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1 Introduction

The “Andrews’ squeezing system” was first described by Giles in [Gil78] and further
studied in [Man81]. It is a planar multibody system whose topology consists of closed
kinematic loops (see Figure 1). The Andrews’ system was promoted in [Sch90] as a
benchmark problem to compare different multibody solvers. Nowadays it is a well-
known benchmark problem [HW91, MI03] for numerical integration of differential-
algebraic equations as well. The equations are of the Lagrangian form (or descriptor
form, see also [Arp01])

(1)

fty, 9,y A) =0
9(y) =0

where the function f describes the dynamical equations and g gives the (holonomic)
constraints. Here y € R™ are the (generalized) position coordinates, ¢y’ and y” are
the first and second derivatives, respectively, and A is the Lagrange multiplier.

It is well known that singularities of any kind hinder solving equations numeri-
cally [RS88, HWO91, BA94, EH95]. Intuitively, a singularity is where the (generic)
number of degrees of freedom of the system changes. Mathematically these are the
points where the rank of the Jacobian of g drops. Hence in this paper we will not
consider the actual dynamical equations and analyse only the constraints given by
g.

Most differential equation solvers include a possibility to monitor singularities,
and usually when proximity of a singularity is detected, the computation is best to
be interrupted. But this kind of monitoring is local only, that is, it does not tell us a
priori where the singularities lie but only alert us when it is too late to fix things, so
to speak. Also, the monitoring is often a non-negligible part of computational cost.
Therefore, it would be highly useful to know a priori where the singularities are, or to
make sure that there are no singularities, or perhaps even remove them (for the latter
approach, see [Arp01]). Locating singularities has been studied also in [McC00].
If we cannot avoid or remove the singularities, at least knowing where they are
encountered is helpful (indeed, necessary) when planning the computation without
interruptions. One can then tune the chosen integration algorithm such that the
disturbing effect of the singularities is diminished, for example by compensating the
singularity of the Kepler problem by a local change of variables as in [LR05] within
the computation. Further techniques on compensating singularities in multibody
systems are gathered and concisely compared in [BA94] and [EH95].

The paper is organized as follows: in the next Section we present the situation in
detail and formulate the constraint equations in polynomial form. Section 3 gathers
the necessary algebraic tools. Section 4 contains the actual analysis where we show
that the mechanism indeed has singularities for certain parameter values. In Section
5 there are some numerical examples of singular configurations, and in Section 6 we
summarize and discuss the results, and address possible future work.



2 Andrews’ squeezing mechanism

The squeezing mechanism is given by the following equations.

() cos(yy) — as cos(y1 + y2) — agsin(ys) — by
ay sin(y;) — agsin(y; + y2) + az cos(yz) — ba
aycos(y1) — az cos(yy + y2) — assin(ys + ys) — as cos(ys) — wy (2)
) — agsin(yy + ya) + ag cos(ys + ys) — assin(ys) — wo
ay cos(y1) — agcos(yr + y2) — ag cos(Ys + yr) — arsin(yr) — ws
L a1 sin(y1) — assin(yr + y2) — agsin(ys + y7) + ar cos(yr) —

(
aq sin(y;

Compared to the original articles mentioned above, we have chosen the following
notation for the parameters and angles:

a1 =1rr ay=d a3=585 as=¢€e as=2t ag=2z2f ar=u
by =ab by=yb wy=xa w,=vya

=0 1=0 y3=7 =P ys=0 ys=Q yr=c

so the positions in Cartesian coordinates of the fixed nodes A and B are given by
b = (b1,by) and w = (wy,ws), and the lengths of the rods by a = (ay,...,ar), see
Figures 1 and 2.

Fixing the parameters a, b, and w, we have a map g : R” — RS Hence the set
of possible configurations, which is the zeroset M, = ¢g~*(0), is in general a curve
(or possibly empty). Our task is to analyse the singularities of My, so let us state
more precisely what is meant by a singularity. As mentioned before, in a singularity
the number of degrees of freedom changes. It is well known [RS88, BA94, McC00]
that this corresponds to the situation where the rank of Jacobian drops.

Definition 2.1. Let f : R® — R* be any smooth map where k < n and let df be
its Jacobian matrix. Let M = f~1(0) C R™ be the zeroset of f. A point ¢ € M is a
singular point of M, if df does not have maximal rank at q.

What in fact geometrically “happens” at a singular point may be quite compli-
cated to determine. Typically the tangent space to M does not change continuously
in the neighbourhood of a singular point, or possibly M intersects itself there. How-
ever, in all cases numerical problems occur, so it is important to try to find all
singular points.

Note that the constraint equations (2) (and hence the elements of its Jacobian
matrix) are not polynomials, yet our algebraic approach works only in a polynomial
setting. However, this problem is circumvented by reformulating g(y) as polynomials
in the sines and cosines of y; by using the trigonometric identities

cos(z)? + sin(z)* =1
sin(z £ y) = sin(x) cos(y) £ cos(x) sin(y)
cos(z £ y) = cos(z) cos(y) F sin(x) sin(y)



Setting ¢; = cos(y;), s; = sin(y;) we get the equations

p
a1C1 — Qo (0162 - 8182) — asS3 — b1 =0

a151 — as(s162 + €182) + agcs — by = 0

aicy — Qo (clcg — 3152) — Q4 (8465 + C4S5) —agcs —w, =0

p(c,s) = < a1s1 — as (5102 -+ C1$2) +ay (c4c5 — 5455) — ass5 — Wy =0 (3)
a1¢1 — Qs (0102 — 3132) — ag (0607 — 3637) —ars; —wy =0

a181 — a3 (8102 + 6152) — Qg (3607 + 0637> +arcr —wy =0

\c?+sf—1=0, i=1,...,7.

We have 13 polynomial equations (p; = 0), 11 parameters (ay, ..., ar, by, by, wy, ws)
and 14 variables (¢q, s1,...,c7,$7). Note that each p; is of degree two in ¢;, s;. The
equations p; = 0,...,pg = 0 correspond directly to the 6 original equations g(y) = 0
with the simple substitutions above (for example cos(y; +y2) = ¢1c2 — s182) and the
equations p; = 0,...,p13 = 0 are the extra identities due to “forgetting” the angle
variables y;.

Note that this reformulation of the constraints as algebraic equations is not just a
trick which happens to work in this special case; indeed most constraints appearing
in the simulation of multibody systems are of this type.

Now the above equations define p as a map p : R* — R!3. Hence we expect
that the zeroset V = p~!(0) C R is a curve (or possibly empty). Singularities are
then the points of this curve where the rank of dp is not maximal. To find these
points we need now to introduce some tools from commutative algebra.

3 Background

In this section we present briefly the necessary definitions from commutative algebra
and algebraic geometry. More details can be found in [CLO92], [GP02], [Nor76], and
[Eis96]. These are roughly in the order of increasing difficulty, [CLO92] being the
most accessible, but unfortunately not containing the necessary material on the
Fitting ideals.

3.1 Ideals and varieties

Let K be an algebraic field and let K[zq, ..., x,] be the ring of polynomials in
T, ..., Tn, with coefficients in K. A subset I C K[z, ..., z,] is an ideal if it
satisfies

(i) 0 e I.

(i) If f,g €I, then f+ g€ I.
(iii) If f el and h € K[zy, ..., ), then hf € I.
Ideals are often given by generators. Let fi,..., fs € K[zy, ..., x,]. Then the set

<f1,...,fs> = {Zhlfl | hl,...,hSEK[Zﬁl, ey l’n]}
=1
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Figure 1: The angles y; of the Andrews’ system.
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Figure 2: The lengths a; and nodes of the Andrews’ system.



is an ideal generated by fi,..., fs. Any set of generators is called a basis.
Ideals are purely algebraic objects. The geometrical counterpart of an ideal is its
locus, or variety. Let I be an ideal in K[zq, ..., x,]. Its corresponding variety is

Ve(I) = {(ar,....an) €F" | f(a1,...,a,) =0 Vf eI}

where F is some field extension of K. Note that it is often natural to choose F
different from K. If the field is clear from context we will sometimes write simply
V(I).

Now different ideals may have the same variety. However, if one is interested
mainly in the variety then it is useful to define

ﬁ:{fEK[xl,...,xn]]f"EI for some n > 1}.

If T is an ideal, then v/T is the radical of I; it is the biggest ideal that has the same
variety as I and all ideals having the same variety have the same radical. Also,
always I C /T and if I = /T we say that I is a radical ideal. Some rudimentary
properties among ideals and their varieties are in the following

Lemma 3.1. Let I and J be ideals. Then
1. VIUJ)=V({I)NV(J).
2.V(INJ)=V({I)uV(J).
3. I C Jifand only if V(1) D V(J).
Next we have to express the rank condition algebraically. To this end we need

Definition 3.1. If [ = (f,..., fs), its Fitting ideal F is the ideal generated by all
maximal minors of the Jacobian matrix of (f1,..., fs).!

Now V(F}) corresponds to the points where the rank is not maximal. However,
the points are required also to be on V(7). Hence we conclude that the set of singular
points, S, is given by

S=V(IUFy)

In analysing varieties it is often helpful to decompose them to simpler parts. Simi-
larly one may try to decompose a given ideal to simpler parts. This leads to following
notions.

Definition 3.2. A variety V is wrreducible if V =V, UV, implies V = V] or V = V5.
An ideal I is prime if f,g € K[zy, ..., x,] and fg € I imply that either f € I or
gel.

There is a very close connection between prime ideals and irreducible varieties.
The precise nature of this depends on the chosen field. However, for our purposes
the following is sufficient.

!In general one can define Fitting ideals of minors of any given size. However, the above
definition is sufficient for purposes of the present paper.



Lemma 3.2. If [ is prime, then V([) is irreducible.
Any radical ideal can be written uniquely as a finite intersection of prime ideals,

Vi=Ln---nl,
where I; ¢ I; for 7 # j.

This is known as the prime decomposition of VI and the I,’s are called the
minimal associated primes of I. The above Lemma then immediately gives:

Corollary 3.1.
V(I) = V(VI) = V(L) U--- U V(L)

where all V(I;) are irreducible.

Hence our strategy in analysing varieties is to compute the minimal associated
primes of the relevant ideal, and then examine each irreducible component separately.

3.2 Grobner bases

An essential thing is that all the operations above, especially finding the radical and
the prime decomposition can be computed algorithmically using the given generators
of I. To do this we need to compute special bases for ideals, called Grobner bases.
We will only briefly indicate the relevant ideas and refer to [CLO92] and [GP02] for
more details.

First we need to introduce monomial orderings. All the algorithms handling the
ideals are based on some orderings among the terms of the generators of the ideal.

Intuitively, an ordering > is such that given a set of monomials (e.g. terms of a
given polynomial), > puts them in order of importance: given any two monomials
o = z{' ... 2% and 27, where a # (3 are different multi-indices, then either % = 2
or #” = 2% A common choice is to use degree reversed lexicographic ordering
[CLO92|. In our analysis we shall frequently need product orders, which are formed
as follows: if >4 and >pg are two orderings, we shall divide the variables x; into two
subsets, and use =4 on the first subset and =5 on the second. This is indicated
with the following notation:

K[(l};, X5, x7)7 (xla X2, X3, 'Tﬁ)]

This is the same set as K[z, ..., z7] but now the parenthesis indicate that we will
use >4 among the variables (x4, z5, x7), and >p among the variables (x1, za, 3, Tg),
and moreover all monomials where variables of the first group appear are always
bigger than monomials where there are only variables of the second group. We will
see later why this is useful.

Finally, the aforementioned Grobner basis is a special kind of generating set,
with respect to some ordering. Given any set of generators and an ordering, the
corresponding Grébner basis exists and can be computed. The relevant algorithm is
usually called the Buchberger algorithm. The drawback of this algorithm is that it
has a very high complexity in the worst case, and in practice the complexity depends
quite much on the chosen ordering.?

280 far, no satisfactory theory of Groébner basis complexity has been done.



Anyway Grobner bases have proved to be very useful in many different appli-
cations. Nowadays there exist many different implementations and improvements
of the Buchberger algorithm. We chose to use the well-known program Singular
[GPS05], [GP02] in all the computations in this paper.

4 Analysing singularities

4.1 Geometric description of the singularities

Now getting back to our system (3) we see that we can take the components of p
to be elements of Q(a,b,w)[c,s] where Q(a,b,w) is the field of rational functions
of a, b, and w. Hence we have an ideal J = (p1,...,p13) C Q(a,b,w)[c, s| and the
corresponding Fitting ideal F';. On the other hand we may view the “parameters”
a, b, and w also as variables since they appear polynomially in the equations; hence
we could also consider J C Q[a, b, w, ¢, s|. Taking this point of view we can give an
intuitive description of what kind of situations we can expect.

J C Qla,b,w,c, s]

VR(J ) C R%,
In this way Vg(J) should be 12 dimensional (recall J is generated by 13 equations),
i.e. a curve depending on 11 parameters. On the other hand if we fix parameters
a, b, and w we get a curve in R which will be denoted by V,4.,. In the same way
we can view Vg(J U Fy) as a variety in R?®| and fixing the parameters we get the
singular points V%, . Obviously V5  C Vopw C R

Then what kind of variety should Vr(J U Fj) be? Since the Jacobian of p is
of size 13 x 14, generically we expect to get 2 independent conditions in order the
rank to drop. That is, augmenting J with F); should bring in 2 more equations.
Hence we expect that Vr(J U Fy) is 10 dimensional; in other words we expect that if
11 parameters are chosen independently then Vfbw should be empty. On the other
hand if a single condition among parameters is satisfied, then Vfb,w should consist
of isolated points.

Further, if there are 2 conditions among parameters (i.e. 9 parameters freely
chosen), then it would be possible that Vfbvw were one dimensional. But then our
original constraint equations would be redundant, i.e. there would be more than one
degree of freedom.

Below we will in fact observe that if a certain condition on parameters is satisfied,

Vfb’w is indeed a finite set of points.

4.2 Singular variety

To study Vr(J U Fy) we could in principle use Grobner basis theory in a straight-
forward manner. Let G be the Grobner basis of J U F); using the product order
Q[(c, s), (a,b,w)]. Let us denote by gi,...,g, the elements of G which do not de-
pend on ¢ and s.



Definition 4.1. Let S; = (g1, .. ., g,); then we say that Vg(S;) C R is the singular
variety associated to J.

It follows from the Grébner basis theory that V,;, can have singularities only
if (a,b,w) € Vr(S;). Hence theoretically, we could now find the singularities of the
Andrews’ system in a straightforward manner by calculating the Grébner basis of
J U Fj. But this is an enormous task, due to F; being generated by high degree
polynomials, not to mention including the 11 parameters a, b, w. We could not get
the solution in a finite time using our work station with 64GB memory.

Instead, something else needs to be done. Luckily there is another approach:
noting that pi, p3, ps have common terms, as well as ps, p4, pe, gives us motivation to
study two subsystems. One spanned by p5 — p3 and pg — p4, the other one spanned by
ps —p1 and pg — pe (along with the relevant trigonometric identities from pr, ..., pi3).
These subsystems are handleable and give useful information for the whole system
as well. Proceeding in this way we could at least determine that the singular variety
is not empty and we could compute some subvarieties of it.

4.3 Subsystem 4567

Intuitively, the nodes and bars 4, 5, 6, 7 formulate a subsystem, see Figures 1 and
2. We suspect that when the lengths ay, ..., a7 are such that the “4567” system is
able to become one-dimensional, hence in some sense degenerated, there should be
a singularity in the whole system (see also the net example in [Arp01]). We will
shortly see that this is indeed the case.

Define

q1:=DpPs —P3 = Q4 (5465 + C455) + asCs — Qg (06C7 - 8657) — arsy
G2 = pa — s = ay(cacs — 5455) — ass5 + ag (867 + Co57) — arcy

— _ 2 2 .
G = piy7=Citsi,— 1, 1=3,...,6.

Note that ¢, ¢ contain only angles ¢;, s; and parameters a; for i = 4,...,7. That
is why we do not need the other p;’s. Let Jys67 be the ideal spanned by ¢y, ..., gs.
Hence we have

']4567 C @[<C47 S4, C5, S5, C6, S6, C7, 87)7 (&4) as, e, CL7)] (4)

where we have indicated the relevant product order. The Groébner basis G for Jys67 U
FJ,... with respect to this ordering contains 191 elements (denoted by g1, ..., g191),
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out of which 3 are especially enlightening:

gs = Celglr,
g16 = C4Q405, and
8
g1 = H t;, where
i=1

t1:a4—a5—a6—a7
to = a4 — a5 + ag + ay
t3:a4+a5+a6—|—a7
t4:a4+a5—a6—a7
t5:a4—a5+a6—a7
le = a4 —as — ag + ay
t7:a4+a5—a6+a7

t8:a4—|—a5—|—a6—a7.

Since g; is the only generator which does not contain any variables ¢; and s; we
conclude that

Theorem 1. The singular variety of Jysg7 is

SJ4567 = V<<gl>)

Note that the factorization of g; gives us the prime decomposition of (g;) and
hence decomposition of V({g1)) into 8 linear irreducible varieties.

Our next task is to show that at least some points of the singular variety extend
to actual (physically relevant) singularities of the whole system. Recall that each
generator g; corresponds to an equation g; = 0. Since a; > 0 in physically relevant
cases, generators g; and gi¢ imply that all the singularities of J,567 have necessarily
cg = ¢4 = 0 (conditions for the angles 4 and 6). In other words, in ideal-theoretic
language, we can as well study the ideal

T = (Jus67, Flis60> Ca» Co)-
Now the prime decomposition of /T has 16 components:
\/T:Tlﬂ...ﬂTlﬁ. (5)

Inspecting the generators of each of T}, it is noticed that every 7} contains the
t;’s or a;’s. Recall that a generator a; in an ideal corresponds in the variety to a
condition a; = 0 which is non-physical. Moreover, t3 is now a non-physical condition
contradicting a; > 0Vi. Hence we discard (as in [Arp01]) those ideals which have a
non-physical generator that would imply a; < 0 for some ¢, and we are left with 7

11



ideals, whose generators are:

2 2
cz+s7—1,t, 86+ 1, 55 —c7, 5+ 57, s+ 1, ¢4, C
2 2
cz+s;—1,t2, 56 +1, 85 +cr, 5 — 57, 84+ 1, ¢4, c
2 2

cz+s;—1,ts, 56 +1, s5+cr, c5 — 57, 84 — 1, cu, cs

Ty = ( )
T2:<7 >
Ts = ( )
T4:(c$+s$—1,t5, s¢ — 1, 85— cr, c5 + S7, Sa+ 1, ¢4, Cg)
Ts = {c3+s2—1,tg, 56 — 1, s5+c7, c5 — s7, $4+ 1, cu, Cg)
T6:(C$+s$—1, tz, s¢ — 1, 85 — c7, c5 + S7, S84 — 1, ¢y, C6)
Tr = ( , S5+ cr, 05 — 87, 84 — 1, ¢y, Cg).

2 2

Especially, we see that s = +1, s5 = +c7, c5 = 57, and s4, = +1. Now we are
ready to continue with the original system J U F;.

Remark 4.1. Mathematically speaking the analyses of all cases T; are completely
similar. However, on physical grounds the cases T}, T5, Ty and 17 are not so inter-
esting. Indeed, in these cases the length of one of the rods corresponding to ay, as,
ag and a7 is equal to the sum of the lengths of three others. Hence all four rods
could be modelled as a single rod which would make the whole model significantly
simpler. In the remaining cases no such reduction can be done, and we chose to
examine the ideal T5 in detail. See also remark 4.3.

The case T5 gives us conditions s, = —1, s = 1, s5 = —c7, ¢c5 = S7, and
a7 = as + ag — a4 which we substitute into the original system. Next we will show
that the resulting system has real solutions. These will be the required singular
points.

The above substitutions simplify the generators of J U F; so that we get the
following ideal:

K — <K1 U K2>,

r
ki1 = as(—cica + 5152) + cra1 — ssaz — by
k’g = CLQ(—S1CQ — 6182) + s1a1 + csasz — b2
ks=c2+s3—1

\k4:C%+S%—1, (6)

Kl . <

(k5 = 57(614 — CL5) + Ssasz + bl — W1
]{36 = C7(a5 — CL4) — C3a3 + bQ — W2
ky=c2+s3—1

(kg =2+ 52— 1.

In K5 we have 4 equations for 4 unknowns cs3, s3, ¢y, and s7; hence it appears
reasonable that we can get a finite number of solutions. Then we can substitute
the computed values to K; which then becomes also a system of 4 equations for
4 unknowns c¢q, s1, ¢o, and s;. By the same reasoning we again expect that it is
possible to get some solutions for appropriate parameter values.

We could numerically solve the variables from these equations (and, indeed, we
will, in the numerical examples), but to analyze the situation in more detail we need
to study these further.

12



Then starting with the system K, we solve the angles 3 and 7 by the following
trick. First we inspect the ideal generated by K in the ring

@(bl, by, Wy, wa, as, aq, G5)[C3, 53, Cr, 57]'

Calculating the Grobner basis G of (K5) with respect to the lexicographic ordering
we get 4 generators:

g1 = 157+ f257 — [3fa
G2 = 2(by — wy)(as — as)cr — 2(by — wi)(as — as)sy + fs =0 )
§3 = a3S3 + (Cl4 — &5)57 + b1 — W, = 0

Js = ascs + (ag — as)cr +wy — by = 0.

where the auxiliary expressions f; are lengthy combinations of the parameters a;, b;
(see the appendix).?

Now §; contains only s; and parameters. Note that f; = 0 if and only if ay = as.
Assuming a4 # as the equation g = 0 is a polynomial in s; of degree 2, hence in
order to have real solutions we need to impose the condition

f3+4fifsfa > 0. (8)

This condition can easily be checked when the parameters a, b, w have been given
numerical values. Once s7 is known, c7, s3, c3 can be solved from the linear equations
of G, provided a4 # a5 and wy # bs.

The cases wy = by and/or a4y = as can be summarized as follows:

(i) If wy = by but a4y # a5, we still get equations similar to é, but now s3 has a
quadratic equation instead of s7.

(i) If ay = as, the system typically does not have solutions. At least, a further con-
dition among parameters, namely |b — w| = as, arises. We shall not elaborate
this nongeneric behaviour further. In Section 4.5.2 we consider an example of
this situation.

Remark 4.2. In general, when the inequality in (8) is strict, s7 has 2 possible values.
Therefore, the tuples (ss,cs, s7,c7) have in general 2 possible values because the
other ones in the tuple are determined uniquely from s;.

The only thing left to be done, in this Jy567 subsystem case, is to solve ¢y, s1, co, So.
This is done with the ideal (K7) given in (6).

Remark 4.3. Had we used any other T; instead of T above, we would have ended
up with this same ideal (K7).

We calculate the Grébner basis G of (K;) , this time in the ring

Q(a1, az, a3, by, by, cs, s3)[c1, 51, C2, Sa).

3The algorithms actually give by default only sums of monomials instead of products like
2(by — w2)(as — as) but we have simplified these by hand. Also Singular [GPSO05] could be used to
automatically factorize into products but would involve some more elaborate programming.

13



Note especially that ss, c3 are here treated as parameters, due to being now known
expressions in the parameters a, b, w. We again use lexicographic ordering and get 4
generators g, ..., gs. Analogously to s; above, now for s; we get the second degree
polynomial equation

g1 = (—4a2al)ss —ning =0 (9)

where

ny = &% + 2a1a9 + ag — a% — 2a3by53 + 2asbacs — b% - bg

Ng = a% — 2a1a9 + a% — a§ — 2a3b1 83 + 2a3bycs — bf — bg
and linear equations for c¢s, s1, ¢1:

§]2 = d102 + d2 + d3
g3=lsi+l+13
g1 = (ai —a3)er + 1
where the auxiliary expressions d;, [; are certain known (but lengthy) functions of

a,b, apart from [y which depends on sy, $2,¢o as well. (See the appendix.) In order
to have real solutions for sy, (9) implies the condition

E = MN1Nn9 S 0 (10)

These g; determine ss, c9, S1,¢q provided dy # 0, I # 0, a; # as. To analyse the
cases d; = 0, a; = as, and/or [; = 0, it is helpful to define

dO = a% + 2a3b153 - 2(13(?203 + b% + bg

It turns out that [y = 0 < d; = 0 < dy = 0. After rearranging the terms (see the
appendix) it can be seen that the condition (10) is equivalent to

(a1 — a)® < doy < (ay + as)*.

Therefore, if a; # as then dy # 0 and the equations above can be solved. The case
a1 = ag, dg # 0 does not essentially change the situation: we still have a quadratic
equation for sy, and linear ones for the others, with a different coefficient for ¢;.
The remaining case a; = ag, dy = 0 corresponds to the situation where the centre
node coincides with the origin. This gives another singularity (the angle y; remains
arbitrary) but is a rather special case and will not be pursued further here.

Theorem 2. Let us suppose that the parameters a, b, w satisfy the following con-
ditions: a4 # a5 and

n1(4a1a2 - nl) Z 0 (10)
f2 4 16(ay — as)?|b — w| fafs >0 (8)

Then V, ., contains at least 2 singular points. If the inequalities are strict we get
in general at least 4 singular points.
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It may appear that we also have at most 4 singular points. However, it is a
priori possible that the other systems T; yield more singular points with the same
parameter values.

Proof. The first part of the theorem merely collects what we have shown above, with
the simplifications ny = n; — 4ajas and f; = 4(aq — as)?|b — w|>. The conditions
are due to univariate second degree polynomial equations, which have real solutions
if and only if (8) and (10) (for s; and s, respectively) are fulfilled. The other
variables are determined from linear equations: sy4,cy,...,Sg, Cg from Tx; s3,c3,cr
from K7; s1,c1,co from K.

For the number of singular configurations, note that we have second order equa-
tions for s7, hence at most 2 values for the tuple (ss, 3, s7,¢7), and sy. So in general if
there are two separate roots both for s; and ss, we get four different singularities. [

Similar results can be presented for any T; but we will not catalogue them here.

4.4 Subsystem 367

Comparing to examples in [Arp01] it was perhaps intuitively clear that subsystem
Jus67 produces singularities. It is a bit more surprising that there is another subsys-
tem producing singularities: the one formed by the nodes 3, 6, and 7.

Define

hy = —ps+p1 = ag (0607 - 5637) +arsy —azsz + wiy — by
ho := —pe + P2 = ag(secr + C657) — arcr + ascs + wy — by
hy i =py=c3+s3—1
hy ::])12262—1—52—1

hs :=p13=c§—|—s$—1.

It is important to note that hq, hy contain only angles 3,6, and 7, therefore only
D9, P12, P13 are relevant to them. As parameters we now have not only the lengths
as, ag, a7, but also by, ..., ws i.e. the positions of the fixed nodes A and B in Figure
2. Let J367 be the ideal generated by hq,...,hs. We will proceed in a similar way
as with the subsystem Jys47.

First we will consider the singularities of the subsystem J347 using the following
product order:

J367 ) FJ367 C Q[(C37 53, Cs, S6, C7, 57)7 <a37 ae, Ay, b17 b27 wy, wQ)] (11)
The relevant Grobner basis G contains 96 generators of which two are especially
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interesting:

J12 = CeQely
4

g1 = H Z; where
i=1

2 = (a3 — ag + a7)? — |b— w|? (12)
2 = (as + ag + a7)* — |b — wl|?

23 = (a3 +ag — ar)* — |b— w|?

2= ( )

as — ag — ar)? — |b — wl|?.

The latter one gives us the singular variety S, .

Theorem 3. The singular variety of Jsg7 is

SJ367 = V(<gl>)

Remark 4.4. It is worth noting that, contrary to the linear constraints ¢; in Theorem
1 related to Jys67, the z; in Theorem 3 give quadratic constraints z; = 0 related to
Jsg7 and have the interpretation “|ag £ ag £ a7| = distance between the fixed points
A and B”. Furthermore, again the factors z; give the irreducible decomposition of
the singular variety.

Since a; > 0, we get cg = 0 from gy = 0. This simplifies computations consider-
ably. Let us define
U:= <J367a FJ3677 CG>'

The prime decomposition of U turns out to have 8 components:
VU =U N NUs.

Inspecting the generators of each of U;, it is noticed that the ideals Uy, k=05...8
contain generators which imply a; = 0 for some 7. Hence those are discarded as
non-physical and we are left with 4 ideals:

Uy = (uy, ug, 2+ 52— 1, cg, 856 — 1, 53+ 57, c3 + ¢7)
Us = (uy, ug, ¢+ 52 — 1, cg, 8¢ + 1, 83+ 57, c3 + ¢7)
Us = {(uy, uy, ¢+ 83— 1, cg, 56 + 1, 53 — 57, C3 — C7)
Us = (wy )

2 2
Uy, Uz, ¢z + 57— 1, cg, 56 — 1, 83 — 57, €3 — ¢

U3 = —SgCrag — C3a3 + crar + by — wo
where

Ug = SgS7ae + S3a3 — Sray + b1 — W1q.

With these, we continue studying the whole system J U F';. Each U; will lead to a
different case with s = *1, s3 = £s7, c3 = Fc7. Let us look for example the ideal
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U,.* This gives

Sg — 1,
b2 — W2

Cr = —,

g — a3z — ary

_ bi—w (13)

S7 = )

az — ag + ag
€3 = —Cr,
S3 = —§7.

We should expect to run into an equation z; = 0 for some i, where the expressions
z; are given in (12). Combined with ¢ + s2 — 1 = 0 the equations (13) give z; = 0.
Likewise, U; implies z; = 0 for ¢ = 2, 3, 4.

Remark 4.5. The condition z, = 0 is physically a redundant case: it means that
the system can barely reach from A to B when the subsystem of the rods as, ag, ar
is fully stretched, i.e. it has no room to move. Therefore also U, corresponds to a
rather trivial case. See also Remark 4.1.

Using U; we can now eliminate the variables corresponding to angles 3, 6, and
7. Doing the substitutions in J U F; we are left with the following generators.

L={(L,UL),
(1} = as(—cico + 8189) + cray + spaz — by
L, ly = ax(—s1c2 — ¢152) + 5101 — cra3 — by
Is=c2+s3 -1
=5 +s3—1, (14)
(15 = ay(s4cs + c485) + csas + s7(ag — ar)
I, le = ayq(cycs — 8485) — ssas + c7(ag — az)
lr=ci+s5—1
ls =2 +s2—1,

where the s7, ¢; are no longer variables, but known expressions from (13) and kept
here only for clarity of notation.

Remark 4.6. Before working on L; and Ly, we comment briefly on the other U; cases.
Introduce L3 and Ly:

ag(—clcg + 8152) “+ cia; — S7a3 — b1 =0
as(—s100 — ¢182) + s1a1 + craz — by =0
Ad+si—1=0

[ A2+s5—-1=0

L32<

as(Sac5 + c485) + csas — s7(ag + ar) =
as(cacs — 8455) — ssas — cz(ag + c7) =
A+si—-1=0

[ E+s2-1=0.

L4I

4As with Jy567 and T5, the other cases are completely similar and we will comment them shortly.
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Had we used U, instead of U;, we would end up with the system L, Ls. Likewise,
Us would give the system Ls, Ly, and U, would give the system L3, L. Yet another
point of view is, that ss = +1 picks between Lo and L4, while (c3,s3) = +(c7, s7)
picks between L; and Ls. More precisely, s¢ = 1 (sg = —1) gives Ly (Ly4), and
(cs,83) = (—c7,—s7) gives Ly. The choice (c3, s3) = (c7, s7) would give Ls.

Continuing with L; and Lo, we notice that Ly contains only the variables cs, s5, ¢4, S4
(angles 4 and 5), has 4 equations and 4 variables hence is expected to have a finite
solution set and will be handled analogously to the ideal K in (6). Calculating its
Grobner basis G in the ring

Q(a4, as, de, CL7)[(C47 Cs, S5, C7, 87), (84)]
we obtain 12 generators, the first one being
g1 = 2a4a554 + ai + ag — aé + 2aga7 — ag.
Hence s4 can be explicitly solved:

2., .2 2 2
_ay+az — ag+ 2aga7 — az

S4 =

15
—2a4as (15)
The other generators are too messy to be of much use. Then using the formula
2 =1-—s% we get

(as + a5 — ag + az)(as — as + ag — ar)(ag — a5 — ag + az)(as + as + ag — ar)

2
cy = —
4 4aa?

 trtstts
 4ala?

(16)

The product term in the numerator has to be nonpositive, in order to have any real
solutions:

tstetrts < 0. (17)
After solving sy, ¢4 we can proceed to solve s; and c¢5. For this we use the ordering
Q(a47 as, g, a7)[c57 S5, C4, S4, C7, 87]
and pick the two relevant equations from the corresponding Grébner basis:

(—CL6 + CL7)85 — @4C4S7 + A484C7 + A5C7 = 0
(—ag + ar)cs — agcacr — 448487 — assy = 0,
which are linear equations for ss, 5, provided ag # ar.

Remark 4.7. In the case ag = ay the situation is different: L, then decomposes into
3 prime ideals, of which only one is physically feasible and gives a singularity only if
a4 = as. Thence this is a rather special case and will not be considered further here.
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The subsystem Lo is now fully solved. Moving on to L;, we will see that the
analysis is very similar to that of K from (6). Therefore we will skip some details.
After forming the Grébner basis of L; in the ring

Q(bh by, a1, az, as, c7, 37)[01, S1, C2, 82]

with respect to the lexicographic ordering, we get for so, after simplifications, the
relation

2 713(4611@2 — ng)

= 18
52 4a%a% ) ( )
where nz = |b]® + 2a3(bacy — bisy) — (a1 — az)? + a3
Again for the real solutions the numerator has to be nonnegative
n3(4a1a2 — TL3> Z 0 (19)

We can now solve ¢y, s; and ¢, provided their coefficients are nonzero, from the
linear equations

2a1a9n40y — dajasss + 11 =0,
— 2a1n431 + (] + rs = 0,

(a% — CL%)Cl + Ty = 0

where
ng = ‘b|2 + CL?)) + 2@3(()207 - b187)

and r; are lengthy, yet polynomial, expressions in the parameters, apart from 74
which depends on s1, s, ¢ as well. (See the appendix.)

What about the cases ny = 0 and/or a; = as? It can be shown, as with dg, that
the condition ng(4ajas — n3) > 0 is equivalent to

(a1 — az)* < ny < (ag + az)?

Therefore, if a; # as then ny # 0 and the equations above are sufficient. The case
ay = ag, ng # 0 does not essentially change the situation: we still have a quadratic
equation for sy, and linear ones for the others, with a different coefficient for c¢;.

The remaining case a; = aq, ny = 0 is analogous to the ny = 0 case within Jys67
and likewise will not be pursued further.

Theorem 4. Let us suppose that the parameters a,b,w satisfy the following condi-
tions:

ag # ay
ng # 0
ns(4ajag —ng) >0 (20)
trtstots < 0. (21)

Then V,; contains at least 2 singular points. If the inequalities are strict we get in
general at least 4 singular points.
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Similar results can be represented for any V(U;) but we will not catalogue them
here.

Proof. The last two conditions are due to univariate second degree polynomial equa-
tions, which have real solutions if and only if (20) (for s9) and (21) (for ¢4) are ful-
filled. The first condition is needed for the other variables to be determined uniquely:
83, C3, Se, Cg, S7, 7 from V(Uy), 84, 85, 5 from Lo, and sy, ¢, ¢ from L.

For the number of singular configurations, note that we have second order equa-
tions, hence at most 2 values, for ¢4 and s,. So in general if there are two separate
roots both for ¢4 and sy, we get four different singularities. O

4.5 Two special cases with symmetry

Let us look more closely at two special cases: ay = ag, a5 = ay, and either ay = aj
or ay # as.

4.5.1 The case a4 # a5

Motivated by the original benchmark values [Sch90] we give the following

Lemma 4.1. When a4 = ag and a; = a7, there is a relation between the angles 4
and 6: either yg = —y4 or yg = y4 + . Furthermore, if also a4 # as, the angle y;
variables, i.e. ¢7, s7, are uniquely determined from cy, sy, cs5, S5.

Proof. Looking for relations between solely angles 4 and 6, we substitute ays = ag
and as = a7 to the subsystem Jys67 and formulate a suitable elimination ideal. In
ideal-theoretic language, we define

ry = ag(s4C5 + a55) + ascs — as(Cocr — S57) — asS7
Ty = Q4 <C4C5 - 8435) — 555 + a4 (8607 ™ 0687) - &

_ 2 2 -
ri+2_ci+3+5i+3—1, 2—1,...,4,

where r; = ¢; with substitutions a4y = ag and a; = a7, and investigate the ideal
I:={r1,...,re) in the ring

Q(ay, as, ag, a7)[(cs, S5, ¢7, 57), (€4, S4, C6, S6)]-
Calculating the elimination ideal Iy := I N Q[cy, s4, ¢, S6] We get
Iug = (sa+ s6,c8+ s — 1,¢5 + 55— 1).
Calculating the prime decomposition of \/K,fi we get
Ve = (ca+ 52— 1,c4 — g, 54+ 86) N {cE+ 52— 1,¢4 + 6,54 + 56).
Since Iy C I C J C JU Fj, we have

V(I476) D) V(J U FJ)
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From these prime ideals we can see that everywhere in V(Iy4), and therefore in the
variety of the singularities of the whole system as well, s¢ = —s4 and either ¢ = ¢4
or c¢ = —c4. These translate into two possible relations between the angles y, and

Ys-
(66,56) = (04, —84) < Yo = —Y4, (06756) = (—04, —34) < Yo = Y4 T 7. (22)

This proves the first claim. If we take into account either one of the prime ideals
of \/m in I and calculate the Grobner bases we get ideals where ¢; and s; depend
linearly on cy4, s4, ¢5 and s5, and can be explicitely solved, as we will show next to
prove the latter claim of the lemma. For the case (sg,cs) = (—s4, —C4) We get

{C7 ~ % which imply y7 = y5 + T (23)
S7 = Cx 2
For the case (sg,c6) = (—s4,c4) the expressions are, albeit linear, slightly more

complicated:
cr(a3(s: — ci) — as(2ass4 + as)) + s7(2as(as + ascass)) — s5((aj + a2) — 2a4a554) = 0
—c7(2aicass) + s7(aj(c] — s3) + a3)) + (af — a3)cs — 2a4ass5¢4 = 0.

We prove that these indeed determine c7, s7: all we need to do is check that the
determinant of the coefficient matrix A of the linear equations does not equal zero:

202 _ 2
(aj(si—ci) —as(2a454 + as) 2a4(as + ascsSy)
A= < " 2a2eys, a2(2 - s2) + a2 ) prove det(A) # 0.

Now det(A) simplifies due to ¢ + s7 = 1, resulting in
det(A) = 2aqas(ay + as)(as — as)ss + (ag — as)(as + as)(ai + a3)

Let us then consider det(A) as a function of s4. Since s4 € [—1,1], det(A) : [-1,1] —
R. Clearly if a4 = as, det(A) = 0 so we need to assume a4 # as. Set

det(A)

= 2a4a584 + (a2 + a2
(a4—|—a5)(a4—a5) e ( 4 5>

h(s4) :=

and inspect when h = 0. Since a4y > 0 and a5 > 0 the linear function h has its
minimum at —1.

h(—=1) = a} + a2 — 2a4as = (a5 — as)* > 0.

This proves h # 0 always, therefore under the assumption ay # a5 also det(A) # 0
as claimed. O

4.5.2 The case a4, = as

We study the special case a4y = a5 = ag = a7, whence the 4567-subsystem is capa-
ble of “buckling” in more complicated ways, thereby producing further interesting
configurations. This resembles then the net example in [Arp01].
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Let us see how Jys67 simplifies with substitutions ay = a5 = ag = a;. Note that
the assumptions of Lemma 4.1 considering y; are no longer valid. Let

1= J4567 with ay, = a5 = Qg = ary and Sg = —S4
and compute its prime decomposition. This results in

VI = NI, NIy  with generators

(2421, (¢, (2421,
Cc4 — Cg, S4+1, C4+66,
L={c+s:-1, I, = { cy, Iy =< 2+ s2—1,
S5 + C7S4 — S7Cg, C% + S% — 1, S5 + ¢z,
¢G5 — 76 — 5754 CRE L ¢5 — 57
(24)

Each of these has a geometrical interpretation, see Figure 3. I, corresponds to
Yy = —m/2,ys = 7/2 which means that nodes A and P, coincide. This is like the T5
situation. Indeed, the ideal J U F; U I, turns out to be exactly 75 with the extra
condition a4 = as. Although it is not immediately apparent but in that situation
there also arises a new condition among the parameters: az = |b—w|, i.e. “az equals
the distance between A and B”. Note that here the Fitting ideal Fj,.,. has not been
used at all, contrary to the T5 calculations.

I3 corresponds to ys = y4 + 7 and y5 = y; — m/2 so that now nodes P; and
Py coincide. Then again, I; corresponds to ys = —y4 and y5 = yg + y7, which
interestingly is not a singularity but merely expressing a symmetry in the system
due to as = a5 = ag = ar.

Figure 3: The configurations corresponding to Iy, I, I3 in the case ay = a5 = ag =
ay.

4.6 Other subsystems

Now contemplating Figure 2 we see that it would be possible to find other singular-
ities by analysing still other subsystems. For example the subsystem corresponding
to rods 3, 4 and 5 is by symmetry similar to subsystem 367: we simply exchange
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the roles of variables and parameters associated to rods 4 and 6, and 5 and 7. Fur-
ther we could consider other subsystems formed from different “paths” between the
nodes A, B,O: i.e. subsystems Jyo3, Ji245, J1267. Again by symmetry the system
J1267 is completely similar to Jyo45, but cases Jio3 and Jigus give new singularities.
We checked that in these cases the singular variety is not empty, and that at least
for some parameter values we get singular points.

We did not analyse these cases in detail because computations are quite similar
to those given above for subsystems Jy567 and Jzg7. Hence we did not feel including
these would give significant additional value and therefore left them out to avoid
expanding this quite a long presentation further.

5 Numerical examples

In this section we will calculate numerical examples for both types of singularities.
Interestingly, the explicit expressions within G, G, as well as in the Grobner bases of
L, and Lo, are unstable for numerical computations. It is better to use the original
defining equations of K, Ky, Ly, Ly in the computations. We shall not explore this
stability issue here due to its non-relevance for the present context.

We present 4 examples:

1. The original benchmark parameter values, see [MI03]. We show that then the
system is avoiding singularities.’

2. We explore how should aq, as be changed in order to have Jys67 type singular-
ities in the system. Here we have an interpretation for the result: the lengths
ay,as must be such that the subsystem 4567 has room for a certain kind of
“buckled” configuration.

3. We explore how should by, a;, as be changed in order to have Jsg7 type singu-
larities in the system.

4. A special case which shows a rational solution, that is ¢;, s; € Q for all 7. This
shows unambiguously that we can find singular points because in this case
there are no numerical errors related to floating point computations.

5.1 Original values

In this example, we will use the original values for the parameters a;, b; and show that
the system then has no singularities. The original parameters used in the benchmark
tests [Sch90, HW91, MI03] are

a; = 0.007 a2 =0.028 a3=0.035 a4 =0.020 a5 =0.040 as=0.020 a7 = 0.040
by = —0.03635 by =0.03273 w; = —0.06934 wy = —0.00227. (25)

Since a7 = as and ag = a4, we have t4 =t = 0 (and t; < 0, t5 < 0) so we could
have an Jys67 singularity: T3 or T5.

5Thereby validating its benchmark status. That is, the numerical difficulties encountered there
are indeed due to the “numerical stiffness” of the problem, not to a nearby singularity.
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Remark 5.1. Interpretation: both 75 and Ty describe a situation where the 4567
system has ’collapsed’ into a 1-dimensional object. The ideal K tells us how ag
restricts the possible attitudes of 4567. In Ty the centre node P, has been pushed
in, in 73 it has been pulled out.

Let us look more closely first at T3, say, and check the conditions (8) and (10).
The first one is fulfilled. For E we first need to solve cs,s3 from V(K5). Their
solutions are

(3,83, c7,87) € {(0.4299535996, —0.9028509856, —0.9975812008, 0.06951077517),
(09266735994, —0.3758670513, —0.1283212011, 0.9917326602)} (26)

With these c3, s3 we can compute E. Both sets in (26) give £ = O(107°) > 0 and
the condition (10) is violated, hence there are no (Jys567—)singularities. What about
other singularities? This is answered by the following

Theorem 5. With the original benchmark parameter values (25), the Andrews’
squeezing system has no singularities.

Proof. We now have a4 = ag, a5 = a7 and a4 # as. Lemma 4.1 implies variables cg,
sg, C7, S7, and so yg and y7 can be explicitely solved in terms of ¢y, s4, ¢5, and s5. It
is then possible to reduce the original system of constraint equations, by forgetting
the last two equations from (2), and consider

ay cos(y1) — az cos(yy + y2) — azsin(yz) — by =0
ay sin(y;) — azsin(y; + y2) + az cos(ys) — bo =0
aj cos(yy) — az cos(yy + yo) — agsin(yy + ys) — ascos(ys) —w; =0
aysin(y;) — azsin(yy + y2) + agcos(ys + ys) — assin(ys) —w, = 0.

These are equivalent to

ay cos(y1) — ag cos(y1 + ya) — azsin(ys) — by =0
ay sin(y1) — agsin(y; + ya2) + azcos(ys) — by =0
—aysin(yy + ys) — as cos(ys) + azsin(ys) + (b —wy) =0
ascos(ys +ys) — assin(ys) — azcos(ys) + (by —w2) =0

These can be again represented as polynomials.

mq ‘= a1y — Qo (6102 - 8182) — a3S3 — b1 =0
Mo = a181 — Ay (8102 + 0182) + asCs — bg =0
m3 = a1C1 — Q9 (6102 - 8182) — Qy (8405 + 6455) — a5Cy — W1 = 0
my ;= a181 — Q9 (3102 + 0132) + ay (0405 — 3435) —a585 —we =0
Moy =c+s3—1=0, i=1,...,5
Substituting the original parameter values (25), as rational numbers, into the poly-

nomials m; we form an ideal I := (my,...,mg). Let K := I U F}, where [} is the
Fitting ideal of I, and inspect K in the ring

Q[(Cl) S1, Co, 82)7 <C37 53, C4, S4, Cs, S5>]'
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Now it is possible to compute the Grobner basis G for K explicitly (unlike for
J U F; in the introduction) and results in

This implies V(K) = (), proving that with these original parameter values there are
no singularities. O

5.2 Jue7 singularity: original values, apart from aq, as

Let us see how changing a; and/or as might produce Jys¢; type singularities. Our
analysis reveals that by suitable combinations of a; and ay we can get between
zero and four singularities (of type Jys67, that is). The number of singularities is
determined by c3, s3, and F.

Considering E as a function of a1, ay we plot the area where £ < 0. Recall that
E depends on c3 as well, and c3 has two possible values so we get two functions:
E = Ei(ay,as) (resp. E = Es(aq,az)) corresponding to the first (resp. second) value
of ¢3 from (26). See Figure 4 where the areas inside the rectangular areas are F; < 0.

0.06
0.04

0.02

07"0.02"0.04 0.06 0.08 0.1 0.12 0.14 0770.0270.04 0.06 0.08 0.1 0.12 0.14
al al

Figure 4: The rectangular lines are F; = 0 (thick line) and Fy = 0 (thin line), the
areas inside each E; = 0 line are where E; < 0. Left panel: Tj case, right panel: Tj
case.

e no singularities: £y > 0, £y > 0.

e 1 singularity: F; = 0, Fy = 0, which leads (with 75) to two possible values:

(a1 = 0.05986, as = 0.01035), (a; = 0.01035, az = 0.05986)

e 2 singularities: one of Fy, Fs is < 0, the other one > 0.

e 3 singularities: one of Fy, Fy is < 0, the other one = 0.
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e 4 singularities: F; < 0, Fy < 0.

For example, let us concentrate on 75 and choose a; = 0.03, a; = 0.055, say,
whence the system is able to reach four singular configurations (see the left panel
of Figure 4). Now s;,¢; for i = 1,2,3,7 are determined by V(K'). The other values,
for angles 4,5,6, are determined by V(75). The results are in the Table 1. The
corresponding configurations are visualized in Figure 5. Doing similar tests with

variable | singularity 1 | singularity 2 | singularity 3 | singularity 4
c1 -0.8322 -0.4564 -0.1157 -0.1038
51 -0.5544 0.8898 -0.9933 0.9946
) -0.3045 -0.3045 0.4467 0.4467
S9 0.9525 -0.9525 0.8947 -0.8947
c3 0.4300 0.4300 0.9267 0.9267
S3 -0.9029 -0.9029 -0.3759 -0.3759
4 0 0 0 0
S4 -1 -1 -1 -1
Cs 0.0695 0.0695 0.9917 0.9917
S5 0.9976 0.9976 0.1283 0.1283
Ce 0 0 0 0
S6 1 1 1 1
cr -0.9976 -0.9976 -0.1283 -0.1283
S7 0.0695 0.0695 0.9917 0.9917

Calculating the corresponding angles we get the following values.

Angle | singularity 1 | singularity 2 | singularity 3 | singularity 4
U1 -2.5539 2.0448 -1.6867 1.6747
Yo 1.8802 -1.8802 1.1077 -1.1077
Y3 -1.1264 -1.1264 -0.3853 -0.3853
Y4 -1.5708 -1.5708 -1.5708 -1.5708
Ys 1.5012 1.5012 0.1287 0.1287
Ys 1.5708 1.5708 1.5708 1.5708
Y7 3.0720 3.0720 1.6995 1.6995

Table 1: The singularities of Jy567 type, original values apart from ay, as. The values
are presented only with 4 decimals but were computed with 16 decimals.

T3 instead of Ty yields the F; areas in the right hand panel of Figure 4. Singular
configurations implied by T3, with choices a; = 0.06, as = 0.06 which imply 4
singularities, are in Figure 6. To save space we have not tabulated the actual values
of the angles in T3 case.
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Figure 5: Singular positions (according to Jys¢7, T5) when a; = 0.03, az = 0.055
and as, ...,ay have the original values. One can see a physical explanation to the
singularity: the centre node P, is 'pushed in’ so that nodes P3; and P, coincide.

5.3 J3¢7 singularity: original values, apart from b1, aq,a

A necessary condition to have a Js¢7 type singularity is at least one of the z;’s vanishes
(12). Substituting the original parameter values we notice that none of these is zero.
Let us then investigate how we should change some of the parameters in order to
have Js67 type singularities. Take b; and Uy, say, and choose b; := —0.026913593 so
that z; = 0. ® We seek to further fulfil the sufficient requirements by U;:

ns(4ajas —nz) >0 (20)
trtstets < 0, (21)

and use L1, Lo to find the actual singular configurations. With the original parameter
values tg = 0, therefore (21) is fulfilled. Therefore we only need to study (20). For
that, we proceed analogously to Example 5.2: treat the expression nz(4ajas — n3)
as a function of aj, as. For that, we first need ¢z, s;. Them we get from (13)
o= 206364
g — az — ay
by —wy

g7 = ——— =0.7714.
as + ay — ag

6This corresponds to moving B slightly to left.
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Figure 6: Singular positions (according to Jyse7, 73) when a; = 0.06, ay = 0.06
and as, ...,a7 have the original values. One can see a physical explanation to the
singularity: the centre node P, is now "pulled out’ so that nodes P; and P, coincide.

The region of ay, as plane where nz(4ayas — n3) > 0 is shown in Figure 7. We pick
a value inside the “allowed” annulus, say a; = 0.02 and as; = 0.055 in order to get
singularities. Then let us find the actual singular configurations: since tg = 0, from
(16) we get ¢4, = 0 and from (15) s, = —1. The other angles are found as follows:
3 and 6 from (13) and the remaining ones 1,2,5 from L. The results are in Table 2.
The corresponding singular configurations are drawn in Figure 8. Note that there
are only two singular configurations, instead of four, since (16) has only one (double)
root ¢4 = 0 instead of two separate roots.

5.4 A rational case

Finally, let us show a rational valued singularity, that is ¢;, s; € Q. Choose
a4:a5:a6:a7:3/20 a1:1/10 a2:a3:1/2

and solve ¢, s from the generators of I,UJUF; in (24). Now cs, s5, ¢7, S7 are arbitrary
(apart from ¢ + s2 = 1, ¢2 + s2 = 1) and the chosen result is (see also Figure 9)

¢ =(0,3/5,4/5,0,3/5,0,4/5)
s=(1,-4/5,-3/5,—1,4/5,1,3/5).
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Figure 7: Jsg7, U case: the region inside the annulus is where nz(4ayas — n3) > 0.

Andrews’ squeezing system Andrews’ squeezing system
. T T . T T

_0.02 L L L L L L L L L _0.01 L L L L L L L L L
~0.07 -006 -005 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 -0.07 -006 -005 -0.04 -003 -0.02 -0.01 0 0.01 0.02 0.03

Figure 8: Singular positions (according to Jsgr, U;) when by = —0.02691, a; =
0.02, ap = 0.055 and as, ..., ar have the original values. The physical interpretation
is as in Figure 5.

6 Conclusion

We have studied singularities of the multibody system “Andrews’ squeezing sys-
tem” which is a well-known benchmark problem both for multibody solvers and
differential-algebraic equation solvers. Using our tools we have shown in Theorem 5
that the original benchmark problem is indeed void of singularities, thereby assuring
that whatever numerical problems in the benchmark tests are met, they are indeed
due to something else than a nearby singularity of the system. Apparently, this
non-singularity of the problem has not been rigorously proven in the literature.
However, we have shown that with suitably chosen parameters (a,b,w), this
system can exhibit singular configurations. In fact, there are families of values
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variables | singularity 1 | singularity 2
1 -0.3621 0.0127
51 -0.9322 0.9999
Co 0.1860 0.1860
S92 0.9862 -0.9826
3 0.6364 0.6364
S3 -0.7714 -0.7714
Cy 0 0
Sq -1 -1
cs 0.7714 0.7714
S5 0.6364 0.6364
Cgq 0 0
S6 1 1
cr -0.6364 -0.6364
S7 0.7714 0.7714

Expressed in angles, these are

Angles | singularity 1 | singularity 2
Y1 -1.9413 1.5581
Yo 1.3837 -1.3837
Y3 -0.8810 -0.8810
Y4 1.5708 1.5708
Ys 0.6898 0.6898
Ys 1.5708 1.5708
Y7 2.2606 2.2606

Table 2: The singularities of Jsg7 type, original values apart from by, ay,as. The
values are presented only with 4 decimals but were computed with 16 decimals.

(a, b, w) that produce singularities, see Theorems 2 and 4. We provide examples of
singularities, calculated using the original benchmark parameter values apart from
b1, a1, as. Considering aq,as as freely chosen parameters, Figures 4 and 7 show the
areas of ay,as plane where the system exhibits singularities. For example, choosing
the point (a1, ag) within the intersection of the three areas in Figures 4 (both panels)
and 7 would give a system with 10 singular configurations.

A natural question that remains is, if these presented singularities are the only
possible ones? In other words are there singularities which do not come from the
singularities of some subsystem? While the Grobner bases techniques in principle
provide a way to answer this question directly, we could not do so in practice due
to complexity problems.
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Figure 9: A singular configuration with rational c;, s;, a;, b;.

6.1 Appendix

The coefficients f;: The coefficients f1, ..., f5 in the context of T are

as — ag Z(b% — 2[9111)1 + b% - 2b2w2 + w% + wg)

( )

(a5 — a2)*b — w/?,

(w1 — by)(ay — as)(—b3 + 2bjw; — b3 + 2bywy — wi — w3 + a3 — a3 + 2a4a5 — a2)

(wr = b1)(aq — a5) (a3 — (a4 — a5)* — b — wl?),

f3 = b] — 2byw; + b5 — 2bywsy + 2byay — 2byas + wi + wi — 2weay + 2weas — a3 + aj — 2a4as + az
= |b—w|? +2(by — wy)(ay — as) — a3 + (ay — as)?,

fi= bf — 2bjwy + bg — 2bowe — 2byag + 2byas + w% + wg + 2waay — 2weas — a§ + ai — 2a4a5 + ag
= |b—w|* —2(by — wy)(ay — as) — a3 + (as — as)?,

fs= ag — ai + 2a4a5 — ag - b% + 2bjw; — bg + 2bywsy — w% — wg

=a; — (as —as)® — |b — w|*.

4
4
4
4
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The coefficients d;,[;: The coefficients d;, [; in the context of Ky are

d1 = 2&1&2(&% + 2(1317183 — 2&3()203 + b% + bg)
dy = —4a%a§s§
ds = —aj+2a3a3 + ala + 2a3asbss — 2a3azbycs + atb?

22 | 212
+albs — a3 + a3a3 + 2a3azby sz — 2a3azbycz + a3b? + a3b3

ll = —2a1a2(a§ + 2&36183 — 2(13[?203 + b% + b%)
12 = 2&1&2(&383 + bl)
13 = —(a303 — bQ)(G% — CL% + a§ + 2@3[)183 — 2(13b203 -+ b% + b%)

ly = 2a1a38182 — (asss + by)asca + (ascs — by)agsy — (aszss + by)ay.

We can also simplify these expressions:

do = a% + |b|2 + 2(13(b183 — bgCg)

di = 2ajaxdy

dy = nine

dy = (af+a3)do — (af — a3)’

n = (a1 + a2)2 — dy

ny = (ay —a)® —dy = 4aras — ny

lh = —d;

Is = —(ascs — by)(a? — a3 + dp)

ly = —(aszsz+ b1)(agca + ay) + azsa(ascs — by + 2a181)
G = —4ala3s3 + ny(4ajay — ny)

G2 = 2ajasdocy + (a] + a3)dy — (af — a3)?

g3 = —2a1aadysy + 2a1as(agss + by) — (azcs — b)(aj — a3 + do)
gs = (af —ad)e+1

The coefficients r;: The coefficients r; in the context of L, are

ri = (a? + ad)|b|* — 2bjatazsy — 2bjazazsy + 2baa3aszcr + 2bgazazer — (a — a3)? + (a? + a3)a3
o = 2@1(()1(12 — a2a357)52
rs = b%bg + b%a307 — 2b1b2&3$7 — 2b1&§0787 + bg + 36%&307 + bza% — bga% + 3b2&§6$

+byas? + alazcr — asaszcr + ascr

ry = (2a1a9)s152 + (—brag + asazsy)ce + (—byas — asascy)sy + (—biay + ajazsy)
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