On the Ineffectiveness of Internal Encodings – Revisiting the DCA Attack on White-Box Cryptography

Estuardo Alpírez Bock, Chris Brzuska, Wil Michiels and Alexander Treff

2nd July 2018

16th International Conference on Applied Cryptography and Network Security

Whitebox Attack Scenario

Whitebox Attack Scenario

ACN

IS 2018	02.07.2018

Attacks on White-Box Implementations

- Attacks based on reverse engineering can successfully perform key extractions from white-box implementations
 - Knowledge of the look up tables is required, plus deobfuscating tools
 - Such attacks demand big efforts from the adversary and require some time
 - Example: BGE attack Olivier Billet, Henri Gilbert, Charaf Ech-Chatbi: Cryptanalysis of a White Box AES Implementation. ASIACRYPT 2003.

- Automated and efficient attack on white-box implementations presented by Bos et al. [1] and Sanfelix et al. [2]
- Records the memory addresses accessed during the encryption process and obtains software execution traces

Software traces can be analysed with traditional DPA tools

[1] J. W. Bos, C. Hubain, W. Michiels, and P. Teuwen: Differential Computation Analysis: Hiding your White-Box Designs is Not Enough. CHES 2016.
[2] E. Sanfelix, C. Mune, J. de Haas: Unboxing the White-Box: Practical Attacks Against Obfuscated Ciphers. Black Hat Europe 2015.

ACNS 2018	02.07.2018	5	

- The DCA can successfully break many openly available white-box implementations
- But why is it successful?
 - In this work we revisit the DCA attack and explain its experimental success
 - We explain how key dependencies are correlated to the information contained in the software traces
 - We conclude how some popular design frameworks for white-box cryptography are not a safe choice in light of the DCA

White-box implementations

- A table based implementation has been the most popular approach in the literature for white-box designs
- The "perfect" white-box would consist of a single look-up table which directly maps an plaintext to a ciphertext

White-box implementations

- General approach: implement a cipher as a network of keydependent look-up tables
- Each look-up table corresponds to a step of the algorithm

ACNS 20)18
710110 20	/10

White-box implementations

- General approach: implement a cipher as a network of keydependent look-up tables
- Each look-up table corresponds to a step of the algorithm
- The contents of each look-up table can be obscured via input and output encodings.

- 1. Encrypt *n* plaintexts and record one software trace by each encryption
- 2. Define a selection function sel = $z[b] \in \{0,1\}$ where z is an intermediate value calculated based on the known plaintext p_i and a key guess k^h

- 1. Encrypt *n* plaintexts and record one software trace by each encryption
- 2. Define a selection function sel = $z[b] \in \{0,1\}$ where z is an intermediate value calculated based on the known plaintext p_i and a key guess k^h

For each plaintext p_i, calculate sel(p_i,k^h)=b and sort each software trace s_i in the set A_b, with b ∈ {0,1}

02.07.2018

4. Calculate the mean value \bar{A}_{b} of each set.

5. Calculate the difference between the average of each set $\Delta = |\bar{A}_0 - \bar{A}_1|$

Analysing the results

The peaks help us recognize that our key guess was correct: we calculated all values z[b] correctly and the traces have been sorted correctly in the sets.

I A	ACNS	2018
-----	------	------

02.07.2018

Analysing the results

We also learn that the intermediate values z were not encoded by the white-box implementation

02.07.2018

Analysing the results

If we sort according to an incorrect key guess, the output of $Sel(p_i \text{ does not} always match with the computations of the white-box$

But what happens if the intermediate state values are encoded?

Encodings for a WB-Implementation

Combination of linear and non-linear encodings to protect keydependent look-up tables in a white-box design.

Suggested by Chow et al. [3] as a countermeasure against reverse engineering attacks

[3] S. Chow, P.A. Eisen, H. Johnson and P.C. van Oorschot: White box cryptography and an AES implementation. SAC 2002.

ACNS 2018	02.07.2018	17

- Construct an 8-bit to 8-bit key-dependent look-up table (T-box) and analyse it via DCA using exactly 2⁸=256 different inputs
- Apply different types of encodings to the T-boxes and attack them via DCA
- Construct AES-WB-Implementations which make use of the different types of encodings and attack them via DCA

• How are the results of the DCA affected by each use of encodings?

ACNS 2018	02.07.2018

Encoding type	Single T-box	WB-AES
None	DCA successful w/ perfect correlations	DCA successful w/ perfect correlations
Linear	DCA (partly) successful w/ perfect correlations	DCA (partly) successful w/ perfect correlations
Non-linear	DCA successful - Peak values of 0.25, 0.5, 0.75 or 1	DCA successful - Peak values of ca. 0.25, 0.5, 0.75 or 1
Linear and non-linear	DCA partly successful - Peak values of 0.25, 0.5, 0.75 or 1	DCA partly successful - Peak values of ca. 0.25, 0.5, 0.75 or 1

	Encoding type	Single T-box	WB-AES	
I	None	DCA successful w/ perfect correlations	DCA successful w/ perfect correlations	
<	Linear	DCA (partly) successful w/ perfect correlations	DCA (partly) successful w/ perfect correlations	>
	Non-linear	DCA successful - Peak values of 0.25, 0.5, 0.75 or 1	DCA successful - Peak values of ca. 0.25, 0.5, 0.75 or 1	
	Linear and non-linear	DCA partly successful - Peak values of 0.25, 0.5, 0.75 or 1	DCA partly successful - Peak values of ca. 0.25, 0.5, 0.75 or 1	

Linear encodings

We multiply each output of a T-box with a randomly generated invertible matrix and obtain a linearly encoded T-box

Maps each input x to a linearly encoded output m

ACNS 2018	02.07.2018	21

Attack on a linearly encoded T-box

Using the correct key-guess, we obtain the following difference of means curve:

No significant peaks can be observed \rightarrow the DCA is not successful

ACNS 2018	02.07.2018	22

Attack on a linearly encoded T-box

What if we choose a different matrix to encode the outputs of the T-box? Recall that, to calculate each encoded output bit *m*[*i*] we do the following:

$$m[i] = \sum_{j} a_{ij} \cdot z[j] = \sum_{j:a_{ij}=1} z[j]$$

where z[j] denotes the jth the T-box output and a_{ij} are the entries of the matrix A.

If row i has a Hamming weight (HW)=1, then it follows that:

$$m[i]=z[b]$$

DCA on a complete white-box

WB constructed using randomly generated linear encodings

Is an invertible matrix, which does not have any identity row a good countermeasure against the DCA?

ACNS 2018 02.07.2018	
----------------------	--

Attack on a linearly encoded T-box

Is an invertible matrix, which does not have any identity row a good countermeasure against the DCA?

→ Not really, our selection function could be easily modified such that, after calculating an 8-bit state z, it calculates all possible linear combinations of z

 $sel = LC(z) \in \{0, 1\}$

There will be an LC which will be equal to the LC defined by some matrix row i. For that case we will obtain perfect correlations in our DCA

Attacking a complete white-box

White-box constructed using randomly generated linear and nonlinear encodings

Attacking a complete white-box

White-box constructed using randomly generated linear and nonlinear encodings

Thank you for your attention! Dank je wel!

Encoding type	Single T-box	WB-AES
None	DCA successful w/ perfect correlations	DCA successful w/ perfect correlations
Linear	DCA (partly) successful w/ perfect correlations	DCA (partly) successful w/ perfect correlations
Non-linear	DCA successful - Peak values of 0.25, 0.5, 0.75 or 1	DCA successful - Peak values of ca. 0.25, 0.5, 0.75 or 1
Linear and non-linear	DCA partly successful - Peak values of 0.25, 0.5, 0.75 or 1	DCA partly successful - Peak values of ca. 0.25, 0.5, 0.75 or 1

Attacking a complete white-box

The output <u>nibbles</u> of A need to take any possible 4 bit long value in order to provide robustness against the DCA.

 \rightarrow we otherwise return to the same issues presented due to the use of nibble encodings

- Revisited the analysis steps of the DCA using software execution traces
- Explained why the DCA attack was successful on white-box implementations attacked in [1] and why so many implementations are vulnerable to this attack [3].
- Nibble encodings make a white-box very vulnerable against the DCA.
- These results motivate the study for new encodings alternatives for WBdesigns.

[1] J. W. Bos, C. Hubain, W. Michiels, and P. Teuwen: Differential Computation Analysis: Hiding your White-Box Designs is Not Enough. CHES 2016.
[2] E. S. Gonzalez, C. Mune, J. de Haas: Unboxing the White-Box: Practical Attacks Against Obfuscated Ciphers. Black Hat Europe 2015.
[3] CHES WhibOx Contest https://whibox.cr.yp.to/

|--|

Each output of the LUT is split in two halfs. Each half is encoded by a different non-linear function

Maps each input x to a non-linearly encoded output f = f[1..4] || f[5..8]

ACNS 2018	12.06.2018	31

- We construct 10 000 different non-linearly encoded T-boxes and attack all of them via the DCA.
 - The attack succeeds for 9 997 non-linearly encoded T-boxes
 - For the successful cases, the following peak values are returned for the correct key guesses:

Peak value for correct key	Nr. of non-lin. encoded T-boxes
1	55
0.75	2804
0.5	7107
0.25	31

ACNS 2018	12.06.2018	32

- We construct 10 000 different non-linearly encoded T-boxes and attack all of them via the DCA.
 - The attack succeeds for 9 997 non-linearly encoded T-boxes
 - For the successful cases, the following peak values are returned for the correct key guesses:

Peak value for correct key	Nr. of non-lin. encoded T-boxes
1	55
0.75	2804
0.5	7107
0.25	31

ACNS 2018	12.06.2018	33

- We construct 10 000 different non-linearly encoded T-boxes and attack all of them via the DCA.
 - The attack succeeds for 9 997 non-linearly encoded T-boxes
 - For the successful cases, the following peak values are returned for the correct key guesses:

Peak value for correct key	Nr. of non-lin. encoded T-boxes
1	55
0.75	2804
0.5	7107
0.25	31

ACNS 2018	12.06.2018	34

- We construct 10 000 different non-linearly encoded T-boxes and attack all of them via the DCA.
 - The attack succeeds for 9 997 non-linearly encoded T-boxes
 - For the successful cases, the following peak values are returned for the correct key guesses:

Peak value for correct key	Nr. of non-lin. encoded T-boxes
1	55
0.75	2804
0.5	7107
0.25	31

ACNS 2018	12.06.2018	35

```
Attack on non-linearly encoded T-boxes
```

Say we calculate z[1] with sel

```
If z[1] = 0
then A_0 := A_0 \cup f[1..4]
```

 \rightarrow There exist only 8 possible nibble values for which z[1]=0

 \rightarrow Each one of this values is always encoded by the same bijective function

contains only 8 different values each one repeated exactly 16 times

12.06.2018

- 36

- We construct 10 000 different non-linearly encoded T-boxes and attack all of them via the DCA.
 - The attack succeeds for 9 997 non-linearly encoded T-boxes
 - For the successful cases, the following peak values are returned for the correct key guesses:

Peak value for correct key	Nr. of non-lin. encoded T-boxes
1	55
0.75	2804
0.5	7107
0.25	31

ACNS 2018	12.06.2018	37

- We construct 10 000 different non-linearly encoded T-boxes and attack all of them via the DCA.
 - The attack succeeds for 9 997 non-linearly encoded T-boxes
 - For the successful cases, the following peak values are returned for the correct key guesses:

Peak value for correct key	Nr. of non-lin. encoded T-boxes
1	55
0.75	2804
0.5	7107
0.25	31

ACNS 2018	12.06.2018	38