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F (Du)dx,

where Ω ⊂ Rn is a bounded domain, A the set of functions in W 1,2(Ω) with
given boundary values, and F a smooth and strongly convex function. The aim
is to show rigorously and in great detail that if we have a Lipschitz continuous
minimizer, then it is, in fact, smooth. In order to prove the continuity of the
first derivatives we use De Giorgi’s method, and for the higher derivatives the
classical Schauder theory is applied. The question whether variational minimizers
are smooth is a slightly weaker version of Hilbert’s 19th problem.
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F (Du)dx,

missä Ω ⊂ Rn on rajoitettu alue, A joukko W 1,2(Ω)-funktioita annetuilla reuna-
arvoilla ja F sileä ja vahvasti konveksi funktio. Tarkoituksena on näyttää täsmäl-
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Basic Notation
Rn n-dimensional Euclidean space
A closure of A
∂A topological boundary of A
χA characteristic function of A, 1 on A, otherwise 0
|A| Lebesgue measure of A ⊂ Rn

A \B {x ∈ A : x /∈ B}
dist(A,B) Euclidean distance between sets A and B
B ⊂⊂ A B is open and B is a compact subset of A
suppu support of u, closure of {x : u(x) 6= 0}
u+ positive part of u, max{u, 0}
sgn(u) sign of u, 1 when u > 0, −1 when u < 0´
A
u(x)dx integral of u on A with respect to Lebesgue measure

(u)A :=
´
A
u(x)dx integral average, 1

|A|

´
A
u(x)dx

Lp(A) functions u with
´
A
|u|p dx <∞

Lploc(A) functions u with
´
B
|u|p dx <∞ for every B ⊂⊂ A

L∞(A) essentially bounded functions on A
W k,p(A) functions with weak derivatives up to order k in Lp(A)
Ck(A) k times continuously differentiable functions on A
C∞(A) functions in Ck(A) for any k
C∞0 (A) functions in C∞(A) with compact support in A
Ck,α(A) functions with locally α-Hölder continuous derivatives

up to order k on A
Ck,α(A) functions with globally α-Hölder continuous derivatives

up to order k on A
C0,1(A) locally Lipschitz continuous functions on A
||u||Lp(A) Lp-norm of u,

(´
A
|u|p dx

) 1
p

||u||L∞(A) ess supA |u|
B(x, r) open ball in Rn centered at x with radius r,

{y ∈ Rn : |x− y| < r}
Dz
i u, ∂ziu partial derivative of u with respect to zi, ∂u

∂zi

Diu
∂u
∂xi

Du gradient of u, (D1u, . . . , Dnu)

Dµu ∂|µ|u
∂x
µ1
1 ···∂x

µn
n
, where µ = (µ1, . . . , µn) is a multi-index

and |µ| = µ1 + . . .+ µn
δij Kronecker delta, 1 when i = j, otherwise 0
c = c(·, . . . , ·) positive constant depending only on the quantities in

parentheses, may denote a different constant depending
on the same arguments even within the same calculation



1 Introduction
One of the most important laws in physics is that nature strives to minimize the
potential energy of any closed system. This energy can often be modeled with a
functional of the type

F(u) :=

ˆ
Ω

F (Du)dx,

where u is the state of the system, defined from the set Ω to real numbers, and F
the so-called Lagrangian that is usually a convex function depending only on the
gradient of u. Minimization of functionals of this type is central in a branch of
analysis called the calculus of variations.

The purpose of this thesis is to give a detailed proof for the following: If u is a
Lipschitz continuous solution of the minimization problem

min
u∈A
F(u), (1.1)

where Ω ⊂ Rn is a bounded domain, A the set of functions in W 1,2(Ω) with given
boundary values u0, and F a smooth and strongly convex function, then u is smooth
as well. That is, we assume the existence of a solution inW 1,2(Ω) and, moreover, the
boundedness of its gradient, and show that the solution has continuous derivatives
up to any given order, provided the same is assumed of the Lagrangian F . Only
local estimates are required, and thus regularity assumptions on the boundary are
not necessary.

The calculus of variations can be said to have begun over 300 years ago, when
Johann Bernoulli posed the brachistochrone curve problem [8], which asks for the
curve of fastest descent under a gravitational field. The problem attracted the
interest of many great mathematicians of the time. One of them was Leonhard
Euler, whose work Elementa Calculi Variationum gave the science its name. Since
then the calculus of variations has evolved into a significant field in mathematics,
which not only has numerous applications, but is also of interest as such.

A typical example of an energy minimization problem is finding the minimum
area of a surface with fixed boundary. The area of the graph of a function u on Ω
is given by the functional ˆ

Ω

√
1 + |Du|2dx.

The Lagrangian F (z) =
√

1 + |z|2 is clearly strongly convex, and if the boundary
∂Ω is assumed smooth enough, a unique solution to the corresponding minimization
problem can be found, provided u has fixed boundary values. Such a minimal surface
is formed in nature, for example, by a soap film stretching over a solid frame. Two
examples of minimal surfaces can be seen in Figure 1.

Another example of a variational problem is finding the path of shortest optical
length, which a beam of light will follow according to Fermat’s principle. In fact,
Bernoulli applied this principle in his solution to the brachistochrone curve problem,
showing that the curve of fastest decent is a cycloid [6]. A similar problem that can
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Figure 1: Two different minimal surfaces, a helicoid on the left and Costa’s minimal
surface on the right. (Graphics by Paul Nylander, http://bugman123.com/.)

also be solved using variational methods is determining the catenary curve, that is,
the shape that a chain fixed at two points assumes under its own weight. Other
applications for the calculus of variations are for instance isoperimetric problems,
geodesics on manifolds, and optimal control theory.

In 1900 David Hilbert published his famous list of 23 mathematical problems [11],
all of which unsolved at the time. Hilbert’s 23 problems are generally considered
the most influential compilation of open questions in mathematics, occupying a wide
range of top mathematicians for over a century. Many of the problems have since
been resolved, but some of them still remain open today. Knowing the importance
in physics and the potential for applications that variational problems had, Hilbert
included in his list two questions closely related to the calculus of variations, the
19th and 20th problems.

The 19th problem was among the ten problems, which Hilbert originally proposed
at the International Congress of Mathematicians in Paris on August 8, 1900. His
original formulation of the 19th problem was

Are the solutions of regular problems in the calculus of variations always
necessarily analytic?

The question is so broad it was solved in smaller pieces by several different mathe-
maticians. The last piece in the puzzle was provided in 1957 by Ennio De Giorgi [5]
and a year later by John Nash [16], who independently of each other showed that
the solutions have Hölder continuous first derivatives. It was already known that
this would be enough to prove real analyticity using Juliusz Schauder’s estimates
[17, 18], and on the other hand the existence of a Lipschitz continuous solution could
be shown by applying direct methods in the calculus of variations, see [2] and the
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references therein. A few years later Jürgen Moser gave a different proof for De
Giorgi’s and Nash’s result [15]. He used a method now known as Moser iteration to
prove a Harnack inequality, of which Hölder continuity is a simple consequence.

Hilbert originally presented his question in two dimensions, but the modern
interpretation of the 19th problem is usually considered to be the following: Let
Ω ⊂ Rn be a bounded and suitably smooth domain and A the set of admissible
functions. If F is a real analytic function with certain natural conditions such as
convexity, are the solutions of the minimization problem

min
u∈A

ˆ
Ω

F (Du)dx (1.2)

real analytic as well? The set A typically consists of functions in a suitable function
space satisfying certain boundary conditions, for example, u = u0 on ∂Ω, where u0

is given. The problem is said to be regular, when the regularity assumptions on the
Lagrangian F are satisfied.

How the set of admissible functions should be chosen was not clear to Hilbert. In
his 20th problem he asks, whether all regular problems in the calculus of variations
possess a solution, allowing the possibility to extend the notion of solution, if needed.
It turned out this question could be answered positively, if the solution was sought
in Sobolev spaces.

The problem considered in this work is basically a weaker version of Hilbert’s
19th problem. To be precise, we prove the following theorem.

Theorem 1.1. Let u be a Lipschitz continuous solution of problem (1.1). Then
u ∈ C∞(Ω).

Achieving real analyticity would require a few additional arguments that are
beyond the scope of this work. Moreover, showing the existence of a Lipschitz
continuous solution requires extra assumptions on the boundary ∂Ω as well as the
Lagrangian F . This can be done using direct methods in the calculus of variations,
which we shall only briefly introduce in Section 2. A complete proof can be found,
for example, in [10].

Variational minimization problems are directly related to partial differential
equations through their corresponding Euler-Lagrange equations. The equation as-
sociated with problem (1.2) is

n∑
i=1

Di∂ziF (Du) = 0, (1.3)

in other words, any function u that solves (1.2) is a weak solution of the Euler-
Lagrange equation (1.3) in Ω. Assuming u is smooth enough, this equation may be
formally differentiated with respect to xl for any l = 1, . . . , n, which leads to the
partial differential equation

n∑
i,j=1

Di(∂zi∂zjF (Du)DjDlu) = 0.
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Thus, denoting bij(x) := ∂zi∂zjF (Du(x)), we see that w := Dlu satisfies the second
order equation

n∑
i,j=1

Di(bijDjw) = 0 (1.4)

in Ω for every l = 1, . . . , n. From the assumptions on F it follows that equation
(1.4) is uniformly elliptic, and assuming the boundedness of Du it also has bounded
coefficients. More precisely, for all x ∈ Ω and ξ ∈ Rn the coefficients bij satisfy

n∑
i,j=1

bij(x)ξiξj ≥ λ |ξ|2

and
n∑

i,j=1

|bij(x)| ≤ Λ

for some 0 < λ ≤ Λ.
Already in 1904 Sergei Bernstein showed in his doctoral thesis [1] that if the

solutions of (1.4) are assumed three times continuously differentiable, then they are,
indeed, necessarily real analytic. Although he only considered the two-dimensional
case, at the time this was seen as the solution to Hilbert’s 19th problem. However,
such high regularity on the solution is not required in order to be able to state the
problem. Moreover, the existence theory for the calculus of variations only gave a
Lipschitz continuous solution, which at best could be shown to have second weak
derivatives in L2. Bernstein’s results were also improved by several mathematicians
lowering the a priori regularity assumptions on the solution, but the gap from W 2,2-
solutions to continuous first derivatives could not be filled until the remarkable works
of De Giorgi and Nash.

We now briefly describe the contents of this work. In Section 2 we introduce
basic tools used in the thesis, such as Sobolev inequalities and the difference quotient
operator. We also derive the Euler-Lagrange equation for problem (1.1) and apply
it to prove the uniqueness of the minimizer u. As the main result of the section
(Theorem 2.14) we show that the minimizer u has, in fact, second weak derivatives
locally in L2(Ω). This then implies in a straightforward manner that the derivatives
of u satisfy equation (1.4).

Equation (1.4) is further studied in Section 3, eventually showing that the weak
solutions of this equation are Hölder continuous (Theorem 3.6), which implies the
continuity of the first derivatives of u. This is achieved by applying De Giorgi’s
iteration method, which together with a Caccioppoli inequality gives a so-called
weak maximum principle. An oscillation estimate involving another iteration then
yields the desired result.

In order to get our hands on the higher order derivatives of the minimizer u,
equation (1.4) needs to be further differentiated. Repeating this process k times
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leads to an equation of the type

n∑
i,j=1

Di(bij(x)Djw
µ) =

n∑
i=1

Dig
µ
i (x), (1.5)

where wµ is a kth order derivative of w and the functions gµi depend on the derivatives
of both w and the functions bij up to the same order. Weak solutions of this equation
are studied in Section 4, and after some rather tedious lemmas, we are able to show
that, under certain conditions, they belong to the space C1,α (Theorem 4.6). The
required conditions include the boundedness and Hölder continuity of the coefficients
bij and gµi . The proof is based on the observation that by freezing the coefficients
at a given point, we obtain a much simpler equation, but at the same time the
original equation acts locally as a perturbation of the new equation. The frozen
equation can be further transformed into the Laplace’s equation, which allows us to
utilize the well-known properties of harmonic functions. This method of comparing
the partial differential equation to one with constant coefficients is the essence of
Schauder theory, named after Juliusz Schauder, who constructed it in [17] and [18].
However, Eberhard Hopf had already established the interior regularity for elliptic
equations using similar ideas in [12] a couple of years before Schauder.

Finally, in Section 5 we combine the previous results so as to obtain the smooth-
ness of the minimizer u. The main tool is the result proven in Section 4, Theorem 4.6,
which we use as the inductive step. Equation (1.4), which is also of the type (1.5),
acts as the basis of the induction. In order to show that the assumptions of The-
orem 4.6 for this equation hold, we need Theorem 3.6, the crucial missing piece
before the times of De Giorgi and Nash. In Section 6 we finish the thesis by briefly
discussing the key steps required for extending the result up to the boundary.
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2 Euler-Lagrange equation
In order to study the regularity of minimizers of a variational problem, it is useful to
find the corresponding partial differential equation, often called the Euler-Lagrange
equation. In this section we derive the Euler-Lagrange equation for the minimization
problem (1.1) and prove that the minimizer u, which a priori is a W 1,2(Ω) function,
in fact belongs to the space W 2,2

loc (Ω).

2.1 Preliminaries

Let us begin by introducing some notation and tools used in the thesis. More on
basic Sobolev space theory can be read, for example, in [9], [10], and [20]. For the
basic notation used in this thesis turn to page vi.

When dealing with variational problems, Sobolev spaces are the correct function
spaces to work with. We say that a locally integrable scalar function u on Ω ⊂ Rn

is k times weakly differentiable, if it has derivatives up to order k in the sense of
distributions. That is, for every multi-index µ with |µ| ≤ k there exists a function
vµ ∈ L1

loc(Ω) such that
ˆ

Ω

uDµϕdx = (−1)|µ|
ˆ

Ω

vµϕdx

for every ϕ ∈ C∞0 (Ω). We denote vµ = Dµu. If, moreover, all the weak derivatives
together with u itself are in the space Lp(Ω) for some 1 ≤ p ≤ ∞, u belongs to
the Sobolev space W k,p(Ω). The space W k,p(Ω) can be shown to be a Banach space
with the Sobolev norm

||u||Wk,p(Ω) :=
∑
|µ|≤k

||Dµu||Lp(Ω) .

In the case p = ∞ the Sobolev space contains functions with essentially bounded
derivatives. Furthermore, a function u is said to be in the space W k,p

loc (Ω), if it
belongs to W k,p(Ω′) for every Ω′ ⊂⊂ Ω.

For 1 ≤ p < ∞ the Sobolev space W k,p(Ω) can be equivalently characterized
as the completion of C∞(Ω) with respect to the norm ||·||Wk,p(Ω) [14]. Analogously,
the Sobolev space with zero boundary values, denoted W k,p

0 (Ω), may be defined
as the completion of C∞0 (Ω) with respect to the corresponding Sobolev norm. As
a special case, functions with locally essentially bounded first derivatives, that is,
functions in W 1,∞

loc (Ω), are precisely the locally Lipschitz continuous functions on Ω
[7, p. 131–132].

Sobolev functions have the following basic properties. Suppose u, v ∈ W k,p(Ω)
and let µ and ν be multi-indices such that |µ|+ |ν| ≤ k. Then

(i) Dµu ∈ W k−|µ|,p(Ω),

(ii) Dν(Dµu) = Dµ(Dνu),

(iii) αu+ βv ∈ W k,p(Ω) for all α, β ∈ R,
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(iv) u ∈ W k,p(Ω′) for all Ω′ ⊂⊂ Ω,

(v) u+ := max{u, 0} ∈ W k,p(Ω),

(vi) ηu ∈ W k,p
0 (Ω) for all η ∈ C∞0 (Ω) and we have the generalized Leibniz rule

Dµ(ηu) =
∑
ν≤µ

(
µ

ν

)
Dµ−νηDνu,

where (
µ

ν

)
=

µ!

ν!(µ− ν)!
, µ! = µ1! · · ·µn!,

and ν ≤ µ whenever νj ≤ µj for every j = 1, . . . , n.

Sobolev embeddings and Poincaré inequalities are essential in the theory of par-
tial differential equations. We present here two versions suitable for our purposes
without proofs. The Sobolev exponent for 1 ≤ p < n is denoted by

p∗ :=
np

n− p
.

Lemma 2.1. (Sobolev inequality) Let Ω ⊂ Rn be a bounded set, 1 ≤ p < n, and
u ∈ W 1,p

0 (Ω). Then there exists a constant c = c(n, p) such that(ˆ
Ω

|u|p
∗
dx

) 1
p∗

≤ c

(ˆ
Ω

|Du|p dx
) 1

p

.

Proof. See for example [9, p. 155–157]. �

Remark 2.2. In the case p = n we have exponential integrability for u [9, p. 162].
A straightforward calculation using the Taylor expansion of the exponential function
shows that (ˆ

Ω

|u|q dx
) 1

q

≤ c(n, q) |Ω|
1
q

(ˆ
Ω

|Du|n dx
) 1

n

(2.1)

for any q ≥ 1.
Remark 2.3. If we define p∗ = 2n, when p = n, then combining Lemma 2.1 and
Remark 2.2 with Ω = Br implies(ˆ

Br

|u|p
∗
dx

) 1
p∗

≤ c(n, p)r

(ˆ
Br

|Du|p dx
) 1

p

(2.2)

for every 1 ≤ p ≤ n.

Lemma 2.4. (Sobolev-Poincaré inequality) Let 1 ≤ p < n and u ∈ W 1,p
loc (Ω). Then

there exists a constant c = c(n, p) such that(ˆ
Br

|u− (u)Br |
p∗ dx

) 1
p∗

≤ c

(ˆ
Br

|Du|p dx
) 1

p

for every Br ⊂⊂ Ω.

Proof. See for example [10, p. 101–102]. �
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2.2 Existence of a Lipschitz continuous minimizer

Let Ω be a bounded domain in Rn, n ≥ 2, and denote

A :=
{
u ∈ W 1,2(Ω) : u− u0 ∈ W 1,2

0 (Ω)
}
,

where u0 ∈ W 1,2(Ω) is given. That is, A is the set of functions inW 1,2(Ω) with fixed
boundary values u0. We define the functional F : A → R as

F(u) :=

ˆ
Ω

F (Du)dx,

where F : Rn → R is a smooth and strongly convex function. By smooth we mean
that it is continuously differentiable for any given order, in other words F ∈ C∞(Rn).
Strong convexity is, as the name suggests, a stronger version of convexity, in fact,
even stronger than strict convexity. To be precise, F is strongly convex with modulus
λ > 0, if

F (tz1 + (1− t)z2) ≤ tF (z1) + (1− t)F (z2)− 1

2
λt(1− t) |z1 − z2|2

for all z1, z2 ∈ Rn and 0 ≤ t ≤ 1. Clearly any strongly convex function is also
strictly convex, and when λ→ 0, the definition of strong convexity approaches that
of convexity.

For each z ∈ Rn let A(z) be the n× n matrix formed by the second derivatives
of F at z, denoted by

aij(z) := ∂zi∂zjF (z),

where 1 ≤ i, j ≤ n. It can be shown that F is strongly convex with modulus λ if
and only if the smallest eigenvalue of A(z) is at least λ for every z ∈ Rn. Thus, the
functions aij satisfy the uniform ellipticity condition

n∑
i,j=1

aij(z)ξiξj ≥ λ |ξ|2 (2.3)

for all z, ξ ∈ Rn. Observe that A(z) is, by definition, positive definite and, since F
is smooth, symmetric for all z ∈ Rn.

The reason for assuming strong convexity instead of strict convexity is that the
latter does not guarantee uniform ellipticity. This can be seen by choosing, for
example, F (z) = |z|4, which is a strictly convex function, but ∂zi∂zjF (0) = 0 for all
1 ≤ i, j ≤ n.

In order to be able to talk about minimizing the functional F , we need the
following definition.

Definition 2.5. A function u ∈ A is a minimizer of the functional F , if

F(u) ≤ F(w)

for every w ∈ A.
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We prove the regularity of minimizers of the functional F , Theorem 1.1, starting
from the assumption that we have a minimizer, which is not only in W 1,2(Ω), but
also Lipschitz continuous. This is far from a trivial assumption, and thus we shall
briefly justify it here. The existence of a Lipschitz continuous solution with given
boundary values can, indeed, be shown using the so-called direct methods in the
calculus of variations. However, some regularity on the boundary of Ω and also on
the boundary values must be assumed. We follow closely the proof shown in [10]
and only highlight the main ideas and necessary assumptions.

First we need a couple of definitions.

Definition 2.6. A function v ∈ C0,1(Ω) is a super(sub)-minimum for the functional
F in Ω, if for all w ∈ C0,1(Ω) with w ≥ v (w ≤ v) and w = v on ∂Ω we have

F(v) ≤ F(w).

Let d(x) denote the distance of x ∈ Ω from the boundary ∂Ω and set for t > 0

Σt := {x ∈ Ω : d(x) < t},
Γt := {x ∈ Ω : d(x) = t}.

Definition 2.7. A function v+ is an upper barrier relative to the functional F , if
v+ = u0 on ∂Ω, v+ is a super-minimum in Σt, and v+ ≥ sup∂Ω u0 on Γt for some
t > 0. Similarly, v− is a lower barrier, if v− = u0 on ∂Ω, v− is a sub-minimum in
Σt, and v− ≤ inf∂Ω u0 on Γt.

In order to prove that there exists a Lipschitz continuous solution for the mini-
mization problem with boundary values u0, it suffices to find an upper barrier and
a lower barrier relative to F . The only question is how these barriers can be con-
structed.

To this end, we assume that the boundary of Ω is twice continuously differen-
tiable. Moreover, the function u0 is assumed to be the restriction of a function
in C2(Rn) to Ω, which we also denote by u0. If we further make the technical
assumption

lim sup
|z|→∞

|z|Λ(z)

E(z)
<∞,

where E(z) :=
∑n

i,j=1 aij(z)zizj and Λ(z) is the largest eigenvalue of the matrix A(z),
it is possible to show the existence of upper and lower barriers, and hence that of
a Lipschitz continuous minimizer of F with boundary values u0. A concrete upper
barrier can be obtained by choosing

v+(x) = u0(x) + c log(1 + σd(x)),

where c and σ are suitable constants. A lower barrier may be constructed similarly.
Therefore, assuming that we have a Lipschitz continuous minimizer of the functional
F is justified.

As mentioned above, locally Lipschitz continuous functions are the same as
W 1,∞

loc -functions. Globally this does not hold in general. However, since we only
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aim for proving local smoothness, we may assume without losing generality that the
gradient of the minimizer u is bounded up to the boundary. This can be seen as
follows.

Suppose the result holds for minimizers inW 1,∞(Ω). Now if u is only locally Lip-
schitz continuous in Ω, or equivalently belongs to W 1,∞

loc (Ω), we have u ∈ W 1,∞(Ω′)
for any Ω′ ⊂⊂ Ω. Therefore, we may apply the result for Ω′ to infer that u ∈ C∞(Ω′).
The arbitrariness of Ω′ then implies that u is locally smooth over the whole domain
Ω. Thus, from here on we shall assume that the minimizer u belongs to W 1,∞(Ω),
unless otherwise stated. Moreover, we shall always implicitly assume that u ∈ A.

Let us denote
Ξ := B

(
0, ||Du||L∞(Ω)

)
.

Since F is smooth, the functions aij are continuous and thus obtain their maximum
and minimum on the compact set Ξ. We denote

Λ := max
z∈Ξ

n∑
i,j=1

|aij(z)| ,

and by calculating
n∑

i,j=1

aij(z)ξiξj ≤
n∑

i,j=1

|aij(z)| |ξ|2 ≤ Λ |ξ|2

we see that the eigenvalues of the matrix A(z) are bounded also from above by Λ
for all z ∈ Ξ.

2.3 Second weak derivatives

A necessary condition for a function to have a minimum at a certain point is that
its first derivatives vanish at that point. The same applies when minimizing a
functional, but in this case we require the first variation of the functional to vanish.
This leads to the corresponding Euler-Lagrange equation.

Since a priori the minimizer u is only weakly differentiable, the Euler-Lagrange
equation must be understood in a weak sense. Hence we need the concept of weak so-
lutions. We give the definition for general partial differential equations of divergence
type.

Definition 2.8. Let L : Rn × Rn → Rn be a Carathéodory function, that is,
measurable with respect to the first variable and continuous with respect to the
second. Moreover, suppose L satisfies the growth condition

|L(x, z)| ≤ C (|z|+ 1)

for some constant C and for all x ∈ Ω, z ∈ Rn. A function u ∈ W 1,2
loc (Ω) is a weak

solution of the equation
n∑
i=1

DiLi(x,Du) = 0
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in Ω, if it satisfies ˆ
Ω

n∑
i=1

Li(x,Du)Divdx = 0 (2.4)

for all test functions v ∈ W 1,2
0 (Ω).

Let us then derive the Euler-Lagrange equation associated with F .

Lemma 2.9. Let u ∈ W 1,∞(Ω) be a minimizer of the functional F . Then it is a
weak solution of the Euler-Lagrange equation

n∑
i=1

Di∂ziF (Du) = 0 (2.5)

in Ω.

Proof. Since u is a minimizer of F , we haveˆ
Ω

F (Du)dx ≤
ˆ

Ω

F (D(u+ εv))dx

for every v ∈ W 1,2
0 (Ω) and ε ∈ R. Thus, the derivative

d

dε

ˆ
Ω

F (D(u+ εv))dx =

ˆ
Ω

n∑
i=1

∂ziF (D(u+ εv))Divdx

must vanish at ε = 0 and we get
ˆ

Ω

n∑
i=1

∂ziF (Du)Divdx = 0 (2.6)

for all v ∈ W 1,2
0 (Ω). Hence, u is a weak solution of (2.5) in Ω. �

The Euler-Lagrange equation can be used to show the uniqueness of a minimizer
with fixed boundary values.

Theorem 2.10. A minimizer of the functional F in W 1,∞(Ω) with given boundary
values is unique.

Proof. Let u1, u2 ∈ W 1,∞(Ω) be minimizers of F such that u1−u2 ∈ W 1,2
0 (Ω). Thus,

they are both weak solutions of the Euler-Lagrange equation, and by subtracting
equation (2.6) for u2 from that for u1 we have

ˆ
Ω

n∑
i=1

(∂ziF (Du1)− ∂ziF (Du2))Divdx = 0

for every v ∈ W 1,2
0 (Ω). We write

∂ziF (Du1)− ∂ziF (Du2) =

ˆ 1

0

d

dt
∂ziF (tDu1 + (1− t)Du2)dt

=

ˆ 1

0

n∑
j=1

∂zi∂zjF (tDu1 + (1− t)Du2)Dj(u1 − u2)dt
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and choose v = u1 − u2 ∈ W 1,2
0 (Ω) as the test function. This together with the

ellipticity condition (2.3) and Sobolev inequality, Lemma 2.1, yields

0 =

ˆ
Ω

n∑
i=1

ˆ 1

0

n∑
j=1

∂zi∂zjF (tDu1 + (1− t)Du2)Dj(u1 − u2)dtDi(u1 − u2)dx

=

ˆ
Ω

ˆ 1

0

n∑
i,j=1

aij(tDu1 + (1− t)Du2)Di(u1 − u2)Dj(u1 − u2)dtdx

≥
ˆ

Ω

ˆ 1

0

λ |D(u1 − u2)|2 dtdx

= λ

ˆ
Ω

|D(u1 − u2)|2 dx

≥ λ

c

(ˆ
Ω

|u1 − u2|2
∗
dx

) 2
2∗

for n > 2. When n = 2, we replace the last inequality with (2.1) and obtain(ˆ
Ω

|u1 − u2|q dx
) 2

q

≤ 0

for any q ≥ 1. It follows that ||u1 − u2||L2∗ (Ω) = 0, if we define 2∗ = q when n = 2,
and therefore we must have u1 = u2. �

Next we prove the main result of the section, that is, we show that the minimizer
u actually belongs to W 2,2

loc (Ω). We use a similar technique as in proving uniqueness
together with difference quotients. To this end, define for f : Ω→ R

∆h
mf(x) :=

f(x+ hem)− f(x)

h

for all x ∈ Ω|h| := {x ∈ Ω : dist(x, ∂Ω) > |h|}, where em is the unit vector in the xm
direction and h 6= 0. The difference quotient operator ∆h

m has the following useful
properties.

Lemma 2.11. (i) If f ∈ W 1,2(Ω), then ∆h
mf ∈ W 1,2(Ω|h|) and we have

Di(∆
h
mf) = ∆h

m(Dif)

for i = 1, . . . , n.
(ii) If f, g ∈ L2(Ω) such that supp g ⊂ Ω|h|, we have

ˆ
Ω

g∆h
mfdx = −

ˆ
Ω

f∆−hm gdx.

(iii) We have the Leibniz rule

∆h
m(fg)(x) = f(x+ hem)∆h

mg(x) + ∆h
mf(x)g(x).
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Remark 2.12. We interpretˆ
Ω

g∆h
mfdx =

ˆ
Ω|h|

g∆h
mfdx,

whenever supp g ⊂ Ω|h|. That is, we can write the integral over the whole domain
Ω, even though ∆h

mf is not defined near the boundary.

Proof of Lemma 2.11. (i) Let f ∈ W 1,2(Ω) and calculate using the linearity of the
weak derivative

Di(∆
h
mf(x)) = Di

f(x+ hem)− f(x)

h
=
Dif(x+ hem)−Dif(x)

h
= ∆h

m(Dif(x)).

(ii) Let f, g ∈ L2(Ω) such that supp g ⊂ Ω|h|. Thenˆ
Ω

g(x)∆h
mf(x)dx =

ˆ
Ω|h|

g(x)
f(x+ hem)− f(x)

h
dx

=
1

h

(ˆ
Ω|h|

f(x+ hem)g(x)dx−
ˆ

Ω|h|

f(x)g(x)dx

)

=
1

h

(ˆ
{x∈Ω:x−hem∈Ω|h|}

f(x)g(x− hem)dx−
ˆ

Ω|h|

f(x)g(x)dx

)

= −
ˆ

Ω

f(x)
g(x− hem)− g(x)

−h
dx

= −
ˆ

Ω

f(x)∆−hm g(x)dx.

(iii) A direct calculation gives

∆h
m(fg)(x) =

1

h
(f(x+ hem)g(x+ hem)− f(x)g(x))

=
1

h
(f(x+ hem)(g(x+ hem)− g(x)) + (f(x+ hem)− f(x))g(x))

= f(x+ hem)∆h
mg(x) + ∆h

mf(x)g(x).

We will also need the following standard lemma in the proof of the next theorem.

Lemma 2.13. (i) Let f ∈ W 1,2(Ω) and Ω′ ⊂⊂ Ω. Then∣∣∣∣∆h
mf
∣∣∣∣
L2(Ω′)

≤ ||Dmf ||L2(Ω)

for all 0 < |h| < dist(Ω′, ∂Ω).
(ii) Let f ∈ L2(Ω) and Ω′ ⊂⊂ Ω. If there exist constants 0 < h0 ≤ dist(Ω′, ∂Ω)

and K such that ∣∣∣∣∆h
mf
∣∣∣∣
L2(Ω′)

≤ K

for all 0 < |h| < h0, then Dmf ∈ L2(Ω′) and

||Dmf ||L2(Ω′) ≤ K.
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Proof. (i) Let Ω′ ⊂⊂ Ω and fix h such that 0 < |h| < dist(Ω′, ∂Ω). Assume first
that f ∈ C∞(Ω) ∩W 1,2(Ω). Then we may write

∆h
mf(x) =

f(x+ hem)− f(x)

h

=
1

h

ˆ |h|
0

d

dt
f(x+ t sgn(h)em)dt

=
1

h

ˆ |h|
0

n∑
i=1

Dif(x+ t sgn(h)em) sgn(h)δmidt

=
1

|h|

ˆ |h|
0

Dmf(x+ t sgn(h)em)dt

for all x ∈ Ω′. Hence, by Hölder’s inequality and Fubini’s theorem
ˆ

Ω′

∣∣∆h
mf(x)

∣∣2 dx ≤ ˆ
Ω′

(
1

|h|

ˆ |h|
0

|Dmf(x+ t sgn(h)em)| dt

)2

dx

≤ 1

|h|

ˆ
Ω′

ˆ |h|
0

|Dmf(x+ t sgn(h)em)|2 dtdx

=
1

|h|

ˆ |h|
0

ˆ
Ω′
|Dmf(x+ t sgn(h)em)|2 dxdt

≤ 1

|h|

ˆ |h|
0

ˆ
Ω

|Dmf(x)|2 dxdt

=

ˆ
Ω

|Dmf(x)|2 dx.

For the case f ∈ W 1,2(Ω) the result follows from the fact that C∞(Ω) ∩W 1,2(Ω) is
dense in W 1,2(Ω).

(ii) Let f ∈ L2(Ω) and Ω′ ⊂⊂ Ω. The uniform boundedness of ∆h
mf in L2(Ω′) for

0 < |h| < h0 and the reflexivity of L2 imply that there exists a function g ∈ L2(Ω′)
with ||g||L2(Ω′) ≤ K and a sequence {hi} tending to zero such thatˆ

Ω′
ϕ∆hi

mfdx→
ˆ

Ω′
ϕgdx

for every ϕ ∈ C∞0 (Ω′) as i → ∞. Therefore, by Lebesgue’s dominated convergence
theorem and Lemma 2.11 part (ii)ˆ

Ω′
fDmϕdx = lim

i→∞

ˆ
Ω′
f∆−him ϕdx = − lim

i→∞

ˆ
Ω′
ϕ∆hi

mfdx = −
ˆ

Ω′
ϕgdx.

Hence g = Dmf . �

Theorem 2.14. Let u ∈ W 1,∞(Ω) be a minimizer of the functional F . Then u ∈
W 2,2

loc (Ω) and there exists a constant c depending only on λ,Λ and dist(Ω′, ∂Ω) such
that

||DmDu||L2(Ω′) ≤ c ||Du||L2(Ω)

for every m = 1, . . . , n and Ω′ ⊂⊂ Ω.
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Proof. Fix an arbitrary Ω′ ⊂⊂ Ω and choose Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω such that

dist(Ω′, ∂Ω′′) ≥ 1

2
dist(Ω′, ∂Ω).

Take a cut-off function η ∈ C∞0 (Ω′′) such that 0 ≤ η ≤ 1, η ≡ 1 in Ω′, and

|Dη| ≤ 2

dist(Ω′, ∂Ω′′)
≤ 4

dist(Ω′, ∂Ω)
.

Since u is a minimizer of F , it solves equation (2.6) for every v ∈ W 1,2
0 (Ω). Now

fix h such that 0 < |h| < dist(Ω′′, ∂Ω) and choose for m = 1, . . . , n

v = −∆−hm (η2∆h
mu) ∈ W 1,2

0 (Ω)

as the test function in (2.6). Since supp η ⊂ Ω′′ ⊂ Ω|h|, we then have by Lemma 2.11

0 =

ˆ
Ω

n∑
i=1

∂ziF (Du)Di(−∆−hm (η2∆h
mu))dx

= −
ˆ

Ω

n∑
i=1

∂ziF (Du)∆−hm Di(η
2∆h

mu)dx

=

ˆ
Ω

n∑
i=1

∆h
m∂ziF (Du)Di(η

2∆h
mu)dx.

(2.7)

We can further write

∆h
m∂ziF (Du(x)) =

1

h
(∂ziF (Du(x+ hem))− ∂ziF (Du(x)))

=
1

h

ˆ 1

0

d

dt
∂ziF (tDu(x+ hem) + (1− t)Du(x))dt

=
1

h

ˆ 1

0

n∑
j=1

∂zi∂zjF (tDu(x+ hem) + (1− t)Du(x))Dj(u(x+ hem)− u(x))dt

=

ˆ 1

0

n∑
j=1

aij(tDu(x+ hem) + (1− t)Du(x))Dj∆
h
mu(x)dt,

which combined with (2.7) gives

ˆ
Ω

ˆ 1

0

n∑
i,j=1

aij(zt)Dj∆
h
mu(x)Di(η

2∆h
mu)dtdx = 0,

where zt := tDu(x+ hem) + (1− t)Du(x).
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Together with the Leibniz rule and the ellipticity condition (2.3) we now get

λ

ˆ
Ω

∣∣D∆h
mu
∣∣2 η2dx =

ˆ
Ω

ˆ 1

0

λ
∣∣D∆h

mu
∣∣2 η2dtdx

≤
ˆ

Ω

ˆ 1

0

n∑
i,j=1

aij(zt)Dj∆
h
muDi∆

h
muη

2dtdx

= −2

ˆ
Ω

ˆ 1

0

n∑
i,j=1

aij(zt)Dj∆
h
muηDiη∆h

mudtdx

≤ 2

ˆ
Ω

ˆ 1

0

n∑
i,j=1

|aij(zt)|
∣∣Dj∆

h
mu
∣∣ η |Diη|

∣∣∆h
mu
∣∣ dtdx

≤ 2Λ

ˆ
Ω

∣∣D∆h
mu
∣∣ η |Dη| ∣∣∆h

mu
∣∣ dx.

For the last inequality we have used the fact that Ξ is convex, and thus for all
0 ≤ t ≤ 1 and x ∈ Ω′′ we have zt ∈ Ξ, so that

n∑
i,j=1

|aij(zt)| ≤ Λ.

Next we use Young’s inequality with ε, which yields
ˆ

Ω

∣∣D∆h
mu
∣∣ η |Dη| ∣∣∆h

mu
∣∣ dx ≤ ε

2

ˆ
Ω

∣∣D∆h
mu
∣∣2 η2dx+

1

2ε

ˆ
Ω

|Dη|2
∣∣∆h

mu
∣∣2 dx,

and by choosing ε = λ
2Λ

we arrive at

λ

ˆ
Ω

∣∣D∆h
mu
∣∣2 η2dx ≤ λ

2

ˆ
Ω

∣∣D∆h
mu
∣∣2 η2dx+

2Λ2

λ

ˆ
Ω

|Dη|2
∣∣∆h

mu
∣∣2 dx.

This implies ˆ
Ω

∣∣D∆h
mu
∣∣2 η2dx ≤ 4Λ2

λ2

ˆ
Ω

|Dη|2
∣∣∆h

mu
∣∣2 dx,

and by using the properties of the cut-off function we deduce
ˆ

Ω′

∣∣D∆h
mu
∣∣2 dx ≤ 64Λ2

λ2 dist(Ω′, ∂Ω)2

ˆ
Ω′′

∣∣∆h
mu
∣∣2 dx,

or
∣∣∣∣D∆h

mu
∣∣∣∣
L2(Ω′)

≤ c
∣∣∣∣∆h

mu
∣∣∣∣
L2(Ω′′)

, where c := 8Λ
λdist(Ω′,∂Ω)

.
Now by Lemma 2.13 part (i) we have∣∣∣∣∆h

mu
∣∣∣∣
L2(Ω′′)

≤ ||Dmu||L2(Ω) ≤ ||Du||L2(Ω) ,

and by Lemma 2.11 part (i)
D∆h

mu = ∆h
mDu.
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Together these give
∣∣∣∣∆h

mDu
∣∣∣∣
L2(Ω′)

≤ K for all 0 < |h| < h0 := dist(Ω′′, ∂Ω), where
K := c ||Du||L2(Ω). Thus, we may apply part (ii) of Lemma 2.13 to Du ∈ L2(Ω) to
deduce DmDu ∈ L2(Ω′) and

||DmDu||L2(Ω′) ≤ c ||Du||L2(Ω) .

This holds for every m = 1, . . . , n, and since Ω′ ⊂⊂ Ω was arbitrary, we have
u ∈ W 2,2

loc (Ω). �

Now that we have established the existence of the second weak derivatives for
the minimizer u, we can show that the first weak derivatives satisfy a certain partial
differential equation, which will be studied more in the following section.

Corollary 2.15. Let u ∈ W 1,∞(Ω) be a minimizer of the functional F . Then
w := Dlu ∈ W 1,2

loc (Ω) is a weak solution of the equation

n∑
i,j=1

Di(aij(Du)Djw) = 0 (2.8)

in Ω for every l = 1, . . . , n.

Proof. Take any ϕ ∈ C∞0 (Ω) and l = 1, . . . , n and test equation (2.6) with v = −Dlϕ.
Since u ∈ W 2,2

loc (Ω)by Theorem 2.14, w ∈ W 1,2
loc (Ω) and we may integrate by parts,

which gives

0 = −
ˆ

Ω

n∑
i=1

∂ziF (Du)DiDlϕdx

=

ˆ
Ω

n∑
i=1

∂ziDlF (Du)Diϕdx

=

ˆ
Ω

n∑
i=1

∂zi

n∑
j=1

∂zjF (Du)DlDjuDiϕdx

=

ˆ
Ω

n∑
i,j=1

∂zi∂zjF (Du)DjDluDiϕdx

=

ˆ
Ω

n∑
i,j=1

aij(Du)DjwDiϕdx.

Since this holds for all ϕ ∈ C∞0 (Ω) and C∞0 (Ω) is dense in W 1,2
0 (Ω), we obtain the

result. �
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3 Hölder continuity of first derivatives
In this section we prove that the first weak derivatives of the minimizer u are Hölder
continuous using De Giorgi’s iteration technique.

3.1 Weak maximum principle

By the result derived in the end of the previous section, Corollary 2.15, it suffices
to consider weak solutions of the equation

n∑
i,j=1

Di(aij(Du)Djw) = 0 (3.1)

in Ω. Since u ∈ W 1,∞(Ω), we may assume that w ∈ L∞(Ω).
To emphasize the dependence on x rather than Du, we write

bij(x) := aij(Du(x)),

and whenever no confusion can arise, we also omit the argument x. Now equation
(3.1) can be written as

n∑
i,j=1

Di(bij(x)Djw) = 0 (3.2)

in Ω, and due to the ellipticity condition (2.3) and the boundedness of the functions
aij on the set Ξ, the coefficients bij satisfy

n∑
i,j=1

bij(x)ξiξj ≥ λ |ξ|2 (3.3)

and
n∑

i,j=1

|bij(x)| ≤ Λ (3.4)

for all ξ ∈ Rn and x ∈ Ω.
Let us first derive a Caccioppoli type estimate. In fact, this will be the only step

where the equation is used directly.

Lemma 3.1. Let w ∈ W 1,2
loc (Ω)∩L∞(Ω) be a weak solution of (3.2). Then for every

k ∈ R and η ∈ C∞0 (Bρ) we have(ˆ
Bρ

|D(w − k)+|2 η2dx

) 1
2

≤ 2Λ

λ

(ˆ
Bρ

|Dη|2 (w − k)2
+dx

) 1
2

(3.5)

whenever Bρ ⊂⊂ Ω.

Remark 3.2. We denote Bρ := B(x0, ρ), when the center x0 ∈ Ω is not relevant.
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Proof of Lemma 3.1. Let ρ > 0 be such that Bρ ⊂⊂ Ω and let k ∈ R and η ∈
C∞0 (Bρ). Since w is a weak solution of (3.2), w − k is as well and we have

ˆ
Ω

n∑
i,j=1

bijDj(w − k)Divdx = 0 (3.6)

for every v ∈ W 1,2
0 (Ω).

If we now choose v = η2(w−k)+ ∈ W 1,2
0 (Bρ) as the test function, we see that v is

non-zero only when w > k, and thus we may write the factorDj(w−k) asDj(w−k)+

in (3.6). The Leibniz rule and the ellipticity and boundedness assumptions (3.3) and
(3.4) then yield

λ

ˆ
Bρ

|D(w − k)+|2 η2dx ≤
ˆ

Ω

n∑
i,j=1

bijDj(w − k)+Di(w − k)+η
2dx

= −2

ˆ
Ω

n∑
i,j=1

bijDj(w − k)+ηDiη(w − k)+dx

≤ 2

ˆ
Ω

n∑
i,j=1

|bij| |Dj(w − k)+| η |Diη| (w − k)+dx

≤ 2Λ

ˆ
Ω

|D(w − k)+| η |Dη| (w − k)+dx.

Applying Young’s inequality with ε, this can be further estimated from above by

2Λ

(
ε

2

ˆ
Ω

|D(w − k)+|2 η2dx+
1

2ε

ˆ
Ω

|Dη|2 (w − k)2
+dx

)
=
λ

2

ˆ
Bρ

|D(w − k)+|2 η2dx+
2Λ2

λ

ˆ
Bρ

|Dη|2 (w − k)2
+dx,

where we have chosen ε = λ
2Λ
. Now the first term can be absorbed to the left hand

side, which leads to
ˆ
Bρ

|D(w − k)+|2 η2dx ≤ 4Λ2

λ2

ˆ
Bρ

|Dη|2 (w − k)2
+dx,

and by dividing by the measure of Bρ and taking square roots, we are done.

For the next lemma we introduce some useful notation. For every k ∈ R and
ρ > 0 define

A(k, ρ) := {x ∈ Bρ : w(x) > k}
and

ψ(k, ρ) :=

(ˆ
Bρ

(w − k)2
+dx

) 1
2

.

The proof of the next lemma as well as the following theorem closely follow the proof
of Theorem 1 in [19].
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Lemma 3.3. Let w ∈ W 1,2
loc (Ω) ∩ L∞(Ω) be a weak solution of (3.2) and let r > 0

be such that B2r ⊂⊂ Ω. Then there exist constants θ = θ(n) > 0 and c = c(n, λ,Λ)
such that the inequality

ψ(k′, ρ′) ≤ c
ρ

ρ− ρ′
1

(k′ − k)θ
ψ(k, ρ)1+θ (3.7)

holds for every k < k′ and r ≤ ρ′ < ρ ≤ 2r.

Proof. Fix r > 0 such that B2r ⊂⊂ Ω and take any r ≤ ρ′ < ρ ≤ 2r and k < k′.
From the definitions above it immediately follows that A(k′, ρ) ⊂ A(k, ρ) and

|A(k′, ρ)| = 1

(k′ − k)2

ˆ
A(k′,ρ)

(k′ − k)2dx

≤ 1

(k′ − k)2

ˆ
A(k′,ρ)

(w − k)2dx

≤ 1

(k′ − k)2

ˆ
A(k,ρ)

(w − k)2dx

=
|Bρ|

(k′ − k)2
ψ(k, ρ)2.

(3.8)

Choose a cut-off function η ∈ C∞0 (Bρ) such that 0 ≤ η ≤ 1, η ≡ 1 in Bρ′ and
|Dη| ≤ 2

ρ−ρ′ . Denote

2∗ :=

{
2n
n−2

, n > 2

4, n = 2
,

and note that |Bρ| ≤ 2n |Bρ′ |, since ρ ≤ 2r and ρ′ ≥ r. Hölder’s inequality, Re-
mark 2.3, and (3.8) then give

ψ(k′, ρ′) =

(ˆ
Bρ′

(w − k′)2
+dx

) 1
2

≤ |Bρ′|−
1
2

(ˆ
Bρ

((w − k′)+η)2dx

) 1
2

≤ |Bρ′|−
1
2

(ˆ
Bρ

((w − k′)+η)2∗dx

) 1
2∗

|A(k′, ρ)|
1
2
− 1

2∗

=

(
|Bρ|
|Bρ′|

) 1
2

(ˆ
Bρ

((w − k′)+η)2∗dx

) 1
2∗ ( |A(k′, ρ)|

|Bρ|

) 1
2
− 1

2∗

≤ c(n)ρ

(ˆ
Bρ

|D((w − k′)+η)|2 dx

) 1
2

1

(k′ − k)1− 2
2∗
ψ(k, ρ)1− 2

2∗ .

(3.9)
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The last integral in (3.9) can be estimated by using the Leibniz rule, Minkowski’s
inequality, and the Caccioppoli estimate, Lemma 3.1. Thus,(ˆ

Bρ

|D((w − k′)+η)|2 dx

) 1
2

≤

(ˆ
Bρ

|D(w − k′)+|2 η2dx

) 1
2

+

(ˆ
Bρ

|Dη|2 (w − k′)2
+dx

) 1
2

≤
(

2Λ

λ
+ 1

)(ˆ
Bρ

|Dη|2 (w − k′)2
+dx

) 1
2

≤
(

2Λ

λ
+ 1

)
2

ρ− ρ′

(ˆ
Bρ

(w − k)2
+dx

) 1
2

=
c(λ,Λ)

ρ− ρ′
ψ(k, ρ).

(3.10)

We also used the fact that k < k′ implies (w − k′)+ ≤ (w − k)+.
Denote

θ(n) := 1− 2

2∗
=

{
2
n
, n > 2

1
2
, n = 2

.

Then combining (3.9) and (3.10) yields

ψ(k′, ρ′) ≤ c(n)ρ
c(λ,Λ)

ρ− ρ′
ψ(k, ρ)

1

(k′ − k)1− 2
2∗
ψ(k, ρ)1− 2

2∗

= c(n, λ,Λ)
ρ

ρ− ρ′
1

(k′ − k)θ
ψ(k, ρ)1+θ,

as required. �

Now we are ready to apply De Giorgi’s iteration scheme. This will give us a
result often called the weak maximum principle. Observe that had we not already
assumed the boundedness of w, it would also follow from this result.

Theorem 3.4. Let w ∈ W 1,2
loc (Ω) ∩ L∞(Ω) be a weak solution of (3.2). Then there

exists a constant c = c(n, λ,Λ) such that

ess sup
Br

w ≤ k̃ + c

(ˆ
B2r

(w − k̃)2
+dx

) 1
2

(3.11)

for every k̃ ∈ R and r > 0 such that B2r ⊂⊂ Ω.

Proof. Let r > 0 be such that B2r ⊂⊂ Ω and fix k̃ ∈ R. Set for m = 0, 1, 2, . . .

km = k̃ + (1− 2−m)d,

ρm = (1 + 2−m)r,
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where d is to be determined later. We observe that k0 = k̃ and ρ0 = 2r and,
moreover, km increases to k̃ + d and ρm decreases to r as m tends to infinity. Now
applying Lemma 3.3 with k = km, k

′ = km+1, ρ = ρm, and ρ′ = ρm+1 leads to

ψ(km+1, ρm+1) ≤ c
ρm

ρm − ρm+1

1

(km+1 − km)θ
ψ(km, ρm)1+θ

≤ c2m+2 2θ(m+1)

dθ
ψ(km, ρm)1+θ

= c
2(1+θ)m

dθ
ψ(km, ρm)1+θ.

(3.12)

Next we show by induction that for a suitably chosen d

ψ(km, ρm) ≤ ψ(k̃, 2r)

σm
(3.13)

for all m = 0, 1, 2 . . . and some σ > 1 that will also be chosen shortly. Clearly the
claim holds when m = 0. Assume then that it holds for m. By (3.12) and the
induction assumption we may write

ψ(km+1, ρm+1) ≤ c
2(1+θ)m

dθ

(
ψ(k̃, 2r)

σm

)1+θ

= cσ

(
ψ(k̃, 2r)

d

)θ (
21+θ

σθ

)m
ψ(k̃, 2r)

σm+1
.

If we now choose σ = 21+ 1
θ > 1 and d such that

cσ

(
ψ(k̃, 2r)

d

)θ

= 1,

or d = cψ(k̃, 2r), we see that the claim holds also for m + 1. Thus, it holds for
all m = 0, 1, 2, . . . and by letting m → ∞ in (3.13) we get limm→∞ ψ(km, ρm) ≤ 0.
Moreover, by Fatou’s lemma∣∣∣∣∣∣(w − (k̃ + d))+

∣∣∣∣∣∣
L2(Br)

= |Br|
1
2

(
1

|Br|

ˆ
Ω

(w − (k̃ + d))2
+χBrdx

) 1
2

≤ |Br|
1
2 lim inf

m→∞

(
1

|Bρm|

ˆ
Ω

(w − km)2
+χBρmdx

) 1
2

= |Br|
1
2 lim
m→∞

ψ(km, ρm).

Therefore,
∣∣∣∣∣∣(w − (k̃ + d))+

∣∣∣∣∣∣
L2(Br)

= 0, which implies w ≤ k̃+ d almost everywhere

in Br. Recalling the choice of d then yields

ess sup
Br

w ≤ k̃ + c

(ˆ
B2r

(w − k̃)2
+dx

) 1
2

.
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3.2 Hölder continuity

Next we aim to prove that weak solutions of (3.2) are locally Hölder continuous. To
this end, we denote

M(r) := ess sup
Br

w and m(r) := ess inf
Br

w,

both of which are finite numbers, since w ∈ L∞(Ω). First we prove an estimate for
the oscillation of w in a ball, denoted by

osc
B(x,r)

w := ess sup
B(x,r)

w − ess inf
B(x,r)

w.

Lemma 3.5. Let w ∈ W 1,2
loc (Ω) ∩ L∞(Ω) be a weak solution of (3.2) and let r > 0

be such that B4r ⊂⊂ Ω. Then there exists a constant 7
8
≤ γ < 1 depending only on

n, λ, and Λ such that
osc
Br
w ≤ γ osc

B4r

w. (3.14)

Proof. We follow the proof of Lemma 2.107 in [13]. Let r > 0 be such that B4r ⊂⊂ Ω
and let k′ > k ≥ k0, where

k0 :=
1

2
(M(4r) +m(4r)).

Assume |A(k0, 2r)| ≤ 1
2
|B2r|, where A(k, ρ) := {x ∈ Bρ : w(x) > k} as before. If

not, we can write

|{x ∈ B2r : −w(x) > −k0}| ≤ |{x ∈ B2r : w(x) ≤ k0}|

= |B2r| − |A(k0, 2r)| <
1

2
|B2r| .

Thus, if |A(k0, 2r)| > 1
2
|B2r|, instead of w we may consider −w, which is also a weak

solution of (3.2) and has the same oscillation as w.
Define

v :=


k′ − k, w ≥ k′

w − k, k < w < k′

0, w ≤ k
.

Using the above assumption we have

|{x ∈ B2r : v(x) = 0}| = |{x ∈ B2r : w(x) ≤ k}|
≥ |{x ∈ B2r : w(x) ≤ k0}|

≥ 1

2
|B2r| ,

and further

k′ − k =
1

|{x ∈ B2r : v(x) = 0}|

ˆ
{x∈B2r:v(x)=0}

(k′ − k − v)dx

≤ 2

|B2r|

ˆ
B2r

(k′ − k − v)dx

= 2(k′ − k − (v)B2r).
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Now the definition of v and Hölder’s inequality give

(k′ − k) |A(k′, 2r)| ≤ 2

ˆ
A(k′,2r)

(k′ − k − (v)B2r)dx

= 2

ˆ
A(k′,2r)

(v − (v)B2r)dx

≤ 2

ˆ
B2r

|v − (v)B2r |dx

≤ 2

(ˆ
B2r

|v − (v)B2r |
n
n−1dx

)n−1
n

|B2r|
1
n .

Since w ∈ W 1,2
loc (Ω) ⊂ W 1,1

loc (Ω), we may use Sobolev-Poincaré inequality,
Lemma 2.4, in the case p = 1. Therefore, with |B2r|

1
n = c(n)r we have

(k′ − k) |A(k′, 2r)| ≤ c(n)r

ˆ
B2r

|Dv| dx

= c(n)r

ˆ
A(k,2r)\A(k′,2r)

|Dw| dx

≤ c(n)r

(ˆ
A(k,2r)\A(k′,2r)

|Dw|2 dx
) 1

2

|A(k, 2r) \ A(k′, 2r)|
1
2

≤ c(n)r

(ˆ
A(k,2r)

|Dw|2 dx
) 1

2

(|A(k, 2r)| − |A(k′, 2r)|)
1
2 .

(3.15)

Here we have also used Hölder’s inequality and the fact that Dv = Dw, when
k < w < k′, and zero elsewhere.

Next we choose a cut-off function η ∈ C∞0 (B4r) such that 0 ≤ η ≤ 1, η ≡ 1 in
B2r, and |Dη| ≤ 1

r
. Lemma 3.1 then yieldsˆ
A(k,2r)

|Dw|2 dx =

ˆ
B2r

|D(w − k)+|2 dx

≤
ˆ
B4r

|D(w − k)+|2 η2dx

≤ 4Λ2

λ2

ˆ
B4r

|Dη|2 (w − k)2
+dx

≤ 4Λ2

λ2

1

r2

ˆ
B4r

(w − k)2
+dx

≤ c(λ,Λ)

r2
(M(4r)− k)2 |B4r|

= c(n, λ,Λ)rn−2(M(4r)− k)2.

Combining this with (3.15) gives

(k′ − k)2 |A(k′, 2r)|2 ≤ crn(M(4r)− k)2 (|A(k, 2r)| − |A(k′, 2r)|) , (3.16)

where c = c(n, λ,Λ).
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Now define for j = 0, 1, 2, . . .

kj := M(4r)− 2−j−1 osc
B4r

w.

For j ≥ 1 choose k = kj−1 and k′ = kj. Then we have

k′ − k = 2−j−1 osc
B4r

w

and
M(4r)− k = 2−j osc

B4r

w,

and by plugging these into (3.16) we obtain(
2−j−1 osc

B4r

w

)2

|A(kj, 2r)|2 ≤ crn
(

2−j osc
B4r

w

)2

(|A(kj−1, 2r)| − |A(kj, 2r)|) .

This implies
|A(kj, 2r)|2 ≤ crn (|A(kj−1, 2r)| − |A(kj, 2r)|)

and summing over j up to an arbitrary integer l ≥ 1 gives

l |A(kl, 2r)|2 =
l∑

j=1

|A(kl, 2r)|2 ≤
l∑

j=1

|A(kj, 2r)|2

≤ crn
l∑

j=1

(|A(kj−1, 2r)| − |A(kj, 2r)|)

= crn (|A(k0, 2r)| − |A(kl, 2r)|)
≤ crn |B2r| = cr2n.

Here the first inequality follows from the fact that |A(k, ρ)| is non-increasing with
respect to k. Thus, for every l = 1, 2, . . . we have the inequality

|A(kl, 2r)| ≤ crnl−
1
2 .

Now we are ready to apply Theorem 3.4. By replacing k̃ with kl we have

M(r) = ess sup
Br

w

≤ kl + c

(ˆ
B2r

(w − kl)2
+dx

) 1
2

= kl + c

(
1

|B2r|

ˆ
A(kl,2r)

(w − kl)2dx

) 1
2

≤ kl + cr−
n
2 (M(4r)− kl) |A(kl, 2r)|

1
2

≤ kl + cl−
1
4 (M(4r)− kl).
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Then choose l ≥ 16c4 and recall the definition of kj. This leads to

M(r) ≤ 1

2
(kl +M(4r))

=
1

2

(
M(4r)− 2−l−1 osc

B4r

w +M(4r)

)
= M(4r)− 2−l−2 osc

B4r

w,

and we finally get our result by calculating

osc
Br
w = M(r)−m(r)

≤M(r)−m(4r)

≤M(4r)− 2−l−2 osc
B4r

w −m(4r)

= (1− 2−l−2) osc
B4r

w.

Note that γ := (1 − 2−l−2) < 1 depends only on l, which in turn depends on
c = c(n, λ,Λ). Thus, we have γ = γ(n, λ,Λ). Moreover, γ ≥ 7

8
since l ≥ 1. �

We may now prove the local Hölder continuity of weak solutions of (3.2) by
iterating the previous result. Here and also in the following sections we denote
dx,y := min{dx, dy}, where dx := min{1, dist(x, ∂Ω)}.

Theorem 3.6. Let w ∈ W 1,2
loc (Ω) ∩ L∞(Ω) be a weak solution of (3.2). Then there

exist constants 0 < α < 1 and c depending only on n, λ and Λ such that

|w(x)− w(y)| ≤ c ||w||L∞(Ω) d
−α
x,y |x− y|

α (3.17)

for all x, y ∈ Ω, after possibly redefining w on a set of measure zero.

Proof. Let us first generalize the previous result by considering 0 < r < R such that
BR ⊂⊂ Ω. Choose a positive integer m such that

4m−1 <
R

r
≤ 4m (3.18)

and iterate (3.14) to obtain

osc
Br
w ≤ γm−1 osc

B4m−1r

w ≤ γm−1 osc
BR

w.

From (3.18) we see that m ≥ log R
r

log 4
, and since γ < 1, we have

γm−1 ≤ γ
log Rr
log 4

−1 = e
log γ
log 4 (log R

r
−log 4) = e−

log γ
log 4

log 4r
R =

(
4r

R

)− log γ
log 4

.

Therefore,
osc
Br
w ≤ 4α

( r
R

)α
osc
BR

w, (3.19)
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where α := − log γ
log 4

> 0. Moreover, due to the lower bound of γ, we have

α =
log 1

γ

log 4
≤

log 8
7

log 4
< 1.

Next take x ∈ Ω, y ∈ B(x, dx
4

), and choose r = 2 |x− y| and R = dx
2
. Clearly

r < R, so that we may apply (3.19), and since oscΩ w ≤ 2 ||w||L∞(Ω) and dx,y ≤ dx,
we have

|w(x)− w(y)| ≤ osc
B(x,r)

w ≤ 4α
( r
R

)α
osc

B(x,R)
w ≤ 2 · 16α ||w||L∞(Ω) d

−α
x,y |x− y|

α

for almost every x ∈ Ω, y ∈ B(x, dx
4

).
If y ∈ Ω \B(x, dx

4
), we have dx ≤ 4 |x− y|, and therefore almost everywhere

|w(x)− w(y)| ≤ 2 max{|w(x)| , |w(y)|} ≤ 2 · 4α ||w||L∞(Ω) d
−α
x,y |x− y|

α .

Thus, (3.17) holds for almost every x, y ∈ Ω and hence Hölder continuity points are
dense in Ω. Therefore, for each discontinuity point x we may choose a sequence (xi)
of Hölder continuous points such that xi → x. The sequence (xi) is Cauchy, and
since

|w(xi)− w(xj)| ≤ c ||w||L∞(Ω) d
−α
xi,xj
|xi − xj|α → 0,

as i, j →∞, we see that also (w(xi)) is Cauchy. Thus, we may redefine w at x such
that

w(x) := lim
i→∞

w(xi).

Now take any x, y ∈ Ω and corresponding Hölder continuous sequences (xi) and
(yi). Then

|w(x)− w(y)| ≤ |w(x)− w(xi)|+ |w(xi)− w(yi)|+ |w(yi)− w(y)|
≤ |w(x)− w(xi)|+ c ||w||L∞(Ω) d

−α
xi,yi
|xi − yi|α + |w(yi)− w(y)| ,

and by letting i→∞, we obtain the result. �

The following is an immediate consequence of Theorem 3.6.

Corollary 3.7. Let u ∈ W 1,∞(Ω) be a minimizer of the functional F . Then
u ∈ C1,α(Ω) for some 0 < α < 1.
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4 Towards higher regularity
In this section we study weak solutions of slightly more general equations, namely
equations of the form

n∑
i,j=1

Di(bij(x)Djw) =
n∑
i=1

Digi(x) (4.1)

in Ω, where w ∈ W 1,2
loc (Ω) and the function g : Ω → Rn is assumed to be locally

bounded and Hölder continuous. The coefficients bij play the same role as in the
previous section and may thus be assumed to satisfy conditions (3.3) and (3.4).
Moreover, since F was assumed to be smooth and Du ∈ C0,α(Ω) by Corollary 3.7,
a simple application of the mean value theorem shows that ∂zi∂zjF (Du) ∈ C0,α(Ω).
Hence it is reasonable to assume that also the coefficients bij are Hölder continuous.
The aim is to prove local boundedness and Hölder continuity for the gradient of w,
and then in the following section use this result repeatedly in order to prove the
smoothness of the solutions of our original minimization problem.

4.1 Schauder theory

To begin with, let us write the above assumptions more precisely. As in the previous
section, we denote dx := min{1, dist(x, ∂Ω)} and dx,y := min{dx, dy}. We assume
there exist 0 < α < 1, β ≥ 0, and M ≥ 1 such that

|w(x)| , |g(x)| ≤Md−βx , (4.2)

n∑
i,j=1

|bij(x)− bij(y)| ≤Md−αx,y |x− y|
α , (4.3)

and
|g(x)− g(y)| ≤Md−α−βx,y |x− y|α (4.4)

for all x, y ∈ Ω.
Fix a point x0 ∈ Ω and denote d := 1

4
dx0 , so that B(x0, 4d) ⊂ Ω and for all

x, y ∈ B(x0, 2d) we have
|w(x)| , |g(x)| ≤Md−β, (4.5)

n∑
i,j=1

|bij(x)− bij(y)| ≤Md−α |x− y|α , (4.6)

and
|g(x)− g(y)| ≤Md−α−β |x− y|α . (4.7)

Before proving the main result of the section, we need a few lemmas. First of them is
another Caccioppoli estimate. Again, we use the shorthand notation Bρ := B(x0, ρ).
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Lemma 4.1. Let w ∈ W 1,2
loc (Ω) be a weak solution of (4.1). Then there exists a

constant c = c(n, λ,Λ,M) such that(ˆ
Bd

|Dw|2 dx
) 1

2

≤ cd−1−β.

Proof. Since w is a weak solution of (4.1), we have
ˆ

Ω

n∑
i,j=1

bijDjwDivdx =

ˆ
Ω

n∑
i=1

giDivdx

for every v ∈ W 1,2
0 (Ω). Take a cut-off function η ∈ C∞0 (B2d) with 0 ≤ η ≤ 1, η ≡ 1

in Bd, and |Dη| ≤ 2
d
, and choose v = η2w ∈ W 1,2

0 (Ω) as the test function.
Now using assumptions (3.3) and (3.4) and Cauchy-Schwarz inequality yields

λ

ˆ
Ω

|Dw|2 η2dx ≤
ˆ

Ω

n∑
i,j=1

bijDjwDiwη
2dx

=

ˆ
Ω

n∑
i=1

giDiwη
2dx+ 2

ˆ
Ω

n∑
i=1

giηDiηwdx− 2

ˆ
Ω

n∑
i,j=1

bijDjwηDiηwdx

≤
ˆ

Ω

|g| |Dw| η2dx+ 2

ˆ
Ω

|g| η |Dη| |w| dx+ 2Λ

ˆ
Ω

|Dw| η |Dη| |w| dx.

Next we apply Young’s inequality to the middle term and Young’s inequality with
ε to the others, which gives

λ

ˆ
Ω

|Dw|2 η2dx

≤ ε1

2

ˆ
Ω

|Dw|2 η2dx+
1

2ε1

ˆ
Ω

|g|2 η2dx+

ˆ
Ω

|g|2 η2dx

+

ˆ
Ω

|Dη|2 |w|2 dx+ ε2Λ

ˆ
Ω

|Dw|2 η2dx+
Λ

ε2

ˆ
Ω

|Dη|2 |w|2 dx

=
λ

2

ˆ
Ω

|Dw|2 η2dx+

(
1

λ
+ 1

) ˆ
Ω

|g|2 η2dx+

(
4Λ2

λ
+ 1

) ˆ
Ω

|Dη|2 |w|2 dx,

where we have chosen ε1 = λ
2
and ε2 = λ

4Λ
.

Using the properties of the cut-off function and assumption (4.5) it now follows
that ˆ

Bd

|Dw|2 dx ≤
ˆ

Ω

|Dw|2 η2dx

≤ 2(λ+ 1)

λ2

ˆ
Ω

|g|2 η2dx+
2(4Λ2 + λ)

λ2

ˆ
Ω

|Dη|2 |w|2 dx

≤ 2(λ+ 1)

λ2

ˆ
B2d

|g|2 dx+
8(4Λ2 + λ)

λ2
d−2

ˆ
B2d

|w|2 dx

≤ 2(16Λ2 + 5λ+ 1)

λ2
M2d−2−2β2n |Bd| .
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Here we have used the fact that d ≤ 1 or d−2 ≥ 1. Dividing by |Bd| and taking
square roots completes the proof. �

Next we apply the so-called freezing technique to equation (4.1). In order to get
the desired result for the gradient of w, first we have to put quite a lot of effort into
deriving estimates for the corresponding equation with constant coefficients.

Thus, consider equation (4.1) in the ball Bρ, 0 < ρ ≤ d, with the functions bij
and g fixed at the point x0. Let wρ ∈ W 1,2(Bρ) be a weak solution of this equation
and, moreover, assume that wρ = w on the boundary of Bρ. That is, wρ satisfies
the equation

n∑
i,j=1

Di(bij(x0)Djwρ) =
n∑
i=1

Digi(x0) (4.8)

in Bρ such that w−wρ ∈ W 1,2
0 (Bρ). The right hand side of (4.8) is clearly zero, but

for the next lemma we shall keep it in the above form.

Lemma 4.2. Let 0 < ρ ≤ d and let w ∈ W 1,2
loc (Ω) and wρ ∈ W 1,2(Bρ) be weak

solutions of (4.1) and (4.8), respectively. Then there exists a constant c = c(λ,M)
such that(ˆ

Bρ

|D(w − wρ)|2 dx

) 1
2

≤ cd−αρα

(ˆ
Bρ

|Dw|2 dx

) 1
2

+ d−β

 .

Proof. Since wρ is a weak solution of (4.8), we have
ˆ
Bρ

n∑
i,j=1

bij(x0)DjwρDivdx =

ˆ
Bρ

n∑
i=1

gi(x0)Divdx (4.9)

for every v ∈ W 1,2
0 (Bρ). By only considering test functions whose support is in Bρ,

we get a similar equation for w, that is,
ˆ
Bρ

n∑
i,j=1

bij(x)DjwDivdx =

ˆ
Bρ

n∑
i=1

gi(x)Divdx (4.10)

for every v ∈ W 1,2
0 (Bρ).

Subtract (4.9) from (4.10) to obtain
ˆ
Bρ

n∑
i,j=1

(bij(x)Djw − bij(x0)Djwρ)Divdx =

ˆ
Bρ

n∑
i=1

(gi(x)− gi(x0))Divdx,

after which adding and subtracting the term bij(x0)Djw leads to
ˆ
Bρ

n∑
i,j=1

bij(x0)Dj(w − wρ)Divdx

=

ˆ
Bρ

n∑
i,j=1

(bij(x0)− bij(x))DjwDivdx+

ˆ
Bρ

n∑
i=1

(gi(x)− gi(x0))Divdx
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for every v ∈ W 1,2
0 (Bρ). Now, by choosing v = w − wρ ∈ W 1,2

0 (Bρ) and using the
ellipticity condition (3.3) and Cauchy-Schwarz inequality, we get

λ

ˆ
Bρ

|D(w − wρ)|2 dx ≤
ˆ
Bρ

n∑
i,j=1

bij(x0)Dj(w − wρ)Di(w − wρ)dx

=

ˆ
Bρ

n∑
i,j=1

(bij(x0)− bij(x))DjwDi(w − wρ)dx

+

ˆ
Bρ

n∑
i=1

(gi(x)− gi(x0))Di(w − wρ)dx

≤
ˆ
Bρ

n∑
i,j=1

|bij(x0)− bij(x)| |Dw| |D(w − wρ)| dx

+

ˆ
Bρ

|g(x)− g(x0)| |D(w − wρ)| dx.

Once again we apply Young’s inequality with ε, this time with ε = λ
2
for both terms,

and arrive at

λ

ˆ
Bρ

|D(w − wρ)|2 dx ≤
λ

2

ˆ
Bρ

|D(w − wρ)|2 dx

+
1

λ

ˆ
Bρ

(
n∑

i,j=1

|bij(x0)− bij(x)|

)2

|Dw|2 dx+
1

λ

ˆ
Bρ

|g(x)− g(x0)|2 dx.

Next we use assumptions (4.6) and (4.7) and notice that |x− x0| < ρ for all
x ∈ Bρ. Thus

ˆ
Bρ

|D(w − wρ)|2 dx ≤
2M2

λ2
ρ2α

(
d−2α

ˆ
Bρ

|Dw|2 dx+ d−2α−2β |Bρ|

)
,

which implies(ˆ
Bρ

|D(w − wρ)|2 dx

) 1
2

≤ c(λ,M)d−αρα

(ˆ
Bρ

|Dw|2 dx

) 1
2

+ d−β

 .

The next simple lemma proves to be useful in what follows.

Lemma 4.3. Let A ⊂ B, |A| > 0, and |B| < ∞. Then a function f ∈ L2(B)
satisfies (ˆ

A

|f − (f)A|2 dx
) 1

2

≤
(
|B|
|A|

) 1
2
(ˆ

B

|f − (f)B|2 dx
) 1

2

.

Proof. Using the Hilbert space structure of L2 we may define an inner product

< f, g >:=

ˆ
A

fgdx
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for all f, g ∈ L2(A). A simple calculation shows that (f)A minimizes the function
h(a) :=< f − a, f − a >, and therefore(ˆ

A

|f − (f)A|2 dx
) 1

2

≤
(ˆ

A

|f − (f)B|2 dx
) 1

2

≤
(
|B|
|A|

) 1
2
(ˆ

B

|f − (f)B|2 dx
) 1

2

.

In the following lemma we exploit the fact that the coefficients in (4.8) are
constants. This enables us to derive a useful estimate for wρ by changing variables
and using well-known properties of harmonic functions. The proof uses some ideas
from [9, p. 87–88].

Lemma 4.4. Let 0 < ρ ≤ d and let wρ ∈ W 1,2(Bρ) be a weak solution of (4.8).
Then there exists a constant c = c(n, λ,Λ) such that(ˆ

Bδρ

∣∣Dwρ − (Dwρ)Bδρ
∣∣2 dx) 1

2

≤ cδ

(ˆ
Bρ

∣∣Dwρ − (Dwρ)Bρ
∣∣2 dx) 1

2

for every 0 < δ < 1.

Proof. Since bij(x0) and g(x0) are constants, equation (4.8) can be written as
n∑

i,j=1

bij(x0)DiDjwρ(x) = 0. (4.11)

Let B be the n× n matrix formed by the coefficients bij(x0) scaled by Λ, that is,

(B)ij :=
bij(x0)

Λ

for 1 ≤ i, j ≤ n. Defined this way the eigenvalues of B are on the interval
[
λ
Λ
, 1
]
.

Clearly B is symmetric and positive definite and hence possesses an inverse matrix
B−1, which is also symmetric and positive definite. Thus, Cholesky decomposition
gives a unique positive definite upper triangular matrix H such that HTH = B−1

or equivalently HBHT = I. Denoting the (i, j)th element of H by hij this can be
written as

n∑
i,j=1

bij(x0)hkjhmi = δmkΛ (4.12)

for every 1 ≤ k,m ≤ n.
Next we change variables to y = H(x − x0) and define wρ(x) =: wρ(y). Using

the chain rule we calculate

Djwρ(x) = Djwρ(y) =
n∑
k=1

DjykD
y
kwρ(y) =

n∑
k=1

hkjD
y
kwρ(y), (4.13)

where Dy denotes the weak gradient with respect to y. Differentiating once more
yields

DiDjwρ(x) =
n∑
k=1

hkjD
y
kDiwρ(y) =

n∑
k,m=1

hkjhmiD
y
kD

y
mwρ(y),
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so that using identity (4.12) equation (4.11) becomes

0 =
n∑

i,j=1

bij(x0)DiDjwρ(x) =
n∑

i,j=1

bij(x0)
n∑

k,m=1

hkjhmiD
y
kD

y
mwρ(y)

=
n∑

k,m=1

Dy
kD

y
mwρ(y)

n∑
i,j=1

bij(x0)hkjhmi =
n∑

k,m=1

Dy
kD

y
mwρ(y)δmkΛ

= Λ
n∑
k=1

Dy
kD

y
kwρ(y).

Therefore, wρ is a harmonic function in the new coordinates.
Let us next consider how the change of variables affects the domain. Assume

y ∈ B(0, ρ̃) for some 0 < ρ̃ ≤ ρ. Then x belongs to the set

E(x0, ρ̃) := x0 +H−1B(0, ρ̃)

= x0 + {H−1z : zT z < ρ̃2}
= x0 + {z : zTHTHz < ρ̃2}
= {x : (x− x0)T (ρ̃2B)−1(x− x0) < 1},

which, in fact, is an ellipsoid due to the fact that B is positive definite. The center
of the ellipsoid E(x0, ρ̃) is x0 and the lengths of its semi-axes are given by the square
roots of the eigenvalues of the matrix ρ̃2B. Therefore, we have

B(x0, θρ̃) ⊂ E(x0, ρ̃) ⊂ B(x0, ρ̃), (4.14)

where θ :=
(
λ
Λ

) 1
2 ≤ 1. Similarly, when x ∈ B(x0, ρ), we have

y ∈ Ẽ(0, ρ) := HB(0, ρ) = {y : yT (ρ2HHT )−1y < 1}.

Thus, the domain of wρ is the ellipsoid Ẽ(0, ρ), whose semiaxes have lengths bounded
from below by ρ and from above by θ−1ρ.

Let us assume 0 < δ < θ
4
. For if θ

4
≤ δ < 1, the result follows by using Lemma 4.3

and calculating(ˆ
Bδρ

∣∣Dwρ − (Dwρ)Bδρ
∣∣2 dx) 1

2

≤
(
|Bρ|
|Bδρ|

) 1
2

(ˆ
Bρ

∣∣Dwρ − (Dwρ)Bρ
∣∣2 dx) 1

2

= δ−
n
2

(ˆ
Bρ

∣∣Dwρ − (Dwρ)Bρ
∣∣2 dx) 1

2

≤
(
θ

4

)−n
2
−1

δ

(ˆ
Bρ

∣∣Dwρ − (Dwρ)Bρ
∣∣2 dx) 1

2

.

By choosing ρ̃ = θ−1δρ < ρ in (4.14) we get

B(x0, δρ) ⊂ E(x0, θ
−1δρ) ⊂ B(x0, θ

−1δρ).
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Thus by Lemma 4.3, identity (4.13), and Minkowski’s inequality we obtain(ˆ
B(x0,δρ)

∣∣Dwρ(x)− (Dwρ)B(x0,δρ)

∣∣2 dx) 1
2

≤
(
|E(x0, θ

−1δρ)|
|B(x0, δρ)|

) 1
2
(ˆ

E(x0,θ−1δρ)

∣∣Dwρ(x)− (Dwρ)E(x0,θ−1δρ)

∣∣2 dx) 1
2

≤
(
|B(x0, θ

−1δρ)|
|B(x0, δρ)|

) 1
2

n∑
j=1

(ˆ
E(x0,θ−1δρ)

∣∣Djwρ(x)− (Djwρ)E(x0,θ−1δρ)

∣∣2 dx) 1
2

= θ−
n
2

n∑
j=1

ˆ
B(0,θ−1δρ)

∣∣∣∣∣
n∑
k=1

hkj
(
Dy
kwρ(y)− (Dy

kwρ)B(0,θ−1δρ)

)∣∣∣∣∣
2

dy

 1
2

≤ θ−
n
2

n∑
j,k=1

|hkj|
(ˆ

B(0,θ−1δρ)

∣∣Dy
kwρ(y)− (Dy

kwρ)B(0,θ−1δρ)

∣∣2 dy) 1
2

.

(4.15)

To illustrate how the change of variables is done above we calculate

(Djwρ)E(x0,θ−1δρ) =
1´

E(x0,θ−1δρ)
dx

ˆ
E(x0,θ−1δρ)

Djwρ(x)dx

=
1´

B(0,θ−1δρ)
det(H−1)dy

ˆ
B(0,θ−1δρ)

Djwρ(y) det(H−1)dy

=

ˆ
B(0,θ−1δρ)

n∑
k=1

hkjD
y
kwρ(y)dy

=
n∑
k=1

hkj(D
y
kwρ)B(0,θ−1δρ),

where det(H−1) > 0 is the determinant of the positive definite matrix H−1. A very
similar calculation to (4.15) shows that(ˆ

B(0,ρ)

∣∣Dy
kwρ(y)− (Dy

kwρ)B(0,ρ)

∣∣2 dy) 1
2

≤ θ−
n
2

n∑
i=1

∣∣hik∣∣ (ˆ
B(x0,ρ)

∣∣Dwρ(x)− (Dwρ)B(x0,ρ)

∣∣2 dx) 1
2

,

(4.16)

where hik denotes the (i, k)th element of H−1.
Let us now define for k = 1, . . . , n

ψk(y) := Dy
kwρ(y)− (Dy

kwρ)B(0,ρ).
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Clearly ψk is harmonic in Ẽ(0, ρ) and, moreover,∣∣Dy
kwρ(y)− (Dy

kwρ)B(0,θ−1δρ)

∣∣ ≤ ˆ
B(0,θ−1δρ)

|Dy
kwρ(y)−Dy

kwρ(z)| dz

=

ˆ
B(0,θ−1δρ)

|ψk(y)− ψk(z)| dz.
(4.17)

Harmonic functions can be characterized by the mean value principle, that is,

ψk(z) =

ˆ
B(z,r)

ψk(y)dy

whenever B(z, r) ⊂ Ẽ(0, ρ). Thus, with z1, z2 ∈ B(0, θ−1δρ) and r = ρ
4
we may

write

|ψk(z1)− ψk(z2)| =
∣∣∣∣ˆ

B(z1,r)

ψk(y)dy −
ˆ
B(z2,r)

ψk(y)dy

∣∣∣∣
=

∣∣∣∣ 1

|Br|

ˆ
B(z1,r)∪B(z2,r)

ψk(y)χB(z1,r)dy −
1

|Br|

ˆ
B(z1,r)∪B(z2,r)

ψk(y)χB(z2,r)dy

∣∣∣∣
≤ 1

|Br|

ˆ
B(z1,r)∪B(z2,r)

|ψk(y)|
∣∣χB(z1,r) − χB(z2,r)

∣∣ dy
≤ 1

|Br|
ess sup

B(z1,r)∪B(z2,r)

|ψk|
ˆ
B(z1,r)∪B(z2,r)

∣∣χB(z1,r) − χB(z2,r)

∣∣ dy.
The remaining integral is, in fact, the measure of the symmetric difference of the

two balls. This can be estimated from above by

|∂Br| |z1 − z2| = n |Br|
|z1 − z2|

r
,

where |∂Br| is the (n − 1)-dimensional Lebesgue measure of the boundary of Br.
Moreover, we have B(z1, r) ∪B(z2, r) ⊂ B(0, 2r), since r = ρ

4
> θ−1δρ, so that

ess sup
B(z1,r)∪B(z2,r)

|ψk| ≤ ess sup
B(0,2r)

|ψk|

≤ ess sup
z∈B(0,2r)

ˆ
B(z,2r)

|ψk(y)| dy

≤ ess sup
z∈B(0,2r)

1

|B2r|

ˆ
B(0,4r)

|ψk(y)| dy

= 2n
ˆ
B(0,ρ)

|ψk(y)| dy.

Combining these estimates and the fact that |z1 − z2| < 2θ−1δρ gives

|ψk(z1)− ψk(z2)| ≤ 2n+3nθ−1δ

ˆ
B(0,ρ)

|ψk(y)| dy (4.18)

for all z1, z2 ∈ B(0, θ−1δρ).
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Now estimates (4.15)–(4.18) yield(ˆ
B(x0,δρ)

∣∣Dwρ(x)− (Dwρ)B(x0,δρ)

∣∣2 dx) 1
2

≤ θ−
n
2

n∑
j,k=1

|hkj|

(ˆ
B(0,θ−1δρ)

(ˆ
B(0,θ−1δρ)

|ψk(y)− ψk(z)| dz
)2

dy

) 1
2

≤ 2n+3nθ−
n
2
−1

n∑
j,k=1

|hkj| δ
ˆ
B(0,ρ)

|ψk(y)| dy

≤ 2n+3nθ−
n
2
−1

n∑
j,k=1

|hkj| δ
(ˆ

B(0,ρ)

∣∣Dy
kwρ(y)− (Dy

kwρ)B(0,ρ)

∣∣2 dy) 1
2

≤ 2n+3nθ−n−1

n∑
i,j,k=1

∣∣hikhkj∣∣ δ(ˆ
B(x0,ρ)

∣∣Dwρ(x)− (Dwρ)B(x0,ρ)

∣∣2 dx) 1
2

.

Denote the trace of an n× n matrix A by

tr(A) :=
n∑
i=1

(A)ii =
n∑
i=1

λi(A),

where λi(A) is the ith eigenvalue of A. By Cauchy-Schwartz inequality and the
bounds of the eigenvalues of the matrix B we have

n∑
i,j,k=1

∣∣hikhkj∣∣ ≤ ( n∑
i,j,k=1

∣∣hik∣∣2) 1
2
(

n∑
i,j,k=1

|hkj|2
) 1

2

= n

(
n∑

i,k=1

∣∣hik∣∣2 n∑
j,k=1

|hkj|2
) 1

2

= n
(

tr
(
H−1

(
H−1

)T)
tr
(
HTH

)) 1
2

= n
(
tr(B) tr

(
B−1

)) 1
2

= n

(
n∑
i=1

λi(B)
n∑
j=1

λj
(
B−1

)) 1
2

≤ n2

(
Λ

λ

) 1
2

.

This completes the proof. �
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4.2 Campanato estimates

Let us now combine the previous lemmas in order to show that the gradient of w
belongs to a certain Campanato space. Campanato spaces were first introduced by
Sergio Campanato in [3] and [4], and have since proven to be a useful tool in showing
Hölder continuity for solutions of partial differential equations.

Lemma 4.5. Let w ∈ W 1,2
loc (Ω) be a weak solution of (4.1) and denote β̄ := 1+α+β.

Then there exists a constant c = c(n, λ,Λ, α,M) such that(ˆ
Bρ

∣∣Dw − (Dw)Bρ
∣∣2 dx) 1

2

≤ cd−β̄ρα

for every 0 < ρ ≤ d.

Proof. For j = 0, 1, 2, . . . define ρj := δjr and Bj := B(x0, ρj), where 0 < δ < 1 and
0 < r ≤ d are constants to be fixed in the course of the proof. To somewhat shorten
the notation we denote

Ej :=

(ˆ
Bj

∣∣Dw − (Dw)Bj
∣∣2 dx) 1

2

.

Let wρj ∈ W 1,2(Bj) be a weak solution of (4.8) such that w − wρj ∈ W
1,2
0 (Bj).

Since ∣∣(Dw)Bj+1
− (Dwρj)Bj+1

∣∣ ≤ ˆ
Bj+1

∣∣Dw −Dwρj ∣∣ dx
≤

(ˆ
Bj+1

∣∣Dw −Dwρj ∣∣2 dx
) 1

2

= δ−
n
2

(ˆ
Bj

∣∣Dw −Dwρj ∣∣2 dx
) 1

2

,

we get by Minkowski’s inequality

Ej+1 =

(ˆ
Bj+1

∣∣Dw − (Dw)Bj+1

∣∣2 dx) 1
2

≤

(ˆ
Bj+1

∣∣Dw −Dwρj ∣∣2 dx
) 1

2

+

(ˆ
Bj+1

∣∣Dwρj − (Dwρj)Bj+1

∣∣2 dx) 1
2

+

(ˆ
Bj+1

∣∣(Dwρj)Bj+1
− (Dw)Bj+1

∣∣2 dx) 1
2

≤

(ˆ
Bj+1

∣∣Dwρj − (Dwρj)Bj+1

∣∣2 dx) 1
2

+ 2δ−
n
2

(ˆ
Bj

∣∣Dw −Dwρj ∣∣2 dx
) 1

2

.

(4.19)
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The first term can be further estimated by first applying Lemma 4.4 and then
Minkowski’s inequality again. Thus we obtain(ˆ

Bj+1

∣∣Dwρj − (Dwρj)Bj+1

∣∣2 dx) 1
2

≤ cδ

(ˆ
Bj

∣∣Dwρj − (Dwρj)Bj
∣∣2 dx) 1

2

≤ cδ

(ˆ
Bj

∣∣Dwρj −Dw∣∣2 dx
) 1

2

+

(ˆ
Bj

∣∣Dw − (Dw)Bj
∣∣2 dx) 1

2

+

(ˆ
Bj

∣∣(Dw)Bj − (Dwρj)Bj
∣∣2 dx) 1

2


≤ cδ

Ej + 2

(ˆ
Bj

∣∣Dwρj −Dw∣∣2 dx
) 1

2

 .
Combining this with (4.19) and then using Lemma 4.2 yields

Ej+1 ≤ cδEj +
(
2cδ + 2δ−

n
2

)(ˆ
Bj

∣∣Dw −Dwρj ∣∣2 dx
) 1

2

≤ cδEj +
(
2cδ + 2δ−

n
2

)
cd−αραj

(ˆ
Bj

|Dw|2 dx

) 1
2

+ d−β


≤ cδEj + cδ

(
1 + δ−

n
2
−1
)
d−αραj

(
Ej +

∣∣(Dw)Bj
∣∣+ d−β

)
≤ cδ

(
1 +

(
1 + δ−

n
2
−1
)
d−αrα

)
Ej

+ cδ
(
1 + δ−

n
2
−1
)
d−αραj

(∣∣(Dw)Bj
∣∣+ d−β

)
.

Here we used the fact that ρj ≤ r for all j = 0, 1, 2, . . . and(ˆ
Bj

|Dw|2 dx

) 1
2

≤

(ˆ
Bj

∣∣Dw − (Dw)Bj
∣∣2 dx) 1

2

+

(ˆ
Bj

∣∣(Dw)Bj
∣∣2 dx) 1

2

= Ej +
∣∣(Dw)Bj

∣∣ .
Choose δ to be the largest number on the interval

(
0, 1

4

]
such that cδ ≤ 1

2
δ

1+α
2 ,

in other words δ = min
{

1
4
, (2c)−

2
1−α

}
. If we further assume r to satisfy(

1 + δ−
n
2
−1
)
d−αrα ≤ 1,

or r ≤
(
1 + δ−

n
2
−1
)− 1

α d, we have

Ej+1 ≤ δ
1+α
2 Ej + cd−αραj

(∣∣(Dw)Bj
∣∣+ d−β

)
. (4.20)

Here the constant c depends on δ, which in turn depends on n, λ,Λ, α and M , so we
have c = c(n, λ,Λ, α,M).
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Next we show that
∣∣(Dw)Bj

∣∣ is uniformly bounded with an estimate

sup
j=0,1,2,...

∣∣(Dw)Bj
∣∣ ≤ c

(ˆ
B0

|Dw|2 dx
) 1

2

+ d−β. (4.21)

For a given integer k, summing up (4.20) yields

k∑
j=0

Ej = E0 +
k−1∑
j=0

Ej+1 ≤ E0 + δ
1+α
2

k−1∑
j=0

Ej + cd−α
k−1∑
j=0

ραj
(∣∣(Dw)Bj

∣∣+ d−β
)
.

Since δ ≤ 1
4
and Ej is positive for all j, we have

δ
1+α
2

k−1∑
j=0

Ej ≤
1

2

k∑
j=0

Ej,

and therefore
k∑
j=0

Ej ≤ 2E0 + 2cd−α
k−1∑
j=0

ραj
(∣∣(Dw)Bj

∣∣+ d−β
)
.

It follows that

|(Dw)Bk − (Dw)B0|

≤
k−1∑
j=0

∣∣(Dw)Bj+1
− (Dw)Bj

∣∣ ≤ k−1∑
j=0

ˆ
Bj+1

∣∣Dw − (Dw)Bj
∣∣ dx

≤ δ−
n
2

k−1∑
j=0

Ej ≤ 2δ−
n
2E0 + 2cδ−

n
2 d−α

k−2∑
j=0

ραj
(∣∣(Dw)Bj

∣∣+ d−β
)
.

Let k∗ ∈ {0, 1, . . . , k} be such that
∣∣(Dw)Bj

∣∣ ≤ |(Dw)Bk∗ | for all j = 0, 1, . . . , k.
Then

|(Dw)Bk∗ | ≤ |(Dw)B0|+ |(Dw)Bk∗ − (Dw)B0|

≤ |(Dw)B0|+ 2δ−
n
2E0 + 2cδ−

n
2 d−αrα

∞∑
j=0

(δα)j
(
|(Dw)Bk∗ |+ d−β

)
.

Since δα < 1, the above series converges to 1
1−δα . Now we choose r such that

2c δ
−n2

1−δαd
−αrα ≤ 1

2
, that is, by taking into account the previous assumptions on r,

r = min

{
1,
(
1 + δ−

n
2
−1
)− 1

α ,

(
4cδ−

n
2

1− δα

)− 1
α

}
d =: γd.

Moreover, by Hölder’s and Minkowski’s inequalities we clearly have the estimates

|(Dw)B0 | ≤
(´

B0
|Dw|2 dx

) 1
2 and E0 ≤ 2

(´
B0
|Dw|2 dx

) 1
2 . Thus, we obtain

|(Dw)Bk∗ | ≤ |(Dw)B0|+ 2δ−
n
2E0 +

1

2
|(Dw)Bk∗ |+

1

2
d−β,
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which implies

|(Dw)Bk | ≤ |(Dw)Bk∗ | ≤ 2 |(Dw)B0|+ 4δ−
n
2E0 + d−β ≤ c

(ˆ
B0

|Dw|2 dx
) 1

2

+ d−β.

This establishes (4.21).
Now (4.20) and (4.21) yield

Ej+1 ≤ δ
1+α
2 Ej + cd−αραj

((ˆ
B0

|Dw|2 dx
) 1

2

+ d−β

)
.

If we then denote δ := δ
1+α
2 and Ψ := cd−α

((´
B0
|Dw|2 dx

) 1
2

+ d−β
)

and iterate

the previous inequality, we obtain

Ej+1 ≤ δEj + ραj Ψ

≤ δ
2
Ej−1 + δ

1+α
2 δα(j−1)rαΨ + ραj Ψ

= δ
2
Ej−1 +

(
1 + δ

1−α
2

)
ραj Ψ

≤ δ
3
Ej−2 + δ2 1+α

2 δα(j−2)rαΨ +
(

1 + δ
1−α
2

)
ραj Ψ

= δ
3
Ej−2 +

(
1 + δ

1−α
2 + δ2 1−α

2

)
ραj Ψ

≤ δ
j+1
E0 +

∞∑
i=0

δi
1−α
2 ραj Ψ

= δ
j+1
E0 +

δ−α

1− δ 1−α
2

ραj+1Ψ.

The series converges, since δ, α < 1 implies δ
1−α
2 < 1. For the same reason we also

have δ̄ < δα, and therefore δ̄j < δαj = r−αραj = cd−αραj . With the above estimate
for E0 we then obtain for j = 1, 2, . . .

Ej ≤ δ̄jE0 + cραj Ψ ≤ cd−αραj

((ˆ
B0

|Dw|2 dx
) 1

2

+ d−β

)
.

Using the fact that B0 ⊂ Bd and the Caccioppoli estimate, Lemma 4.1, gives(ˆ
B0

|Dw|2 dx
) 1

2

≤ γ−
n
2

(ˆ
Bd

|Dw|2 dx
) 1

2

≤ cd−1−β, (4.22)

and thus, since d−1 ≥ 1, we have

Ej ≤ cd−αραj
(
d−1−β + d−β

)
≤ cd−β̄ραj . (4.23)

When j = 0, this holds trivially, since

E0 ≤ 2

(ˆ
B0

|Dw|2 dx
) 1

2

≤ cd−1−α−βdα = cγ−αd−β̄ρα0 .
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Now let 0 < ρ ≤ γd and choose j such that ρj+1 < ρ ≤ ρj. The result is then
obtained by applying Lemma 4.3 and estimate (4.23) and calculating(ˆ

Bρ

∣∣Dw − (Dw)Bρ
∣∣2 dx) 1

2

≤
(
|Bj|
|Bρ|

) 1
2

(ˆ
Bj

∣∣Dw − (Dw)Bj
∣∣2 dx) 1

2

=

(
ρj
ρ

)n
2

Ej ≤ δ−
n
2 cd−β̄ραj ≤ δ−

n
2
−αcd−β̄ρα.

When γd < ρ ≤ d, we have by Lemma 4.1(ˆ
Bρ

∣∣Dw − (Dw)Bρ
∣∣2 dx) 1

2

≤ 2

(ˆ
Bρ

|Dw|2 dx

) 1
2

≤ 2

(
|Bd|
|Bρ|

) 1
2
(ˆ

Bd

|Dw|2 dx
) 1

2

≤ 2γ−
n
2 cd−1−β

≤ 2γ−
n
2
−αcd−β̄ρα,

and we are done. �

Now we have the required tools to prove the main result of the section, that is,
that the weak solutions of equation (4.1) belong to C1,α(Ω).

Theorem 4.6. Let w ∈ W 1,2
loc (Ω) be a weak solution of (4.1). Then there exists a

constant c = c(n, λ,Λ, α, β,M) such that

|Dw(x)| ≤ cd−1−β
x (4.24)

and
|Dw(x)−Dw(y)| ≤ cd−β̄x,y |x− y|

α (4.25)

for all x, y ∈ Ω, after possibly redefining Dw on a set of measure zero. Again, we
denote β̄ = 1 + α + β.

Proof. Assuming x0 is a Lebesgue point, Lebesgue’s differentiation theorem and
estimates (4.21) and (4.22) give

|Dw(x0)| = lim
j→∞

∣∣(Dw)Bj
∣∣ ≤ c

(ˆ
B0

|Dw|2 dx
) 1

2

+ d−β ≤ 4βcd−1−β
x0

. (4.26)

If we now replace x0 by any Lebesgue point x ∈ Ω, we see that (4.24) holds for
almost every x ∈ Ω.

To show that (4.24) is true for every x ∈ Ω, let us assume for now that (4.25)
holds. For any x ∈ Ω take a sequence of Lebesgue points (xi) such that xi → x as
i→∞. Now

|Dw(x)| ≤ |Dw(x)−Dw(xi)|+ |Dw(xi)| ≤ cd−β̄x,xi |x− xi|
α + 4βcd−1−β

xi
,

and by taking the limit we obtain the result.



42

Let us then prove (4.25). Take a Lebesgue point x1 ∈ B(x0,
d
4
) and denote

ρ := |x0 − x1| and Bi := B(x0, 2
−i+1ρ). By Lemma 4.5 we have∣∣(Dw)Bi+1

− (Dw)Bi
∣∣ ≤ ˆ

Bi+1

|Dw − (Dw)Bi | dx

≤ 2n
(ˆ

Bi

|Dw − (Dw)Bi |
2 dx

) 1
2

≤ cd−β̄2(−i+1)αρα,

and thus, for k = 1, 2, . . .

|(Dw)Bk − (Dw)B0| ≤
k−1∑
i=0

∣∣(Dw)Bi+1
− (Dw)Bi

∣∣ ≤ cd−β̄ρα
∞∑
i=0

2−iα = cd−β̄ρα.

Since x0 is a Lebesgue point, Lebesgue’s differentiation theorem yields∣∣Dw(x0)− (Dw)B(x0,2ρ)

∣∣ = lim
k→∞
|(Dw)Bk − (Dw)B0 | ≤ cd−β̄ρα = 4βcd−β̄x0 ρ

α.

By replacing x0 with x1, we obtain∣∣Dw(x1)− (Dw)B(x1,2ρ)

∣∣ ≤ 4βcd−β̄x1 ρ
α.

Moreover, since B(x1, 2ρ) ⊂ B(x0, 4ρ), we have∣∣(Dw)B(x0,2ρ) − (Dw)B(x1,2ρ)

∣∣
≤
∣∣(Dw)B(x0,2ρ) − (Dw)B(x0,4ρ)

∣∣+
∣∣(Dw)B(x0,4ρ) − (Dw)B(x1,2ρ)

∣∣
≤
ˆ
B(x0,2ρ)

∣∣Dw − (Dw)B(x0,4ρ)

∣∣ dx+

ˆ
B(x1,2ρ)

∣∣Dw − (Dw)B(x0,4ρ)

∣∣ dx
≤ 2n+1

(ˆ
B(x0,4ρ)

∣∣Dw − (Dw)B(x0,4ρ)

∣∣2 dx) 1
2

≤ 4βcd−β̄x0 ρ
α

by Lemma 4.5. Combining the previous estimates and the fact that dx0,x1 ≤ dx0 , dx1
now gives
|Dw(x0)−Dw(x1)| ≤

∣∣Dw(x0)− (Dw)B(x0,2ρ)

∣∣+
∣∣(Dw)B(x0,2ρ) − (Dw)B(x1,2ρ)

∣∣
+
∣∣(Dw)B(x1,2ρ) −Dw(x1)

∣∣
≤ 4βcd−β̄x0,x1ρ

α.

If x1 ∈ Ω \B
(
x0,

d
4

)
, we have dx0,x1 ≤ 4d ≤ 16ρ and by (4.26) we may estimate

|Dw(x0)−Dw(x1)| ≤ 2 max {|Dw(x0)| , |Dw(x1)|}
≤ 4βcmax

{
d−1−β
x0

, d−1−β
x1

}
= 4βcd−1−β

x0,x1

≤ 4βcd−β̄x0,x1ρ
α.

Replacing x0 and x1 by any Lebesgue points x and y in Ω shows that (4.25) holds
almost everywhere. A representative of Dw that satisfies (4.25) for all x, y ∈ Ω can
be found in the exact same way as shown in the end of the previous section. �
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5 Smoothness of the minimizer
In this section we prove the main result of the thesis, that is, the smoothness of the
minimizer u. We start by considering equation (3.2) and using the main result of
the previous section, Theorem 4.6, to show that u ∈ C2,α(Ω). Then, by utilizing
difference quotients as in Section 2, we show that the second derivatives of u belong
to W 1,2

loc (Ω) and solve a slightly different equation of the type (4.1) in a weak sense.
After that we use Theorem 4.6 again and repeat the process by induction.

Let us first prove a result that makes Theorem 4.6 so powerful. We show that,
under suitable assumptions, any higher order derivative of a solution of equation
(3.2) is a weak solution of an equation of the type (4.1). The idea behind the proof
can be seen by formally differentiating equation (3.2) repeatedly and moving the
leftover terms on the right hand side.

Lemma 5.1. Let w ∈ W k+1,2
loc (Ω) be a weak solution of (3.2) for a given positive

integer k. Moreover, let bij ∈ W k,∞
loc (Ω). Then wµ := Dµw is a weak solution of the

equation
n∑

i,j=1

Di(bij(x)Djw
µ) =

n∑
i=1

Dig
µ
i (x) (5.1)

in Ω, where

gµi (x) := −
n∑
j=1

∑
ν<µ

(
µ

ν

)
Dµ−νbij(x)DjD

νw(x)

and µ and ν are n-dimensional multi-indices with |µ| = k.

Proof. Since w is a weak solution of (3.2), we have
ˆ

Ω

n∑
i,j=1

bijDjwDivdx = 0

for every v ∈ W 1,2
0 (Ω). Take any ϕ ∈ C∞0 (Ω) and choose v = Dµϕ as the test

function. By the generalized Leibniz rule we have

Dµ(bijDjw) =
∑
ν≤µ

(
µ

ν

)
Dµ−νbijD

νDjw.

Here all the derivatives of the functions bij are locally bounded by assumption.
Furthermore, DνDjw ∈ L2

loc(Ω) for all ν ≤ µ. Therefore, bijDjw ∈ W k,2
loc (Ω) and we

may integrate by parts k times. This leads to

0 =

ˆ
Ω

n∑
i,j=1

bijDjwDiD
µϕdx

= (−1)k
ˆ

Ω

n∑
i,j=1

Dµ(bijDjw)Diϕdx

= (−1)k
ˆ

Ω

n∑
i,j=1

∑
ν≤µ

(
µ

ν

)
Dµ−νbijD

νDjwDiϕdx.
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Moving all the terms with ν < µ to the other side yields
ˆ

Ω

n∑
i,j=1

bijDjD
µwDiϕdx = −

ˆ
Ω

n∑
i,j=1

∑
ν<µ

(
µ

ν

)
Dµ−νbijDjD

νwDiϕdx,

and the result follows, since C∞0 (Ω) is dense in W 1,2
0 (Ω). �

In Section 3 we saw that the first derivatives of the minimizer u belong to the
local Hölder space C0,α(Ω). Let us now prove that, in fact, this holds for any order
derivatives of u.

Theorem 5.2. Let u ∈ W 1,∞(Ω) be a minimizer of the functional F . Then for every
k = 0, 1, 2, . . . there exist constants 0 < α < 1 and c = c

(
k, n, λ,Λ, ||Du||L∞(Ω) , F

)
such that for each l = 1, . . . , n w := Dlu satisfies

|DDµw(x)| ≤ cd−1−2k
x (5.2)

and
|DDµw(x)−DDµw(y)| ≤ cd−1−α−2k

x,y |x− y|α (5.3)

for every multi-index µ with |µ| = k and for all x, y ∈ Ω.

Proof. The proof is by strong induction on k. For the base case k = 0 we consider
equation (3.2), which is of the type (4.1) with g ≡ 0. By Corollary 2.15 w ∈ W 1,2

loc (Ω)
is a weak solution of (3.2), so in order to apply Theorem 4.6 we only need to check
that the assumptions hold.

Since the functions aij = ∂zi∂zjF are smooth andDu(x) ∈ Ξ = B
(

0, ||Du||L∞(Ω)

)
for every x ∈ Ω, we obtain

|bij(x)− bij(y)| = |aij(Du(x))− aij(Du(y))| ≤ ||Dzaij||L∞(Ξ) |Du(x)−Du(y)|

by the mean value theorem. Applying Theorem 3.6 to Dlu yields

|Du(x)−Du(y)| =

(
n∑
l=1

|Dlu(x)−Dlu(y)|2
) 1

2

≤ c ||Du||L∞(Ω) d
−α
x,y |x− y|

α ,

and summing over i and j leads to

n∑
i,j=1

|bij(x)− bij(y)| ≤ c ||Du||L∞(Ω)

n∑
i,j=1

||Dzaij||L∞(Ξ) d
−α
x,y |x− y|

α ,

where 0 < α < 1 and c depend only on n, λ, and Λ. Since u ∈ W 1,∞(Ω) and w is
continuous by Theorem 3.6, we have |w(x)| ≤ ||Du||L∞(Ω) for all x ∈ Ω. Therefore,
we see that assumptions (4.2)-(4.4) hold if we choose β = 0 and

M = max

{
1, ||Du||L∞(Ω) , c ||Du||L∞(Ω)

n∑
i,j=1

||Dzaij||L∞(Ξ)

}
.
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Now Theorem 4.6 yields
|Dw(x)| ≤ cd−1

x

and
|Dw(x)−Dw(y)| ≤ cd−1−α

x,y |x− y|α

for all x, y ∈ Ω, where c depends only on n, λ,Λ, ||Du||L∞(Ω) and F . This is exactly
the claim when k = 0.

Let us next assume that the claim holds up to some index k. Then w ∈ Ck+1,α(Ω),
which implies w ∈ W k+1,2

loc (Ω). Moreover, the coefficients bij inherit continuity prop-
erties from Du by the mean value theorem, and thus also from w, so we have
bij ∈ Ck+1,α(Ω) ⊂ W k+1,∞

loc (Ω). Therefore, by Lemma 5.1 Dµw =: wµ is a weak
solution of equation (5.1), and in a similar way as in the proof of Theorem 2.14
we may use difference quotients to show that, in fact, w ∈ W k+2,2

loc (Ω). Due to the
similarities we shall omit some details.

Take any Ω′ ⊂⊂ Ω and some Ω′ ⊂⊂ Ω̃ ⊂⊂ Ω. The set Ω̃ will play the same role
as Ω in the proof of Theorem 2.14. This is necessary, since this time the functions
in question belong to their respective Sobolev spaces only locally.

Consider equation (5.1) in Ω̃. Let Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω̃ be such that

1

2
dist(Ω′, ∂Ω̃) ≤ dist(Ω′, ∂Ω′′) ≤ 3

4
dist(Ω′, ∂Ω̃).

Choose a cut-off function η ∈ C∞0 (Ω′′) as in the proof of Theorem 2.14 (with Ω
replaced by Ω̃) and h such that 0 < |h| < 1

2
dist(Ω′′, ∂Ω̃). Then write (5.1) in the

variational form and choose −∆−hm (η2∆h
mw

µ) ∈ W 1,2
0 (Ω̃) as the test function.

Now, using Lemma 2.11 part (ii) on both sides, we have

ˆ
Ω̃

n∑
i,j=1

∆h
m(bijDjw

µ)Di(η
2∆h

mw
µ)dx =

ˆ
Ω̃

n∑
i=1

∆h
mg

µ
i Di(η

2∆h
mw

µ)dx.

Then we use Lemma 2.11 part (iii) and the Leibniz rule and rearrange terms to
obtain the estimate

ˆ
Ω̃

n∑
i,j=1

bij(x+ hem)Dj∆
h
mw

µDi∆
h
mw

µη2dx

≤
ˆ

Ω̃

∣∣∆h
mg

µ
∣∣ ∣∣D∆h

mw
µ
∣∣ η2dx+ 2

ˆ
Ω̃

∣∣∆h
mg

µ
∣∣ η |Dη| ∣∣∆h

mw
µ
∣∣ dx

+ 2

ˆ
Ω̃

n∑
i,j=1

|bij(x+ hem)|
∣∣D∆h

mw
µ
∣∣ η |Dη| ∣∣∆h

mw
µ
∣∣ dx

+

ˆ
Ω̃

n∑
i,j=1

∣∣∆h
mbij

∣∣ |Dwµ| ∣∣D∆h
mw

µ
∣∣ η2dx

+ 2

ˆ
Ω̃

n∑
i,j=1

∣∣∆h
mbij

∣∣ |Dwµ| η |Dη| ∣∣∆h
mw

µ
∣∣ dx.
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Above we saw that bij ∈ Ck+1,α(Ω), which implies bij ∈ C0,1(Ω). A small cal-
culation exploiting the choices of Ω′′ and h shows that the Lipschitz constant of
bij in {x : dist(x,Ω′′) < |h|}, say Lij, depends only on n, λ,Λ, ||Du||L∞(Ω) , F , and
dist(Ω′, ∂Ω̃). Thus, for any x ∈ Ω′′ we have

n∑
i,j=1

∣∣∆h
mbij(x)

∣∣ =
1

|h|

n∑
i,j=1

|bij(x+ hem)− bij(x)| ≤
n∑

i,j=1

Lij =: L.

This together with assumptions (3.3) and (3.4), Young’s inequality with ε, and some
more arranging yields

λ

ˆ
Ω̃

∣∣D∆h
mw

µ
∣∣2 η2dx ≤ λ

2

ˆ
Ω̃

∣∣D∆h
mw

µ
∣∣2 η2dx+

(
3

2λ
+ 1

) ˆ
Ω̃

∣∣∆h
mg

µ
∣∣2 η2dx

+

(
3L2

2λ
+ L

) ˆ
Ω̃

|Dwµ|2 η2dx+

(
6Λ2

λ
+ L+ 1

) ˆ
Ω̃

|Dη|2
∣∣∆h

mw
µ
∣∣2 dx.

Now, after using the properties of the cut-off function, we arrive at a constant
c = c

(
n, λ,Λ, ||Du||L∞(Ω) , F, dist(Ω′, ∂Ω̃)

)
such that

∣∣∣∣D∆h
mw

µ
∣∣∣∣
L2(Ω′)

≤ c
(∣∣∣∣∆h

mg
µ
∣∣∣∣
L2(Ω′′)

+ ||Dwµ||L2(Ω′′) +
∣∣∣∣∆h

mw
µ
∣∣∣∣
L2(Ω′′)

)
.

Since w, bij ∈ Ck+1,α(Ω), the function gµ belongs to the space C1,α(Ω) as a sum
of products of derivatives up to order k of these two. It follows that gµ ∈ W 1,2(Ω̃)
and we can apply Lemma 2.13 part (i) for gµ as well as for wµ. Part (ii) of the same
lemma then gives DmDw

µ ∈ L2(Ω′) with the estimate

||DmDw
µ||L2(Ω′) ≤ c

(
||Dgµ||L2(Ω̃) + ||Dwµ||L2(Ω̃)

)
.

Since Ω′ ⊂⊂ Ω andm = 1, . . . , n were arbitrary, we have shown that w ∈ W k+2,2
loc (Ω).

Now we are in the position to use Lemma 5.1 for k+ 1. Thus, for a given multi-
index µ̃ with |µ̃| = k + 1, the function wµ̃ ∈ W 1,2

loc (Ω) is a weak solution of equation
(5.1). Since bij stays the same in every round, assumption (4.3) holds, as shown
above. Moreover, due to the induction assumption, we have

∣∣wµ̃(x)
∣∣ ≤ cd−1−2k

x for
every x ∈ Ω. Both w and bij belong to Ck+1,α(Ω), from which we deduce, similarly
as above, that gµ̃ ∈ C0,α(Ω). In fact, a rather tedious calculation shows that∣∣gµ̃(x)

∣∣ ≤ cd−2(k+1)
x

and ∣∣gµ̃(x)− gµ̃(y)
∣∣ ≤ cd−α−2(k+1)

x,y |x− y|α

for all x, y ∈ Ω. Therefore, also assumptions (4.2) and (4.4) are satisfied, if we
choose β = 2(k + 1).
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By Theorem 4.6 we now obtain∣∣Dwµ̃(x)
∣∣ ≤ cd−1−2(k+1)

x

and ∣∣Dwµ̃(x)−Dwµ̃(y)
∣∣ ≤ cd−1−α−2(k+1)

x,y |x− y|α

for all x, y ∈ Ω, where the constant c depends only on k, n, λ,Λ, ||Du||L∞(Ω) and F .
This concludes the proof. �

The smoothness of the minimizer u follows immediately.

Proof of Theorem 1.1. We may assume that u ∈ W 1,∞(Ω) as seen in Section 2.2.
By Theorem 5.2 we have u ∈ Ck+2,α(Ω) for any k = 0, 1, 2, . . . and some 0 < α < 1.
Therefore u ∈ C∞(Ω).
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6 Smoothness up to the boundary
After establishing the local smoothness of the minimizer u, the next question that
naturally arises is how to generalize the result to cover global smoothness. This
requires taking the estimates up to the boundary of Ω, and therefore, it is necessary
to assume that the boundary together with the boundary values u0 are smooth as
well. Moreover, the minimizer u has to be assumed globally Lipschitz continuous,
which implies u ∈ W 1,∞(Ω). The existence of such a minimizer can be shown using
direct methods in the calculus of variations as we saw in Section 2.2.

We shall only sketch the necessary steps for the proof. More details can be found,
for example, in [9].

Step 1: De Giorgi’s method up to the boundary

Suppose the minimizer u belongs to W 2,2(Ω). This can be shown by applying the
reflection technique described below and the difference quotient argument as in
Section 2. Let x0 be a point on the boundary and choose a ball Bρ := B(x0, ρ).
Mimicking Section 3 we consider solutions w ∈ W 1,2(Ω) of the equation

n∑
i,j=1

Di(bij(x)Djw) = 0

in Ω ∩ Bρ such that w = w0 := Dlu0 on ∂Ω, where the boundary values u0 are
assumed to be the restriction of a smooth function in Rn to Ω. By replacing w with
w − w(x0), if necessary, we may assume that w(x0) = 0.

In order to prove the Caccioppoli estimate, Lemma 3.1, we have to assume that
k ≥ oscBρ w0. Then the test function η2(w−k)+ vanishes on the boundary of Ω and
we may extend it to be zero outside of Ω. Now the rest of the arguments work as
such until Lemma 3.5, where we need to add oscB2r w0 in the definition of kj due
to the above restriction on k. But this causes no difficulties, since we can always
estimate oscB2r w0 ≤ crα. Therefore, we deduce that u ∈ C1,α(Ω).

Step 2: Flattening the boundary

For the higher order derivatives consider the equation we studied in Section 4,

n∑
i,j=1

Di(bij(x)Djw) =
n∑
i=1

Digi(x), (6.1)

in Bρ ∩ Ω, where w ∈ W 1,2(Ω) ∩ C0,α(Ω) and bij, gi ∈ C0,α(Ω). We may assume
without loss of generality that the boundary values w0 = 0, for if not, we replace gi
with gi−

∑n
j=1 bijDjw0 and consider w−w0 instead of w. Moreover, we may assume

that x0 = 0 and the hyperplane xn = 0 is tangential to the boundary at x0, since
rotation and translation do not change the structure of (6.1).

Consider Bρ ∩ ∂Ω as the graph of a smooth function ψ : Rn−1 → R such that
xn = ψ(x1, . . . , xn−1) when x ∈ ∂Ω. Denote x′ = (x1, . . . , xn−1) and change variables
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to y = Ψ(x) = (x′, xn−ψ(x′)). The Jacobian determinant of Ψ is 1, so it is invertible.
The idea behind the transformation is that it takes Bρ ∩ ∂Ω into a subset of the
hyperplane yn = 0, therefore flattening the boundary.

Let w̃(y) = w(x) under the mapping y = Ψ(x), that is, w̃ := w ◦ Ψ−1. Then w̃
is a solution of an equation of the type (6.1) in the new variables, namely

n∑
i,j=1

Dy
i (b̃ij(y)Dy

j w̃) =
n∑
i=1

Dy
i g̃i(y) (6.2)

in Ω′ := Ψ(Bρ ∩ Ω), where

b̃ij(y) := bij(x)− δin
n−1∑
k=1

Dkψ(x′)bkj(x)− δjn
n−1∑
m=1

Dmψ(x′)bim(x)

+ δinδjn

n−1∑
k,m=1

Dkψ(x′)Dmψ(x′)bkm(x),

g̃i(y) := gi(x)− δin
n−1∑
k=1

Dkψ(x′)gk(x).

Since ψ is smooth, we clearly have b̃ij, g̃i ∈ C0,α(Ω′), and also the ellipticity and
boundedness conditions, (3.3) and (3.4), can be shown to hold for b̃ij, provided the
radius ρ is chosen small enough.

Step 3: Freezing and reflecting

Choose a radius, again denoted by ρ to match the notation in Section 4, and a half
ball B+

ρ := {y ∈ Bρ : yn > 0} ⊂ Ω′. Since w̃ vanishes on yn = 0, the Caccioppoli
estimate, Lemma 4.1, works as such, if the test function is defined to be zero in
Bρ \B+

ρ . The same applies for Lemma 4.2.
Lemma 4.4 requires a bit more work. The idea is to first change variables (back

to x for notational convenience) such that yn stays fixed and (6.2) frozen at 0 gets
the form

n∑
i,j=1

b̂ijDiDjwρ = 0, (6.3)

where the elements b̂in and b̂nj are zero for i, j < n. Then we reflect wρ onto Bρ \B+
ρ

by defining

w∗ρ(x) :=

{
wρ(x

′, xn), xn ≥ 0
−wρ(x′,−xn), xn < 0

.

Now w∗ρ satisfies (6.3) in the entire Bρ due to the structure of the matrix b̂. Then
one more change of variables, identical to that in Lemma 4.4, gives us a harmonic
function and the rest is clear. Also the rest of Section 4 works with minor modifi-
cations.

Again, collecting the results we may proceed to show the global smoothness of
the minimizer u by using arguments similar to those in the previous section.
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