2ϕ2 dx <∞

and ˆ
Ω\Ωk

|Du|2ϕ2 dx É
ˆ
Ω
|Du|2ϕ2 dx <∞,

so that these terms can be absorbed into the left-hand side. This gives

α

ˆ
Ωk

uα−1|Du|2ϕ2 dx+k
ˆ
Ω\Ωk

|Du|2ϕ2 dx

É c
α

ˆ
Ωk

uα+1|Dϕ|2 dx+ ck
ˆ
Ω\Ωk

u2|Dϕ|2 dx,

where
k
ˆ
Ω\Ωk

u2|Dϕ|2 dx É
ˆ
Ω\Ωk

uα+1|Dϕ|2 dx → 0 as k →∞,
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since ku É uα in Ω\Ωk. Here we may assume that uα+1|Dϕ|2 ∈ L1(Ω), since
otherwise the claim is clear. Consequently

ˆ
Ω

uα−1|Du|2ϕ2 dx = lim
k→∞

ˆ
Ωk

uα−1|Du|2ϕ2 dx

É lim
k→∞

(
c
α2

ˆ
Ωk

uα+1|Dϕ|2 dx+ ck
α

ˆ
Ω\Ωk

u2|Dϕ|2 dx
)

= c
α2

ˆ
Ω

uα+1|Dϕ|2 dx.

The last equality follows from the Lebesgue dominated convergence theorem. ä

Theorem 4.9 (Caccioppoli estimate for supersolutions). Assume that u ∈
W1,2

loc (Ω), u Ê 0, is a weak supersolution of (4.1) in Ω and let α < 0. Then there
exists c = c(λ,Λ) such that

ˆ
{x∈Ω:u(x)>0}

uα−1|Du|2ϕ2 dx É c
|α|2
ˆ

{x∈Ω:u(x)>0}
uα+1|Dϕ|2 dx

for every ϕ ∈ C∞
0 (Ω) with ϕÊ 0.

T H E M O R A L : This is the same estimate as in Theorem 4.8 for negative values
of α.

Proof. Let uk = u+ 1
k , k = 1,2, . . . , and apply uαkϕ

2 ∈ W1,2
0 (Ω) as a test function.

Then
D j(uαkϕ

2)= 2ϕ(D jϕ)uαk +αuα−1
k (D juk)ϕ2, j = 1, . . . ,n.

Since u is a weak supersolution, we have

0É
ˆ
Ω

n∑
i, j=1

ai jD iuD j(uαkϕ
2)dx

= 2
ˆ
Ω
ϕuαk

n∑
i, j=1

ai jD iuD jϕdx+α
ˆ
Ω
ϕ2uα−1

k

n∑
i, j=1

ai jD iuD ju dx.

By using the previous equation and ellipticity, we obtain the estimate
ˆ
Ω
ϕ2uα−1

k |Du|2 dx É 1
λ

ˆ
Ω
ϕ2uα−1

k

n∑
i, j

ai jD iuD ju dx

É− 2
αλ

ˆ
Ω
ϕuαk

n∑
i, j=1

ai jD iuD jϕdx

É c
|α|
ˆ
Ω
ϕuαk |Du||Dϕ|dx (ai j ∈ L∞(Ω))

= c
|α|
ˆ
Ω
ϕu

α−1
2

k u
α+1

2
k |Du||Dϕ|dx

É 1
2

ˆ
Ω
ϕ2uα−1

k |Du|2 dx+ c
|α|2
ˆ
Ω

uα+1
k |Dϕ|2 dx. (Young with ε)
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Thus ˆ
Ω
ϕ2uα−1

k |Du|2 dx É c
|α|2
ˆ
Ω

uα+1
k |Dϕ|2 dx.

By the monotone and dominated convergence theorem, we conclude thatˆ
Ω
ϕ2uα−1|Du|2 dx =

ˆ
Ω

lim
k→∞

ϕ2uα−1
k |Du|2 dx

= lim
k→∞

ˆ
Ω
ϕ2uα−1

k |Du|2 dx

É lim
k→∞

c
|α|2
ˆ
Ω

uα+1
k |Dϕ|2 dx

= c
|α|2
ˆ
Ω

lim
k→∞

uα+1
k |Dϕ|2 dx

É c
|α|2
ˆ
Ω

uα+1|Dϕ|2 dx.

Observe that if α+1< 0, we may use the monotone convergence theorem in taking
the limit inside the integral. If −1 É α < 0, then uα+1

k É (u+1)α+1 and we may
apply the dominated convergence theorem. ä

Theorem 4.10 (Logarithmic Caccioppoli inequality). If u > 0 is a weak su-
persolution of (4.1) in Ω, then there exists c = c(λ,Λ) such thatˆ

Ω
ϕ2|D logu|2 dx É c

ˆ
Ω
|Dϕ|2 dx

for every ϕ ∈ C∞
0 (Ω), ϕÊ 0.

T H E M O R A L : This is a uniform bound for the logarithm of the gradient, since
the right hand side is independent of u.

Proof. Theorem 4.9 with α=−1 gives
ˆ
Ω
ϕ2|D logu|2 dx =

ˆ
Ω
ϕ2 |Du|2

u2 dx É c
ˆ
Ω
|Dϕ|2 dx. ä

4.3 Integral averages
Our goal is to obtain estimates for the maximum and the minimum of a solution to
a PDE. Since functions in Sobolev spaces are defined only up to a set of measure
zero, we recall the definition of essential supremum and infimum.

Definition 4.11. Let A ⊂Rn be a Lebesgue measurable set and f : A → [−∞,∞]
a Lebesgue measurable function. The essential supremum of f is

esssup
x∈A

f (x)= inf{M : f (x)É M for almost every x ∈ A}

= inf {M : |{x ∈ A : f (x)> M}| = 0}
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and the essential infimum of f is

essinf
x∈A

f (x)= sup{m : f (x)Ê m for almost every x ∈ A}

= sup {m : |{x ∈ A : | f (x)| < m}| = 0} .

T H E M O R A L : Essential supremum is supremum outside sets of measure zero.

Remark 4.12. Observe that for the standard supremum we have

sup
x∈A

f (x)= inf {M : {x ∈ A : f (x)> M}=;} .

Analogously, essential infimum is infimum outside sets of measure zero.

inf
x∈A

f (x)= sup {m : {x ∈ A : f (x)< m}=;} .

Moreover,
f (x)É esssup

x∈A
f (x) for almost every x ∈ A

and
f (x)Ê essinf

x∈A
f (x) for almost every x ∈ A.

The integral average of f in A, 0< |A| <∞, is denoted by×
A

f dx = 1
|A|
ˆ

A
f dx.

Let −∞< p < q <∞, p 6= 0, q 6= 0 and assume that 0 < |A| <∞. By Hölder’s, or
Jensen’s, inequality

essinf
A

| f | É
(×

A
| f |p dx

) 1
p É

(×
A
| f |q dx

) 1
q É esssup

A
| f |.

Thus the integral average is an increasing function of the power.

Theorem 4.13. Let f : A → [−∞,∞] be a Lebesgue measurable function and
0< |A| <∞. Then

(1) lim
p→∞

(×
A
| f |p dx

) 1
p = esssup

A
| f | and

(2) lim
p→∞

(×
A
| f |−p dx

)− 1
p = essinf

A
| f |.

T H E M O R A L : This gives a method to derive estimates for supremum and
infimum by uniform estimates for integral averages with powers. The Moser
iteration technique is based on this observation.



CHAPTER 4. LOCAL HÖLDER CONTINUITY 85

Remark 4.14. The integral average can be replaced with the integral.

Proof. (1) Assume that esssupA | f | <∞. Then
ˆ

A
| f |p dx É esssup

A
| f |p
ˆ

A
1dx = |A|(esssup

A
| f |)p,

which implies that for every p, 1É p <∞,(×
A
| f |p dx

) 1
p É esssup

A
| f |

and, in particular, that

limsup
p→∞

(×
A
| f |p dx

) 1
p É esssup

A
| f |.

This clearly holds true also in the case esssupA | f | =∞.
Denote Eλ = {x ∈ A : | f (x)| > λ}. For every λ with 0É λ< esssupA | f |, we have

|Eλ| > 0. Since | f |p Êλp in Eλ, we obtain

λp|Eλ| É
ˆ

Eλ

| f |p dx É
ˆ

A
| f |p dx.

By taking the pth root we have

λ|Eλ|
1
p É

(ˆ
A
| f |p dx

) 1
p

.

Observe that for any Eλ with 0< |Eλ| <∞, we have |Eλ|
1
p → 1 as p →∞. Thus

λÉ liminf
p→∞

(ˆ
A
| f |p dx

) 1
p

As 0< |A| <∞, we have also that |A| 1
p → 1 as p →∞ and thus

λÉ liminf
p→∞

(×
A
| f |p dx

) 1
p

.

By letting λ→ esssupA | f |, we obtain

esssup
A

| f | É liminf
p→∞

(×
A
| f |p dx

) 1
p

.

All together we have now proved that

esssup
A

| f | É liminf
p→∞

(×
A
| f |p dx

) 1
p É limsup

p→∞

(×
A
| f |p dx

) 1
p É esssup

A
| f |,

which implies that the limit exists and

esssup
A

| f | = lim
p→∞

(×
A
| f |p dx

) 1
p

.
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(2) Clearly ˆ
A
| f |−p dx É (essinf

A
| f |)−p|A|,

and thus (×
A
| f |−p dx

)− 1
p Ê essinf

A
| f |.

By letting p →∞ we see that

liminf
p→∞

(×
A
| f |−p dx

)− 1
p Ê essinf

A
| f |.

Let Fλ = {x ∈ A : | f (x)| < λ}. For every λ > essinfA | f |, we have |Fλ| > 0 and by
using the fact that | f |−p Êλ−p in Fλ, we obtain

λ−p|Fλ| É
ˆ

Fλ
| f |−p dx É

ˆ
A
| f |−p dx.

This is equivalent to

λ|Fλ|−
1
p Ê

(ˆ
A
| f |−p dx

)− 1
p

.

As |Fλ|−
1
p → 1 as p →∞, we conclude

λÊ limsup
p→∞

(ˆ
A
| f |−p dx

)− 1
p = limsup

p→∞

(×
A
| f |−p dx

)− 1
p

.

Since this holds for every λ> essinfA | f |, we obtain

essinf
A

| f | Ê limsup
p→∞

(×
A
| f |−p dx

)− 1
p

. ä

Remark 4.15. Part (2) of the theorem above could be also proved by applying the
part (1) to the function 1

| f | .

The following result is sometimes useful in the Moser iteration technique. We
will not apply it later, but we discuss it for the sake of curiosity.

Theorem 4.16. Let f : A → [−∞,∞] be a Lebesgue measurable function with´
A | f |p0 dx <∞ for some 0< p0 <∞ and 0< |A| <∞. Then

lim
p→0

(×
A
| f |p dx

) 1
p = e

Ö
A log | f |dx.

Proof. Let I : [0, p0] → [0,∞), I(p) = Ö
A | f |p dx, with the interpretation I(0) = 1.

We observe that | f |p Émax{1, | f |p0 } ∈ L1(A), 0É p É p0, and that I is a continuous
function by the dominated convergence theorem.
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We show that I is differentiable at p = 0. For a fixed parameter t > 0, consider
the function gt : [0, p0] → R, gt(p) = tp−1

p . The function p 7→ tp is convex, so that
the function p 7→ gt(p) is increasing and

lim
p→0

gt(p)= d
dp

tp
∣∣∣∣
p=0

= log t.

By the monotone convergence theorem, we have

I ′(0)= lim
p→0

I(p)− I(0)
p−0

= lim
p→0

×
A

| f |p −1
p

dx

=
×

A
lim
p→0

| f |p −1
p

dx =
×

A
log | f |dx.

Here we use the convention

lim
p→0

|0|p −1
p

=− lim
p→0

1
p
=−∞= log |0|.

This shows that I ′(0) exists and I ′(0)= Ö
A log | f |dx, with the interpretation that

I ′(0) may be −∞.
On the other hand, we have(×

A
| f |p dx

) 1
p = e

1
p log

Ö
A | f |p dx = e

1
p log I(p) = e

1
p (log I(p)−log I(0)).

By the chain rule

d
dp

log I(p)
∣∣∣∣
p=0

= I ′(0)
I(0)

= I ′(0)=
×

A
log | f |dx.

Form this we conclude

lim
p→0

(×
A
| f |p dx

) 1
p = eI ′(0) = e

Ö
A log | f |dx. ä

4.4 Estimates from above
The next result shows that a weak subsolution to an elliptic PDE with measurable
coefficients is locally bounded from above. The proof is based on the Moser
iteration technique together with a Caccioppoli inequality and a Sobolev inequality.
Sometimes this result is called the weak maximum principle, since it gives an
estimate of the supremum in terms of positive powers of integral averages. This
is a counterpart of the mean value property of subharmonic functions for more
general PDEs.



CHAPTER 4. LOCAL HÖLDER CONTINUITY 88

Theorem 4.17 (Local boundedness from above). Assume that u ∈W1,2
loc (Ω) is

a weak subsolution of (4.1) in Ω and let β > 1. There exists constants c =
c(n,λ,Λ,β) and τ= τ(n)> 0 such that

esssup
B(x,r)

u+ É c
((

R
R− r

)τˆ
B(x,R)

(u+)β d y
) 1
β

whenever B(x,R)bΩ, 0< r < R.

T H E M O R A L : By choosing R = 2r, we have

esssup
B(x,r)

u É esssup
B(x,r)

u+ É c
(×

B(x,2r)
(u+)β d y

) 1
β É c

(×
B(x,2r)

|u|β d y
) 1
β

whenever B(x,2r)bΩ. Weak subsolutions are locally bounded from above. Ob-
serve that for β= 2, and by Hölder’s inequality also for 0<βÉ 2, the assumption
u ∈W1,2

loc (Ω) implies that the integral average on the right-hand side is finite. It
follows from the result that the integral average on the right-hand side is finite
for every β> 0.

Proof. Assume that u ∈ Lβ

loc(Ω). Observe that for β= 2, and by Hölder’s inequality
also for 0 < βÉ 2, this follows from the assumption u ∈W1,2

loc (Ω). By Lemma 4.4,
we may assume that u = u+. Choose a cutoff function ϕ ∈ C∞

0 (B(x,R)) with ϕ= 1
in B(x, r), 0ÉϕÉ 1 and |Dϕ| É c

R−r . By the Caccioppoli estimate, Theorem 4.8, we
have

ˆ
Ω

∣∣ϕD
(
u

β
2
)∣∣2 dy=

ˆ
Ω

∣∣∣∣β2 u
β
2 −1Du

∣∣∣∣2ϕ2 d y

=
(
β

2

)2ˆ
Ω

uβ−2|Du|2ϕ2 d y

=
(
β

2

)2ˆ
{x∈Ω:u(x)>0}

uβ−2|Du|2ϕ2 dy

É c(λ,Λ)
(

β

β−1

)2ˆ
{x∈Ω:u(x)>0}

uβ|Dϕ|2 d y

= c(λ,Λ)
(

β

β−1

)2ˆ
Ω

uβ|Dϕ|2 d y.

By the Leibniz rule, ∣∣D(
ϕu

β
2
)∣∣É ∣∣ϕD

(
u

β
2
)∣∣+ ∣∣u β

2 Dϕ
∣∣,

and thus ˆ
Ω

∣∣D(ϕu
β
2 )

∣∣2 d yÉ 2
(ˆ
Ω

∣∣ϕD(u
β
2 )

∣∣2 d y+
ˆ
Ω

∣∣u β
2 Dϕ

∣∣2 d y
)

É c(λ,Λ)
((

β

β−1

)2
+1

)ˆ
Ω

∣∣u β
2 Dϕ

∣∣2 d y.
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Notice that (
β

β−1

)2
+1= β2 + (β−1)2

(β−1)2
É 4β2 +4β+1

(β−1)2
=

(
2β+1
β−1

)2
.

By the Sobolev inequality in Theorem 1.44, we obtain

(ˆ
B(x,R)

∣∣ϕu
β
2
∣∣2κ d y

) 1
2κ É c(n)R

(ˆ
B(x,R)

∣∣D(
ϕu

β
2
)∣∣2 d y

) 1
2

É c(n,λ,Λ)R
((

2β+1
β−1

)2ˆ
B(x,R)

∣∣u β
2 Dϕ

∣∣2 d y
) 1

2

,

where κ> 1 is defined, for example, by

κ=


n
n−2 , n Ê 3,

2, n = 2.

By combining the previous estimates and using the properties of the cutoff func-
tion, we obtain the estimate

(ˆ
B(x,r)

uκβ d y
) 1
κβ É

( |B(x,R)|
|B(x, r)|

ˆ
B(x,R)

∣∣ϕu
β
2
∣∣2κ d y

) 1
κβ

É c(nλ,Λ)
2
β

(
R
r

) n
κβ

(
R2

(
2β+1
β−1

)2ˆ
B(x,R)

∣∣u β
2 Dϕ

∣∣2 d y
) 1
β

É c(n,λ,Λ)
2
β

(
R
r

) n
β

((
2β+1
β−1

R
R− r

)2ˆ
B(x,R)

uβ d y
) 1
β

.

(4.18)

This is a reverse Hölder inequality. Observe that from u ∈ Lβ

loc(Ω), we may
conclude that u ∈ Lκβ

loc(Ω) with κ> 1. This gives us a bootstrap method to increase
the level of local integrability stepwise. In particular, starting from β= 2, we may
iterate (4.18) and conclude that u ∈ Lβ

loc(Ω) for every 1<β<∞. Thus all integrals
in this proof are finite.

We show that the claim of Theorem 4.17 holds for β0 > 1. Note that if β0 > 1
and βÊβ0, then

2β+1
β−1

É 2β0 +1
β0 −1

= c(β0)

and by (4.18) there exists a constant c = c(n,λ,Λ,β0) such that

(ˆ
B(x,r)

uκβ d y
) 1
κβ É c

2
β

(
R
r

) n
β

(
R

R− r

) 2
β

(ˆ
B(x,R)

uβ d y
) 1
β

(4.19)

for every βÊβ0.
We apply this estimate recursively. Let r0 = R and

rk = r+ R− r
2k , k = 1,2, . . . .
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Then

r < rk+1 < rk É R,
rk

rk+1
É 2 and

rk

rk − rk+1
É 2k+1R

R− r
for every k = 0,1,2, . . . .

Step 1 By (4.19) we have

(ˆ
B(x,r1)

uκβ0 d y
) 1
κβ0 É c

2
β0 2

n
β0

(
R

R− r

) 2
β0

(ˆ
B(x,r0)

uβ0 d y
) 1
β0

,

where c = c(n,λ,Λ,β0).
Step 2 By applying (4.19) twice we have

(ˆ
B(x,r2)

uκ
2β0 dy

) 1
κ2β0 É c

2
κβ0 2

n
κβ0

(
22R
R− r

) 2
κβ0

(ˆ
B(x,r1)

uκβ0 d y
) 1
κβ0

É c
2
β0

+ 2
κβ0 ·2

n
β0

+ n
κβ0 ·2

2
β0

+ 2·2
κβ0

(
R

R− r

) 2
β0

+ 2
κβ0

(ˆ
B(x,r0)

uβ0 d y
) 1
β0

.

Step k By applying (4.19) recursively we have

(ˆ
B(x,rk)

uκ
kβ0 d y

) 1
κkβ0 É c

2
β0

∑k
i=1

1
κi−1 ·2

n
β0

∑k
i=1

i
κi−1 ·2

2
β0

∑k
i=1

i
κi−1

·
(

R
R− r

) 2
β0

∑k
i=1

i
κi−1

(ˆ
B(x,r0)

uβ0 d y
) 1
β0

(4.20)

for every k = 1,2, . . . . Let us compute the sums that appear in (4.20). The sum of a
geometric series gives

k∑
i=1

1
κi−1

k→∞−−−−→
∞∑

i=1

1
κi−1 = 1

1− 1
κ

= κ

κ−1
,

and by recognizing the derivative of a geometric series we obtain

k∑
i=1

i
κi−1

k→∞−−−−→
∞∑

i=1

i
κi−1 = 1

(1− 1
κ

)2
.

Hence we conclude from (4.20) that

lim
k→∞

(ˆ
B(x,r)

uκ
kβ0 d y

) 1
κkβ0 É lim

k→∞

(( rk

r

)n
ˆ

B(x,rk)
uκ

kβ0 dy
) 1
κkβ0

É c
(

R
R− r

) 2
β0

κ
κ−1

(ˆ
B(x,r0)

uβ0 d y
) 1
β0

,

where c = c(n,λ,Λ,β0). By Theorem 4.13, we conclude that u is essentially
bounded in the ball B(x, r) and

esssup
x∈B(x,r)

u(x)= lim
k→∞

(ˆ
B(x,r)

uκ
kβ0 d y

) 1
κkβ0

É c

((
R

R− r

) 2κ
κ−1
ˆ

B(x,R)
uβ0 d y

) 1
β0

,
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where c = c(n,λ,Λ,β0). This implies the claim with τ = 2κ
κ−1 . The claim follows

from this, since we denoted u = u+. ä

Remark 4.21. For n > 2, by the proof of Theorem 4.17, we may choose κ= n
n−2 and

thus τ= 2κ
κ−1 = n. For n = 2, the proof gives τ= 2κ

κ−1 = 4> 2= n.

Corollary 4.22 (Local boundedness). Assume that u ∈ W1,2
loc (Ω) is a weak so-

lution of (4.1) in Ω and let β > 1. There exists constants c = c(n,λ,Λ,β) and
τ= τ(n)> 0 such that

esssup
B(x,r)

|u| É c
((

R
R− r

)τˆ
B(x,R)

|u|β d y
) 1
β

whenever B(x,R)bΩ, 0< r < R.

T H E M O R A L : By choosing R = 2r and β= 2, we have

esssup
B(x,r)

|u| É c
(×

B(x,2r)
|u|2 d y

) 1
2

.

whenever B(x,2r)bΩ. In particular, every weak solution is locally bounded.

Proof. By Lemma 4.4, u+ ∈W1,2
loc (Ω) is a weak subsolution and thus by Theorem

4.17 we have u+ ∈ L∞
loc(Ω) with

esssup
B(x,r)

u+ É c
((

R
R− r

)τˆ
B(x,R)

(u+)β d y
) 1
β

,

where c = c(n,λ,Λ,β). On the other hand, since u is a weak solution −u is a weak
solution as well. Again by Lemma 4.4, (−u)+ = u− ∈W1,2

loc (Ω) is a weak subsolution,
and by Theorem 4.17 we have u− ∈ L∞

loc(Ω) with

esssup
B(x,r)

u− É c
((

R
R− r

)τˆ
B(x,R)

(u−)β d y
) 1
β

,

where c = c(n,λ,Λ,β). This shows that u = u+−u− ∈ L∞
loc(Ω). Moreover,

esssup
B(x,r)

|u| = esssup
B(x,r)

(u++u−)É esssup
B(x,r)

u++esssup
B(x,r)

u−

É c
((

R
R− r

)τˆ
B(x,R)

(u+)β d y
) 1
β

+ c
((

R
R− r

)τˆ
B(x,R)

(u−)β d y
) 1
β

É c
((

R
R− r

)τˆ
B(x,R)

|u|β d y
) 1
β

,

where c = c(n,λ,Λ,β). ä
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Remark 4.23. The example at the end of Section 1.5 shows that there may exist
unbounded weak solutions, if the assumption u ∈W1,2

loc (Ω) is relaxed. Let us discuss
this issue in more detail. We consider the function in (1.33) in the two-dimensional
case, that is, n = 2 and 0< ε< 1. In this case we have u : B(0,1)→R,

u(x)= u(x1, x2)= x1|x|−1−ε.

We have u ∈W1,p(Ω), for 1 É p < 2
1+ε , but u ∉W1,p(Ω), for p = 2

1+ε . In particular
u ∉W1,2(Ω). However, as in Section 1.5, we see that

ˆ
B(0,1)

2∑
i, j=1

ai jD iuD jϕdx = 0

for every ϕ ∈ C∞
0 (B(0,1)), where

ai j(x)= δi j + (a−1)
xix j

|x|2 , i, j = 1,2,

and a = 1
ε2 . In this sense u is a (very) weak solution to

−
2∑

i, j=1
D j(ai jD iu)= 0

in B(0,1), but u ∉W1,2(Ω) for every 0< ε< 1. Clearly the function u is not locally
bounded.

The uniform ellipticity condition in Definition 1.7 is satisfied with λ= 1 and
Λ= a. Observe that Λ> 1 can be made arbitrarily close to one by choosing 0< ε< 1
close enough to one. Thus for every Λ> 1, there exists an unbouded (very) weak
solution to an elliptic equation.

T H E M O R A L : The previous examples show that for every 1 É p < 2, there
exists an unbounded (very) weak solution u ∈W1,p(Ω) to an elliptic equation, in
the above sense. This shows that the assumption u ∈W1,2

loc (Ω) in Corollary 4.22 is
essentially sharp.

We will next present a technical lemma, which will be used in proving that
Theorem 4.17 actually holds for all β> 0.

Lemma 4.24. Let ψ : [0,T] → R be a nonnegative bounded function. If there
exists A > 0, α> 0 and 0< ε< 1 such that

Ψ(r)É A(R− r)−α+εΨ(R)

for every 0É r < R É T, then there exists c = c(α,ε) such that

Ψ(r)É cA(R− r)−α

for every 0É r < R É T.
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Proof. Let 0< τ< 1, t0 = r and

ti+1 = ti + (1−τ)τi(R− r), i = 0,1,2, . . . .

Then r É ti < ti+1 É R for every i = 0,1,2, . . . and

Ψ(t0)É εΨ(t1)+ A(t1 − t0)−α (assumption)

= εΨ(t1)+ A(1−τ)−α(R− r)−α (definition of ti)

É ε(εΨ(t2)+ A(t2 − t1)−α)+ A(1−τ)−α(R− r)−α (assumption)

= ε2Ψ(t2)+εAτ−α(1−τ)−α(R− r)−α+ A(1−τ)−α(R− r)−α (definition of ti)

= ε2Ψ(t2)+ A(1−τ)−α(R− r)−α(ετ−α+1).

Recursively, we obtain

Ψ(r)=Ψ(t0)É εkΨ(tk)+ A(R− r)−α(1−τ)−α
k−1∑
i=0

εiτ−iα

for every k = 1,2, . . . . Since Ψ is bounded, here εkΨ(tk)→ 0 as k →∞. By choosing
τ= τ(ε,α) with ε

τα
< 1, we conclude that

Ψ(r)É lim
k→∞

(
εkΨ(tk)+ A(R− r)−α(1−τ)−α

k−1∑
i=0

εiτ−iα

)
= c(α,ε)A(R− r)−α.

Here the first term on the right-hand side converges to zero becauseΨ is bounded.ä

Lemma 4.25. Theorem 4.17 and Corollary 4.22 hold for every β> 0.

T H E M O R A L : We can choose the power β> 0 as close to zero as we want in
Theorem 4.17 and Corollary 4.22. This will be useful in Harnack estimates below.

Proof. We may assume that 0 < β É 1, since for β > 1 the results are covered
by Theorem 4.17 and Corollary 4.22 respectively. By Remark 4.21 we may also
assume that τ= τ(n) Ê n in Theorem 4.17. Let B(x,R)bΩ, 0 < r < R É T. Since
B(x,R)bΩ, Theorem 4.17 implies

esssup
B(x,r)

u+ É c
((

R
R− r

)τˆ
B(x,R)

(u+)2 d y
) 1

2

É c

((
R

R− r

)τˆ
B(x,R)

(u+)β(esssup
B(x,R)

u+)2−β d y

) 1
2

= c
((

R
R− r

)τˆ
B(x,R)

(u+)β dy
) 1

2
(esssup

B(x,R)
u+)1−

β
2 ,
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where c = c(n,λ,Λ,β). Let 0< ε< 1. By Young’s inequality

c(n,λ,Λ,β)
((

R
R− r

)τˆ
B(x,R)

(u+)β d y
) 1

2
(esssup

B(x,R)
u+)1−

β
2

É εesssup
B(x,R)

u++ c(n,λ,Λ,β,ε)
((

R
R− r

)τˆ
B(x,R)

(u+)β d y
) 1
β

É εesssup
B(x,R)

u++ A(R− r)−
τ
β ,

where

A = c(n,λ,Λ,β,ε)T
τ−n
β

(ˆ
B(x,T)

(u+)β d y
) 1
β <∞.

Here we used the facts that τÊ n and that by Theorem 4.17 we have u+ ∈ L∞
loc(Ω).

It is important to use T instead of R above, since x is not allowed to depend on R.
Without loss of generality, we may assume that T > 0. Let Ψ(0)= 0 and

Ψ(r)= esssup
B(x,r)

u+ É esssup
B(x,T)

u+ <∞

for every 0< r É T. By Lemma 4.24 we obtain

esssup
B(x,r)

u+ É c(n,λ,Λ,β,ε)(R− r)−
τ
β T

τ−n
β

(ˆ
B(x,T)

(u+)β d y
) 1
β

É c(n,λ,Λ,β,ε)
((

T
R− r

)τˆ
B(x,T)

(u+)β dy
) 1
β

whenever 0< r < R É T. By choosing R = T we conclude that Theorem 4.17 holds
for every β> 0. Finally, the proof of Corollary 4.22 together with the knowledge
that Theorem 4.17 holds for every β> 0 shows that also Corollary 4.22 holds for
every β> 0. ä

4.5 Estimates from below
The following property of super- and subsolutions gives us a tool to apply Theorem
4.17 to obtain a lower bound for the infimum of supersolutions in terms of negative
powers of integral averages.

Lemma 4.26. If u Ê ε > 0 is a weak supersolution of (4.1) in Ω, then v = 1
u is a

weak subsolution in Ω.

Proof. Since v = 1
u and u Ê ε> 0, we have 0< ε2v É u and by the chain rule

D iv =−u−2D iu, i = 1, . . . ,n,

almost everywhere in Ω. Thus ε2|Dv| É |Du| almost everywhere in Ω and so
v ∈W1,2

loc (Ω).
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Let ϕ ∈ C∞
0 (Ω), ϕÊ 0. If ψ= u−2ϕ, then ψ ∈W1,2

0 (Ω) and

D jψ=−2u−3D juϕ+u−2D jϕ, j = 1, . . . ,n,

and

0É
ˆ
Ω

n∑
i, j=1

ai jD iuD jψdx

=−2
ˆ
Ω

u−3
n∑

i, j=1
ai jD iuD juϕdx+

ˆ
Ω

n∑
i, j=1

ai ju−2D iuD jϕdx

É−
ˆ
Ω

n∑
i, j=1

ai jD ivD jϕdx

for every ϕ ∈ C∞
0 (Ω), ϕÊ 0. Here we used the facts that

ˆ
Ω

u−3
n∑

i, j=1
ai jD iuD juϕdx Êλ

ˆ
Ω

u−3|Du|2ϕdx Ê 0

and D iv =−u−2D iu, i = 1, . . . ,n. ä

Next we discuss a version of Theorem 4.17 for supersolutions.

Lemma 4.27. Let u Ê 0 be a weak supersolution of (4.1) in Ω. There exists
constants c = c(n,λ,Λ,β) and τ= τ(n)> 0 such that

((
R

R− r

)τˆ
B(x,R)

u−β d y
)− 1

β

É cessinf
B(x,r)

u

whenever B(x,R)bΩ, 0< r < R.

T H E M O R A L : By choosing R = 2r we have(ˆ
B(x,2r)

u−β d y
)− 1

β É cessinf
B(x,r)

u

whenever B(x,2r)bΩ.

Proof. Without loss of generality, we may assume that

(ˆ
B(x,R)

u−β d y
)− 1

β > 0.

Since we can add constants to weak supersolutions, the function uk = u + 1
k ,

k = 1,2, . . . , is a weak supersolution. By Lemma 4.26, 1
uk

, k = 1,2, . . . , is a weak
subsolution. By Theorem 4.17 and Lemma 4.25, we have

esssup
B(x,r)

1
uk

É c
((

R
R− r

)τˆ
B(x,R)

(
1

uk

)β
dy

) 1
β

,
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where c = c(n,λ,Λ,β), or equivalently

((
R

R− r

)τˆ
B(x,R)

u−β
k d y

)− 1
β

É c

(
esssup

B(x,r)

1
uk

)−1

= cessinf
B(x,r)

uk

= c
(
essinf
B(x,r)

u+ 1
k

)
.

The claim follows from the monotone convergence theorem by letting k →∞, since

0<
(ˆ

B(x,R)
u−β d y

)− 1
β =

(
lim
k→∞

ˆ
B(x,R)

u−β
k d y

)− 1
β

= lim
k→∞

(ˆ
B(x,R)

u−β
k d y

)− 1
β

.

ä

Remark 4.28. Another way to prove Lemma 4.27 is to run the Moser iteration tech-
nique as in the proof of Theorem 4.17 using Theorem 4.9 for weak supersolutions.
This approach completely avoids Lemma 4.26 (exercise).

4.6 Harnack’s inequality
Recall that Harnack’s inequality for nonnegative solutions of the Laplace equation
can be proved by the mean value property. If u Ê 0 is a weak solution to (4.1) in Ω,
then by Theorem 4.17 there exist a constant c = c(n,λ,Λ,β) such that

esssup
B(x,r)

u É c
(×

B(x,2r)
uβ d y

) 1
β

and by Lemma 4.27 we have(×
B(x,2r)

u−β d y
)− 1

β É cessinf
B(x,r)

u,

whenever B(x,2r)bΩ. Next we prove the missing inequality(×
B(x,2r)

uβ d y
) 1
β É c

(×
B(x,2r)

u−β d y
)− 1

β

.

T H E M O R A L : This is a reverse Hölder inequality, since by Hölder’s, or
Jensen’s, inequality we always have(×

B(x,r)
u−γ d y

)− 1
γ É

(×
B(x,r)

uγ dy
) 1
γ

.

Reverse Hölder inequalities are very powerful tools in harmonic analysis and
PDEs.
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With the reverse Hölder inequality above, we obtain

esssup
B(x,r)

u É c
(×

B(x,2r)
uβ d y

) 1
β

É c
(×

B(x,2r)
u−β dy

)− 1
β É cessinf

B(x,r)
u

whenever B(x,2r)bΩ. This is Harnack’s inequality for nonnegative weak solu-
tions. Harnack’s inequality states that locally the supremum of a positive solution
is bounded by a constant times the infimum of the solution. However, since a
function u ∈ W1,2

loc (Ω) is defined only up to a set of measure zero, we consider
the essential supremum and infimum. For a continuous function, these can be
replaced by the standard supremum and infimum.

The only missing piece is the passage over zero. We shall use the theory
of BMO functions, in particular, the John-Nirenberg lemma, to overcome this
problem. For the theory of BMO functions we refer to the Harmonic Analysis
course.

In the theory of BMO it is more convenient to use cubes instead of balls. This
is just a technical point and we could work either with cubes or balls throughout.

Definition 4.29. A closed cube is a bounded interval in Rn, whose sides are
parallel to the coordinate axes and equally long, that is,

Q = [a1,b1]×·· ·× [an,bn]

with b1−a1 = . . .= bn −an. The side length of a cube Q is denoted by l(Q). In case
we want to specify the center, we write

Q(x, l)=
{

y ∈Rn : |yi − xi| É l
2

, i = 1, . . . ,n
}

for a cube with center at x ∈Rn and side length l > 0. Clearly

|Q(x, l)| = ln and diam(Q(x, l))=p
nl.

Assume then that u Ê 0 is a weak solution to (4.1) in Ω. Denote

vk = log
(
u+ 1

k

)
, k = 1,2, . . . .

Then u+ 1
k Ê 1

k > 0, k = 1,2, . . . , is a solution to (4.1). Let Q(x,2l)bΩ and take a
cutoff function ϕ ∈ C∞

0 (Q(x,2l)), 0ÉϕÉ 1 such that ϕ= 1 on Q(x, l) and |Dϕ| É c(n)
l .



CHAPTER 4. LOCAL HÖLDER CONTINUITY 98

By the logarithmic Caccioppoli estimate, Theorem 4.10, we have
ˆ

Q(x,l)
|Dvk|2 d y=

ˆ
Q(x,l)

∣∣∣∣D log
(
u+ 1

k

)∣∣∣∣2 dy

É
ˆ
Ω
ϕ2

∣∣∣∣D log
(
u+ 1

k

)∣∣∣∣2 d y

É c(λ,Λ)
ˆ
Ω
|Dϕ|2 d y

É c(n,λ,Λ)
l2

ˆ
Q(x,2l)

1d y

= c(n,λ,Λ)ln−2, k = 1,2, . . . .

In particular, this implies that |Dvk| ∈ L2
loc(Ω). On the other hand, since u+ 1

k Ê 1
k

and u ∈ L2
loc(Ω), we conclude that vk ∈ L2

loc(Ω). This implies that vk ∈ W1,2
loc (Ω),

k = 1,2, . . . . By the Poincaré inequality we have×
Q(x,l)

∣∣vk − (vk)Q(x,l)
∣∣2 d yÉ c(n)l2

×
Q(x,l)

|Dvk|2 d y

É c(n,λ,Λ)l2l−nln−2 = c(n,λ,Λ), k = 1,2, . . . ,

for every cube Q(x, l) such that Q(x,2l)bΩ. By Hölder’s, or Jensen’s, inequality

×
Q(x,l)

∣∣vk − (vk)Q(x,l)
∣∣ d yÉ

(×
Q(x,l)

∣∣vk − (vk)Q(x,l)
∣∣2 d y

) 1
2 É c <∞, k = 1,2, . . . ,

for every cube Q(x, l) such that Q(x,2l)bΩ with c = c(n,λ,Λ). Observe, that the
constant c is independent of u and k. This shows that vk is of bounded mean
oscillation (BMO) over such cubes. By the exponential integrability result for
BMO-functions, there exist γ= γ(n,λ,Λ)> 0 and c = c(n)<∞, such that×

Q(x,l)
eγ|vk−(vk)Q(x,l)| d yÉ c, k = 1,2, . . . ,

for every cube Q(x, l) such that Q(x,2l)bΩ. This implies that×
B(x,r)

eγvk d y
×

B(x,r)
e−γvk dyÉ c(n)

×
Q(x,2r)

eγvk d y
×

Q(x,2r)
e−γvk d y

= c(n)
×

Q(x,2r)
eγ(vk−(vk)Q(x,2r)) d y

×
Q(x,2r)

e−γ(vk−(vk)Q(x,2r)) dy

É c(n)
(×

Q(x,2r)
eγ|vk−(vk)Q(x,2r)| d y

)2
É c(n), k = 1,2, . . . ,

whenever Q(x,4r) bΩ. We note that Q(x,4r) ⊂ B(x,2
p

nr), so that Q(x,4r) bΩ
if B(x,2

p
nr) b Ω. Thus the estimate above holds whenever B(x,2

p
nr) b Ω.

Observe that the constants in the estimate above are independent of k ∈N. Since
u+1 ∈ Lβ

loc(Ω), we can apply both dominated and monotone convergence theorems
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to conclude that(×
B(x,r)

uγ dy
) 1
γ = lim

k→∞

(×
B(x,r)

(
u+ 1

k

)γ
d y

) 1
γ

= lim
k→∞

(×
B(x,r)

eγvk d y
) 1
γ

É c(n) lim
k→∞

(×
B(x,r)

e−γvk dy
)− 1

γ

= c(n) lim
k→∞

(×
B(x,r)

(
u+ 1

k

)−γ
d y

)− 1
γ

= c(n)
(×

B(x,r)
u−γ d y

)− 1
γ

(4.30)

whenever B(x,2
p

nr)bΩ.

Theorem 4.31 (Harnack’s inequality). Assume that u Ê 0 is a weak solution
to (4.1) in Ω. Then there exists a constant c = c(n,λ,Λ) such that

esssup
B(x,r)

u É cessinf
B(x,r)

u

for every ball B(x, r) such that B(x,2r)bΩ.

T H E M O R A L : Harnack’s inequality is a quantitative version of the strong
maximum principle. It asserts that if u Ê 0 is a nontrivial weak solution in B(x,2r),
then it does not only hold that u > 0 in B(x, r) but we also have u Ê c−1 supB(x,r) u
in B(x, r).

Proof. By Theorem 4.17, Lemma 4.25, Lemma 4.27 and (4.30), there exist γ =
γ(n,λ,Λ)> 0 and c = c(n,λ,Λ) such that

esssup
B(x,r)

u É c
(×

B(x,2r)
uγ d y

) 1
γ É c

(×
B(x,2r)

u−γ d y
)− 1

γ É cessinf
B(x,r)

u (4.32)

whenever B(x,2
p

nr)bΩ.
Assume then that B(x, r) is a ball with B(x,2r) b Ω. We apply a chaining

argument. Let ρ = r
2
p

n and Bi = B(xi,ρ), i = 1, . . . , N, be finitely many balls such

that xi ∈ B(x, r), i = 1, . . . , N, Bi ∩Bi+1 6= ;,i = 1, . . . , N −1, and B(x, r) ⊂ ⋃N
i=1 Bi.
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Then B(xi,2
p

nρ)⊂ B(x,2r)bΩ, i = 1, . . . , N. By (4.32), we have

esssup
Bi∪Bi+1

u =max
{
esssup

Bi

u,esssup
Bi+1

u
}

É cmax
{
essinf

Bi
u,essinf

Bi+1
u
}

É c essinf
Bi∩Bi+1

u É cesssup
Bi∩Bi+1

u

É cmin
{
esssup

Bi

u,esssup
Bi+1

u
}

É c2 min
{
essinf

Bi
u,essinf

Bi+1
u
}

= c2 essinf
Bi∪Bi+1

u, i = 1, . . . , N −1.

By applying this estimate recursively, we obtain

esssup
B(x,r)

u É esssup⋃N
i=1 Bi

u É cN essinf⋃N
i=1 Bi

u É cN essinf
B(x,r)

u.
ä

Remarks 4.33:
(1) Harnacks’ inequality is a uniform estimate in the sense that the constant

in Harnack’s inequality does not depend on the radius of the ball. The
requirement B(x,2r)bΩ is chosen for convenience, but the proof shows
that we could assume B(x,σr)bΩ for any σ> 1. In this case the constant
in Harnack’s inequality also depends on σ.

(2) By a chaining argument Harnack’s inequality gives the pointwise estimate

esssup
Ω′

u É cessinf
Ω′ u.

for almost every points x, y ∈Ω′ where Ω′ bΩ is a connected set. This
means that the values of nonnegative weak solution are comparable in
Ω′. Thus if u is small (or large) somewhere in Ω′ it is small (or large)
everywhere in Ω′. In particular, if u(y)= 0 for some y ∈Ω, then u(x)= 0 for
every x ∈Ω. The assumption u Ê 0 is essential in the result.

4.7 Local Hölder continuity
Next we shall prove that Harnack’s inequality implies that weak solutions of (4.1)
are locally Hölder continuous after a possible redefinition on a set of measure zero.
Observe that a weak solution belongs to W1,2

loc (Ω) and is defined only up to a set of
measure zero and a function in W1,2

loc (Ω) is not necessarily continuous.
Assume u ∈W1,2

loc (Ω) is a weak solution to (4.1) and B(x,2R)bΩ. We denote

m(r)= essinf
B(x,r)

u,
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M(r)= esssup
B(x,r)

u,

and the oscillation of u by

osc
B(x,r)

u = M(r)−m(r).

By Corollary 4.22, we have −∞< m(r)É M(r)<∞ for 0< r É R. Since constants
can be added to weak solutions, we see that the functions u−m(2r) and M(2r)−u
are weak solutions of (4.1) as well. Notice that u−m(2r) Ê 0 and M(2r)−u Ê 0
in B(x,2r). By Harnack’s inequality, Theorem 4.31, there exists a constant c =
c(n,λ,Λ)> 1 such that

M(r)−m(2r)= esssup
B(x,r)

(u−m(2r))

É cessinf
B(x,r)

(u−m(2r))

= c(m(r)−m(2r))

for 0< r É R. A similar argument gives

M(2r)−m(r)= esssup
B(x,r)

(M(2r)−u)

É cessinf
B(x,r)

(M(2r)−u)

= c(M(2r)−M(r))

for 0< r É R. By combining these estimates we have

M(r)−m(2r)+M(2r)−m(r)É c (m(r)−m(2r)+M(2r)−M(r)) ,

which is implies

M(r)−m(r)É c−1
c+1

(M(2r)−m(2r)) ,

that is,
osc

B(x,r)
u É γ osc

B(x,2r)
u (4.34)

for γ= c−1
c+1 with 0< γ< 1. This is an oscillation decay estimate.

T H E M O R A L : Harnacks’ inequality implies oscillation decay.

For 0< r É R, we may choose i such that

R
2i+1 < r É R

2i .

Then by iterating (4.34), we obtain

osc
B(x,r)

u É osc
B(x, R

2i )
u É γi osc

B(x,R)
u É 1

γ

( r
R

)α
osc

B(x,R)
u, (4.35)



CHAPTER 4. LOCAL HÖLDER CONTINUITY 102

where γ = γ(n,λ,Λ), α = − logγ
log2 , 0 < r É R and B(x,2R) bΩ. The last inequality

follows, because
r
R

Ê 1
2i+1 =

(
1
2

)i+1

implies that

i Ê log r
R

log 1
2

−1,

and as γ< 1, we have

γi = ei logγ É e
(

log(r/R)
log(1/2) −1

)
logγ = 1

γ

( r
R

)α
.

Let B(z,10r)bΩ and x, y ∈ B(z, r), x 6= y. Denote R = 4r. Then 0< 2|x− y| < 2 ·2r =
4r = R and B(x,2R)= B(x,2 ·4r)= B(x,8r)⊂ B(z,9r)bΩ. By (4.35), there exists a
constant c = c(n,λ,Λ), such that

|u(x)−u(y)| É osc
B(x,2|x−y|)

u É c
(

2|x− y|
4r

)α
osc

B(x,4r)
u

É c
( |x− y|

r

)α
osc

B(z,5r)
u É c

( |x− y|
r

)α
esssup
B(z,5r)

|u|,

for almost every x, y ∈ B(z, r). By Corollary 4.22, there exists c = c(n,λ,Λ) such
that

esssup
B(x0,5r)

|u| É c
(ˆ

B(x0,10r)
|u|2 dy

) 1
2 <∞.

Thus for every z ∈Ω there exists r = r(z)> 0 such that B(z,10r)bΩ and a constant
c = c(n,λ,Λ, z) such that

|u(x)−u(y)| É c|x− y|α,

for almost every x, y ∈ B(z, r). Observe that r and c may depend on z, but α =
α(n,λ,Λ) is independent of z. This implies that u is locally Hölder continuous by
redefining it on a set of measure zero. The argument to show that there exists
a locally Hölder continuous representative is similar as in the proof of Morrey’s
inequality.

Theorem 4.36 (Local Hölder continuity). Every weak solution of (4.1) is lo-
cally Hölder continuous.

T H E M O R A L : Oscillation decay implies local Hölder continuity.

Remark 4.37. The example in Section 1.5 shows that for every 0 < α < 1 there
exists a weak solution to an elliptic equation such that the weak gradient is un-
bounded. This shows that local Hölder continuity is essentially the best regularity
result we can hope for a general elliptic equation with bounded and measurable
coefficients.
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Remark 4.38. Let Ω = B(0, r) and y ∈ ÇB(0, r). The Poisson kernel for the ball
B(0, r) gives the function

u(x)= 1
nα(n)r

r2 −|x|2
|x− y|n , x ∈ B(0, r).

Then ∆u(x)= 0 for every x ∈Ω, but is not Hölder continuous in Ω for any 0<αÉ 1.

Reason. If u is Hölder continuous in Ω for some 0 < α É 1, then it is Hölder
continuous in Ω with the same α. This implies that u ∈ L∞(Ω). This is not
possible, since u ∉ L∞(Ω). However, u is locally Hölder continuous in Ω. ■

T H E M O R A L : Weak solutions are locally Hölder continuous, but not in general
Hölder continuous in the whole domain.

Finally we show that Harnack’s inequality implies that weak solutions of (4.1)
satisfy the strong maximum principle.

Theorem 4.39 (Strong maximum principle). If a weak solution of (4.1) at-
tains its maximum in a connected open set Ω, then it is a constant function.

Proof. If there exists x0 ∈Ω such that

u(x0)=max
x∈Ω

u(x),

then u(x0)−u(x) is a nonnegative weak solution in Ω. By Harnack’s inequality,
Theorem 4.31, we have

sup
x∈B(x0,r)

(u(x0)−u(x))É c min
x∈B(x0,r)

(u(x0)−u(x))= 0

whenever B(x0,2r)bΩ. Thus u(x0)−u(x)= 0 for every x ∈ B(x0, r).
Let x ∈Ω. Since Ω is connected, a point x can be connected to the point x0 with

a finite chain of balls B(xi, r i), i = 0,1, . . . , N, such that xN = x and

B(xi, r i)∩B(xi+1, r i+1) 6= ;, i = 1, . . . , N −1

and B(xi,2r)⊂Ω for every i = 0,1, . . . , N. By using Harnack’s inequality in every
ball, we have u(x)= u(x0). ä
Remarks 4.40:

(1) An analogous argument gives a strong minimum principle as well.

(2) The strong maximum principle implies the standard maximum principle:
if u ∈ C(Ω) is a weak solution in a bounded open set Ω, then

max
Ω

u =max
ÇΩ

u.

Theorem 4.41 (Comparison principle). Let u and v be weak solutions in Ω.
By Theorem 4.36 we may assume that they both are continuous functions in Ω. If
Ω′ bΩ and u É v on ÇΩ′ then u É v in Ω′.
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Proof. As u É v on ÇΩ′, u−v É 0 on ÇΩ′. The partial differential equation in (4.1)
is linear and therefore u− v is a weak solution in Ω. The maximum principle,
Theorem 4.39, implies that

max
Ω

′ (u−v)=max
ÇΩ′ (u−v)É 0.

Therefore u−v É 0 in Ω′ and thus u É v in Ω′. ä

Remark 4.42. This argument uses the linearity, but the result holds true also for
certain nonlinear partial differential equations.



5
Gradient estimates

5.1 Maximal functions
In this section it is more convenient to use cubes instead of balls. A closed cube
is a bounded interval in Rn, whose sides are parallel to the coordinate axes and
equally long, see Definition 4.29. First we introduce an appropriate maximal
function on cubes.

Definition 5.1. Let 1É p <∞, let Q0 ⊂Rn be a cube, and assume that f ∈ Lp(Q0)
is a nonnegative function. The noncentered maximal function Mp

Q0
f on Q0 is

defined as

Mp
Q0

f (x)= sup
Q3x

(ˆ
Q

f (y)p d y
) 1

p
,

where the supremum is taken over all cubes Q ⊂Q0 with x ∈Q.

For p = 1, we have the standard Hardy-Littlewood maximal function on Q0

and we denote M1
Q0

f = MQ0 f . Observe that

Mp
Q0

f (x)= (
MQ0 ( f p)(x)

) 1
p

for every x ∈Q0, so that in principle it would be enough to consider the standard
Hardy-Littlewood maximal function. However, the new notation turns out to be
useful below. For a sign changing function f , we consider | f | in the definition
above. By the Lebesgue differentiation theorem and Hölder’s inequality

f (x)É Mp
Q0

f (x)É Mq
Q0

f (x), 1É p É q <∞,

for almost every x ∈Q0. Let f , g ∈ L1(Q0) and x ∈Q0. It follows immediately from
the definition that MQ0 f (x)Ê 0,

Mp
Q0

( f + g)(x)É Mp
Q0

f (x)+Mp
Q0

g(x),

105
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and
Mp

Q0
(af )(x)= aMp

Q0
f (x)

for every a Ê 0. It is enough to assume that f : Q0 → [0,∞] is a measurable
function in the definition above, but the assumption f ∈ Lp(Q0) guarantees that
the integral averages are finite. We prove a weak type estimate for the maximal
function.

Lemma 5.2. Let 1É p <∞ and let Q0 ⊂Rn be a cube. Assume that f ∈ Lp(Q0) is
a nonnegative function. There exist a constant c = c(n) (we may take c(n)= 2 ·5n)
such that

|{x ∈Q0 : Mp
Q0

f (x)> t}| É c
tp

ˆ
{x∈Q0: f (x)> t

2 }
f (x)p dx (5.3)

for every t > 0.

Proof. Let E t = {x ∈Q0 : Mp
Q0

f (x)> t}. By the definition of the maximal function,
for every x ∈ E t, there exits a cube Qx such that x ∈Qx ⊂Q0 and

(ˆ
Qx

f (y)p d y
) 1

p > t.

Thus F = {Qx : x ∈ E t} is a collection of subcubes of Q0 and

E t ⊂
⋃

Q∈F

Q.

By a Vitali type covering theorem, there exists a countable subcollection of pair-
wise disjoint cubes Q(xi, l i) ∈F , i = 1,2, . . . , such that

⋃
Q∈F

Q ⊂
∞⋃

i=1
Q(xi,5l i).

Thus

|{x ∈Q0 : Mp
Q0

f (x)> t}| É
∣∣∣∣∣ ∞⋃
i=1

Q(xi,5l i)

∣∣∣∣∣= 5n
∞∑

i=1
|Q(xi, l i)|

É 5n

tp

∞∑
i=1

ˆ
Q(xi ,l i)

f (y)p d y

É 5n

tp

ˆ
Q0

f (y)p d y.

(5.4)

Let

f̃ (x)=
 f (x), if f (x)Ê t

2 ,

0, otherwise.

Then f É f̃ + t
2 , which implies that

Mp
Q0

f (x)É Mp
Q0

(
f̃ + t

2

)
(x)É Mp

Q0
f̃ (x)+ t

2
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for every x ∈Rn. Consequently,

{x ∈Q0 : Mp
Q0

f (x)> t}⊂
{

x ∈Q0 : Mp
Q0

f̃ (x)> t
2

}
.

Observe that

f̃ (x)= χ{y∈Q0: f̃ (y) 6=0}(x) f̃ (x)1−p f̃ (x)p É
( t
2

)1−p
f (x)p,

which implies f̃ ∈ L1(Q0). By (5.4) we have

|{x ∈Q0 : Mp
Q0

f (x)> t}| É
∣∣∣∣{x ∈Q0 : Mp

Q0
f̃ (x)> t

2

}∣∣∣∣
É 2 ·5n

t

ˆ
Q0

f̃ (x)p dx

= 2 ·5n

t

ˆ
{x∈Q0: f (x)Ê t

2 }
f (x)p dx.

(5.5)
ä

The following Calderón-Zygmund decomposition will be extremely useful in
harmonic analysis.

Theorem 5.6. Let Q0 be a cube in Rn and assume that f ∈ L1(Q0) is a nonnega-
tive function. Then for every t Ê ´ Q0

f (y)d y there are countably many subcubes
Q i, i = 1,2, . . . , of Q0 such that

(1) the interiors of Q i, i = 1,2, . . . , are pairwise disjoint,

(2) t < ´ Q i
f (y)d yÉ 2nt for every i = 1,2, . . . and

(3) f (x)É t for almost every x ∈Q0 \
⋃∞

i=1 Q i.

The collection of cubes Q i, i = 1,2, . . . , is called the Calderón-Zygmund cubes in Q0

at level t.

T H E M O R A L : A cube can be divided into good and bad parts so that in the
good part (complement of the Calderón-Zygmund cubes) the function is small and
in the bad part (union of the Calderón-Zygmund cubes) the integral average of
a function is in control. Note that the Calderón-Zygmund cubes cover the set
{x ∈ Q : | f (x)| > t}, up to a set of measure zero, and thus the bad part contains
the set where the function is unbounded. Next we discuss a reverse weak type
inequality for this maximal operator.

Lemma 5.7. Let 1É p <∞ and let Q0 ⊂Rn be a cube. Assume that f ∈ Lp(Q0) is
a nonnegative function. There exists a constant c = c(n) (we may take c(n)= 2n)
such that ˆ

{x∈Q0: f (x)>t}
f (x)p dx É ctp|{x ∈Q0 : Mp

Q0
f (x)> t}| (5.8)

whenever tp Ê ´ Q0
f (y)p dy.
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Proof. By the Calderón-Zygmund lemma for f p at the level tp and obtain a
collection subcubes Q i, i = 1,2, . . . , of Q0 such that the interiors of Q i, i = 1,2, . . . ,
are pairwise disjoint,

tp <
ˆ

Q i

f (y)p d yÉ 2ntp for every i = 1,2, . . .

and
f (x)É t for almost every x ∈Q0 \

∞⋃
i=1

Q i.

This implies
ˆ

{x∈Q0: f (x)>t}
f (x)p dx É

∞∑
i=1

ˆ
Q i

f (x)p dx =
∞∑

i=1
|Q i|
ˆ

Q i

f (x)p dx

É 2ntp
∞∑

i=1
|Q i| = 2ntp

∣∣∣∣∣ ∞⋃
i=1

Q i

∣∣∣∣∣
É 2ntp|{x ∈Q0 : MQ0 f p(x)> tp}|.

In the last inequality we applied the fact that MQ0 f p(x)> tp if x ∈Q ∈Dtp . ä

5.2 A general self-improvement result
Let E ⊂ Rn be a µ-measurable set with µ(E) < ∞ and let f be a nonnegative
µ-measurable function on E. For short, we denote the distribution set as

{ f > t}= {x ∈ E : f (x)> t}.

By Cavalieri’s principle, we have
ˆ

E
f (x)q dµ(x)= q

ˆ ∞

0
tq−1µ({ f > t})dt, 0< q <∞.

Next we discuss a truncated version of Cavalieri’s principle.

Lemma 5.9. Let µ be a measure in Rn. Let E ⊂ Rn be a µ-measurable set with
µ(E)<∞ and let f be a nonnegative µ-measurable function on E. For 0< q <∞
and 0É t0 É t1 <∞, we have

ˆ
{t0< fÉt1}

f (x)q dµ(x)

= q
ˆ t1

t0

tq−1µ({ f > t})dt+ tq
0µ({ f > t0})− tq

1µ({ f > t1}).
(5.10)

Proof. Cavalieri’s principle implies
ˆ

{t0< fÉt1}
f (x)q dµ(x)= q

ˆ ∞

0
tq−1µ({t0 < f É t1}∩ { f > t})dt,
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where ˆ ∞

0
tq−1µ({t0 < f É t1}∩ { f > t})dt

=
ˆ t0

0
tq−1µ({t0 < f É t1})dt+

ˆ t1

t0

tq−1µ({t < f É t1})dt

= tq
0

q
µ({t0 < f É t1})+

ˆ t1

t0

tq−1µ({t < f É t1})dt.

Since {t < f É t1}= { f > t}\ { f > t1} and the measures of the sets are finite by the
assumption µ(E)<∞, we obtain

µ({t < f É t1})=µ({ f > t})−µ({ f > t1})

for every t0 É t É t1. Consequently
ˆ t1

t0

tq−1µ({t < f É t1})dt

=
ˆ t1

t0

tq−1µ({ f > t})dt−µ({ f > t1})
ˆ t1

t0

tq−1 dt

=
ˆ t1

t0

tq−1µ({ f > t})dt− tq
1 − tq

0

q
µ({ f > t1}).

The claim follows by combining the equations above. ä

The next lemma is a core of the self-improving result for reverse Hölder
inequalities.

Lemma 5.11. Let 1< p <∞ and let Q0 ⊂Rn be a cube. Assume that f , g ∈ Lp(Q0)
are nonnegative functions and that there exist t0 Ê 0 and c1 > 1 such thatˆ

{ f>t}
f (x)p dx É c1

(
tp−1
ˆ

{ f>t}
f (x)dx+

ˆ
{g>t}

g(x)p dx
)

(5.12)

for every t0 É t < ∞. Let q > p with c1
q−p
q−1 < 1. Then there exists a constant

c = c(p, q, c1) such thatˆ
Q0

f (x)q dx É c
(
tq−p
0

ˆ
Q0

f (x)p dx+
ˆ

Q0

g(x)q dx
)
.

T H E M O R A L : We assume that f , g ∈ Lp(Q0) satisfy a uniform estimate over
the distribution sets in (5.12) for every t Ê t0. This implies that f ∈ Lq(Q0) for
some q > p and, consequently f is integrable to a higher power than assumed in
the beginning. This is an example of a phenomenon called higher integrability or
self-improvement.

Proof. Clearly ˆ
Q0

f (x)q dx =
ˆ

{ fÉt0}
f (x)q dx+

ˆ
{ f>t0}

f (x)q dx

É tq−p
0

ˆ
{ fÉt0}

f (x)p dx+
ˆ

{ f>t0}
f (x)q dx.

(5.13)
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It suffices to estimate the second integral on the right-hand side. Let t1 > t0. Using
equation (5.10) with the exponent q− p > 0 and the measure µ(E)= ´E f p dx for a
measurable E ⊂Rn, we obtainˆ

{t0< fÉt1}
f (x)q dx =

ˆ
{t0< fÉt1}

f (x)q−p dµ(x)

= (q− p)
ˆ t1

t0

tq−p−1
ˆ

{ f>t}
f (x)p dx dt

+ tq−p
0

ˆ
{ f>t0}

f (x)p dx− tq−p
1

ˆ
{ f>t1}

f (x)p dx.

Assumption (5.12) implies
ˆ t1

t0

tq−p−1
ˆ

{ f>t}
f (x)p dx dt

É c1

ˆ t1

t0

tq−2
ˆ

{ f>t}
f (x)dx dt+ c1

ˆ t1

t0

tq−p−1
ˆ

{g>t}
g(x)p dx dt.

By (5.10), with the exponent q − 1 > 0 and the measure µ(E) = ´E f dx for a
measurable E ⊂Rn, we obtain

ˆ t1

t0

tq−2
ˆ

{ f>t}
f (x)dx dt

É 1
q−1

(ˆ
{t0< fÉt1}

f (x)q dx+ tq−1
1

ˆ
{ f>t1}

f (x)dx
)
.

On the other hand, with the measure µ(E)= ´E gp dx for a measurable E ⊂Rn, we
have ˆ t1

t0

tq−p−1
ˆ

{g>t}
g(x)p dx dt É

ˆ ∞

0
tq−p−1µ({g > t})dt

= 1
q− p

ˆ
Q0

g(x)q−p dµ(x)

= 1
q− p

ˆ
Q0

g(x)q dx.

Consequentlyˆ
{t0< fÉt1}

f (x)q dx É c1
q− p
q−1

ˆ
{t0< fÉt1}

f (x)q dx+ tq−p
0

ˆ
{ f>t0}

f (x)p dx

+
(
c1

q− p
q−1

−1
)

tq−p
1

ˆ
{ f>t1}

f (x)p dx+ c1

ˆ
Q0

g(x)q dx,
(5.14)

where we also applied the estimate
ˆ

{ f>t1}
f (x)dx É

ˆ
{ f>t1}

f (x)
(

f (x)
t1

)p−1
dx = t1−p

1

ˆ
{ f>t1}

f (x)p dx.

Since ˆ
{t0< fÉt1}

f (x)q dx É tq
1

∣∣{t0 < f É t1}
∣∣É tq

1 |Q0| <∞,
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we obtain from (5.14) that(
1− c1

q− p
q−1

)ˆ
{t0< fÉt1}

f (x)q dx É tq−p
0

ˆ
{ f>t0}

f (x)p dx

+
(
c1

q− p
q−1

−1
)
tq−p
1

ˆ
{ f>t1}

f (x)p dx+ c1

ˆ
Q0

g(x)q dx.

Here 0< 1− c1
q−p
q−1 < 1, and thus

ˆ
{t0< fÉt1}

f (x)q dx

É ctq−p
0

ˆ
{ f>t0}

f (x)p dx− tq−p
1

ˆ
{ f>t1}

f (x)p dx+ c
ˆ

Q0

g(x)q dx

É ctq−p
0

ˆ
{ f>t0}

f (x)p dx+ c
ˆ

Q0

g(x)q dx,

with c = c(p, q, c1) Ê 1. This upper bound does not depend on t1, and by letting
t1 →∞ and using Fatou’s lemma, we obtain

ˆ
{ f>t0}

f (x)q dx É ctq−p
0

ˆ
{ f>t0}

f (x)p dx+ c
ˆ

Q0

g(x)q dx.

Finally, by (5.13), we arrive at
ˆ

Q0

f (x)q dx É c(p, q, c1)
(
tq−p
0

ˆ
Q0

f (x)p dx+
ˆ

Q0

g(x)q dx
)
,

which is the required estimate. ä

5.3 Reverse Hölder inequalities
Next we discuss reverse Hölder inequalities. Let 1< p <∞ and let Q0 ⊂Rn be a
cube. Assume that f ∈ Lp(Q0) is a nonnegative function. By Hölder’s or Jensen’s
inequality ˆ

Q
f (x)dx É

(ˆ
Q

f (x)p dx
) 1

p

for every cube Q ⊂Q0. We are interested in functions that satisfy an inequality to
the reverse direction. Assume that there exists a constant c1 such that(ˆ

Q
f (x)p dx

) 1
p É c1

ˆ
Q

f (x)dx

for every cube Q ⊂ Q0. This kind of functions occur in Harnack’s inequality for
nonnegative weak solutions of a PDE, see Theorem 4.31 and in the theory of
Muckenhoupt weights in harmonic analysis. By the following Gehring lemma,
a uniform reverse Hölder inequality implies a stronger uniform reverse Hölder
inequality.
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Theorem 5.15 (The Gehring lemma (1973)). Let 1< p <∞ and let Q0 ⊂Rn be
a cube. Assume that f ∈ Lp(Q0) is a nonnegative function and that there exists a
constant c1 such that (ˆ

Q
f (x)p dx

) 1
p É c1

ˆ
Q

f (x)dx (5.16)

for every cube Q ⊂ Q0. Then there exist an exponent q = q(n, p, c1) > p and a
constant c = c(n, p, c1) such that(ˆ

Q
f (x)q dx

) 1
q É c

ˆ
Q

f (x)dx (5.17)

for every cube Q ⊂Q0.

T H E M O R A L : A uniform reverse Hölder inequality is self-improving. Since
we assume that f ∈ L1(Q0), by (5.16) we have f ∈ Lp(Q0). By (5.17) we have
f ∈ Lq(Q0) for some q > p and, consequently f is integrable to a higher power than
assumed in the beginning. Gehring’s lemma applies to f ∈ L1

loc(R
n) that satisfy

(5.16) for every cube Q ⊂Rn. This phenomenon is called local higher integrability.

Proof. It suffices to prove that (5.17) holds for Q = Q0. We may clearly assume
that fQ0 > 0. Let Mp

Q0
f be the maximal function in Definition 5.1. By the reverse

Hölder inequality in (5.16), we have

Mp
Q0

f (x)É c1MQ0 f (x) for every x ∈Q0. (5.18)

By Lemma 5.7 and (5.18), we haveˆ
{x∈Q0: f (x)>t}

f (x)p dx É 2ntp|{x ∈Q0 : Mp
Q0

f (x)> t}|

É 2ntp
∣∣∣∣{x ∈Q0 : MQ0 f (x)> t

c1

}∣∣∣∣
for every

t Ê t0 =
(ˆ

Q0

f (x)p dx
) 1

p
. (5.19)

On the other hand, by Lemma 5.2, we have∣∣∣∣{x ∈Q0 : MQ0 f (x)> t
c1

}∣∣∣∣É c1
2 ·5n

t

ˆ
{x∈Q0: f (x)> t

2 }
f (x)dx

for every t > 0. Denote Ft = {x ∈Q0 : f (x)> t}. Thenˆ
Ft

f (x)p dx É 2ntp
∣∣∣∣{x ∈Q0 : MQ0 f (x)> t

c1

}∣∣∣∣
É c12n+15ntp−1

ˆ
F t

2

f (x)dx

= ctp−1
ˆ

F t
2

f (x)dx
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with c = c(n, p, c1).
On the other hand, we have

ˆ
F t

2
\Ft

f (x)p dx =
ˆ

F t
2

\Ft

f (x)p−1 f (x)dx É tp−1
ˆ

F t
2

f (x)dx,

and combination of the estimates above shows that
ˆ

F t
2

f (x)p dx É c(n, c1)
(

t
2

)p−1ˆ
F t

2

f (x)dx

for t Ê t0. We apply Lemma 5.11, with g = 0, and obtain q = q(n, p, c1)> p and a
constant c = c(n, p, c1) such that

ˆ
Q0

f (x)q dx É ctq−p
0

ˆ
Q0

f (x)p dx.

Finally (5.19) and (5.16) give

ˆ
Q0

f (x)q dx É c
(ˆ

Q0

f (x)p dx
) q

p −1ˆ
Q0

f (x)p dx

É c
(ˆ

Q0

f (x)p dx
) q

p |Q0|
(ˆ

Q0

f (x)p dx
)−1ˆ

Q0

f (x)p dx

= c
(ˆ

Q0

f (x)p dx
) q

p |Q0|

É c|Q0|
(ˆ

Q0

f (x)dx
)q

.

(5.20)

This proves (5.17) for Q0. ä

For the gradient of a weak solution to a PDE, we usually have a weaker reverse
Hölder inequality of type(ˆ

Q(z,l)
f (x)p dx

) 1
p É c1

ˆ
Q(z,2l)

f (x)dx

for every cube Q(z, l) with Q(z,2l)⊂Ω. The difference compared to (5.16) is that
there is a larger cube on the right-hand side. Next we discuss a self-improving
result for a general class of weak reverse Hölder inequalities.

Theorem 5.21. Let 1 < p <∞ and c1 > 0, and let Ω⊂ Rn be an open set. There
exist θ = θ(n, p) > 0, q = q(n, p, c1) > p and c = c(n, p, c1) Ê 1 such that, if f , g ∈
Lp

loc(Ω) are nonnegative functions satisfying

(ˆ
Q(z,l)

f (x)p dx
) 1

p É c1

[ˆ
Q(z,2l)

f (x)dx+
(ˆ

Q(z,2l)
g(x)p dx

) 1
p
]

+θ
(ˆ

Q(z,2l)
f (x)p dx

) 1
p

,

(5.22)
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for every cube Q(z, l) with Q(z,2l)⊂Ω, then(ˆ
Q(z,l)

f (x)q dx
) 1

q É c
(ˆ

Q(z,2l)
f (x)p dx

) 1
p + c

(ˆ
Q(z,2l)

g(x)q dx
) 1

q
(5.23)

for every cube Q(z, l) with Q(z,2l)⊂Ω.

T H E M O R A L : We assume that f ∈ Lp(Q0) satisfies a uniform weak reverse
Hölder inequality in (5.22). This implies that f ∈ Lq(Q0) for some q > p and,
consequently f is integrable to a higher power than assumed in the beginning.
Moreover, there is a uniform weak reverse Hölder type estimate with the exponent
q > p. Thus a uniform weak reverse Hölder inequality is self-improving.

Remarks 5.24:
(1) If we assume (ˆ

Q(z,l)
f (x)p dx

) 1
p É c1

ˆ
Q(z,2l)

f (x)dx

instead of (5.22), that is g = 0, we have(ˆ
Q(z,l)

f (x)q dx
) 1

q É c
(ˆ

Q(z,2l)
f (x)p dx

) 1
p

in (5.23).

(2) The inequality(ˆ
Q(z,l)

f (x)p dx
) 1

p É c1

[ˆ
Q(z,2l)

f (x)dx+
(ˆ

Q(z,2l)
g(x)p dx

) 1
p
]

,

correspoding the case θ = 0, clearly implies (5.22) and thus the result also
applies in this case.

Proof. Let Q0 = Q(x0, l0) be a cube with Q0 ⊂ Ω. We begin by constructing a
specific Whitney type decomposition W of Q0. Let

Q i =Q
(
x0, (1−2−i)l0

)
, i = 1,2, . . . .

We divide each Q i into (2i+1−2)n dyadic subcubes of Q0, with common side length
2−i l0, which have pairwise disjoint interiors and cover Q i. Denote this collection
by Fi. We define recursively a collection Wi, i = 1,2, . . . , of cubes by setting W1 =F1

and
Wi+1 =

{
Q ∈Fi+1 : Q∩ Q̃ =; for every Q̃ ∈Wi

}
for every i = 1,2, . . . . Let W = ⋃∞

i=1 Wi. The cubes in W have pairwise disjoint
interiors and they they cover the interior of Q0 and thus they cover Q0 up to
measure zero. Moreover, if Q = Q(z, r) ∈ W , then the doubled cube Q(z,2r) is a
subset of Q0.



CHAPTER 5. GRADIENT ESTIMATES 115

Let f , g ∈ Lp
loc(Ω) be nonnegative functions such that (5.22) holds for some

0< θ < 1, to be specified later, and let

t0 =
(ˆ

Q0

f (x)p dx
) 1

p <∞. (5.25)

Without loss of generality, we may assume that t0 > 0.
Let t Ê t0. For Q ∈W , we haveˆ

Q
f (x)p dx É 1

|Q|
ˆ

Q0

f (x)p dx = |Q0|
|Q|
ˆ

Q0

f (x)p dx É aQ tp, (5.26)

where aQ = |Q0|
|Q| > 1. Define functions f̃ and g̃ in the interior of Q0 by setting

f̃ (x)= a
− 1

p
Q f (x) and g̃(x)= a

− 1
p

Q g(x),

for every x ∈Q ∈W . Clearly 0É f̃ É f and 0É g̃ É g almost everywhere in Q0, and
thus f̃ , g̃ ∈ Lp(Q0).

Let Q ∈W . By (5.26), we haveˆ
Q

f̃ (x)p dx É tp,

and Lemma 5.7 givesˆ
{x∈Q: f̃ (x)>t}

f̃ (x)p dx É c(n)tp∣∣{x ∈Q : Mp
Q f̃ (x)> t}

∣∣. (5.27)

To estimate the right-hand side of (5.27), let x ∈ Q and let Qx = Q(zx, rx) ⊂ Q be
a subcube of Q containing x. Then the construction above guarantees that the
doubled cube Q(zx,2rx) is contained in Q0 ⊂Ω, and (5.22) implies(ˆ

Qx

f̃ (y)p d y
) 1

p = a
− 1

p
Q

(ˆ
Qx

f (y)p d y
) 1

p

É c1a
− 1

p
Q

[ˆ
Q(zx,2rx)

f (y)dy+
(ˆ

Q(zx,2rx)
g(y)p d y

) 1
p
]

+θa
− 1

p
Q

(ˆ
Q(zx,2rx)

f (y)p d y
) 1

p
.

(5.28)

It is easy to see that the cube Q(zx,2rx) intersects at most those cubes in W

which have a nonempty intersection with Q. In particular, there exists a cube
Q′ =Q(x′, r′) ∈W which touches Q and satisfies

f̃ (y)Ê (aQ′ )−
1
p f (y) and g̃(y)Ê (aQ′ )−

1
p g(y)

for almost every y ∈Q(zx,2rx). Moreover, by the construction of the cubes, we have
Q ⊂Q(x′,5r′). This implies |Q| É |Q(x′,5r′)| = 5n|Q′| and consequently aQ′ É 5naQ .
From this we obtainˆ

Q(zx,2rx)
f (y)d yÉ (5naQ)

1
p

ˆ
Q(zx,2rx)

f̃ (y)d y.
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A similar reasoning shows that

(ˆ
Q(zx,2rx)

g(y)p d y
) 1

p É (5naQ)
1
p
(ˆ

Q(zx,2rx)
g̃(y)p dy

) 1
p

and (ˆ
Q(zx,2rx)

f (y)p dy
) 1

p É (5naQ)
1
p
(ˆ

Q(zx,2rx)
f̃ (y)p d y

) 1
p
.

By substituting the estimates above to (5.28)

(ˆ
Qx

f̃ (y)p d y
) 1

p É 5
n
p c1

[ˆ
Q(zx,2rx)

f̃ (y)d y+
(ˆ

Q(zx,2rx)
g̃(y)p dy

) 1
p
]

+5
n
p θ

(ˆ
Q(zx,2rx)

f̃ (y)p d y
) 1

p

and taking supremum over all cubes Qx as above, we have

Mp
Q f̃ (x)É 5

n
p c1MQ0 f̃ (x)+5

n
p c1Mp

Q0
g̃(x)+5

n
p θMp

Q0
f̃ (x)

for every x ∈Q. This implies

{x ∈Q : Mp
Q f̃ (x)> t}⊂Q∩ (E∪F ∪G),

where

E =
{

x ∈Q0 : MQ0 f̃ (x)> 1
3

t

5
n
p c1

}
,

F =
{

x ∈Q0 : Mp
Q0

g̃(x)> 1
3

t

5
n
p c1

}
,

G =
{

x ∈Q0 : Mp
Q0

f̃ (x)> 1
3

t

5
n
p θ

}
.

Let γ= γ(n, p)= 3 ·5 n
p . Lemma 5.2 implies

|E| =
∣∣∣∣{x ∈Q0 : MQ0 f̃ (x)> t

γc1

}∣∣∣∣É c(n)
γc1

t

ˆ
{x∈Q0: f̃ (x)> 1

2
t

γc1
}
f̃ (x)dx,

|F| =
∣∣∣∣{x ∈Q0 : Mp

Q0
g̃(x)> t

γc1

}∣∣∣∣É c(n)
(
γc1t

t

)pˆ
{x∈Q0: g̃(x)> 1

2
t

γc1
}
g̃(x)p dx,

|G| =
∣∣∣∣{x ∈Q0 : Mp

Q0
g̃(x)> t

γθ

}∣∣∣∣É c(n)
(
γθ

t

)pˆ
{x∈Q0: g̃(x)> 1

2
t
γθ }

g̃(x)p dx.

(5.29)

By (5.27) we have
ˆ

{x∈Q: f̃ (x)>t}
f̃ (x)p dx É c(n)tp|Q∩ (E∪F ∪G)| (5.30)
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for every W ∈W . By summing (5.30) over all cubes Q ∈W and applying (5.29), we
obtainˆ

{x∈Q0: f̃ (x)>t}
f̃ (x)p dx É c(n)tp|E∪F ∪G| É c(n)tp(|E|+ |F|+ |G|)

É c(n, p, c1)tp−1
ˆ

{x∈Q0: f̃ (x)>τt}
f̃ (x)dx

+ c(n, p, c1)
ˆ

{x∈Q0: g̃(x)>τt}
g̃(x)p dx

+ c(n, p)θp
ˆ

{x∈Q0: f̃ (x)>τt}
f̃ (x)p dx,

(5.31)

where
0< τ= τ(n, p, c1)= 1

2
max

{
1

γ(n, p)θ
,

1
γ(n, p)c1

}
< 1.

On the other hand, we haveˆ
{x∈Q0:τt< f̃ (x)Ét}

f̃ (x)p dx =
ˆ

{x∈Q0:τt< f̃ (x)Ét}
f̃ (x)p−1 f̃ (x)dx

É tp−1
ˆ

{x∈Q0: f̃ (x)>τt}
f̃ (x)dx.

(5.32)

By adding (5.31) and (5.32) and reorganizing terms, we arrive at(
1− c(n, p)θp)ˆ

{x∈Q0: f̃ (x)>τt}
f̃ (x)p dx

É c(n, p, c1)
(
(τt)p−1

ˆ
{x∈Q0: f̃ (x)>τt}

f̃ (x)dx+
ˆ

{x∈Q0: g̃(x)>τt}
g̃(x)p dx

)
.

Recall that here t Ê t0 was arbitrary. Also note that the term that is absorbed into
the left-hand side is finite, since f̃ ∈ Lp(Q0).

Let 0< θ = θ(n, p)< 1 be so small that

1− c(n, p)θp Ê 1
2

.

Lemma 5.11, applied for the functions f̃ , g̃ ∈ Lp(Q0), and the estimates f̃ É f ,
g̃ É g imply the existence of q = q(n, p, c1)> p such thatˆ

Q0

f̃ (x)q dx É c
(
(τt0)q−p

ˆ
Q0

f (x)p dx+
ˆ

Q0

g(x)q dx
)

= ctq−p
0

ˆ
Q0

f (x)p dx+ c
ˆ

Q0

g(x)q dx

with c = c(n, p, c1). Here we used the fact that τ= τ(n, p, c1). By (5.25) and (5.22),
we obtainˆ

Q0

f̃ (x)q dx É c
(ˆ

Q0

f (x)p dx
) q

p −1ˆ
Q0

f (x)p dx+ c
ˆ

Q0

g(x)q dx

É c
(ˆ

Q0

f (x)p dx
) q

p |Q0|
(ˆ

Q0

f (x)p dx
)−1ˆ

Q0

f (x)p dx+ c
ˆ

Q0

g(x)q dx

= c|Q0|
(ˆ

Q0

f (x)p dx
) q

p + c
ˆ

Q0

g(x)q dx,
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which gives (ˆ
Q0

f̃ (x)q dx
) 1

q É c
(ˆ

Q0

f (x)p dx
) 1

p + c
(ˆ

Q0

g(x)q dx
) 1

q

with c = c(n, p, c1).
Finally, it follows from the construction of W that Q1 =Q(x0, l0

2 ) is divided to
2n cubes Q ∈ W with the side length l0

2 . Since aQ = |Q0|
|Q| = 4n for these cubes, it

holds by the definition of f̃ that

f̃ (x)= 4− n
p f (x) for every x ∈Q1.

Hence we conclude that(ˆ
Q1

f (x)q dx
) 1

q É c
(ˆ

Q0

f (x)p dx
) 1

p + c
(ˆ

Q0

g(x)q dx
) 1

q

with c = c(n, p, c1). This is the desired inequality for the cube Q(z, r)=Q1, and the
proof is complete. ä

Remark 5.33. By covering cubes in (5.22) with balls by the Vitali 5r-covering
lemma, and covering balls in the final inequality by dyadic cubes, we obtain the
following variant of Theorem 5.21. Let 1 < p < ∞, c1 > 0, 1 < τ1,τ2 < ∞, and
let Ω ⊂ Rn be an open set. There exist θ = θ(n, p,τ1) > 0, q = q(n, p, c1,τ1) > p
and c = c(n, p, c1,τ1,τ2) Ê 1 such that if f , g ∈ Lp

loc(Ω) are nonnegative functions
satisfying(ˆ

B(z,r)
f (x)p dx

) 1
p É c1

[ˆ
B(z,τ1r)

f (x)dx+
(ˆ

B(z,τ1r)
g(x)p dx

) 1
p
]

+θ
(ˆ

B(z,τ1r)
f (x)p dx

) 1
p

,

for every ball B(z, r), with B(z,τ1r)⊂Ω, then(ˆ
B(z,r)

f (x)q dx
) 1

q É c
(ˆ

B(z,τ2r)
f (x)p dx

) 1
p + c

(ˆ
B(z,τ2r)

g(x)q dx
) 1

q

for every ball B(z, r) with B(z,τ2r)⊂Ω.

5.4 Local higher integrability of the gra-

dient
We begin with a local higher integrability result for the gradient of a weak solution,
showing that a weak solution u ∈W1,2

loc (Ω) to an elliptic partial differential belongs
to a slightly higher Sobolev space, that is, u ∈W1,2+δ

loc (Ω) for some δ> 0. The proof
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is based on the energy estimate in Lemma 4.7 and a Sobolev–Poincaré inequality
in Theorem 1.40, which give a reverse Hölder inequality for the weak gradient.
Local higher integrability then follows from the self-improvement property of
reverse Hölder inequalities, see Theorem 5.21.

Theorem 5.34. Assume that u ∈W1,2
loc (Ω) is a weak solution to (4.1) in Ω. There

exists δ= δ(n,λ,Λ)> 0 such that |Du| ∈ Lp+δ
loc (Ω). Moreover, there exists a constant

c = c(n,λ,Λ) such that(ˆ
B(z,r)

|Du|2+δ dx
) 1

2+δ É c
(ˆ

B(z,2r)
|Du|2 dx

) 1
2

whenever B(z,2r)bΩ.

T H E M O R A L : We assume that u ∈W1,2
loc (Ω) and show that Du ∈ L2+δ

loc (Ω) for
some δ> 0 and, consequently Du is integrable to a higher power than assumed in
the beginning. Moreover, there is a uniform weak reverse Hölder type estimate.

Proof. Let q = 2n
n+2 . Observe that 1É q < 2 for n Ê 2. Since u ∈W1,2

loc (Ω)⊂W1,q
loc (Ω),

by Theorem 1.40, we have(ˆ
B(z,2r)

|u−uB(z,2r)|2 dx
) 1

2 É c(n)r
(ˆ

B(z,2r)
|Du|q dx

) 1
q

(5.35)

whenever B(z,2r)bΩ. By Lemma 4.7 and (5.35), we obtain(ˆ
B(z,r)

|Du|2 dx
) 1

2 É c(λ,Λ)
r

(ˆ
B(z,2r)

|u−uB(z,2r)|2 dx
) 1

2

É c(n,λ,Λ)
(ˆ

B(z,2r)
|Du|q dx

) 1
q

.

Let f = |Du|q. The estimate above can be rewritten as(ˆ
B(z,r)

f (x)
2
q dx

) q
2 É c(n,λ,Λ)

ˆ
B(z,2r)

f (x)dx

for every B(z,2r) bΩ. Remark 5.33, see also Theorem 5.21, asserts that there
exists δ= δ(n,λ,Λ)> 0 and c = c(n,λ,Λ) such that(ˆ

B(z,r)
|Du|2+δ dx

) q
2+δ =

(ˆ
B(z,r)

f (x)
2+δ

q dx
) q

2+δ

É c
ˆ

B(z,2r)
f (x)dx

= c
ˆ

B(z,2r)
|Du|q dx

and, since 1É q < 2, we conclude that(ˆ
B(z,r)

|Du|2+δ dx
) 1

2+δ É c
(ˆ

B(z,2r)
|Du|q dx

) 1
q É c

(ˆ
B(z,2r)

|Du|2 dx
) 1

2

ä
for every B(z,2r)bΩ.
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Remark 5.36. We shall consider the example in Section 1.5 in the two-dimensional
case, that is, n = 2 and 0<α< 1. See also Chen and Wu [1, p. 189] and Giaquinta [5,
p. 157]. In Section 1.5 we showed that the function u : B(0,1)→R,

u(x)= u(x1, x2)= x1|x|−α

is a weak solution to

−
2∑

i, j=1
D j(ai jD iu)= 0

in B(0,1), where

ai j(x)= δi j + α(2−α)
(1−α)2

xix j

|x|2 , i, j = 1,2.

Estimate in (1.32) implies that the uniform ellipticity condition in Definition 1.7
is satisfied with

λ= 1 and Λ= 1+ α(2−α)
(1−α)2

.

By solving the equation above with respect to α, we obtain

α= Λ
2 −1
Λ2

Observe that α< 1 can be made arbitrarily close to one by choosing Λ> 1 large
enough.

By (1.29), we have

D iu(x)= δi1|x|−α−αx1xi|x|−α−2, i = 1,2,

where D iu, i = 1,2, is the weak partial derivative of u. A similar computation as
in Section 1.5 shows that ˆ

B(0,1)
|Du|p dx <∞

for 2É p < 2
α

and ˆ
B(0,1)

|Du| 2
α dx =∞.

The exponent 2
α
> 2 can be made as close to two as we wish by choosing α< 1 close

enough to one, or equivalently, choosing Λ> 1 large enough.

T H E M O R A L : The previous example shows that the higher integrability
exponent δ in Theorem 5.34 is not very large and depends on the ellipticity
constants. In particular, for every δ > 0, there exists a solution to an elliptic
equation, with a large enough ellipticity constant Λ> 1, such that |Du| ∉ L2+δ

loc (Ω).
In this sense, Theorem 5.34 is sharp.

Corollary 5.37. Assume that u ∈W1,2
loc (Ω) is a weak solution to (4.1) in Ω. There

exists δ= δ(n,λ,Λ)> 0 such that u ∈W1,2+δ
loc (Ω).
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T H E M O R A L : We assume that u ∈W1,2
loc (Ω) and show that u ∈W1,2+δ

loc (Ω) for
some δ> 0 and, consequently u belongs to a higher Sobolev space than assumed
in the beginning.

Proof. By Theorem 1.40, we obtain q = q(n)> 2 such that

(ˆ
B(z,r)

|u−uB(z,r)|q dx
) 1

q É c(n)r
(ˆ

B(z,r)
|Du|2 dx

) 1
2

for every B(z, r)bΩ, which implies

(ˆ
B(z,r)

|u|q dx
) 1

q É
(ˆ

B(z,r)
|u−uB(z,r)|q dx

) 1
q +|uB(z,r)|

É c(n)r
(ˆ

B(z,r)
|Du|2 dx

) 1
2 +|u|B(z,r) <∞.

Since u ∈ W1,2
loc (Ω), we have |u|B(z,r) < ∞. This shows that u ∈ Lq

loc(Ω) for some
q = q(n)> 2. Together with Theorem 5.34 this implies that u ∈W1,2+δ

loc (Ω) for some
δ= δ(n,λ,Λ)> 0. ä

Remark 5.38. Corollary 4.22 asserts that a weak solution to (4.1) is locally bounded
and Theorem 4.36 asserts that a weak solution is continuous. Both facts imply
u ∈ L∞

loc(Ω). This fact together with Theorem 5.34 can be used to give an alterna-
tive proof of the previous corollary.

5.5 Higher integrability up to the bound-

ary
Next we consider a global higher integrability result over the entire open set Ω.
In the argument we need the following variant of the energy estimate given in
Theorem 4.6.

Theorem 5.39. Assume that Ω⊂ Rn is a bounded open set and let g ∈ W1,2(Ω).
Let u ∈W1,2(Ω) is a weak solution of (4.1) in Ω with u− g ∈W1,2

0 (Ω). There exists
a constant c = c(λ,Λ) such that

ˆ
Ω
ϕ2|Du|2 dx É c

ˆ
Ω
|u− g|2|Dϕ|2 dx+

ˆ
Ω
ϕ2|D g|2 dx

for every ϕ ∈ C∞
0 (Rn).

T H E M O R A L : Observe that the support of the test function ϕ in the following
lemma need not be a compact subset of Ω. This gives us estimates up to the
boundary.
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Proof. Let ϕ ∈ C∞
0 (Rn) and define v = ϕ2(u− g). Since u− g ∈ W1,2

0 (Ω), we have
v ∈W1,2

0 (Ω). Moreover,

D jv =ϕ2(D ju−D j g)+2ϕ(u− g)D jϕ, j = 1, . . . ,n,

almost everywhere in Ω. Since u is a weak solution and v ∈W1,2
0 (Ω), we have

0=
ˆ
Ω

n∑
i, j=1

ai jD iuD jv dx

=
ˆ
Ω
ϕ2

n∑
i, j=1

ai jD iu(D ju−D j g)dx+2
ˆ
Ω
ϕ(u− g)

n∑
i, j=1

ai jD iuD jϕdx.

This implies that
ˆ
Ω
ϕ2

n∑
i, j=1

ai jD iuD ju dx

É 2

∣∣∣∣∣
ˆ
Ω
ϕ(u− g)

n∑
i, j=1

ai jD iuD jϕdx

∣∣∣∣∣+
∣∣∣∣∣
ˆ
Ω
ϕ2

n∑
i, j=1

ai jD iuD j g dx

∣∣∣∣∣
É 2
ˆ
Ω
|ϕ||u− g|

n∑
i, j=1

‖ai j‖L∞(Ω)|D iu||D jϕ|dx+
ˆ
Ω
ϕ2

n∑
i, j=1

‖ai j‖L∞(Ω)|D iu||D j g|dx

É c
(ˆ
Ω
|ϕ||u− g||Du||Dϕ|dx+

ˆ
Ω
ϕ2|Du||D g|dx

)
.

Next we first apply the uniform ellipticity condition to the previous estimate,
and then we use Young’s inequality with epsilon to have

λ

ˆ
Ω
ϕ2|Du|2 dx É c

ˆ
Ω
|ϕ||u− g||Du||Dϕ|dx+

ˆ
Ω
ϕ2|Du||D g|dx

É λ

2

ˆ
Ω
ϕ2|Du|2 dx+ c

ˆ
Ω
|u− g|2|Dϕ|2 dx+ c

ˆ
Ω
ϕ2|D g|2 dx.

Both terms on the right-hand side are finite, since u ∈ W1,2
loc (Ω) and ϕ ∈ C∞

0 (Ω).
The claim follows by absorbing the first term on the right-hand side. ä

We state a global higher integrability result on open sets whose complement
satisfies the following measure density condition. This is a relatively standard
regularity assumption on the domain in the theory of PDEs.

Definition 5.40. A set E ⊂ Rn satisfies the measure density condition, if there
exists a constant γ, with 0< γÉ 1, such that

|E∩B(x, r)| Ê γ|B(x, r)| (5.41)

for every x ∈ E and r > 0.

T H E M O R A L : A set satisfying the measure density condition is thick in the
sense that every ball centered in the set contains at least certain percentage points
of the set.
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Remarks 5.42:
(1) If Ω⊂Rn is an open set with a smooth boundary, that is, the boundary is

locally represented by a graph of a smooth function, then Rn\Ω satisfies the
measure density condition. The same holds true for Lipchitz boundaries.
One advantage of the measure density condition is that it also applies to
sets whose boundary is not represented by a graph of a function.

(2) If Ω ⊂ Rn is an open set such that Rn \Ω satisfies the measure density
condition, by the Lebesgue differentiation theorem the boundary of Ω has
Lebesgue measure zero.

The next result is a global version of Theorem 5.34.

Theorem 5.43. Let Ω ⊂ Rn be a bounded open set such that the complement
Rn \Ω satisfies the measure density condition with a constant γ. Assume that
g ∈ W1,s(Ω) for some s > 2 and that u ∈ W1,2(Ω) is a weak solution to (4.1) in Ω
with u− g ∈W1,2

0 (Ω). There exists δ= δ(n,Λ,λ, s,γ) > 0, with 2+δÉ s, such that
|Du| ∈ L2+δ(Ω). Moreover, there exists a constant c = c(n, s,γ) such that(ˆ

Ω
|Du|2+δ dx

) 1
2+δ É c

[(ˆ
Ω
|Du|2 dx

) 1
2 +

(ˆ
Ω
|D g|2+δ dx

) 1
2+δ

]
.

T H E M O R A L : If the domain and the boundary value function are smooth
enough, then the gradient of the solution to the Dirichlet problem is integrable to
a higher power over the entire domain than assumed in the beginning. Moreover,
this result comes with a weak reverse Hölder type estimate.

Proof. (1) Let B(z, r) be a ball with B(z,2r)∩ (Rn \Ω) 6= ;. Let ϕ ∈ C∞
0 (B(z,2r))

be a cutoff function such that ϕ= 1 in B(z, r), 0ÉϕÉ 1 and |Dϕ| É C
r . Since Ω is

bounded, we have g ∈W1,s(Ω)⊂W1,2(Ω). By Lemma 5.39, there exists a constant
c = c(λ,Λ) such that

ˆ
B(z,r)∩Ω

|Du|2 dx É
ˆ
Ω
ϕp|Du|2 dx

É c
r2

ˆ
B(z,2r)∩Ω

|u− g|2 dx+ c
ˆ

B(z,2r)∩Ω
|D g|2 dx.

(5.44)

As in the proof of Theorem 5.34, let q = 2n
n+2 . Then 1É q < 2 for n Ê 2. Hölder’s

inequality implies u− g ∈W1,2
0 (Ω) ⊂W1,q

0 (Ω). By considering the zero extension
v ∈W1,q(Rn) of u− g ∈W1,q

0 (Ω), defined by

v =
u− g, in Ω,

0, in Rn \Ω,

we have v = 0 almost everywhere in Rn \Ω. Since B(z,2r)∩ (Rn \Ω) 6= ;, there
exists a point y ∈ B(z,2r)∩ (Rn \Ω). By the fact that v = 0 almost everywhere in
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Rn \Ω and the measure density property, we obtain

|{x ∈ B(y,4r) : v(x)= 0}| Ê |B(y,4r)∩ (Rn \Ω)| Ê γ|B(y,4r)|.

Since v ∈W1,q(Rn), by Theorem 1.47, there exists a constant c = c(n,γ) such that

(ˆ
B(y,4r)

|v|2 dx
) 1

2 É cr
(ˆ

B(y,4r)
|Dv|q dx

) 1
q

.

Since v = u− g almost everywhere in Ω, v = 0 almost everywhere in Rn \Ω and
B(y,4r)⊂ B(z,6r), there exists a constant c = c(n,γ), such that

1
r

(
1

|B(z, r)|
ˆ

B(z,2r)∩Ω
|u− g|2 dx

) 1
2 É c

r

(ˆ
B(y,4r)

|v|2 dx
) 1

2

É c
(ˆ

B(y,4r)
|Dv|q dx

) 1
q = c

(
1

|B(y,4r)|
ˆ

B(y,4r)∩Ω
|Du−D g|q dx

) 1
q

É c

[(
1

|B(z,6r)|
ˆ

B(z,6r)∩Ω
|Du|q dx

) 1
q +

(
1

|B(z,6r)|
ˆ

B(z,6r)∩Ω
|D g|2 dx

) 1
2
]

.

By (5.44) and the estimates above, there exists a constant c = c(n,Λ,λ,γ) such
that(

1
|B(z, r)|

ˆ
B(z,r)∩Ω

|Du|2 dx
) 1

2

É c
r

(
1

|B(z, r)|
ˆ

B(z,2r)∩Ω
|u− g|2 dx

) 1
2 + c

(
1

|B(z, r)|
ˆ

B(z,2r)∩Ω
|D g|2 dx

) 1
2

É c

[(
1

|B(z,6r)|
ˆ

B(z,6r)∩Ω
|Du|q dx

) 1
q +

(
1

|B(z,6r)|
ˆ

B(z,6r)∩Ω
|D g|2 dx

) 1
2
] (5.45)

whenever B(z,2r)∩ (Rn \Ω) 6= ;.
(2) Assume then that B(z, r) is a ball with B(z,2r)∩ (Rn \Ω) = ;, that is,

B(z,2r)bΩ. By the proof of Theorem 5.34, we have

(ˆ
B(z,r)

|Du|2 dx
) 1

2 É c
(ˆ

B(z,2r)
|Du|q dx

) 1
q

.

with c = c(n,λ,Λ). From this we conclude that (5.45) is also valid when B(z,2r)∩
(Rn \Ω)=;. This implies that (5.45) holds for every ball B(z, r)⊂Rn.

(3) Let f = |Du|qχΩ and h = |D g|qχΩ. By (5.45) there exists a constant c =
c(n,Λ,λ,γ) such that(ˆ

B(z,r)
f

2
q dx

) q
2 É c

[ˆ
B(z,6r)

f dx+
(ˆ

B(z,6r)
h

2
q dx

) q
2
]

for every B(z, r)⊂Rn. By Remark 5.33, there exists δ= δ(n,Λ,λ, s,γ), with 2+δÉ s,
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and c = c(n,Λ,λ,γ) such that

(
1

|B(z, r)|
ˆ

B(z,r)∩Ω
|Du|2+δ dx

) 1
2+δ

É c

[(
1

|B(z,2r)|
ˆ

B(z,2r)∩Ω
|Du|2 dx

) 1
p +

(
1

|B(z,2r)|
ˆ

B(z,2r)∩Ω
|D g|2+δ dx

) 1
2+δ

]

for every B(z, r)⊂Rn. The claim follows by considering a ball B(z, r) with z ∈ ÇΩ
and r = diam(Ω). ä

Corollary 5.46. Let Ω ⊂ Rn be a bounded open set such that the complement
Rn \Ω satisfies the measure density condition with a constant γ. Assume that
g ∈ W1,s(Ω) for some s > 2 and that u ∈ W1,2(Ω) is a weak solution to (4.1) in Ω
with u− g ∈W1,2

0 (Ω). There exists δ= δ(n,Λ,λ, s,γ) > 0, with 2+δÉ s, such that
u ∈W1,2+δ(Ω).

Proof. Since u−g ∈W1,2
0 (Ω), Corollary 1.37 implies that there exists q = q(n, s)> 2,

with q É s, such that

(ˆ
Ω
|u− g|q dx

) 1
q É c(n, p, s,Ω)

(ˆ
Ω
|Du−D g|2 dx

) 1
2 <∞.

It follows that (ˆ
Ω
|u|q dx

) 1
q É

(ˆ
Ω
|u− g|q dx

) 1
q +

(ˆ
Ω
|g|q dx

) 1
q <∞

and thus u ∈ L2+δ(Ω) for some δ = δ(n, s) > 0. Together with Theorem 5.43 this
implies that u ∈W1,2+δ(Ω) for some δ= δ(n,Λ,λ, s,γ)> 0. ä

THE END
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