
SESSION ID:

#RSAC

Estuardo Alpirez Bock

Doubly half-injective PRGs for
incompressible white-box cryptography

CRYP-W02

Aalto University, Finland

Alessandro Amadori, Joppe W. Bos, Chris
Brzuska, Wil Michiels

#RSAC

White-box attack scenario

2

encryption/
decryption plaintext/ciphertext ciphertext/plaintext

Adversary gets access to the implementation  
code and its execution environment

WB Cryptography aims to maintain a program secure even when subject
to this attack model

#RSAC

Outline

3

Incompressibility for white-box cryptography

PRGs, PRFs and the GGM tree

An incompressible PRF

Doubly-half injective PRGs

Conclusions

Incompressibility for white-box
cryptography

#RSAC

Adversarial capabilities

5

The adversary gets access to the program code of an
implementation

He could extract keys, but also copy the program and its
functionality

Threat of code-lifting attacks

WB WB

copy

#RSAC

Methods for mitigating code-lifting attacks

6

Incompressibility  
Delerablée, Lepoint, Paillier, Rivain: White-box security notions for symmetric encryption
schemes 
Fouque, Karpman, Kirchner, Minaud: Efficient and provable white-box primitives

WB WB

#RSAC

In this work

7

We build an incompressible wb-encryption scheme

Our construction is based on standard assumptions, such as pseudorandom
generators and pseudorandom functions

PRF INC-PRF INC-PRF 
 (MAC)

WB-Enc

PRGs, PRFs and the GGM tree

#RSAC

Pseudorandom generators

9

Deterministic, polynomial time computable function
satisfying:
Length-expansion: for all
Pseudorandomness: the output from the PRG should be
indistinguishable from random

x ∈ {0,1}* |PRG(x) | = 2 |x |

x

|x | |x |
G0(x) G1(x)

#RSAC

Pseudorandom functions

10

Deterministic, polynomial time computable function
satisfying:
Length-condition: for all
Pseudorandomness: the output from the PRF should be
indistinguishable from random

n ∈ ℕ, k, x ∈ {0,1}n, |PRF(k, x) | = |y |

k, x

y

#RSAC

GGM tree: building a PRF from a PRG

11

Introduced by Goldreich, Goldwasser and Micali
Input x of the PRF(k,x) represents the binary address of the binary
tree

k

G0(k)

G0 ∘ G0(k)

G1(k)

G1 ∘ G0(k) G0 ∘ G1(k) G1 ∘ G1(k)

#RSAC

GGM tree

12

E.g. x= 10

PRF(k,x)= GGM(k,m)=

k

G0(k)

G0 ∘ G0(k)

G1(k)

G1 ∘ G0(k) G0 ∘ G1(k) G1 ∘ G1(k)

G0 ∘ G1(k)

0

1

An incompressible white-box
pseudorandom function

#RSAC

(Incompressible) PRF implementation

14

Build a PRF which uses a large, incompressible key
Key expansion

Functionality preservation:

k ∈ {0,1}*

∀k, x ∈ {0,1}*, f(k, x) = F(K, x)

K = CompPRF(k),with |K | > > |k |

#RSAC

Standard PRF based on the GGM tree

Construction (1) - PRF

15

#RSAC

16

k

G0(k)

G0 ∘ G0(k)

G1(k)

G1 ∘ G0(k) G0 ∘ G1(k)

x = 1011

G1 ∘ G1(k)

y

0

1

1

1

#RSAC

Iterate the GGM on key k and all possible values of length

Construction (2) - Compiler

17

ℓ

#RSAC

18

k

G0(k)

k0

G1(k)

k1

l = 2

k2 k3

K = k0 | |k1 | |k2 | |k3

#RSAC

F takes as input the long key K. Input x is split in two.

Construction (3) - Incompressible PRF

19

#RSAC

20

k

G0(k)

k0

G1(k)

k1

x = 1011

k2 k3

j = 10

GGM(k2,11)

l = 2

#RSAC

21

k2

G0(k) G1(k)

x = 1011

y

y ← GGM(k2,11)

1

1

#RSAC

Functional equivalence  
and incompressibility

22

k

G0(k) G1(k)

y

k2

f(k,1011) = y
CompPRF(k) = K

0

1

1

1

k0 k1 k3K =

F(K,1011) = y

k2

y

#RSAC

Possible collisions

23

k = ka | |kb

y0 y1

k′� = ka | |kc

y0 y1=
For our incompressibility property to hold, we need injectivity

Doubly-half injective PRGs

#RSAC

PRG with double injectivity

25

k

y0 y1

We want injectivity from
 L to the set Y,with k ∈ L and y0, y1 ∈ Y .

#RSAC

Left-half-injective PRG

26

Construction by Garg, Pandey, Srinivasan and Zhandry:  
use a one-way permutation to construct a left-half injective PRG

G(x)

y0 y1

Breaking the sub-exponential barrier in obfustopia

OWP

G(x) := OWP|x|(x) | |B(x) | |B(OWP(x)) | | . . . | |B(OWP|x|−1(x)),
with B = hardcore bit

#RSAC

Doubly-half injective PRG

27

Assuming a left-half injective, length doubling PRG 
 
 
 
 

G = G0 | |G1

g(x0 | |x1) := G0(x0) | |G1(x0) ⊕ G0(x1) | |G0(x1) | |G1(x1) ⊕ G0(x0)

OWP-Injective

Injective Injective

#RSAC

Doubly-half injective PRG

28

Left half is injective,  

g(x0 | |x1) := G0(x0) | |G1(x0) ⊕ G0(xx) | |G0(x1) | |G1(x1) ⊕ G0(x0)

Let w0 | |w1, s.t. g0(w0 | |w1) = g0(x0 | |x1)

G0 is a permutation → x0 = w0

G1(w0) ⊕ G0(w1) = G1(x0) ⊕ G0(x1)

G0 is a permutation → x1 = w1

The injectivity of the right half follows analogously

Conclusions

#RSAC

Overview of our construction

30

DPRG GGM INC-PRF INC-WB

Provide an incompressible (big key) white-box encryption scheme

Results based on standard crypto-assumptions

Construct a new type of PRG

Backup slides

#RSAC

Conclusions

32

Provide an incompressible (big key) white-box encryption scheme

Results based on standard crypto-assumptions

Construct a new type of PRG

DPRG GGM INC-PRF INC-WB

#RSAC

Alternative desirable properties

33

Making a program traceable (traceability)

Binding the WB to a precise hardware device (hardware
binding)

Making the functionality of the WB dependent of a set of
inputs (input binding/application binding)

#RSAC

Why is F incompressible?

34

k

G0(k) G1(k)

k2

F(K,0111) = ⊥

k0 k1 k3K =

x = 0111
GGM(⊥,0111) = ⊥

#RSAC

Why is F incompressible?

35

We need the complete key K to achieve f(k, x) = F(K, x) for all x ∈ {0,1}*

However, this might only hold depending on the definition of the PRG
used in the GGM tree.

#RSAC

Theorem 1

36

Proof sketch via reduction: we reduce the
incompressibility of F to the incompressibility of the
encryption scheme.
Cannot produce a valid MAC without the complete key K

IF PRF admits a computationally (σ, λ) − incompressible implementation
F, the wb-encryption scheme in Constructino 1 is a (σ, λ − n − o(1))−
incompressible wb-encryption scheme.

#RSAC

Doubly-half injective PRG

37

We define a PRG which is left-half and right-half injective.

Three properties required:
Length-doubling:  

Doubly-half injective:
Pseudorandomness:

For all x ∈ {0,1}* |g(x) | = 2 |x | .

g0 and g1 are injective.

g0(x) is the left haf of g and
g1(x)is the right half.

g(Un) is computationally indistinguishable fromU2n .

#RSAC

Construction 1 via AE-scheme and F

38

#RSAC

Use cases of white-box cryptography

39

Original concern: Digital Rights Management
White-box crypto introduced as a method to mitigate piracy
Chow, Eisen Johnson and van Oorschot - A white-box cryptography and an AES implementation

Recently proposed as a method for protecting
cryptographic keys within mobile payment applications
implemented in software

#RSAC

Global construction of the scheme

40

Key expansion property

Pseudorandomness property follows from the property of the GGM

#RSAC

Methods for mitigating code-lifting attacks

41

Two popular methods have been studied in the literature:

Traceability 
Delerablée, Lepoint, Paillier, Rivain: White-box security notions for symmetric encryption
schemes 

WB WB

