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Abstract. We give two constructions that give a solution to the sourceless

Maxwell’s equations from a contact form on a 3-manifold. In both construc-
tions the solutions are standing waves. Here, contact geometry can be seen

as a differential geometry where the fundamental quantity (that is, the con-

tact form) shows a constantly rotational behaviour due to a non-integrability
condition. Using these constructions we obtain two main results. With the

first construction we obtain a solution to Maxwell’s equations on R3 with an

arbitrary prescribed and time independent energy profile. With the second
construction we obtain solutions in a medium with a skewon part for which

the energy density is time independent. The latter result is unexpected since
usually the skewon part of a medium is associated with dissipative effects, that

is, energy losses. Lastly, we describe two ways to construct a solution from

symplectic structures on a 4-manifold.

One difference between acoustics and electromagnetics is that in acoustics the wave
is described by a scalar quantity whereas an electromagnetics, the wave is described
by vectorial quantities. In electromagnetics, this vectorial nature gives rise to polar-
isation, that is, in anisotropic medium differently polarised waves can have different
propagation and scattering properties. To understand propagation in electromag-
netism one therefore needs to take into account the role of polarisation. Classically,
polarisation is defined as a property of plane waves, but generalising this concept
to an arbitrary electromagnetic wave seems to be difficult. To understand propaga-
tion in inhomogeneous medium, there are various mathematical approaches: using
Gaussian beams (see [Dah06, Kac04, Kac05, Pop02, Ral82]), using Hadamard’s
method of a propagating discontinuity (see [HO03]) and using microlocal analysis
(see [Den92]). In all of these approaches polarisation is modelled in different ways,
and in all approaches one needs to fix the polarisation of a wave to describe how the
wave propagates. Polarisation can also be studied using the helicity decomposition
for vector fields on R3. This does not yield specific information about propagation.
However, it yields a decomposition of Maxwell’s equations, which can be seen as a
refinement of Helmholtz’ decomposition [Bla93], or a generalisation of the Bohren
decomposition [Dah04, Mos71]. This decomposition has also been studied in fluid
mechanics [Mos71, Tur00]. For a similar decomposition for electromagnetic fields
in homogeneous spacetime, see [Kai04]. The advantage of all the above helicity
decompositions is that they relate polarisation to handed behaviour. This is a phe-
nomenon that has not only proven useful in electromagnetism [Lak94], but also
seems to be an important phenomena more generally in both physics and nature
[HK90].

Date: June 4, 2010.
2000 Mathematics Subject Classification. 53D05 53D10 53Z05, 78A25.
Key words and phrases. Maxwell’s equations, electromagnetics, contact geometry, symplectic

geometry.

1



2 DAHL

In [Dah04] a helicity decomposition in R3 was used to study relations from electro-
magnetic fields to contact geometry (see Section 3), which is a branch of differential
geometry that describes objects that contain a certain constantly rotating phenom-
ena. This rotational behaviour is due to a non-integrability condition. For results
that relate contact geometry and hydrodynamics, see [EG00]. In [Dah04] we used
the helicity decomposition (or the Bohren decomposition) to construct examples
of contact forms from particular solutions to Maxwell’s equations. The motivation
for studying this relation is that contact geometry can be seen as a differential geo-
metric framework for studying handed behaviour, and this could be an approach
to understand polarisation in electromagnetism. The present work can be seen as
a continuation of [Dah04], and here we study the converse relation. In Section 3
we give two ways to construct solutions to the sourceless Maxwell’s equations from
contact forms on an arbitrary 3-manifold (see Theorems 3.7 and 3.13). These solu-
tions are standing wave solutions, that is, the time-average of the Poynting vector
is always zero, so there is no net transfer of energy. Using the first construction
we describe an electromagnetic field on R3 with a prescribed and time independent
energy density E = 1

2 (E ∧ D + H ∧ B). See Theorem 3.8. In Section 3.5 we use
the second construction to obtain a solution to Maxwell’s equations such that (a)
the electromagnetic medium has a skewon component, and (b) Poynting’s theorem
holds, that is, the Poynting vector S = E ∧H describes the flow of energy density
E . Since the time-average of S is zero, it is not completely clear how to interpret
Poynting’s theorem. In Example 3.16 we also show that medium with a skewon
part can support solutions with time independent energy density E . The last two
results are somewhat unexpected as usually the skewon part of a medium is de-
scribed as a component related to dissipative effects, that is, energy losses. (In this
work we assume that the medium and the fields are real valued. In the complex
case, skewon medium can also be lossless [LSTV94, Section 2.6].)

Essentially, one can view contact geometry as an odd dimensional analogue to sym-
plectic geometry, which is the geometry of phase space in Hamiltonian mechanics.
It is well known that contact- and symplectic geometry are closely related theories
with many common results. In Section 4 we show how to construct solutions to
Maxwell’s equations on a 4-dimensional manifold starting from symplectic forms
(see Theorems 4.2 and 4.3).

In Section 1 formulate Maxwell’s equations on 3- and 4-manifolds and define various
derived quantities. In Section 2 we review the decomposition of electromagnetic
medium into its irreducible components [HO03, Section D.1.2]. This paper contains
a number computations best done by computer algebra. Mathematica notebooks
for these computations can be found on the author’s homepage.

1. Maxwell’s equations

By a manifold M we mean a second countable topological Hausdorff space that is
locally homeomorphic to Rn with C∞-smooth transition maps. All objects are real
valued and smooth where defined. By TM and T ∗M we denote the tangent and
cotangent bundles, respectively. Let Ωkl (M) be

(
k
l

)
-tensors that are antisymmetric

in their k upper indices and their l lower indices. In particular, let Ωk(M) be the
set of k-forms. Let also X(M) be the set of vector fields, and let C∞(M) be the set
of functions. By Ωk(M)×R we denote the set of k-forms that depend smoothly on
a parameter t ∈ R. The Einstein summing convention is used throughout.
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We will use differential forms to write Maxwell’s equations. On a 3-manifold M ,
Maxwell equations read [BH96, HO03]

dE = −∂B
∂t
,(1)

dH =
∂D

∂t
+ J,(2)

dD = ρ,(3)
dB = 0,(4)

for field quantities E,H ∈ Ω1(M)×R, D,B ∈ Ω2(M)×R and sources J ∈ Ω2(M)×
R and ρ ∈ Ω3(M) × R. Let us emphasise that equations (1)–(4) are completely
differential-topological, and depend only on the smooth structure of M .

1.1. Maxwell’s equations on a 4-manifold. Suppose E,D,B,H are time de-
pendent forms E,H ∈ Ω1(M)×R and D,B ∈ Ω2(M)×R and N is the 4-manifold
N = M × R. Then we can define forms F,G ∈ Ω2(N) and j ∈ Ω3(N),

F = B + E ∧ dt,(5)
G = D −H ∧ dt,(6)
j = ρ− J ∧ dt.(7)

Now fields E,D,B,H solve Maxwell’s equations (1)–(4) if and only if

dF = 0,(8)
dG = j,(9)

where d is the exterior derivative on N . More generally, if N is a 4-manifold and
F,G, j are forms F,G ∈ Ω2(N) and j ∈ Ω3(N) we say that F,G solve Maxwell’s
equations (for a source j) when equations (8)–(9) hold.

1.2. Derived quantities and energy. From a solution F,G to Maxwell’s equa-
tions on a 4-manifold N we can define 4-forms I1, I2, I3 ∈ Ω4(N) as

I1 = F ∧ F,(10)
I2 = F ∧G,(11)
I3 = G ∧G.(12)

What is more, the energy density is the
(

3
1

)
-tensor Σ ∈ Ω3

1(N) defined as [HO03]

Σ(y) =
1
2

(F ∧ ιy(G)−G ∧ ιy(F )) , y ∈ TM,(13)

where ιy is tensor contraction. Then Σ is anti-symmetric in F and G, so that
ΣF,G = −ΣG,F . If θ ∈ R, then

ΣF,G = ΣFθ,Gθ ,

where Fθ = cos θ F − sin θ G and Gθ = sin θ F + cos θ G. The transformation
F,G 7→ Fθ, Gθ is called a duality transformation. If there are no sources, then this
transformation also preserves solutions to Maxwell’s equations [BH96, Kai04].

Let us next study these derived quantities in the special case that N = M × R
where M is a 3-manifold, and F and G are given by equations (5)–(6). Then

I1 = 2E ∧B ∧ dt,
I2 = (E ∧D −H ∧B) ∧ dt,
I3 = −2H ∧D ∧ dt.
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Since N = M × R, there is a global vector field T ∈ X(N) given by T = ∂
∂t and

Σ(T ) = E −S ∧ dt,(14)

where E ∈ Ω3(M)× R and S ∈ Ω2(M)× R are defined as

E =
1
2

(E ∧D +H ∧B) ,

S = E ∧H.
Here, S corresponds to the Poynting vector in classical electromagnetism, and E
is the energy density of the solution. To prove equation (14) we have used that
tensor contraction ι is an anti-derivation [AMR88, p. 429]. That is, if α ∈ Ωp(M)
and β ∈ Ωq(M) then for X ∈ X(M) we have

ιX(α ∧ β) = ιX(α) ∧ β + (−1)pα ∧ (ιXβ).(15)

In consequence, ιT (F ) = −E and ιT (G) = H.

The next proposition shows that if a suitable condition is met, then quantity S
describes the flow of E over time (see equation (16)). However, let us emphasise
that all conditions in the below proposition are conditions on fields F and G (or
fields E,D,B,H) and not in the electromagnetic medium. At this point we have
not introduced any electromagnetic medium.

Theorem 1.1 (Poynting theorem). Let F,G is a solution to the sourceless Maxwell’s
equations on N = M × R, let E,D,B,H be as in equations (5)–(6), and let T be
as above. Then the following conditions are equivalent:

(i) Σ(T ) ∈ Ω3(N) is closed,
(ii) F ∧LT (G) = LT (F ) ∧G, where L is the Lie derivative,

(iii) ∂
∂tE = −dS , where d is the exterior derivative on M ,

(iv) for every open set U ⊂M with smooth boundary ∂U and compact closure,
we have

∂

∂t

∫
U

E = −
∫
∂U

S .(16)

Proof. The equivalence of (i) and (ii) follows from equation (13) using Poincaré’s
formula LXω = ιXdω + d(ιXω). The equivalence of (i) and (iii) follows by taking
the exterior derivative of equation (14) and noting that dNE = − ∂

∂tE ∧ dt where
dN is the exterior derivative on N . Equivalence of (iii) and (iv) follows by Stokes
theorem and Lemma 14.22 in [Lee03]. �

2. The constitutive equation

Suppose N is a 4-manifold. By an electromagnetic medium on N we mean a map

κ : Ω2(N) → Ω2(N).

We then say that 2-forms F,G ∈ Ω2(N) solve Maxwell’s equations in medium κ if
F and G satisfy equations (8)–(9), and

G = κ(F ).(17)

Equation (17) is known as the constitutive equation. If κ is also invertible, it
implies that one can eliminate half of the free variables in Maxwell’s equations (8)–
(9). In general the constitutive equation κ can be very complicated. For example,
magnetic medium usually possess hysteresis. When studying constitutive equations
it is therefore customary to introduce certain additional conditions that ensure that
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κ is physically relevant. For example, medium can have an internal memory, so
fields at one time instant can depend on past values of the fields, but, by causality,
they can not depend on future values. We will here only consider electromagnetic
medium that is linear and local. Then we can represent κ by an antisymmetric(

2
2

)
-tensor κ ∈ Ω2

2(N), and if locally

κ = κijlmdx
l ⊗ dxm ⊗ ∂

∂xi
⊗ ∂

∂xj
,(18)

then constitutive equation (17) reads

Gij = κrsij Frs,(19)

where F = Fijdx
i ⊗ dxj and G = Gijdx

i ⊗ dxj .

Suppose (x0, x1, x2, x3) are local coordinates for N = M × R such that x0 is the
coordinate for R and (x1, x2, x3) are coordinates for M . If forms F,G are given by
equations (5)–(6), then

Fi0 = Ei, Fij = Bij , Gi0 = −Hi, Gij = Dij

for all i, j = 1, 2, 3 and equation (19) then reads

Hi = −2κr0i0Er − κrsi0Brs,(20)
Dij = 2κr0ij Er + κrsijBrs,(21)

where i, j = 1, 2, 3 and r, s are summed over 1, 2, 3.

2.1. Decomposition of electromagnetic medium. At each point of a 4-manifold
N a general electromagnetic medium κ is described by a antisymmetric

(
2
2

)
-tensor

which depends on 36 free parameters. Next we review the decomposition of such
a tensor into its three irreducible pieces; the principle part (1)κ, the skewon part
(2)κ and the axion part (3)κ [HO03]. The motivation for this decomposition is that
different components of the medium enter in different parts of electromagnetics.
For example, when G = κ(F ), the energy momentum tensor is independent of the
axion part (3)κ, whereas the Lagrangian L = F ∧ G is independent of the skewon
part (2)κ. For a further discussion, see [HO03, Section D.1.3].

Let N be a 4-manifold. If κ ∈ Ω2
2(N) we define the trace of κ as the smooth function

N → R given by

traceκ = κijij

when κ is locally given by equation (18). Let

〈·, ·〉 : Ω2
2(N)× Ω2

2(N) → C∞(N)

be the canonical map defined as

〈χ, κ〉 =
1
6

trace(χ ◦ κ), χ, κ ∈ Ω2
2(N).

That is, if χ and κ are written as in equation (18) then 〈χ, κ〉 = 1
6χ

ij
lmκ

lm
ij .

The factor 1
6 is chosen such that 〈Id, Id〉 = 1 when dimN = 4. One way to see

this is to use the local expression for Id given by Idijlm = δi[lδ
j
m] = 1

2

(
δilδ

j
m − δimδ

j
l

)
,

where [·] is tensor anti-symmetrisation. Then 〈·, ·〉 is symmetric, bilinear (over C∞

functions), and non-degenerate, that is, if 〈χ, κ〉 = 0 for all κ ∈ Ω2
2(N) then χ = 0.

(Take κijlm = δi[pδ
j
q]δ

[a
l δ

b]
m.) Hence 〈·, ·〉 defines a scalar product on Ω2

2(N) in the
sense of [O’N83, p. 47]. The dimension of Ω2

2(N) is 36 and using computer algebra
one can show that 〈·, ·〉 has signature (21, 15).
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Notation Z, W and U in the next propositionis the same as in the Weyl decompo-
sition of curvature [Küh06, Section 8D].

Proposition 2.1 (Decomposition of a
(

2
2

)
-tensors). Let N be a 4-manifold, and let

Z = {κ ∈ Ω2
2(N) : u ∧ κ(v) = κ(u) ∧ v for all u, v ∈ Ω2(N),

traceκ = 0}
= {κ ∈ Ω2

2(N) : κijlj(x) = 0},
W = {κ ∈ Ω2

2(N) : u ∧ κ(v) = −κ(u) ∧ v for all u, v ∈ Ω2(N)}
= {κ ∈ Ω2

2(N) : u ∧ κ(v) = −κ(u) ∧ v for all u, v ∈ Ω2(N),
traceκ = 0},

U = {f Id ∈ Ω2
2(N) : f ∈ C∞(N)}.

Then

Ω2
2(N) = Z ⊕W ⊕ U.(22)

Moreover

(i) U,W,Z are mutually orthogonal with respect to 〈·, ·〉.
(ii) 〈·, ·〉 is non-degenerate on Z,W and U .

(iii) Pointwise,

dimZ = 20, dimW = 15, dimU = 1.

Here 〈·, ·〉 is non-degenerate on A0 ⊂ Ω2
2(N) if a ∈ A0 and 〈a, z〉 = 0 for all z ∈ A0

implies that a = 0.

Proof. By computer algebra the two expressions for Z coincide. We will use the
first expression for W as the definition of W and the proof of the second expression
for W is postponed to the end of the proof. Our first goal is to show that vector
subspaces Z,W and U satisfy equation (22). If z ∈ Z and u ∈ U , then u = f Id for
some f ∈ C∞(N) and 〈u, z〉 = f trace z = 0. Hence U and Z are orthogonal. Using
the second expression for Z we see that U ∩Z = {0} so U +Z = U ⊕Z. It is clear
that 〈·, ·〉 is non-degenerate on U , and an analysis using computer algebra shows
that 〈·, ·〉 is also non-degenerate on Z. Hence 〈·, ·〉 is non-degenerate on U +Z and
by Lemma 23 in [O’N83, p. 49] we have

Ω2
2(N) = (U ⊕ Z)⊕ (U ⊕ Z)⊥(23)

where B⊥ = {w ∈ Ω2
2(N) : 〈w, b〉 = 0 for all b ∈ B} for B ⊂ Ω2

2(N). Let us next
show that W = (U+Z)⊥. For inclusion ⊂, let w ∈W and let us show that w ∈ U⊥
and w ∈ Z⊥. If w is written as in equation (18) with coefficients wijlm, then w ∈W
if and only if

wijlmε
lmpq = −wpqlmε

lmij .(24)

Here εijkl is the Levi-Civita permutation symbol. If u ∈ U , then u = f Id for some
f ∈ C∞(N), and thus

〈w, u〉 =
1
6
fwijij .

On the other hand, using Idijlm = δi[lδ
j
m], ε

lmpqεlmij = 4δp[iδ
q
j] and equation (24) we

have

〈w, u〉 = −1
6
fwijij ,
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so w ∈ U⊥. Using computer algebra we find that Z and W are orthogonal. Hence
w ∈ Z⊥, and inclusion W ⊂ (U +Z)⊥ follows. Inclusion W ⊃ (U +Z)⊥ follows by
computer algebra. Now equation (23) implies equation (22). We have also proven
(i). We have shown that 〈·, ·〉 is non-degenerate on U,Z and U + Z. Hence (see
[O’N83, p. 50]) it is also non-degenerate on (U + Z)⊥ = W , and (ii) follows. For
(iii), we note that equation (24) imposes 21 linearly independent constraints on
coefficients wijlm. Hence W has dimension 36− 21 = 15. It is clear that dimU = 1,
whence dimZ = 36−15−1 = 20. The proof of the second expression for W follows
by contracting equation (24) by the Levi-Civita permutation symbol εijpq. �

When κ ∈ Ω2
2(N) is written as in equation (25) in the next proposition we say that

(1)κ ∈ Z is the principal part, (2)κ ∈W is the skewon part, and (3)κ ∈ U is the axion
part [HO03].

Proposition 2.2. Any κ ∈ Ω2
2(N) can be written as

κ = (1)κ + (2)κ + (3)κ,(25)

where
(1)κ = κ−(2)κ−(3)κ, (principal part)

(2)κijlm = 2 6κ[i
[lδ
j]
m], (skewon part)

(3)κ =
1
6

trace(κ) Id . (axion part)

and 6 κ ∈ Ω1
1(N) is the trace-free tensor defined as 6 κij = κimjm − 1

4 trace(κ)δij. Then
(1)κ ∈ Z, (2)κ ∈W and (3)κ ∈ U . Moreover, since the sum in equation (22) is direct,
this decomposition is unique.

Proof. It is clear that (3)κ ∈ U . From (2)κijlj =6κil and (3)κijlj = 1
4 trace(κ)δil we obtain

(1)κijlj = 0, so (1)κ ∈ Z. To see that (2)κ ∈W , it suffices to show that (2)κ ∈ Z⊥ and
(2)κ ∈ U⊥. For (2)κ ∈ Z⊥ we have

12〈(2)κ, z〉 = 6κilz
lj
ij−6κ

i
mz

jm
ij −6κ

j
l z
li
ij+ 6κjmzimij = 0, z ∈ Z

since zijlj = 0 and zijlm is anti-symmetric in both ij and lm. That (2)κ ∈ U⊥ follows
similarly. �

Lastly, suppose N has a volume form ω ∈ Ω4(N). Then Ω2(N) has a scalar product
〈·, ·〉ω given by

〈u, v〉ω ω = u ∧ v, u, v ∈ Ω2(N),
and 〈·, ·〉ω has signature (3, 3). See [Har91] and [HO03, Section A.1.10]. Vector
spaces Z and W can then be characterized as the trace-free elements in Ω2

2(N) that
are symmetric and anti-symmetric with respect to 〈·, ·〉ω, respectively.

2.2. Time independent medium. LetM andN = M×R and vector field T = ∂
∂t

be as in Section 1.2. We say that a electromagnetic medium κ ∈ Ω2
2(N) is time

independent, if LT (κ) = 0. If κ is locally given by equation (18), this condition
states that components κijlm do not depend on time t.

The next proposition shows that the skewon part of the medium is related to
behaviour of energy. See [HO03, Section D.1.5].

Proposition 2.3. Let N = M × R be as above, and let κ be a time independent
medium with no skewon part. If F and G is a solution to the sourceless Maxwell’s,
then all conditions in Proposition 1.1 hold.
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Proof. For an arbitrary 2-form F ∈ Ω2(N) and a vector field X ∈ X(N) we have

LX(F ) =
(
X(Fij) + Fik

∂Xk

∂xj
− Fjk

∂Xk

∂xi

)
dxi ⊗ dxj .

Thus LT (κF ) = κLT (F ) and condition (ii) holds in Proposition 1.1. �

2.3. Anisotropic medium on a 3-manifold. Suppose g is a (positive definite)
Riemann metric on an orientable 3-manifold M . Then we denote by ] and [ the
musical isomorphisms ] : T ∗M → TM and [ : TM → T ∗M induced by g. If y ∈
TM , then y[ is the unique covector y[ ∈ T ∗M such that y[(w) = g(y, w) for
all w ∈ TM , and ] is the inverse of [. The Hodge star operator ∗ is the map
∗ : Ωp(M)→ Ω3−p(M) (p = 0, . . . , 3) that acts on basis elements of Ωp(M) as

∗(dxi1 ∧ · · · ∧ dxip) =

√
|g|

(3− p)!
gi1l1 · · · giplpεl1···lp lp+1···lndx

lp+1 ∧ · · · ∧ dxln .

Here g = gijdx
i⊗dxj , |g| = det gij , gij is the ijth entry of (gij)−1, and εl1···ln is the

Levi-Civita permutation symbol. We also have the following relation (Proposition
6.2.12 in [AMR88]),

α ∧ ∗β = g(α, β)dV, α, β ∈ Ωp(M), p = 1, 2, 3,(26)

where dV =
√
|g|dx1 ∧ dx2 ∧ dx3 is the volume form induced by g. Here

g(α, β) =
1
p!
αi1···ipg

i1k1 · · · gi1kpβk1···kp ,(27)

when α, β ∈ Ωp(M) are locally written as α = αi1···ipdx
i1 ⊗ · · · ⊗ dxip .

Properties of the Hodge operator depend on the dimension. On a 4-manifold N , the
Hodge operator ∗ : Ω2(N)→ Ω2(N) is conformally invariant, so that a scaling of the
Riemann metric does not change its Hodge operator. In 4-dimensions, the Hodge
operator also determines the metric up to a rescaling [DKS89]. These results do
not hold in 3 dimensions (for example, see proof of Proposition 3.5). On the other
hand, on any three manifold M the Hodge operator always satisfies ∗2 = Id |Ωp(M)

for all p = 0, 1, 2, 3.

Let us consider the constitutive equations

D = ∗εE,(28)
B = ∗µH,(29)

where ∗ε and ∗µ are Hodge star operators corresponding to two Riemann metrics
gε and gµ, respectively. Here, metric gε models permittivity and gµ models perme-
ability. To make the connection clearer to equation (17) one could also use ∗2µ = Id
and write equation (29) as H = ∗µB.

On a 3-manifold equations (28)–(29) form a common model for electromagnetic
medium [BH96, Kac04, KLS06] even if it does not describe the most general medium.
Mathematically, one can show that any invertible linear map from 1-forms to 2-
forms (or from vector fields to vector fields) can be realised as a Hodge operator of
a Riemann metric. However, one needs to assume a positive-definite condition, so
that the Riemann metric will be positive definite. Moreover, one needs to impose
a symmetry condition, so that the degrees of freedom match. See [KLS06].

Proposition 2.4. Equations (28)–(29) define an electromagnetic medium that has
only a principal part.
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Proof. Any 2-form F ∈ Ω(N) can be written as

F = α+ α′ ∧ dt
where α ∈ Ω2(M) × R and α′ ∈ Ω1(M) × R. With this decomposition, equations
(28)–(29) define a tensor κ ∈ Ω2

2(N) by

κ(α+ α′ ∧ dt) = ∗εα′ − (∗µα) ∧ dt.
Then G = κ(F ) when F and G are defined as in (5)–(6) and D and B are defined
by equations (28)–(29). Using ∗2 = Id, it follows that κ is invertible. Comparing
equations (28)–(29) and equations (20)–(21) we see that traceκ = 0. By Theorem
2.1 it thus suffices to show that κ(u)∧v = u∧κ(v) for all u, v ∈ Ω2(N). If we write
u = α+ α′ ∧ dt and v = β + β′ ∧ dt this is equivalent to

(∗εα′) ∧ β′ − (∗µα) ∧ β = α′ ∧ (∗εβ′)− α ∧ (∗µβ),

which holds since ∗(ω)∧ ν = ∗(ν)∧ω when ω, ν ∈ Ωk(M)×R for k = 0, . . . ,dimM
and ∗ is the Hodge operator for an arbitrary Riemann metric on M . See equation
(26). �

3. Contact geometry and electromagnetism

3.1. Contact geometry. A contact form on a (2n+ 1)-manifold (with n ≥ 1) M
is a 1-form α ∈ Ω1(M) such that the (2n+ 1)-form α ∧ dα ∧ · · · ∧ dα is never zero
[Gei08]. By Frobenius theorem [Boo86], a form α ∈ Ω1(M) is a contact form if and
only if the hyperplane field

kerα = {v ∈ TM : α(v) = 0}
is nowhere integrable. That is, there is no hypersurface in M that is tangential to
kerα. For a contact form α, the pair (M, kerα) is called a contact structure. Thus
a contact structure is invariant under a rescaling of the contact form by non-zero
function.

Hereafter we specialise to study contact structures on 3-manifolds.

Example 3.1. The standard tight contact structures on R3 are the contact struc-
tures induced by contact forms α± ∈ Ω1(R3) given by

α± = dz ± xdy.
Since α± = ±dx ∧ dy ∧ dz both are contact forms. When z = 0, the plane fields
kerα± are pictured in Figure 1. 2

By definition every contact form α on a manifold M induces an orientation on M ,
and since dimM = 3, the volume form α∧ dα is invariant under rescalings of α by
non-zero functions. As an example, contact forms α± induce opposite orientations
±dx ∧ dx ∧ dz on R3. By Darboux theorem [Gei08] every contact form on a 3-
manifold is (up to a rescaling) locally diffeomorphic in an orientation preserving way
to either α+ or α−. This implies that (up to a deformation) all contact structures
locally show the same rotational behaviour as the contact structures in Figure 1.
We can therefore think of contact structures as a mathematical model for rotational
behaviour. We can also interpret the orientation induced by a contact form as the
handedness of the rotation.

A contact form α induces a unique vector field R called the Reeb vector field. It is
the unique vector field R ∈ X(M) determined by

dα(R, ·) = 0, α(R) = 1,(30)
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Figure 1. Contact structures α+ (left) and α− (right).

and if p ∈M , then [dS01]

TpM = spanRp ⊕ kerαp(31)
= ker dα|p ⊕ kerαp.

Also, in each 2n-vector space kerαp, the 2-form dα|p is a symplectic quadratic form.
(That is, dα|p is a bilinear, and non-degenerate). For contact forms α± in Example
3.1, we have R± = ∂

∂z .

3.2. Adapted Riemann metrics and Beltrami fields. In this section we de-
scribe how any contact form on a 3-manifold induces a non-unique Riemann metric
that is compatible with the contact structure [CH85]. In [EG00] this result was
used to study relations between hydrodynamics and contact geometry.

Definition 3.2 (Adapted Riemann metric). A contact form α ∈ Ω1(M) on a
3-manifold M and a Riemann metric g on M are adapted if

dα = ∗α, g(α, α) = 1,(32)

where ∗ is the Hodge star operator induced by g.

When α and g are as in Definition 3.2 local computations show that α(α]) = 1 and
dα(α], ·) = ∗α(α], ·) = 0 whence the Reeb vector field of α is given by R = α].

To understand the relevance of adapted Riemann metrics, let us define the curl
of a vector field X ∈ X(M) on a Riemann manifold as the unique vector field
∇×X ∈ X(M) determined by

(∇×X)[ = ∗d(X[).

For the Reeb vector field R = α], conditions (32) read

∇×R = R, g(R,R) = 1.

That is, an adapted metric turns the contact form into a non-vanishing Beltrami
vector field. A Beltrami vector field is a vector field F ∈ X(M) such that ∇× F =
fF for some function f ∈ C∞(M) [EG00]. In this note we only work with forms;
we study contact forms and electromagnetic fields, and both of these are most
naturally represented using forms, and not vector fields. We will therefore work
with Beltrami 1-forms instead of Beltrami vector fields.
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Definition 3.3 (Beltrami 1-form). Let ∗ be the Hodge star operator induced by a
Riemann metric on a 3-manifold M . A 1-form α ∈ Ω1(M) is a Beltrami 1-form if

dα = f ∗ α(33)

for some f ∈ C∞(M). Moreover, α is a rotational Beltrami 1-form if f is nowhere
zero.

The next proposition is due to Chern and Hamilton [CH85] (who also studied
conditions on curvature for g). Direct proofs can be found in [EG00, Kom06].

Proposition 3.4 (Chern, Hamilton – 1984). Every contact form on a 3-manifold
has an (non-unique) adapted Riemann metric.

Proposition 3.5 (Etnyre, Ghrist – 2000). Let α be a 1-form on a 3-manifold M .

(i) If α is a rotational Beltrami 1-form that in nowhere zero, then α is a
contact form.

(ii) If α is a contact form, and f is a strictly positive function f ∈ C∞(M),
then there exists a (non-unique) Riemann metric on M such that equation
(33) holds. In this case, α is a rotational Beltrami 1-form.

Proof. For (i) we have α ∧ dα = fα ∧ ∗α, and by equation (26), α ∧ dα vanishes
only if α or f vanishes. For (ii), let us first note that if g and g̃ are metrics such
that g̃ = µ g for some strictly positive function µ ∈ C∞(M), then corresponding
Hodge star operators ∗, ∗̃ : Ω1(M)→ Ω2(M) satisfy ∗̃ = (µ)1/2 ∗. For the proof, let
g be a Riemann metric such that (32) holds. A suitable Riemann metric is then
g̃ = 1/f2g. �

Example 3.6. Let k > 0. With coordinates x, y, z for R3, let

β± = cos(kx) dz ± sin(kx) dy.

With the Euclidean Riemann metric on R3 we have ∗dβ± = ±kβ±, so β± are
rotational Beltrami 1-forms and since β± ∧ dβ± = ±kdx ∧ dy ∧ dz forms β± are
contact structures with opposite induced orientations. Figure 2 shows how the
contact structures kerβ± rotate with opposite handedness.

In [Dah04] the above contact forms where erroneously described as the “standard
overtwisted contact structures”. However, contact structures β± are tight and
not overtwisted. For the terminology, see [Gei08]. In fact, for diffeomorphisms
f± : R3 → R3 defined as

f±(x, y, z) =

0 − cos kx ± sin kx
k 0 0
0 ± sin kx cos kx

xy
z


we have β± = f∗±α±, where α± are the contact forms in Example 3.1. I would like
to thank professor Hansjörg Geiges for pointing this out. 2

Theorem 3.7. Suppose α ∈ Ω1(M) is a contact form on a 3-manifold M and
ω > 0. Then there exists a (non-unique) Riemann metric with Hodge operator ∗
such that time harmonic forms

E(x, t) = α · cosωt,
H(x, t) = −α · sinωt,
D(x, t) = ∗E(x, t),
B(x, t) = ∗H(x, t), (x, t) ∈M × R

solve the source-less Maxwell’s equations on M .
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Figure 2. Contact structures β+ (left) and β− (right) in Example 3.6.

Proof. By Proposition 3.5 (ii), there exists a non-unique Riemann metric such that
dα = ω ∗ α. Maxwell’s equations (1)-(4) now follow directly from the definitions of
E,H,D,B given in the proposition. �

For the solution in Theorem 3.7 we obtain

I1 = − 1
ω

sin 2ωtα ∧ dα ∧ dt,(34)

I2 =
1
ω

cos 2ωtα ∧ dα ∧ dt,(35)

I3 =
1
ω

sin 2ωtα ∧ dα ∧ dt,(36)

E =
1

2ω
α ∧ dα,(37)

S = 0.(38)

Moreover, E and H are Beltrami 1-forms for a Riemann metric that represents an
electromagnetic medium with scalar wave impedance [KLS06]. By Proposition 2.4
the medium is also of principal type. Since α is a contact form, energy density E is
independent of t and nowhere zero. Solutions given by Theorem 3.7 are examples
where E and H are everywhere proportional. For such solutions, the Poynting
vector S vanishes identically, and there is no net energy transfer. The solution
in Theorem 3.7 is then best described as a standing wave solution to Maxwell’s
equations. For further discussion and examples of such solutions, see [UKS89,
SKU90, ZB93].

The next theorem shows that an electromagnetic field can have any prescribed
energy profile in R3. In particular, one can create a standing wave that is highly
focused and whose energy profile is time independent. Let us also mention that the
energy profile can have two signs, and from the proof we see that different signs are
realised using contact forms β± that rotate with opposite handedness.

Theorem 3.8. Suppose e ∈ C∞(R3) is a strictly non-vanishing function. Then
there exists an electromagnetic field on R3 in an electromagnetic medium of purely
principal type such that the Poynting vector S and energy density E are given by

S = 0, E = edV,

where dV = dx ∧ dy ∧ dz is the standard volume form on R3.
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Proof. Let α =
√
|e|β where β = β+ if e > 0 and β = β− if e < 0, and β± are the

contact forms in Example 3.6 with k = 1. Then α ∧ dα = edV . Setting ω = 1/2 in
Theorem 3.7 gives a time-harmonic solution E,D,B,H on R3 in a medium, which
by Proposition 2.4, is of principal type. The given expressions for for E and S
follow by equations (37)–(38). �

3.3. Contact structures from electromagnetic fields. It is well known that
rotational behaviour plays an important role in electromagnetism. See for example,
[Lak94, LSTV94]. It is therefore not surprising that there is a relation between
electromagnetism and contact geometry, although it is not clear how general this
relation might be. For plane waves this relation is easy to understand. Any plane
wave in isotropic medium can be decomposed into a sum of one right hand circularly
polarised plane wave and one left hand circularly polarised plane wave. Once one
fixes time, each of these circularly polarised plane waves (when non-zero) becomes
a contact form on R3. In fact, the contact forms are just rotated versions of β± in
Example 3.6. Thus every non-zero plane wave induces one or two contact structures
[Dah04].

By means of the Bohren decomposition, contact forms can be constructed also
from other solutions to Maxwell’s equations in isotropic medium. The key idea
is to start with a solution to Helmholtz equation and decompose it into a sum of
two Beltrami fields. Then, assuming that the Beltrami fields do not vanish, they
induce contact forms by Proposition 3.5 (i). Let us here consider two examples.
For details, see [Dah04]. Figures 3 and 4 show slices of contact forms constructed
from TE11 and TM11 solutions in a rectangular waveguide, respectively. For these
solutions, the induced planefields are π-periodic in z (with z being the direction
of the waveguide). Both figures show the characteristic rotational behaviour for
contact structures. Figure 5 shows the set in the wave-guide where the contact
condition α ∧ dα 6= 0 fails. In both cases this set is a union of isolated points and
lines. In the TE11 case, the condition fails in the corners when z = kπ for k ∈ Z
and in the centre of the waveguide for all z. In the TM11 case, the condition fails
in the corners for all z, and in the centre of the waveguide for z = π/2 + kπ for
k ∈ Z.

If u is an eigenfunction to the Laplace-Beltrami operator on a 2-dimensional Rie-
mann manifold, then the nodal set of u is the set where u vanishes. These sets
can be used to visualise different oscillation modes. Say, on an oscillating plate,
the nodal set indicate parts of the plate that do not oscillate. Physically these can
be revealed by placing a thin layer of sand on the vibrating plate. Mathemati-
cally, nodal sets have also been studied since they satisfy many properties. See for
example [Bär97, Kom06].

Since the forms that induces the contact structures in Figures 3 and 4 are Beltrami
fields, the sets in Figure 5 are characterised as the sets where these Beltrami fields
vanish. Therefore the sets in Figure 5 can be seen as an analogue of nodal sets for
Beltrami fields. It is interesting to note that the lines where the contact condition
fails are always parallel to the waveguide (that is, to the direction of propagating
energy). For a similar analysis of zero-sets of electromagnetic Beltrami-type fields
in spacetime, see [Kai04].

3.4. Hodge-like operators induced by contact structures. It is well known
that a Riemann metric induces a linear operator that maps p-forms into (n − p)-
forms. This is the Hodge operator defined in Section 2.3. It is less well known
that every contact form also induces a similar linear map between p-forms and
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Figure 3. Planefield for contact form induced by a TE11 wave
when t = 0 and z = πk/4 for k = 0, 1, 2, 3.

Figure 4. Planefield for contact form induced by a TM11 wave
when t = 0 and z = πk/4 for k = 0, 1, 2, 3.
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Figure 5. Sets where α ∧ dα 6= 0 fails for contact forms induced
from the TE11-wave (left) and TM11-wave (right). The dashed box
represents the waveguide for z ∈ [0, 2π] at time t = 0. The dots
and the solid lines indicate where the contact condition fails.

(n− p)-forms. For a general treatment of these operators, see [Bel02, LM87]. Even
if the general theory of these operators is valid in any odd dimensions, let us here
assume that the base manifold is 3-dimensional. A similar Hodge-like operator is
also induced by a symplectic form on an even dimensional manifold (see Section 4).

The next proposition shows that a contact form identifies TM and T ∗M . One can
think of this as a contact-geometric analogue to the Legendre transformation in
Riemannian geometry.

Proposition 3.9. Let α ∈ Ω1(M) be a contact form on a 3-manifold M , and let
[α be the map [α : TM → T ∗M defined as

[α(y) = dα(y, ·) + α(y)α, y ∈ TM.(39)

Then

(i) for each x ∈M , the map [α : TxM → T ∗xM is a linear isomorphism.
(ii) For any ξ ∈ Ω1(M) we have

α([−1
α ξ) = ξ(R),(40)

dα([−1
α (ξ), ·) = ξ − ξ(R)α.(41)

(iii) [α(R) = α.

In (ii) and (iii), R is the Reeb vector field for α.

Before the proof of Proposition 3.9, let us note that if α = αi(x)dxi and y = yi ∂
∂xi

∣∣
x

then locally

[α(y) = yihik(x)dxk|x,

where

hik(x) =
∂αk
∂xi

(x)− ∂αi
∂xk

(x) + αi(x)αk(x).
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Proof of Proposition 3.9. For (i) suppose that [α(y) = 0 for some y ∈ TxM . By
decomposition (31) we may write y = y⊥ + CR for some y⊥ ∈ kerα and C ∈ R.
From conditions (30) it follows that

dα(y⊥, w) + Cα(w) = 0, w ∈ TxM.

Setting w = Rx gives C = 0. Thus dα(y⊥, ·) = 0, and y⊥ = 0 since dα is non-
degenerate in kerα. Thus y = 0 and (i) follows. Part (iii) follows using conditions
(30). For part (ii), equation (39) implies that

ξ = dα([−1
α (ξ), ·) + α([−1

α (ξ))α(42)

holds for all ξ ∈ T ∗M . Evaluating both sides for R gives equation (40). Equation
(41) follows using equations (40) and (42). Part (iii) follows by equations (40) and
(41) since conditions (30) characterise the Reeb vector field. �

By definition a contact form α on a 3-manifold induces a volume form α ∧ dα and
by Proposition 3.9, α also induces an invertible map [α : TM → T ∗M . We may
then define a linear map ∗α : Ω1(M)→ Ω2(M) by setting

∗α(ξ) = ι[−1
α (ξ)(α ∧ dα)

= α([−1
α (ξ))dα− α ∧ ι[−1

α (ξ)(dα)

= ξ(R)dα− α ∧ ξ, ξ ∈ Ω1(M).(43)

Here the second equality follows by equation (15) and the last equality follows by
equations (40)–(41). Equation (43) define the map ∗α. It should be emphasised
that ∗α is purely contact-geometrical and does not depend on any Riemann metric;
it is determined by the contact form α alone. In this work we slightly generalise
the above construction. Instead of starting with one contact form we start with
two contact forms that are compatible in the following sense.

Definition 3.10 (Compatible contact forms). Two contact forms α, β on a 3-
manifold M are compatible if the 3-forms

α ∧ dβ, β ∧ dα,

are both volume forms on M .

The above notion of compatible contact forms does not seem to have been studied
before. If α is contact form, then α and fα for any non-vanishing f ∈ C∞(M) are
compatible contact forms. The next example shows that compatible contact forms
need not be proportional. In particular, part (ii) shows that compatible contact
forms may or may not induce the same orientations on M .

Example 3.11 (Compatible contact forms). Let x, y, z be coordinates for R3 and
let dV be the volume form dV = dx ∧ dy ∧ dz.

(i) Contact forms α± in Example 3.1 are compatible.
(ii) For non-zero constants C,D, let

α = dz + Cxdy,

β = dz +Dydx.

Then α and β are compatible contact forms with

α ∧ dα = β ∧ dα = C dV,

β ∧ dβ = α ∧ dβ = −DdV.



ELECTROMAGNETIC FIELDS FROM CONTACT- AND SYMPLECTIC GEOMETRY 17

(iii) For k, φ ∈ R \ {0}, let β± be as in Example 3.6 and let γ± be 1-forms

γ± = cos(kx+ φ) dz ± sin(kx+ φ) dy.

That is, 1-forms γ± are obtained by rotating the planes in β± by φ radians
around the x-axis. Then

β± ∧ dβ± = γ± ∧ dγ± = ±k dV,
β± ∧ dγ± = γ± ∧ dβ± = ±k cosφdV,

so β± and γ± are compatible contact forms provided that cosφ 6= 0. 2

Proposition 3.12. Suppose α is a contact form on a 3-manifold M and β ∈ Ω1(M)
is a 1-form such that α ∧ dβ is a volume form. Then the map

L : Ω1(M) → Ω2(M)

defined as

L(ξ) = ξ(R)dβ − α ∧ ξ, ξ ∈ Ω1(M),(44)

where R ∈ X(M) is the Reeb vector field of α satisfies:

(i) L is an invertible linear map.
(ii) L(α) = dβ.

(iii) If α = β then

L(ξ) = ι[−1
α (ξ)(α ∧ dα), ξ ∈ Ω1(M).

Proof. In part (i) we only need to prove that L is invertible, so suppose that

L(ξ) = ξ(R)dβ − α ∧ ξ = 0

for a ξ ∈ Ω1(M). Taking the wedge product with α gives ξ(R) = 0. Hence α∧ξ = 0,
and contracting by R gives ξ = 0. Part (ii) follows from the definition of L, and
part (iii) follows by equation (43). �

3.5. Electromagnetic fields form two contact forms.

Theorem 3.13. Let ω > 0 and let α and β be contact forms on a 3-manifold M
such that

α ∧ dβ, β ∧ dα,
are volume forms on M . Let Le and Lm be the invertible linear maps

Le, Lm : Ω1(M) → Ω2(M)

determined by Proposition 3.12 such that

Le(α) =
1
ω
dβ,(45)

Lm(β) =
1
ω
dα.(46)

Then time harmonic fields

E(x, t) = α cosωt,
H(x, t) = −β sinωt,
D(x, t) = Le(E),
B(x, t) = Lm(H), (x, t) ∈M × R

solve the source-less Maxwell’s equations on M .
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Proof. For ξ ∈ Ω1(M) let

Le(ξ) =
1
ω
ξ(Rα)dβ − α ∧ ξ,(47)

Lm(ξ) =
1
ω
ξ(Rβ)dα− β ∧ ξ,(48)

where Rα and Rβ are the Reeb vector fields for α and β, respectively. Here, Le is
obtained by setting α 7→ α and β/ω 7→ β in Proposition 3.12, and Lm is obtained
similarly by setting β 7→ α and α/ω 7→ β. It follows that Le and Lm are invertible
linear maps in ξ such that equations (45)–(46) hold. Then

D =
1
ω
dβ cosωt,

B = − 1
ω
dα sinωt,

and the result follows using Maxwell’s equations (1)–(4). �

For the solution in Proposition 3.13 we have

I1 = − sin 2ωt
ω

α ∧ dα ∧ dt,(49)

I2 =
1
ω

(
cos2 ωt α ∧ dβ − sin2 ωt β ∧ dα

)
∧ dt,(50)

I3 =
1
ω

sin 2ωt β ∧ dβ ∧ dt,(51)

E =
1

2ω
(
cos2 ωt α ∧ dβ + sin2 ωt β ∧ dα

)
,(52)

S = − sin 2ωt
2

α ∧ β.(53)

In particular we see that the Poynting vector S can be non-zero, but its time-
average is zero, so there is no net flux of energy. The next proposition shows that
nevertheless the conclusion in Poynting’s theorem (equation (16)) is still valid for
the fields in Theorem 3.13.

Proposition 3.14. For the electromagnetic fields in Theorem 3.13, the energy
density E and the Poynting vector S satisfy

∂

∂t

∫
U

E = −
∫
∂U

S

for all open sets U ⊂M with smooth boundary ∂U and compact closure.

Proof. By equations (52)–(53), we have ∂
∂tE = −dS , whence the claim follows by

Stokes theorem. �

The next proposition together with Propositions 3.14 imply that the assumptions
in Proposition 2.3 are not sharp; even if a medium has a skewon part, equation (16)
can still hold. From the present analysis we can not say if equation (16) holds for
all electromagnetic fields in the medium in Theorem 3.13, or if equation (16) holds
for only the particular fields in Theorem 3.13. However, from equations (47)–(48)
we see that pointwise the medium in Theorem 3.13 depends on 1-forms α and β
and their first order derivatives. Thus the skewon part of the medium is pointwise
determined by at most 12 constants (and probably less as some constants would
parameterise the principal part.) This is less than 15 which is the number of free
parameters in the most general skewon medium.
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Proposition 3.15. Let κ be the medium in Proposition 3.13 determined by two
compatible contact forms α and β. Then κ has both a principal part and a skewon
part, but no axion part.

Proof. We know that any 2-form on N = M × R can be written as ξ + ξ′ ∧ dt for
some ξ ∈ Ω2(M)× R and ξ′ ∈ Ω1(M)× R. With this decomposition, the medium
in Proposition 3.13 is given by

κ(ξ + ξ′ ∧ dt) = Le(ξ′)− L−1
m (ξ) ∧ dt.(54)

Indeed, for this κ we have κ(F ) = G. We can also express the medium as

Dab = P rabEr, Ha = Qrsa Brs

for some
(

1
2

)
- and

(
2
1

)
-tensors P and Q, respectively. Comparing with equations

(20)–(21) we find that locally medium (54) is given by

κr0i0 = 0, κrsi0 = −Qrsi , κr0ij =
1
2
P rij , κrsij = 0

for all i, j, r, s = 1, 2, 3. Thus traceκ = 0, and κ has no axion part by Propo-
sition 2.2. To show the remaining two claims, let us assume that κ is purely
of principal type or purely of skewon type, and derive a contradiction. By the
counter-assumption, Theorem 2.1 implies that

(ξ + ξ′ ∧ dt) ∧ κ(η + η′ ∧ dt) = ±κ (ξ + ξ′ ∧ dt) ∧ (η + η′ ∧ dt)(55)

for all ξ, η ∈ Ω2(M)× R and ξ′, η′ ∈ Ω1(M)× R. Using equation (54) and setting
η = ξ = 0, equation (55) implies that

ξ′ ∧ Le(η′) = ±Le(ξ′) ∧ η′.(56)

If we take ξ′ = η′ = α in equation (56), we see that we must choose the +-sign in
equation (55), that is, medium κ is of principal type. On the other hand, if we take
ξ′, η′ ∈ T ∗xM for some x ∈ M such that ξ′(Rα) = η′(Rα) = 0, then equations (47)
and (56) imply that

α ∧ η′ ∧ ξ′ = ±α ∧ ξ′ ∧ η′.
Contracting by Rα gives η′∧ξ′ = ±ξ∧η′, and we need to take the −-sign in equation
(55), that is, medium κ is of skewon type. In conclusion, we can not choose only
one sign in equation (55), so κ has both a skewon part and a principal part. �

The next example shows that a medium with a skewon part can support solutions
with time independent energy density. This is somewhat unexpected as usually the
skewon part of a medium is described as being related to dissipative effects, that
is, energy losses.

Example 3.16. Let α = β± and β = γ±, where β± and γ± are as in Example 3.11
(iii) for k = 1 and cosφ 6= 0. Then

α ∧ dβ = β ∧ dα = ± cosφdV.

Applying Theorem 3.13 to α, β and ω = 1 gives an electromagnetic field that solves
the source-less Maxwell equations in a medium, which by Proposition 3.15 has a
skewon part. Moreover, by equations (52)–(53) the Poynting vector S and energy
density E of the solution are given by

S = ± sin 2t sinφ
2

dy ∧ dz,

E = ±cosφ
2

dV,
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and energy density E is time independent. We also see that the sign of E depends
not only on the handedness of rotation in α and β, but also on angle φ. For this
choice of α and β, equation (16) holds trivially since both sides are zero.

Let us write E = Eidx
i and D = Dijdx

i ⊗ dxj . Then we may writeD23

D31

D12

 = ((1)ε+(2)ε)

E1

E2

E3

 ,

where (1)ε and (2)ε are 3× 3 matrices representing the principal and skewon com-
ponents of Le from basis {dxi} into basis { 1

2εijkdx
j ∧ dxk}. Explicitly,

(1)ε =

0 0 0
0 ± sinx sin(x+ φ) 1

2 sin(2x+ φ)
0 1

2 sin(2x+ φ) ± cosx cos(x+ φ)

 ,

(2)ε =

 0 cosx ∓ sinx
− cosx 0 1

2 sinφ
± sinx − 1

2 sinφ 0

 .

We have det((1)ε +(2) ε) = ± cosφ. Thus the medium becomes singular when E
and H are orthogonal. Since (1)ε and (2)ε are singular matrices for all φ there are
no limiting cases for which the medium would become purely of principal type or
purely of skewon part.

Suppose φ = 0. Then α = β and the electromagnetic fields E, D, B, H in Theorem
3.13 coincide with the fields in Theorem 3.7. However, the electromagnetic mediums
are qualitatively different. In Theorem 3.7 the medium is purely of principal type
(by Proposition 2.4), and in Theorem 3.13 the medium has both a principal part
and a skewon part (by Proposition 3.15). 2

4. Electromagnetism from symplectic forms

A symplectic form on a 2n-dimensional manifold M is a 2-form ω ∈ Ω2(M) that
satisfies

(i) ω is closed,
(ii) ω is non-degenerate in each tangent space. That is, if u ∈ TpM and

ω(u, v) = 0 for all v ∈ TpM , then u = 0.

The second condition is equivalent to that the 2n-form ω∧ · · · ∧ω is a volume form
on M . Alternatively, if locally ω = 1

2ωijdx
i ∧ dxj , then ω is non-degenerate if and

only if components ωij(x) form an invertible matrix for each x ∈ M . Hence every
symplectic form ω induces a linear isomorphism [ : TM → T ∗M given by

[(y) = ιyω, y ∈ TM.

If locally y = yi ∂
∂xi , we have [(y) = ωijy

idxj .

If ω is a symplectic form on M , then for any 2-form α ∈ Ω2(M) we can define a
smooth function ω−1(α) ∈ C∞(M) as follows. If locally ξ = 1

2ξijdx
i ∧ dxj , and

ω = 1
2ωijdx

i ∧ dxj , then we define

ω−1(ξ)(x) = ωij(x)ξij(x),

where ωij(x) is the inverse matrix of ωij(x), so that ωij(x)ωjk = δik.

As in contact geometry, every symplectic form ω induces a Hodge-like operator ∗ω
that idenifies p-forms and (2n−p)-forms on M . However, unlike the Hodge operator
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for a Lorentz metric on a 4-manifold, this operator always satisfies ∗2ω = Id. For
the general definition, see [LM87, p. 43]. Next we specialise to symplectic forms
on 4-manifolds. The next theorem summarise properties of the induced Hodge-like
operator from 2-forms to 2-forms in this particular case.

Proposition 4.1. Suppose ω is a symplectic form on a 4-manifold M . Then ω
induces an invertible linear map

κ : Ω2(M) → Ω2(M),

defined as

κ(ξ) = −1
2
ω−1(ξ)ω − ξ, ξ ∈ Ω2(M).(57)

Moreover,

(i) κ(ω) = ω.
(ii) The principal part (1)κ, skewon part (2)κ and axion part (3)κ of κ are given

by

(1)κ = κ+
2
3

Id,

(2)κ = 0,
(3)κ = −2

3
Id .

(iii) κ2 = id.

Proof. If locally ξ = 1
2ξijdx

i ∧ dxj and ω = 1
2ωijdx

i ∧ dxj , then

κ(ξ) = −1
2

(
1
2
ωijξijωab + ξab

)
dxa ∧ dxb.

Linearity in ξ is clear. Property (i) follows since ω−1(ω) = ωijωij = −4. Property
(iii) is a direct calculation using equation (57), and invertibility follows since κ−1 =
κ. For (ii) we will use Proposition 2.2, so let us first write κ(ξ) as

κ(ξ) = κijabξijdx
a ⊗ dxb,(58)

where κijab = −
(

1
2ω

ijωab + δi[aδ
j
b]

)
. Thus traceκ = κijij = −4, and the expression

for (3)κ follows. Expressions for (1)κ and (2)κ follows since 6 κij = 0. �

As a corollary, every symplectic form on 4-manifold can be interpreted as an elec-
tromagnetic field in a suitable medium.

Theorem 4.2. Suppose ω ∈ Ω2(M) is a symplectic form on a 4-manifold M , and
suppose that κ is the invertible linear map κ : Ω2(M)→ Ω2(M) induced by ω as in
Proposition 4.1. Then 2-forms F,G ∈ Ω2(M),

F = ω,

G = κ(F ) = ω,

is a solution to the sourceless Maxwell’s equations on M with medium κ. For this
solution I1, I2 and I3 coincide and are identically non-zero on M . Moreover, the
principal, skewon, and axion parts of medium κ are given in Proposition 4.1 (ii).

Proof. Equations (8)–(9) follow since F = G = ω and ω is closed, and by equations
(10)–(12) we have I1 = I2 = I3 = ω ∧ ω, which is a volume form on M since ω is
non-degenerate. �
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If we explicitly write down equation G = κ(F ) for fields F and G and medium κ in
Theorem 4.2 we obtain G = F. That is, fields F and G in Theorem 4.2 also solve
Maxwell’s equations in the purely axion medium κ = Id. This is similar to the
comment after Proposition 3.15.

4.1. Space-time solutions from two symplectic forms. The next theorem
generalise Theorem 4.1 to the case where we have two suitably compatible sym-
plectic forms on M .

Theorem 4.3. Suppose F and G are symplectic forms on a 4-manifold M such
that F ∧G is a volume form on M . Then there exists an invertible linear map

κ : Ω2(M) → Ω2(M)

such that

(i) κ(F ) = G.
(ii) The principal, skewon and axion parts of κ are given by

(1)κ = κ− 1
6
F−1(G) Id,

(2)κ = 0,
(3)κ =

1
6
F−1(G) Id .

(iii) If F = G, then κ coincides with the map in Proposition 4.1.

Proof. If locally

F =
1
2
Fij(x)dxi ∧ dxj , G =

1
2
Gij(x)dxi ∧ dxj ,

then we define κ by setting

κ(ξ) = −1
4
(
F ijξijGpq + ξpiF

ijGjq − ξqiF ijGjp
)
dxp ∧ dxq,(59)

where ξ = 1
2ξijdx

i ∧ dxj is any 2-form ξ ∈ Ω2(M). It is clear that κ is linear in ξ,
globally defined. Direct calculations using F ijFjk = δik and F ijFij = −4 give (i)
and (iii). To prove that κ is invertible, suppose that κ(ξ) = 0 for some ξ ∈ Ω2(M).
We only need to show that ξ = 0 at one point, so we can work locally around some
point x ∈M . Then

F ijξijGpq + ξpiF
ijGjq − ξqiF ijGjp = 0(60)

and contracting by Gpq yields

F ijξij = 0,(61)

whence equation (60) simplifies into

ξpiF
ijGjq = ξqiF

ijGjp.(62)

Using Darboux’ theorem [LM87, p. 51], we may assume that in local coordinates
around x, components of F and G are

Fij =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


ij

Gij =


0 G12 G13 G14

−G12 0 G23 G24

−G13 −G23 0 G34

−G14 −G24 −G34 0


ij

.
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Writing out equation (61) using computer algebra shows that in these coordinates
ξ is of the form

ξij =


0 A B C
−A 0 D −B
−B −D 0 E
−C B −E 0


ij

for some constants A, . . . , E and that equation (62) reads

A(G13 +G24) = 0,
AG34 + 2BG13 + CG23 +DG14 + EG12 = 0,
C(G13 +G24) = 0,
D(G13 +G24) = 0,
AG34 − 2BG24 + CG23 +DG14 + EG12 = 0,
E(G13 +G24) = 0.

Writing out F ∧G 6= 0 using computer algebra gives G13 +G24 6= 0, so ξ = 0. For
(ii) let us rewrite equation (59) for κ(ξ) as

κ(ξ) = κabpqξabdx
p ⊗ dxq,

where

κabpq = −1
2

(
F abGpq + δa[pδ

b
i]F

ijGjq − δa[qδ
b
i]F

ijGjp

)
.

It follows that κampm = 1
4F

ijGijδ
a
p and κabab = F ijGij . The expression for (3)κ follows.

Since 6 κij = 0, it follows that (2)κ = 0 and (1)κ = κ−(3) κ. �

The next example shows that there are non-proportional symplectic forms F and
G that satisfy the compatibility assumption F ∧G 6= 0 in Proposition 4.3.

Example 4.4. Let (x, y, P,Q) be coordinates for R4, let F be the standard sym-
plectic form

F = dx ∧ dP + dy ∧ dQ,(63)

and let G be the 2-form

G = C1 dx∧ dy+C2 dx∧ dP +C3 dx∧ dQ+C4 dy∧ dP +C5 dy∧ dQ+C6 dP ∧ dQ,

where C1, . . . , C6 are constants. Then G is a symplectic form if and only if C1C6 +
C3C4−C2C5 6= 0. Moreover, F and G satisfy F ∧G 6= 0 if and only if C2 +C5 6= 0.

For example, for any θ ∈ R, form F in equation (63) and G given by

G = dx ∧ (cos θdP − sin θdQ) + dy ∧ (sin θdP + cos θdQ)

are both symplectic forms and F ∧G 6= 0 if and only if cos θ 6= 0. 2
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