
7 B-splines

A piecewise polynomial curve on the interval [a, b] has a B-spline basis representation with
similarities with Bézier curves. The representation is based on

• The degree p so that degree of each segment of the curve ≤ p

• The knot vector T = {t0, . . . , tm} which is a non-decreasing sequence of parameter
values, that is ti ≤ ti+1, i = 0, . . . ,m− 1

• Control points b0, . . . ,bn

7.1 B-spline Basis Functions and Curves

The ith B-spline basis function of degree p is denoted by Ni,p(t) and defined recursively as

Ni,0(t) =

{
1, ti ≤ t < ti+1

0, otherwise

Ni,p(t) =
t− ti

ti+p − ti
Ni,p−1(t) +

ti+p+1 − t

ti+p+1 − ti+1

Ni+1,p−1(t)

where i = 0, . . . , n and p ≥ 1.
Some observations regarding the definition of the basis functions:

• For p > 0, Ni,p is expressed in terms of two basis functions of degree p− 1

• The interval [ti, ti+1) is referred to as the ith knot span. It may have zero length since
the knots need not to be distinct.

• If there are repeated knots, then a division 0/0 may occur. This is taken to be zero.

Example 7.1. Let T = {0, 0, 0, 1, 1, 1} and p = 2. The B-spline basis functions of degree 0
are

N0,0 = N1,0 = 0 everywhere

N2,0 =

{
1, 0 ≤ t < 1

0, otherwise

N3,0 = N4,0 = 0 everywhere
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The B-spline basis functions of degrees 1 and 2 can be written as

N0,1 =
t− 0

0− 0
N0,0 +

0− t

0− 0
N1,0 = 0 everywhere

N1,1 =
t− 0

0− 0
N1,0 +

1− t

1− 0
N2,0 =

{
1− t, 0 ≤ t < 1

0, otherwise

N2,1 =
t− 0

1− 0
N2,0 +

1− t

1− 1
N3,0 =

{
t, 0 ≤ t < 1

0, otherwise

N3,1 =
t− 1

1− 1
N3,0 +

1− t

1− 1
N4,0 = 0 everywhere

and

N0,2 =
t− 0

0− 0
N0,1 +

1− t

1− 0
N1,1 =

{
(1− t)2, 0 ≤ t < 1

0, otherwise

N1,2 =
t− 0

1− 0
N1,1 +

1− t

1− 0
N2,1 =

{
2t(1− t), 0 ≤ t < 1

0, otherwise

N2,2 =
t− 0

1− 0
N2,1 +

1− t

1− 1
N3,1 =

{
t2, 0 ≤ t < 1

0, otherwise

Note that in the previous example the Ni,2 on the interval [0, 1] are the quadratic Bern-
stein polynomials. More generally, the B-spline basis representation with a knot vector

T = {0, . . . , 0︸ ︷︷ ︸
p+1

, 1, . . . , 1︸ ︷︷ ︸
p+1

}

corresponds to the Bernstein basis.
A B-spline curve of degree p with control points b0, . . . ,bn is defined on the interval

[a, b] = [tp, tm−p] as

B(t) =
n∑

i=0

biNi,p(t)

Example 7.2. Let p = 2, and T = {0, 0, 0, 1, 2, 3, 3, 4, 4, 4}. The quadratic basis functions
are shown in Fig. 26 and the B-spline curve corresponding to the control points (0, 1), (1, 1),
(3, 4), (4, 2), (5, 3), (6, 4), (7, 3) is shown in Fig. 27.

A B-spline curve of degree p can have any number of control points provided that the
knot vector is specified accordingly. Each basis function Ni,p is determined by the p+2 knots
ti, . . . , ti+p+1. If n+1 control points (and basis functions) are required, then n+ p+2 knots
must be specified. Therefore the number of knots m + 1 must equal the number of control
points plus the degree plus one. In other words,

m = n+ p+ 1.

A knot may be repeated in the knot vector. The number of times a knot value occurs is
called the multiplicity of the knot.
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Figure 26: B-spline basis of degree p = 2 for the knot vector T = {0, 0, 0, 1, 2, 3, 3, 4, 4, 4}.

Figure 27: B-spline curve of Example 7.2
.

7.2 Properties of B-spline Basis Functions and Curves

Theorem 6. The B-spline basis functions have the following properties

• Positivity: Ni,p(t) > 0, t ∈ (ti, ti+p+1)

• Local support: Ni,p(t) = 0, t /∈ (ti, ti+p+1)

• Piecewise polynomial: Ni,p(t) are piecewise polynomial functions of degree p.

• Partition of unity:
∑r

i=r−p Ni,p(t) = 1, t ∈ [tr, tr+1)

• Continuity: If the interior knot ti has multiplicity ki, then Ni,p(t) is Cp−ki at t = ti
and C∞ elsewhere.

Proof. (Partial) The first three properties can be proved by using induction. The step p = 0 is
clear from the definition of the basis. Suppose now that the basis functions Ni,0(t), . . . , Ni,p(t)
satisfy the properties and consider

Ni,p+1(t) =
t− ti

ti+p+1 − ti
Ni,p(t) +

ti+p+2 − t

ti+p+2 − ti+1

Ni+1,p(t),
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Suppose t /∈ (ti, ti+p+2). Then Ni,p(t) = Ni+1,p(t) = 0 because they are assumed to satisfy
the local support property. Hence, Ni,p+1(t) = 0. Suppose now that t ∈ (ti, ti+p+2). Then

t− ti
ti+p+1 − ti

,
ti+p+2 − t

ti+p+2 − ti+1

> 0

Moreover, we have

Ni,p(t) > 0, Ni+1,p ≥ 0, when t ∈ (ti, ti+p+1)

Ni,p(t) ≥ 0, Ni+1,p > 0, when t ∈ (ti+1, ti+p+2)

which imply Ni,p+1(t) > 0 in both cases.
Since the sum of piecewise polynomials is a piecewise polynomial and the product of

a polynomial and a piecewise polynomial is a piecewise polynomial, Ni,p+1 is a piecewise
polynomial.

The partition of unity property can be also shown by using induction. We skip the
details.

The continuity property follows from the formula for the derivative of B-spline basis
functions (proof by induction):

N ′
i,p(t) =

p

ti+p − ti
Ni,p−1(t)−

p

ti+p+1 − ti+1

Ni+1,p−1(t) (24)

Namely, if Ni,p−1 are Cp−1−ki , then so is N ′
i,p. Thus, Ni,p is Cp−ki . Since Ni,1 are C0, the

continuity property follows by induction.

The properties of B-spline basis functions yield the following properties of B-spline curves.

Theorem 7. A B-spline curve B(t) = ∑n
i=0 biNi,p(t) of degree p associated to the knot vector

{t0, . . . , tm} satisfies

• Local control: Each segment of the curve depends on p+1 control points. If t ∈ [tr, tr+1)
with p ≤ r ≤ m− p− 1, then

B(t) =
r∑

i=r−p
biNi,p(t)

• Convex Hull property: If t ∈ [tr, tr+1) (p ≤ r ≤ m− p− 1), then

B(t) = CH(br−d, . . . ,br)

• Continuity: if ki is the multiplicity of the breakpoint t = ti then B(t) is Cp−ki (or
greater) at t = ti and C∞ elsewhere.

• Invariance under affine transformations: If T is an affine transformation, then

T(
n∑

i=0

biNi,p(t)) =
n∑

i=0

T(bi)Ni,p(t).
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Open B-splines

A general B-spline curve does not interpolate the first and last control points b0 and bn.
For curves of degree p, endpoint interpolation and tangency with the control polygon holds
for open, or clamped B-splines. For these the knots satisfy

t0 = · · · = tp and tm−p = · · · = tm

Namely, the local control property gives for tp

B(tp) =
p∑

i=0

biNi,p(tp),

where, for 0 ≤ i ≤ p,

Ni,p(tp) =
tp − ti
ti+p − ti

Ni,p−1(tp) +
ti+1+p − tp
ti+1+p − ti+1

Ni+1,p−1(tp) =
ti+1+p − tp
ti+1+p − ti+1

Ni+1,p−1(tp)

since t0 = · · · = tp. A similar reasoning allows as to write

Ni,p(tp) =
ti+1+p − tp
ti+1+p − ti+1

ti+2+p − tp
ti+2+p − ti+2

Ni+2,p−2(tp)

and finally

Ni,p(tp) =
ti+1+p − tp
ti+1+p − ti+1

ti+2+p − tp
ti+2+p − ti+2

· · · ti+p+p − tp
ti+p+p − ti+p

Ni+p,0(tp)

Because Ni+p,0(tp) > 0 for i > 0, it follows that Ni,p(tp) = 0 for i > 0. When i = 0, we have

N0,p(t) =
t1+p − tp
t1+p − t1

t2+p − tp
t2+p − t2

· · · tp+p − tp
tp+p − tp

Np,0(tp) = 1

so that

B(tp) =
p∑

i=0

biNi,p(tp) = b0.

Similar arguments show that B(tm−p) = bn.
Open B-splines also satisfy

B′(tp) =
p

tp+1 − t1
(b1 − b0) and B′(tm−p) =

p

tm−1 − tm−p−1
(bn − bn−1)

so that the control polygon determines the tangent directions of an open B-spline curve at
the endpoints. Thus, the properties of open B-splines are very similar to those of Bézier
curves.
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7.3 NURBS

The NURBS curve of degree p with control points b0, . . . ,bn, weights w0, . . . , wn, and knot
vector t0, . . . , tm is the curve

B(t) =
∑n

i=0 wibiNi,p(t)∑n
i=0 wiNi,p(t)

where Ni,p(t) are the B-spline basis functions defined on the specified knot vector. The curve
may also be written as

B(t) =
n∑

i=0

biRi,p(t),

where

Ri,p(t) =
wiNi,p(t)∑n
i=0 wiNi,p(t)

are the rational B-spline basis functions. Let bi = (xi, yi, zi) and define the homogeneous
control points bw

i by {
bw
i = (wix, wiy, wiz, wi), when wi �= 0

bw
i = (x, y, z, 0), when wi = 0

In homogeneous coordinates, the NURBS curve has the form

B(t) =
n∑

i=0

bw
i Ni,n(t).

Example 7.3. A NURBS representation of a circle is obtained by taking knot vector
{0, 0, 0, 1

4
, 1
2
, 1
2
, 3
4
, 1, 1, 1}, control points (1,0), (1,1), (-1,1), (-1,0), (-1,-1), (1,-1), (1,0), and

weights 1, 1
2
, 1

2
, 1, 1

2
, 1

2
, 1. The circle is shown in Fig. 28.

Figure 28: An example of a NURBS circle.
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