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White-box attack scenario
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encryption/
decryption plaintext/ciphertext ciphertext/plaintext

Adversary gets access to the implementation  
code and its execution environment

WB Cryptography aims to maintain a program secure even when subject 
to this attack model
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Outline
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Incompressibility for white-box cryptography 

PRGs, PRFs and the GGM tree 

An incompressible PRF 

Doubly-half injective PRGs 

Conclusions



Incompressibility for white-box 
cryptography
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Adversarial capabilities
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The adversary gets access to the program code of an 
implementation 

He could extract keys, but also copy the program and its 
functionality 

Threat of code-lifting attacks

WB WB

copy
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Methods for mitigating code-lifting attacks
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Incompressibility  
Delerablée, Lepoint, Paillier, Rivain: White-box security notions for symmetric encryption 
schemes 
Fouque, Karpman, Kirchner, Minaud: Efficient and provable white-box primitives

WB WB
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In this work
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We build an incompressible wb-encryption scheme  

Our construction is based on standard assumptions, such as pseudorandom 
generators and pseudorandom functions

PRF INC-PRF INC-PRF 
  (MAC)

WB-Enc



PRGs, PRFs and the GGM tree
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Pseudorandom generators

9

Deterministic, polynomial time computable function 
satisfying: 
Length-expansion: for all 
Pseudorandomness: the output from the PRG should be 
indistinguishable from random

x ∈ {0,1}* |PRG(x) | = 2 |x |

x

|x | |x |
G0(x) G1(x)
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Pseudorandom functions
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Deterministic, polynomial time computable function 
satisfying: 
Length-condition: for all 
Pseudorandomness: the output from the PRF should be 
indistinguishable from random

n ∈ ℕ, k, x ∈ {0,1}n, |PRF(k, x) | = |y |

k, x

y
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GGM tree: building a PRF from a PRG
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Introduced by Goldreich, Goldwasser and Micali 
Input x of the PRF(k,x) represents the binary address of the binary 
tree

k

G0(k)

G0 ∘ G0(k)

G1(k)

G1 ∘ G0(k) G0 ∘ G1(k) G1 ∘ G1(k)
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GGM tree
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E.g. x= 10 

PRF(k,x)= GGM(k,m)=

k

G0(k)

G0 ∘ G0(k)

G1(k)

G1 ∘ G0(k) G0 ∘ G1(k) G1 ∘ G1(k)

G0 ∘ G1(k)

0

1



An incompressible white-box 
pseudorandom function
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(Incompressible) PRF implementation 
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Build a PRF which uses a large, incompressible key  
Key expansion 

Functionality preservation: 

k ∈ {0,1}*

∀k, x ∈ {0,1}*, f(k, x) = F(K, x)

K = CompPRF(k),with |K | > > |k |
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Standard PRF based on the GGM tree

Construction (1) - PRF
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k

G0(k)

G0 ∘ G0(k)

G1(k)

G1 ∘ G0(k) G0 ∘ G1(k)

x = 1011

G1 ∘ G1(k)

y

0

1

1

1
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Iterate the GGM on key k and all possible values of length 

Construction (2) - Compiler
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ℓ
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k

G0(k)

k0

G1(k)

k1

l = 2

k2 k3

K = k0 | |k1 | |k2 | |k3
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F takes as input the long key K. Input x is split in two.

Construction (3) - Incompressible PRF
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k

G0(k)

k0

G1(k)

k1

x = 1011

k2 k3

j = 10

GGM(k2,11)

l = 2
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k2

G0(k) G1(k)

x = 1011

y

y ← GGM(k2,11)

1

1
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Functional equivalence  
and incompressibility
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k

G0(k) G1(k)

y

k2

f(k,1011) = y
CompPRF(k) = K

0

1

1

1

k0 k1 k3K =

F(K,1011) = y

k2

y
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Possible collisions
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k = ka | |kb

y0 y1

k′� = ka | |kc

y0 y1=
For our incompressibility property to hold, we need injectivity  



Doubly-half injective PRGs
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PRG with double injectivity 
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k

y0 y1

We want injectivity from  
 L to the set Y,with k ∈ L and y0, y1 ∈ Y .
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Left-half-injective PRG
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Construction by Garg, Pandey, Srinivasan and Zhandry:  
use a one-way permutation to construct a left-half injective PRG

G(x)

y0 y1

Breaking the sub-exponential barrier in obfustopia

OWP

G(x) := OWP|x|(x) | |B(x) | |B(OWP(x)) | | . . . | |B(OWP|x|−1(x)),
with B =  hardcore bit
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Doubly-half injective PRG
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Assuming a left-half injective, length doubling PRG 
 
 
 
 
 

G = G0 | |G1

g(x0 | |x1) := G0(x0) | |G1(x0) ⊕ G0(x1) | |G0(x1) | |G1(x1) ⊕ G0(x0)

OWP-Injective

Injective Injective
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Doubly-half injective PRG
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Left half is injective,  
 

g(x0 | |x1) := G0(x0) | |G1(x0) ⊕ G0(xx) | |G0(x1) | |G1(x1) ⊕ G0(x0)

Let w0 | |w1, s.t. g0(w0 | |w1) = g0(x0 | |x1)

G0 is a permutation → x0 = w0

G1(w0) ⊕ G0(w1) = G1(x0) ⊕ G0(x1)

G0 is a permutation → x1 = w1

The injectivity of the right half follows analogously



Conclusions
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Overview of our construction
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DPRG GGM INC-PRF INC-WB

Provide an incompressible (big key) white-box encryption scheme 

Results based on standard crypto-assumptions 

Construct a new type of PRG



Backup slides
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Conclusions
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Provide an incompressible (big key) white-box encryption scheme 

Results based on standard crypto-assumptions 

Construct a new type of PRG

DPRG GGM INC-PRF INC-WB
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Alternative desirable properties
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Making a program traceable (traceability) 

Binding the WB to a precise hardware device (hardware 
binding) 

Making the functionality of the WB dependent of a set of 
inputs (input binding/application binding)
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Why is F incompressible?
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k

G0(k) G1(k)

k2

F(K,0111) = ⊥

k0 k1 k3K =

x = 0111
GGM(⊥,0111) = ⊥
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Why is F incompressible? 
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We need the complete key K to achieve f(k, x) = F(K, x) for all x ∈ {0,1}*

However, this might only hold depending on the definition of the PRG
used in the GGM tree.



#RSAC

Theorem 1

36

Proof sketch via reduction: we reduce the 
incompressibility of F to the incompressibility of the 
encryption scheme. 
Cannot produce a valid MAC without the complete key K

IF PRF admits a computationally (σ, λ) − incompressible implementation
F, the wb-encryption scheme in Constructino 1 is a (σ, λ − n − o(1))−
incompressible wb-encryption scheme.
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Doubly-half injective PRG  
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We define a PRG which is left-half and right-half injective.  

Three properties required: 
Length-doubling:  

Doubly-half injective: 
Pseudorandomness: 

For all x ∈ {0,1}* |g(x) | = 2 |x | .

g0 and g1 are injective.

g0(x) is the left haf of g and 
g1(x)is the right half.

g(Un) is computationally indistinguishable fromU2n .
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Construction 1 via AE-scheme and F
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Use cases of white-box cryptography
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Original concern: Digital Rights Management 
White-box crypto introduced as a method to mitigate piracy 
Chow, Eisen Johnson and van Oorschot - A white-box cryptography and an AES implementation 

Recently proposed as a method for protecting 
cryptographic keys within mobile payment applications 
implemented in software
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Global construction of the scheme
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Key expansion property 

Pseudorandomness property follows from the property of the GGM
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Methods for mitigating code-lifting attacks
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Two popular methods have been studied in the literature:  

Traceability 
Delerablée, Lepoint, Paillier, Rivain: White-box security notions for symmetric encryption 
schemes 

WB WB


