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Plan of the talk

Goal: The main goal is to develop theory of the calculus of
variations with linear growth in metric measure spaces.

Questions: Existence, regularity and integral representations.

Tool: Functions of bounded variation (BV ) on metric
measure spaces.



Example

The total variation

‖Du‖ =

∫
|Du| = sup

∫ n∑
i=1

u
∂ψi

∂xi
dx ,

where the supremum is taken over all functions
ψ ∈ C 1

0 (Rn;Rn) with ‖ψ‖∞ ≤ 1.

The area functional∫ √
1 + |Du|2 = sup

∫ (
ψn+1 +

n∑
i=1

u
∂ψi

∂xi

)
dx ,

where the supremum is taken over all functions
ψ ∈ C 1

0 (Rn;Rn+1) with ‖ψ‖∞ ≤ 1.



Metric measure space

(X , d , µ) is a complete metric measure space.

µ is doubling, if there exists a uniform constant cD ≥ 1 such
that

µ(B(x , 2r)) ≤ cDµ(B(x , r))

for all balls B(x , r) in X .



Upper gradient

Definition (Heinonen and Koskela, 1998)

A nonnegative Borel function g on X is an upper gradient of a
function u, if for all x , y ∈ X and for all paths γ joining x and y in
X ,

|u(x)− u(y)| ≤
∫
γ

g ds.



Remarks

If u has an upper gradient in L1(X ), then there exists a
minimal upper gradient gu of u such that

gu ≤ g µ-almost everywhere in X

for all upper gradients g ∈ L1(X ).

Using upper gradients it is possible to define first order
Sobolev spaces (Shanmugalingam, 2000) and functions of
bounded variation (Ambrosio, Miranda Jr. and Pallara, 2003)
on a metric measure space.



Poincaré inequality

Definition

The space X supports a Poincaré inequality, if there exist
constants cP > 0 and τ ≥ 1 such that for all balls B(x , r),
u ∈ L1

loc(X ) and for all upper gradients g of u, we have∫
B(x ,r)

|u − uB(x ,r)| dµ ≤ cP r

∫
B(x ,τ r)

g dµ,

where

uB(x ,r) =

∫
B(x ,r)

u dµ =
1

µ(B(x , r))

∫
B(x ,r)

u dµ.



Doubling and Poincaré

Doubling condition and the Poincaré inequality imply Sobolev
inequalities. This is important for partial differential equations and
the calculus of variations. From now on we work under these
assumptions.



BV -functions through relaxation

Definition (Ambrosio, 2001 and Miranda Jr., 2003)

Let Ω ⊂ X be an open set. The total variation of a function
u ∈ L1

loc(Ω) is defined as

‖Du‖(Ω) = inf
{

lim inf
i→∞

∫
Ω

gui dµ :

ui ∈ Liploc(Ω), ui → u in L1
loc(Ω)

}
,

where gui is the minimal 1-weak upper gradient of ui . We say that
a function u ∈ L1(Ω) is of bounded variation, u ∈ BV (Ω), if

‖Du‖(Ω) <∞.



Theory for BV -functions

u ∈ BVloc(X ) =⇒ ‖Du‖(·) is a Borel regular outer measure
on X .

Poincaré inequality, coarea formula and relative isoperimetric
inequality are available.

Lower semicontinuity of the total variation measure with
respect to L1-convergence and a compactness theorem hold
true.

If we consider Lp-integral with p > 1 instead of L1 we obtain
the Sobolev space.



Linear growth conditions

Let f : R+ → R+ be a convex increasing function that
satisfies the linear growth condition

mt ≤ f (t) ≤ M(1 + t)

for all t > 0, with some constants 0 < m ≤ M <∞.

Examples: f (t) = |t|, f (t) =
√

1 + |t|2.



Linear growth functional

Definition

Let Ω ⊂ X be an open. For u ∈ L1
loc(Ω), we define the linear

growth functional by relaxation as

F(u,Ω) = inf
{

lim inf
i→∞

∫
Ω

f (gui ) dµ :

ui ∈ Liploc(Ω), ui → u in L1
loc(Ω)

}
,

where gui is the minimal upper gradient of ui .

Observe: If f (t) = |t|, we obtain the total variation as in the
definition of BV . In general,

m‖Du‖(Ω) ≤ F(u,Ω) ≤ M(µ(Ω) + ‖Du‖(Ω)).



Measure properties

Goal: We want to use F(u, ·) as a measure.

Definition

We define F(u,A) for any set A ⊂ X by

F(u,A) = inf{F(u,Ω) : Ω is open,A ⊂ Ω}.

Theorem (Hakkarainen, Lahti, Lehtelä and K., 2014)

If Ω ⊂ X is open and F(u,Ω) <∞, then F(u, ·) is a Borel regular
outer measure on Ω.



Boundary values in BV

Definition (Hakkarainen, Lahti and K., 2013)

Let Ω and Ω∗ be open subsets of X such that Ω b Ω∗, and assume
that h ∈ BV (Ω∗). We define the space BVh(Ω) as the space of
functions u ∈ BV (Ω∗) such that u = h µ-almost everywhere in
Ω∗ \ Ω.

Observe: (1) When h = 0, we get the BV space with zero
boundary values BV0(Ω). In particular, u ∈ BVh(Ω) if and only if
u − h ∈ BV0(Ω).
(2) We could take Ω∗ = X as the reference set, but this is not a
big issue.



Boundary value problem

Definition (Hakkarainen, Lahti and K., 2013)

Let Ω and Ω∗ be bounded open subsets of X such that Ω b Ω∗,
and assume that h ∈ BV (Ω∗). A function u ∈ BVh(Ω) is a
minimizer with the boundary values h, if

F(u,Ω∗) = inf F(v ,Ω∗),

where the infimum is taken over all v ∈ BVh(Ω).



Example

Let f (t) =
√

1 + |t|2. In the Euclidean case with Lebesgue
measure we have the integral representation

F(v ,Ω∗) =

∫
Ω

√
1 + |Dv |2 +

∫
∂Ω
|v − h| dHn−1

+

∫
Ω∗\Ω

√
1 + |Dh|2.

for v ∈ BV (Ω∗). Minimizers do not depend on Ω∗, but the value
of the generalized area functional does. However, if we are only
interested in local regularity of the minimizers, the value of the
area functional is irrelevant.
Observe: The penalty term takes care boundary values.



Existence of minimizers

Theorem (Hakkarainen, Lahti and K., 2013)

Let Ω and Ω∗ be bounded open subsets of X such that Ω b Ω∗.
Then for every h ∈ BV (Ω∗) there exists a minimizer u ∈ BVh(Ω)
of the linear growth functional with the boundary values h.

Proof.

Direct method in the calculus of variations: Growth conditions +
Sobolev-Poincaré inequality + compactness result in BV + lower
semicontinuity of F with respect to L1-convergence.

Remark: Solutions are not unique.



Local boundedness of minimizers

Theorem (Hakkarainen, Lahti and K., 2013)

Let Ω and Ω∗ be bounded open subsets of X such that Ω b Ω∗,
and assume that h ∈ BV (Ω∗). Let u ∈ BVh(Ω) be a minimizer
with the boundary values h. Assume that B(x ,R) ⊂ Ω with
R > 0, and let k ∈ R. Then

ess sup
B(x ,R/2)

u ≤ k + c

∫
B(x ,R)

(u − k)+ dµ+ R,

where the constant c depends only on the doubling constant and
the constants in the Poincaré inequality.

Proof.

De Giorgi’s method.



De Giorgi condition

Theorem

For every k ∈ R, we have

‖D(u − k)+‖(B(x , r)) ≤ 2

R − r

∫
B(x ,R)

(u − k)+ dµ+ µ(Ak,R),

where Ak,R = B(x ,R) ∩ {u > k}.

Proof.

Minimizing sequence ui ∈ Liploc(Ω∗) + choose the test function
ui − η(ui − k)+ + the fact that ui almost minimizes F .



Failure of interior continuity

Unexpected phenomenon: A minimizer of a linear growth
functional may be discontinuous at interior point. In this sense, the
previous local boundedness result is optimal and finer regularity
theory fails to exist.

Observe: Minimizers with superlinear growth are continuous
(Shanmugalingam and K., 2001).



Failure of interior continuity

Example

Let R be equipped with the Euclidean distance, Ω = (−1, 1) and
dµ = w(x) dx with

w(x) = min
{√

2,
√

1 + x4/3
}
.

Note that w is continuously differentiable and 1 ≤ w ≤
√

2 in Ω.
Let u be a minimizer of the problem

F(u,Ω) =

∫ 1

−1

√
1 + (u′)2 w dx ,

with boundary values u(−1) = −a and u(1) = a. By choosing a
large enough (a > 3 will work), we obtain a jump discontinuity at
the origin.



Failure of interior continuity

Example

This corresponds to minimizing the integral representation

F(u) =

∫ 1

−1

√
1 + (u′)2 w dx +

∫ 1

−1
w d |(Du)s |

+ w(−1)|u(−1) + a|+ w(1)|u(1)− a|,

where the boundary values are interpreted in the sense of traces
and (Du)a = u′ dx denotes the absolutely continuous part and
(Du)s the singular part of the variation measure Du.



Failure of interior continuity

Example

If u ∈W 1,1((−1, 1)), then u satisfies the weak form of the
Euler-Lagrange equation

∂

∂x

(
u′(x)w(x)√
1 + (u′(x))2

)
= 0.

This implies that

∣∣u′(x)
∣∣ =

(
w(x)2

C 2
− 1

)−1/2

for almost every x ∈ (−1, 1).

a =
1

2
|u(1)− u(−1)| ≤

∫ 1

−1
|u′(x)| dx ≤ 3 < a.



The integral representation

Example

In the Euclidean case with Lebesgue measure we have an approach
to the minimization problem via the decomposition of the measure

F(u,Ω) =

∫
Ω

f (a) dx + f∞‖Du‖s(Ω),

where
d ‖Du‖ = a dµ+ d ‖Du‖s

is the decomposition of the variation measure into the absolutely
continuous and singular parts.

Question: Is this true in the metric setting?
Answer: Yes, but in an unexpected form.
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The integral representation

Theorem (Hakkarainen, Lahti, Lehtelä and K., 2014)

Let Ω be an open set, and let u ∈ L1
loc(Ω) with F(u,Ω) <∞. Let

d ‖Du‖ = a dµ+ d ‖Du‖s

be the decomposition of the variation measure into the absolutely
continuous and singular parts, where a ∈ L1(Ω) and ‖Du‖s is the
singular part. Then we have∫

Ω
f (a) dµ+ f∞‖Du‖s(Ω) ≤ F(u,Ω)

≤
∫

Ω
f (Ca) dµ+ f∞‖Du‖s(Ω),

where f∞ = limt→∞
f (t)
t is the recession factor.



Remarks

Let Fa(u, ·) and F s(u, ·) be the absolutely continuous and singular
parts of F(u, ·) with respect to µ. Assume that F(u,Ω) <∞ and
let A ⊂ Ω a µ-measurable subset of Ω.

For the singular part, we obtain the integral representation

F s(u,A) = f∞‖Du‖s(A).

This is analogous to the Euclidean case.

For the absolutely continuous part we only get an integral
representation up to a constant∫

A
f (a) dµ ≤ Fa(u,A) ≤

∫
A

f (Ca) dµ.

A counterexample shows that the constant cannot be
dismissed already on the weighted real line.



Example

Let Ω = [0, 1] equipped with the Euclidean distance. Take a fat
Cantor set ∆ ⊂ [0, 1] with L1(∆) = 1

2 . Equip X with the weighted
Lebesgue measure dµ = w dL1, where w = 2 in ∆ and w = 1 in
Ω \∆.
There is a Lipschitz function u with Du = 2χ∆ (a = χ∆ and
gu = 2χ∆) and a functional F(·,Ω) for which∫

Ω
|Du| dµ > ‖Du‖([0, 1]) and F(u,Ω) >

∫
Ω

f (Du) dµ.

The main phenomenon is that the derivatives of an approximating
sequence live in the cheaper set [0, 1] \∆ with weight 1, but Du
lives in ∆, where it costs more with weight 2. However, F(u,Ω)
can be constructed so that it places extra weight in Ω \∆.



The lower bound

Take a minimizing sequence ui ∈ Liploc(Ω) such that ui → u
in L1

loc(Ω) and∫
Ω

f (gui ) dµ→ F(u,Ω) as i →∞.

By the growth conditions, we have a subsequence gui dµ⇀dν
weakly, where ν is a Radon measure with finite mass in Ω.

By the definition of the variation measure, we have ν ≥ ‖Du‖.
As a nonnegative nondecreasing convex function, f can be
presented as

f (t) = sup
j∈N

(dj t + ej), t ≥ 0,

for some sequences dj , ej ∈ R, with dj ≥ 0, j = 1, 2, . . ., and
furthermore supj dj = f∞. The result follows from the weak
convergence.



The upper bound

Since the functional F(u, ·) is a Radon measure, we
decompose it into the absolutely continuous and singular parts
as F(u, ·) = Fa(u, ·) + F s(u, ·).

The estimate for F s(u, ·) follows rather directly by choosing a
minimizing sequence and using f (t) ≤ f (0) + tf∞.

For Fa(u, ·) we approximate u by the discrete convolutions
related to Whitney type coverings and partitions of unities.

Decompose the upper grandients of the approximation as
ga
i + g s

i , show that ga
i are equi-integrable, extract a weakly

converging subsequence ga
i converges weakly in L1(G ) to a

function ǎ ≤ Ca, with C = C (cd , λ), and use Mazur’s lemma
to estimate Fa(u, ·).



A by-product

As a by-product , we have that a BV function is a Sobolev function
in a set where the variation measure is absolutely continuous.

Theorem (Hakkarainen, Lahti and K., 2014)

Let u ∈ BV (Ω), and let

d ‖Du‖ = a dµ+ d ‖Du‖s

be the decomposition of the variation measure, where a ∈ L1(Ω)
and ‖Du‖s is the singular part. Let F ⊂ Ω be a µ-measurable set
for which ‖Du‖s(F ) = 0. Then, by modifying u on a set of
µ-measure zero if necessary, we have

u|F ∈ N1,1(F ) and gu ≤ Ca

µ-almost everywhere in F , with C = C (cd , cP , λ).

Remark. Our previous example shows that the constant cannot be
dismissed.



Remarks

Our previous example shows that the constant cannot be
dismissed.

If ‖Du‖ is absolutely continuous on the whole of Ω, then
u ∈ N1,1(Ω) we also have the inequality∫

Ω
gu dµ ≤ C‖Du‖(Ω)

with C = C (cd , cP , λ).



Further developments

Under suitable conditions on the space and the domain, we can
establish equivalence between the above minimization problem and
minimizing the functional

F(u,Ω) + f∞

∫
∂Ω
|TΩu − TX\Ωh|θΩ dH

over all u ∈ BV (Ω∗). Here TΩu and TX\Ωu are boundary traces
and θΩ is a strictly positive density function.

Observe: The penalty term takes care boundary values.

P. Lahti, Extensions and traces of functions of bounded variation
on metric spaces, J. Math. Anal. Appl. (to appear).



Summary

It is possible to develop theory for variational problems with linear
growth conditions in the metric setting, but some unexpected
phenomena occur already in the weighted Euclidean case.


