
Security Assessment of White-Box Design
Submissions of the CHES 2017 CTF Challenge
Estuardo Alpírez Bock and Alexander Treff

White-box attack scenario

2

Adversary gets access to an implementation
code and its execution environment

WB Cryptography aims to provide security even under such attack threats

Encryption
m c

Key extraction attacks

3

Some design strategies for white-box implementations of AES have been
proposed but also broken

In recent years, powerful attacks such as differential computational and
differential fault analysis have been performed on white-box
implementations.

Given the strong adversarial capabilities, white-box programs need to
implement countermeasures against key extraction attacks

Designing a white-box AES implementation which remains secure against
key extraction attacks is clearly a very difficult task

4

CHES CTF Challenge

In this paper

5

We aim to understand how the candidates can be broken and specially
their robustness against automated attacks

Experiments performed by Alexander Treff while doing an internship at
Riscure

We assess the security of all design candidates of the WhibOx Contest
by performing a line of attacks on them

Our assessment methodology can lead to a more unified way of
analysing the security levels provided by a white-box design

6

The competition

Competition rules

7

Size and runtime restrictions:

Source code ≤ 50MB
Binary ≤ 20MB
Runtime ≤ 1s

Designers are invited to submit white-box implementations of AES-128

Implementation language must be C, without includes, libraries, etc

Attackers are invited to break the implementations.

The longer an implementation remains unbroken, the more points it
gets

Competition results

8

Submissions:

94 design candidates were submitted
13 remained unbroken for at least 24 hours and earned > 0 points

All broken

Winning challenge: adoring_poitras by Alex Biryukov and Aleksei
Udovenko from the University of Luxembourg

Remained unbroken for 28 days

Broken by the CryptoExperts team [1]

[1] Goubin, Paillier, Rivain, Wang: How to reveal the secrets of an obscure white-box
implementation, J. of Cryptographic Engineering

9

Our assessment

Our assessment

10

Attack classification:

Automated (DCA, DFA, Higher-order DCA)

Automated after small modifications

Automated Robust (remain unbroken in our assessment)

How many challenges can be broken via automated attacks without
reverse engineering efforts? Which attacks are effective on which
challenges?

Differential computation analysis

11

■ Software counterpart of differential power analysis

Differential computation analysis

12

37 designs were reference AES implementations (w/o white-box
countermeasures)

13 designs implemented code obfuscation techniques or were table
based designs (following the approach by [2])

All designs were broken within minutes during the competition

A total of 50 design candidates were vulnerable to a fully automated
DCA attack

[2] Chow, Eisen, Johnson, van Oorschot: White-box cryptography and an AES implementation,
SAC 2002

DCA after modifications

13

Some designs implemented countermeasures against DCA such as:

Dummy operations —> misalignment and artificially enlargement of
the traces
Inconsistent implementation of round functions

pensive_shaw

5 more candidates can be broken after simple modifications

Differential fault analysis

14

■ In case DCA did not succeed, we apply DFA
■ Some designs resisted DCA by artificially blowing up the number of

samples recorded per trace

■ In DFA, we induce faults by flipping bits towards the end of the
computation, and analyse how the faults are reflected on the
outputs

■ We use the DFA script from the Side-Channel Marvels repository [3]

■ Could break 14 designs in a fully automated way

■ For some designs, we needed about an hour to attack them

[3] https://github.com/SideChannelMarvels

Manual DFA

15

Some designs implemented countermeasures against DFA, e.g. redundant
computations

But they could be removed manually

For other designs, we needed to add lines of code for identifying the
correct spot for fault injection

7 more candidates could be broken via manual DFA

Second-order DCA

16

■ The challenge priceless_stallman was resistant to DFA and DCA

■ Resisted DCA via masking based on the input message

■ We could attack this challenge via second-order DCA, performed in a
similar style as second-order DPA [4]

[4] Bogdanov, Rivain, Vejre, Wang: Higher-order DCA against standard side-channel
countermeasures, Cosade 2019

■ Running this analysis took about 16 hours
■ The attack remained unbroken for only 1:18 hrs during the

competition time

Unbroken challenges

17

Earned points
during competition

No points earned

Top 8 challenges

18

Top 8 challenges

19

In some cases we might be satisfied if a white-box program can remain
unbroken for several days

—> update the white-box before an attacker breaks it

For practical use-cases we’ll try to achieve fast, small sized and secure
white-box programs

—> update it such that the new version follows a different
design strategy as the old one

In this competition, the second ranked challenge competent_agnesi, by
Leandro Marin from the University of Murcia and Phillips provided the
most interesting numbers within this context

20

Going forward

2019 edition

21

—> winning challenge remained unbroken for 51 days

—> 2 other challenges remained unbroken for 50 and 30 days

New attacks

22

Extensions of automated attacks have been presented, e.g. in
[5] Rivain and Wang: Analysis and improvement of differential computation attacks
against internally -encoded white-box implementations, CHES 2019

[6] Goubin, Rivain and Wang: Defeating state-of-the-art white-box countermeasures with advanced
gray-box attacks, CHES 2020

[7] Alpirez Bock, Bos, Brzuska, Hubain, Michiels, Mune, Sanfelix Gonzalez, Teuwen and
Treff: White-box cryptography: don’t forget about grey-box attacks, J. of Cryptology 2019

New ideas for countermeasures have also followed, e.g.

[8] Sekar, Eisenbarth,Liskiewicz: A white-box masking scheme resisting computational and
algebraic attacks, eprint 2020/443

Improvements for our assessment

23

Our assessment could provide a more broad overview of the
robustness of a design if we

—> Integrate the new attacks as part of our assessment

—> Test all attacks on all candidates

—> Try to standardise what it means to need only small
reverse engineering efforts

—> Standardise a grading system for the designs: provide
points according to the attacks they are resistant to, but
also according to their performance

Such assessments could be useful for people in the industry and
academia

24

Thank you for your attention!

