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Abstract

We study the effects of non-systematic and systematic mortality risks

on the required initial capital in a pension plan, in the presence of financial

risks. We discover that for a pension plan with few members the impact

of pooling on the required capital per person is strong, but non-systematic

risk diminishes rapidly as the number of members increases. Systematic

mortality risk, on the other hand, is a significant source of risk is a pension

portfolio.
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1 Introduction

The mortality risk of a population can be decomposed into two components: sys-

tematic and non-systematic or idiosyncratic mortality risk. Systematic mortality

risk refers to the uncertainty in the future development in the survival probabilities

of the population. This risk is undiversifiable, and does not depend on the size of

the population. However, even if future survival probabilities were known, popu-

lation sizes would still be random. These non-systematic fluctuations account for

the non-systematic mortality risk, which diminishes as the size of the population

increases, and is diversifiable by pooling.

This paper aims to assess the effects of non-systematic and systematic mortality

risks on the capital requirement of a pension plan. We consider a simple asset-

liability model of a defined-benefit pension plan, and compute the required initial

capital per person for varying numbers of members in the scheme. We show that for

pension plans with few members the impact of pooling on the capital requirement

per participant is strong, but the effect diminishes rapidly as the pool size increases.
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The role of non-systematic risk in pension plans has been studied in earlier lit-

erature. Coppola at al. [4] consider the contributions of mortality and investment

risks to the variability in the present value of liabilities, given annuity portfolios

of different sizes. Olivieri [12] also consider the impact of systematic and random

fluctuations on the present value of future benefit payments under a deterministic

financial structure. Milevsky et al. [11] show how the standard deviation of payoffs

per policy diminishes to a constant as the number of policies increases.They dis-

covered that when there are dozens of policies, the contribution of non-systematic

risk is still notable, but for portfolios larger than a thousand members it reduces to

negligible. Hári et al. [8] have examined the impact of non-systematic risk on a

capital reserve, described as a proportion of the present value of the liabilities, re-

quired to reduce the probability of underfunding to an acceptable level. Donnelly

[5] considers the role of non-systematic risk in a pension plan by studying how

the coefficient of variation for the liabilities of the scheme varies with the number

of participants in the scheme. According to her findings, non-systematic risk in a

pension portfolio decreases steeply, and becomes negligible for pension portfolios

with a few hundred members.

In this paper, we show how the least amount of initial capital required to cover

the liabilities of pension portfolio varies with the size of the portfolio. This choice

is in line with the fact that the Solvency II directive focuses on the capital require-

ments of insurance companies. In addition, it is a tangible and comprehensible

concept. Whereas traditional actuarial methods determine capital requirements by

discounting expected cash flows, we adopt a slightly different approach. We con-

sider a multi-period model of stochastic asset returns and liabilities, and determine

the minimum initial capital needed to cover the liabilities in terms of a convex risk

measure, given a degree of risk aversion. Our results corroborate earlier findings,

showing that as the size of the pension portfolio grows, the effect of non-systematic

risk first drops sharply, then diminishes more slowly, ultimately reaching negligible

levels.

Section 2 quantifies mortality risk and defines the capital requirement problem

of a pension fund. Section 3 presents the numerical results. Section 4 concludes.

2 Valuation of defined-benefit pension liabilities

Consider a defined-benefit pension plan, where the number of members aged x
at time t is denoted by Ex,t. The number of survivors Ex+1,t+1 among the Ex,t

individuals during year [t, t+ 1) can be described by the binomial distribution:

Ex+1,t+1 ∼ Bin(Ex,t, px,t), (1)

where px,t is the probability that an x year-old individual randomly selected at the

beginning of year t survives until t+ 1.

The future values of Ex+1,t+1 are obtained by sampling from Bin(Ex,t, px,t).
The uncertainty in the future values of px,t represents the systematic mortality risk.

2



Even if the ’true’ survival probabilities were known, future population sizes would

still be random, which accounts for the non-systematic mortality risk. However,

as the population grows, the fraction Ex+1,t+1/[Ex,tpx+t,t] converges in distribu-

tion to constant 1. In large enough pools the main uncertainty comes from unpre-

dictable variations in the future values of px,t, and the population dynamics are

well described by Ex+1,t+1 = Ex,tpx,t.
We assume that each alive member receives an index-linked annual benefit at

times t = 1, 2, . . . , T , until termination of the scheme at t = T . The yearly pension

claims amount to

ct =
It
I0

∑

x∈X

dxEx,t,

where It is the index value, X ⊂ N is the set of age groups in the pension plan,

and the constant dx depends on the value of the index and accrued pension benefit

at time t = 0. We will look for the least amount of capital w0 that suffices to cover

the liabilities until the termination of the scheme.

Currently the most widely-used practice for valuation of insurance liabilities is

based on the actuarial best estimate, obtained as the expected value of discounted

claims. This is the valuation approach also applied in Solvency II. When using this

method one assumes that the portfolio is large enough to warrant not taking into

account the role of nonsystematic risk. On the other hand, Föllmer and Knispel [6]

note that if one takes the sum of i.i.d claims, and defines the capital requirement by

the entropic risk measure ρ defined for random variables X as

ρ(X) =
1

γ
logE[e−γX ], (2)

then the required capital per individual does not diminish as n increases. More

precisely, they show that if X1, X2, · · · , Xn are i.i.d. random variables on a prob-

ability space (Ω,F ,P) and Sn = X1 +X2 + · · ·+Xn, then ρ(Sn) = nρ(X).
Neither of the above valuation approaches considers underlying systematic risk

factors affecting the liability cash flows, such as uncertainty in the joint survival

probabilities of the entire population. Moreover, the sufficiency of capital also

depends on how it is invested in the financial markets. The ’best estimate’ approach

corresponds with the assumption that all of the capital is invested in fixed-income

instruments, which does not comply with the investment policy of a typical pension

insurer. On the other hand, the setting of Föllmer and Knispel essentially assumes

that the wealth is stored in a cash account.

In order to study the effects of non-systematic and systematic risks on capital

requirements, we apply the valuation approach described in [9]. At each t, the

insurer pays out ct and invests the remaining wealth wt in financial markets. The

investment returns are modelled as a stochastic process, which is dependent on the

chosen investment strategy used by the insurer. As in [9] we define the value of

liabilities as the least initial capital that enables the investor to hedge the liability

cash flows with given risk tolerance.
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The liabilities (ct)
T
t=0 and returns (Rt)

T
t=0 are modelled as adapted stochastic

processes, and problem can be formulated as

min w0 over w ∈ N

subject to wt ≤ Rtwt−1 − ct t = 1, . . . , T

ρ(wT ) ≤ 0,

(3)

where N are stochastic processes adapted to a given filtration (Ft)
T
t=0. The vari-

able Rt =
∑J

j=1R
j
tπ

j
t is the return over period [t − 1, t] per unit amount of cash

invested, and πj
t is the proportion on wealth invested each of the J assets.

Randomness in asset returns gives rise to financial risk, which plays a crucial

role in the asset-liability management of a pension plan. Uncertainty in the liabil-

ities consists of both randomness in the in the index that the benefit is tied to, and

the mortality risk, which can be decomposed into systematic and non-systematic

mortality components. While the impacts of systematic mortality risk, index risk

and financial risk do not depend on the size of the pension portfolio, one would

expect the non-systematic risk to decrease as the number of members increases.

Remark 1 (Best estimate) In the risk-neutral case where ρ(X) = E[X], it can

be shown that the required initial wealth is

w0 =

∑T
t=1E(ΠT

s=t+1Rsct)

E(ΠT
s=1Rs)

.

In the special case where Rt is independent of both its past values and liabilities

ct, we obtain the actuarial best estimate

w0 =

T
∑

t=1

c̄t

ΠT
s=1R̄s

,

where c̄t = ΠT
s=t+1E(Rs)E(ct) and R̄s = ΠT

s=1E(Rs). This is the valuation

method used in Solvency II.

The method of valuation given by (3) differs from the actuarial best estimate

and the case of [6] in two aspects. Our setting takes into consideration not only

systematic mortality risk but other systematic risk factors that are essential in de-

termining capital requirements in practise, namely investment returns and index

values. On the other, the financial market enables the agent to distribute wealth

over the time periods. Consequently, the aggregation property of [6] cannot be ap-

plied in this case, and we can observe the effect of nonsystematic risk for various

portfolio sizes. The objective of this paper is to study this phenomenon numeri-

cally.
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3 Numerical results

In the following simulation study all members in the pension scheme are females

aged 65 at t = 0, and the duration of the scheme is T = 30. The survival probabil-

ities pt, index It and investment returns Rj
t are modelled as a multivariate stochas-

tic process as described in Appendix A. We generated N = 500000 scenarios,

computed the final wealth wT in each scenario for a given initial wealth w0, and

approximated the expectation in (2) as a Monte Carlo estimate. The smallest w0

to yield a nonnegative risk for terminal wealths was obtained with a simple line

search. The scenarios in the simulation were generated by combining the variance

reduction methods of Latin hypercube sampling and antithetic variables.

Investment returns depend both on the returns on individual assets and the cho-

sen investment strategy. We consider a simple two-asset fixed proportions invest-

ment strategy on bonds and equities. Fixed proportions (FP) is a strategy where,

in the presence of J assets, the allocation is rebalanced at the beginning of each

holding period into set proportions given by a vector π ∈ R
J , the components of

which sum up to one. In our example,

π = [πbond, πstock] = [0.75, 0.25].

That is, a 75% weight is placed on bonds, and a 25% weight on equities.

Figures 1 and 2 plot the initial capitals per individual for various numbers of

participants E0 for each strategy, and two different risk aversion parameter values

γ = 0.1 and γ = 0.05. The dotted line indicates the level of initial capital required

in the presence of systematic risk only, that is when the numbers of survivors are

not sampled from binomial distribution but approximated by their expectation as

described in Section 2. The solid line marks the actuarial best estimate. Initially

the required capital drops sharply. With a few dozen members, the effect of non-

systematic risk on the initial capital is already comparatively small. We also note

that the higher the risk aversion, the larger is the required additional initial capital

per individual, compared with the case of purely nonsystematic risk.

Levels of initial capital required in the risk-neutral case and the actuarial best

estimate, along with capital required in the presence of systematic risk only for

parameter values γ = 0.1 and γ = 0.05 of the entropic risk measure, are presented

in Table 1. We see that for the risk-neutral case the required capital is slightly

smaller than for the actuarial best estimate. This difference arises from the fact that

the risk-neutral risk measure takes into account dependencies in asset returns and

liabilities.

Table 1: Systematic risk, initial capital

Risk measure Entropic, γ=0.05 Entropic, γ=0.1 ρ = E[X] Actuarial best practice

w0 16.69 15.87 15.17 15.23
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Figure 1: Initial capital requirement per individual, γ = 0.1. Dotted line indicates the

level of initial capital required in the presence of systematic risk only. Solid line marks the

actuarial best estimate.
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Figure 2: Initial capital requirement per individual, γ = 0.05. Dotted line indicates the

level of initial capital required in the presence of systematic risk only. Solid line marks the

actuarial best estimate.

4 Conclusions

We studied the effects of non-systematic and systematic mortality risks on the re-

quired initial capital for a pension plan, in the presence of financial risks. We
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computed the required initial capital per person for varying numbers of members

in the pension scheme. Our main finding was that for pension plans with few

members the impact of pooling on the capital requirement per capita is strong, and

non-systematic risk is offset rapidly in pension schemes as the number of members

increases. Systematic mortality risk, on the other hand, is a significant source of

risk is a pension portfolio.

A Modelling the systematic risk factors

In the following we describe a stochastic model for the risk factors affecting the

returns and claims of problem (3).

A.1 Mortality risk factors

As in [1], we model the survival probabilities px,t with the formula

px,t =
exp

(
∑n

i=1 v
i
tφ

i(x)
)

1 + exp(
∑n

i=1 v
i
tφ

i(x))
, (4)

where φi are user-defined basis functions and vit are stochastic risk factors that

may vary over time. In other words, the yearly logistic survival probability of an x
year-old is given by

logit px,t := ln
( px,t
1− px,t

)

=
n
∑

i=1

vitφ
i(x). (5)

The logistic transformation implies that the probabilities px,t and qx,t = 1 − px,t
remain in the interval (0, 1).

By an appropriate choice of the functions φi(x) one can incorporate certain

desired features into the model. For example, the basis functions can be chosen so

that the survival probabilities px,t have a regular dependence on the age x as e.g. in

the classical Gompertz model.

As in [1], we will use the three piecewise linear basis functions given by

φ1(x) =

{

1− x−18
32 for x ≤ 50

0 for x ≥ 50,

φ2(x) =

{

1
32(x− 18) for x ≤ 50

2− x
50 for x ≥ 50,

φ3(x) =

{

0 for x ≤ 50
x
50 − 1 for x ≥ 50.

The linear combination
∑3

i=1 v
i
tφ

i(x) will then be piecewise linear and continuous

as a function of the age x. The risk factors vit now represent points on logistic
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survival probability curve:

v1t = logit p18,t, v
2
t = logit p50,t, v

3
t = logit p100,t.

It is to be noted that this is just one possible choice of basis functions. Another set

of basis functions would result in another set of risk factors with different interpre-

tations. We will use the particular three-parameter model described above mainly

because of its simple interpretation.

Once the basis functions φi are fixed, the realized values of the corresponding

risk factors vit can be easily calculated from historical data using standard max-

likelihood estimation. The log-likelihood function can expressed as

lt(v) =
∑

x∈X

[

Dx,t

∑

i

viφi(x)− Ex,t ln(1 + e
∑

i
viφi(x))

]

+ dt

where dt is a constant; see [1]. The maximization of lt is greatly facilitated by the

fact that lt is a convex function of v; see [1, Proposition 3].

A.2 Investment returns

Two asset classes, government bonds and and equities, are considered. Return on

government bonds is given by the formula

Rb
t = exp(Yt−1∆t−D∆Yt),

where Y i
t is the yield to maturity at time t and, D is the duration [10]. The total

return of the equity is calculated as

Rs
t =

St

St−1
,

where St is the total return index.

A.3 Time-series model

Following [2], we model the future development of risk factors with the following

equations

∆v1t = a11v1t−1 + b1 + ε1t

∆v2t = b2 + ε2t

∆v3t = a33v3t−1 + a34gt−1 + b3 + ε3t

∆gt = b4 + ε4t

∆pt = b5 + a55pt−1 + ε5t

∆yt = b6 + a66yt−1 + ε6t

∆st = b7 + ε7t ,
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where gt is the logarithm of the per capita GDP, which is in turn modelled as a

random walk with a drift. We denote the consumer price index (CPI) with Pt, and

model the difference of its logarithm pt = log(Pt)− log(Pt−1) as a mean reverting

process. The government bond is the 1-year US Treasury bill, whose yield is de-

noted by Yt, and log-yield yt = log(Yt). Its equation is the mean reverting interest

rate model of Black and Karasinski [3]. The stock index is the S&P total return

index St, and its logarithm is described by a random walk with a drift. The terms

εt are i.i.d random variables, describing the random fluctuations in the risk factors.

The above equations can be combined to a multivariate linear stochastic differ-

ence equation

∆xt = Axt−1 + b+ εt

for x = [v1t , v
2
t , v

3
t , gt, pt, yt, st]. The terms εit are modelled as Gaussian random

variables.

The time series model of stochastic risk factors is calibrated to US female mor-

tality and financial market data. The equations described above were fitted into

annual data from 1953–2007. US population data was obtained from Human Mor-

tality Database 1 Bond yield and consumer price index data was extracted from

Federal Reserve Economic Data (FRED) 2 3, and S&P total return index data from

Aswath Damodaran’s home page 4.

Matrix A and vector b were estimated from data, with the exception of a few

user-defined parameters. The value of b5 was chosen such that the mean reversion

level of bond log yield corresponds to a yield of 2.5%. Similarly, b6 was set to

give an average annual equity return of 6%, and the mean reversion level of the

equation for the consumer price index corresponds with an annual inflation rate of

2%. Coefficient matrices A and b and covariance matrix Σ are as follows:

A =





















−0.0302 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −0.181 0.0831 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −0.209 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −0.192





















b =
[

0.243 0.0139 −0.673 0.0201 0.192 0.0583 0.038
]

1www.mortality.org
2http://research.stlouisfed.org/fred2/series/GS1
3http://research.stlouisfed.org/fred2/series/CPIAUCSL
4pages.stern.nyu.edu/ adamodar/

9



Σ =





















0.0027 0.0007 0.0014 −0.0004 0.0002 0.0024 0.0003
0.0007 0.0006 0.0004 −0.0000 0.0014 0.0010 0.0001
0.0014 0.0004 0.0032 −0.0004 −0.0014 0.0000 0.0003
−0.0004 −0.0000 −0.0004 0.0005 0.0031 −0.0004 0.0001
0.0002 0.0014 −0.0014 0.0031 0.0947 0.0011 0.0035
0.0024 0.0010 0.0000 −0.0004 0.0011 0.0246 −0.0010
0.000 0.0001 0.0001 0.0001 0.0002 0.0005 0.0002




















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