Descending Maps Between Slashed Tangent Bundles

Matias Dahl
Helsinki University of Technology, Finland

joint work with

Ioan Bucataru
A.I. Cuza University, Romania

Workshop on Finsler geometry and its applications, Debrecen — May 2009
Suppose F is a diffeomorphism

$$F : TM \setminus \{0\} \to TM \setminus \{0\}.$$

Characterize those F that can be written as

$$F = D\phi|_{TM\setminus\{0\}}.$$

for a diffeomorphism $\phi : M \to M$.

When ϕ exists, one say that F descends.
Definition: Let M be a manifold. Then the **canonical involution** is the diffeomorphism

$$\kappa : TTM \rightarrow TTM$$

that is locally given by

$$\kappa(x, y, X, Y) = (x, X, y, Y).$$

Note:

- $\kappa^2 = \text{identity}$.

Descending maps between slashed tangent bundles
First main theorem

Suppose F is a diffeomorphism

\[F : TM \setminus \{0\} \rightarrow TM \setminus \{0\} \]

and suppose that M is connected, simply connected, compact, $\dim M \geq 2$.

Then the following are equivalent:

(i) There exists a diffeomorphism $\phi : M \rightarrow M$ such that

\[F = D\phi \mid_{TM \setminus \{0\}}. \]

(ii) $DF = \kappa \circ DF \circ \kappa$
A related result

Theorem [Robbin-Weinstein-Lie]:

Let F be a diffeomorphism

$$F : T^* M \rightarrow T^* M.$$

Then the following are equivalent:

(i) $F = \phi^*$ for a diffeomorphism $\phi : M \rightarrow M$.

(ii) $F^* \theta = \theta$.

Here:

- ϕ^* = pullback of ϕ, $\phi(x, \xi) = \left((\phi^{-1})^i(x), \frac{\partial (\phi^{-1})^i}{\partial x^a} \xi_i \right)$

- $\theta =$ canonical 1-form $\theta \in \Omega^1(T^* M)$, $\theta = \xi_i dx^i$
Suppose: \(DF = \kappa \circ DF \circ \kappa \).

Claim: There exists a map \(\phi: M \to M \) such that \(F = D\phi|_{TM \setminus \{0\}} \).
Suppose: $DF = \kappa \circ DF \circ \kappa$.

Claim: There exists a map $\phi: M \to M$ such that $F = D\phi\big|_{TM\setminus\{0\}}$.

Proof: Let locally $F(x, y) = (F_1(x, y), F_2(x, y))$. Then $DF(x, y, X, Y)$

$$DF(x, y, X, Y) = \left(F_1(x, y), F_2(x, y), \frac{\partial F_1}{\partial x^a}(x, y)X^a + \frac{\partial F_1}{\partial y^a}(x, y)Y^a, \right.$$

$$\left. \frac{\partial F_2}{\partial x^a}(x, y)X^a + \frac{\partial F_2}{\partial y^a}(x, y)Y^a \right),$$
Suppose: $DF = \kappa \circ DF \circ \kappa$.

Claim: There exists a map $\phi: M \to M$ such that $F = D\phi|_{TM\setminus\{0\}}$.

Proof: Let locally $F(x, y) = (F_1(x, y), F_2(x, y))$. Then

$$DF(x, y, X, Y) = \left(F_1(x, y), F_2(x, y), \frac{\partial F_1}{\partial x^a}(x, y)X^a + \frac{\partial F_1}{\partial y^a}(x, y)Y^a, \right.$$

$$\left. \quad \frac{\partial F_2}{\partial x^a}(x, y)X^a + \frac{\partial F_2}{\partial y^a}(x, y)Y^a \right),$$

$$\kappa \circ DF \circ \kappa(x, y, X, Y) = \left(F_1(x, X), \frac{\partial F_1}{\partial x^a}(x, X)y^a + \frac{\partial F_1}{\partial y^a}(x, X)Y^a, F_2(x, X), \right.$$

$$\left. \quad \frac{\partial F_2}{\partial x^a}(x, X)y^a + \frac{\partial F_2}{\partial y^a}(x, X)Y^a \right).$$
Suppose: $DF = \kappa \circ DF \circ \kappa$.

Claim: There exists a map $\phi: M \to M$ such that $F = D\phi|_{TM\setminus\{0\}}$.

Proof: Let locally $F(x, y) = (F_1(x, y), F_2(x, y))$. Then

$$DF(x, y, X, Y) = \left(F_1(x, y), F_2(x, y), \frac{\partial F_1}{\partial x^a}(x, y)X^a + \frac{\partial F_1}{\partial y^a}(x, y)Y^a, \frac{\partial F_2}{\partial x^a}(x, y)X^a + \frac{\partial F_2}{\partial y^a}(x, y)Y^a \right),$$

$$\kappa \circ DF \circ \kappa(x, y, X, Y) = \left(F_1(x, X), \frac{\partial F_1}{\partial x^a}(x, X)y^a + \frac{\partial F_1}{\partial y^a}(x, X)Y^a, F_2(x, X), \frac{\partial F_2}{\partial x^a}(x, X)y^a + \frac{\partial F_2}{\partial y^a}(x, X)Y^a \right).$$

First components: $F_1(x, y) = F_1(x, X)$. Let ϕ be the unique map $\phi: M \to M$ determined by $\phi \circ \pi = \pi \circ F$. Locally $\phi(x) = F_1(x, y)$.
Suppose: \(DF = \kappa \circ DF \circ \kappa \).

Claim: There exists a map \(\phi: M \rightarrow M \) such that \(F = D\phi|_{TM\setminus\{0\}} \).

Proof: Let locally \(F(x, y) = (F_1(x, y), F_2(x, y)) \). Then

\[
DF(x, y, X, Y) = \left(F_1(x, y), F_2(x, y), \frac{\partial F_1}{\partial x^a}(x, y)X^a + \frac{\partial F_1}{\partial y^a}(x, y)Y^a, \right.
\]

\[
\left. \frac{\partial F_2}{\partial x^a}(x, y)X^a + \frac{\partial F_2}{\partial y^a}(x, y)Y^a \right)
\]

\[
\kappa \circ DF \circ \kappa(x, y, X, Y) = \left(F_1(x, X), \frac{\partial F_1}{\partial x^a}(x, X)y^a + \frac{\partial F_1}{\partial y^a}(x, X)Y^a, F_2(x, X), \right.
\]

\[
\left. \frac{\partial F_2}{\partial x^a}(x, X)y^a + \frac{\partial F_2}{\partial y^a}(x, X)Y^a \right).
\]

- **First components:** \(F_1(x, y) = F_1(x, X) \). Let \(\phi \) be the unique map \(\phi: M \rightarrow M \) determined by \(\phi \circ \pi = \pi \circ F \). Locally \(\phi(x) = F_1(x, y) \).
- **Second components:** \(F_2(x, y) = \frac{\partial \phi}{\partial x^a}(x)y^a \). Thus \(F = D\phi|_{TM\setminus\{0\}} \).
Second main theorem: Suppose F is a diffeomorphism

$$F: TM \setminus \{0\} \rightarrow TM \setminus \{0\},$$

and M is connected, simply connected, compact, and $\dim M \geq 2$. If M has two Riemann metrics g and \tilde{g} such that

(i) g has a trapping hypersurface $\Sigma \subset M$;

$$\forall p \in M \quad \forall y \in T_pM \setminus \{0\} \quad \exists T \in \mathbb{R} \text{ s.t. } \exp(Ty) \in \Sigma.$$ (ii) for all $p \in \Sigma$,

$$g(y, y) = \tilde{g}(y, y) \quad y \in T_pM \setminus \{0\}$$

$$S(y) = \tilde{S}(y), \quad y \in T_pM \setminus \{0\}$$

$$DF(\xi) = \xi, \quad \xi \in T(T_pM \setminus \{0\})$$

(iii) If $J: I \rightarrow TM \setminus \{0\}$ is a Jacobi field for g then

$F \circ J: I \rightarrow TM \setminus \{0\}$ is a Jacobi field for \tilde{g}.

Then $F = D\phi|_{TM\setminus\{0\}}$ for a diffeomorphism $\phi: M \rightarrow M$ and ϕ is an isometry.
Outline of proof:

1. F preserves integral curves since:
 ▶ every integral curve is a Jacobi field
 ▶ F preserves Jacobi fields
 ▶ $S = \tilde{S}$ and $DF = \text{Id}$ on Σ

2. $DF = \kappa \circ DF \circ \kappa$ since:
 ▶ F preserves Jacobi fields
 ▶ F preserves integral curves

3. Thus there exists a diffeomorphism $\phi: M \to M$ such that $F = D\phi |_{TM \setminus \{0\}}$.

4. ϕ is totally geodesic since:
 ▶ $F = D\phi |_{TM \setminus \{0\}}$ preserves integral curves

5. Proposition: Let M be a connected manifold with two Riemann metrics. If $\phi: M \to M$ is totally geodesic and ϕ is an isometry at one point, then ϕ is an isometry.
Outline of proof:

1. F preserves integral curves since:
 - every integral curve is a Jacobi field
 - F preserves Jacobi fields
 - $S = \tilde{S}$ and $DF = \text{Id}$ on Σ

2. $DF = \kappa \circ DF \circ \kappa$ since:
 - F preserves Jacobi fields
 - F preserves integral curves

Proposition:
Let M be a connected manifold with two Riemann metrics. If $\phi : M \to M$ is totally geodesic and ϕ is an isometry at one point, then ϕ is an isometry.
Outline of proof:

1. F preserves integral curves since:
 - every integral curve is a Jacobi field
 - F preserves Jacobi fields
 - $S = \tilde{S}$ and $DF = \text{Id}$ on Σ

2. $DF = \kappa \circ DF \circ \kappa$ since:
 - F preserves Jacobi fields
 - F preserves integral curves

3. Thus there exists a diffeomorphism $\phi: M \to M$ such that $F = D\phi|_{TM\setminus\{0\}}$.

Proposition:

Let M be a connected manifold with two Riemann metrics. If $\phi: M \to M$ is totally geodesic and ϕ is an isometry at one point, then ϕ is an isometry.
Outline of proof:

1. F preserves integral curves since:
 - every integral curve is a Jacobi field
 - F preserves Jacobi fields
 - $S = \tilde{S}$ and $DF = \text{Id}$ on Σ

2. $DF = \kappa \circ DF \circ \kappa$ since:
 - F preserves Jacobi fields
 - F preserves integral curves

3. Thus there exists a diffeomorphism $\phi : M \rightarrow M$ such that $F = D\phi|_{TM \setminus \{0\}}$.

4. ϕ is totally geodesic since:
 - $F = D\phi|_{TM \setminus \{0\}}$ preserves integral curves
Outline of proof:

1. F preserves integral curves since:
 - every integral curve is a Jacobi field
 - F preserves Jacobi fields
 - $S = \tilde{S}$ and $DF = \text{Id}$ on Σ

2. $DF = \kappa \circ DF \circ \kappa$ since:
 - F preserves Jacobi fields
 - F preserves integral curves

3. Thus there exists a diffeomorphism $\phi: M \to M$ such that
 $F = D\phi|_{TM \setminus \{0\}}$.

4. ϕ is totally geodesic since:
 - $F = D\phi|_{TM \setminus \{0\}}$ preserves integral curves

5. **Proposition:** Let M be a connected manifold with two Riemann metrics. If $\phi: M \to M$ is totally geodesic and ϕ is an isometry at one point, then ϕ is an isometry.