7 B-splines

A piecewise polynomial curve on the interval [a,b] has a B-spline basis representation with
similarities with Bézier curves. The representation is based on

e The degree p so that degree of each segment of the curve < p

e The knot vector T = {to,...,t,n} which is a non-decreasing sequence of parameter
values, that is t; <t;41,71=0,...,m—1

e Control points by, ..., b,

7.1 B-spline Basis Functions and Curves

The ith B-spline basis function of degree p is denoted by N;,(t) and defined recursively as

Nio(t) = L, &, <t<tip
n0 0, otherwise

t—1t;

t; — 1
" Nipa(t) + T —Niyy o (8)
ti+p - ti

Litpr1 — tit1

where ¢ =0,...,n and p > 1.
Some observations regarding the definition of the basis functions:

e For p > 0, NV, , is expressed in terms of two basis functions of degree p — 1

e The interval [t;,t;,1) is referred to as the ith knot span. It may have zero length since
the knots need not to be distinct.

e If there are repeated knots, then a division 0/0 may occur. This is taken to be zero.

Example 7.1. Let 7 ={0,0,0,1,1,1} and p = 2. The B-spline basis functions of degree 0

are
Noo = N1p=0 everywhere

1, 0<t«1
Nyo = .
0, otherwise

N3o= Nyp=0 everywhere
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The B-spline basis functions of degrees 1 and 2 can be written as

t—0 0—t
No1 = 0o Voo + 0= ONLO =0 everywhere
t—0 1—1 1—t, 0<t<1
Nij=—— Nog = ’ =
O DS R T {0, otherwise
t—0 1—-1 t, 0<t<1
N — N + N — 9 —
ST R I {O, otherwise
t—1 1—1
N31 = - 1N3,o +t1o 1N4,o =0 everywhere
and
t—0 1—t (1-t)?% 0<t<1
Nyo = ——N, Ny = -
27 0—0 " T 10 M {O, otherwise
t—0 1—t 2t(1 —t), 0<t<1
Nio=——Ni;+ Ny, =
ST R T R {0, otherwise
t—0 1—t 2, 0<t<l1
N — N _|_ N — 9 —
S T R R {0, otherwise

Note that in the previous example the NN; 5 on the interval [0, 1] are the quadratic Bern-
stein polynomials. More generally, the B-spline basis representation with a knot vector

T=1{0,....0,1,...,1}
—— —
p+1 p+1

corresponds to the Bernstein basis.
A B-spline curve of degree p with control points by, ..., b, is defined on the interval
0,8] = [t by 85

B(t) = i bi Nip(1)

Example 7.2. Let p = 2, and 7 = {0,0,0,1,2,3,3,4,4,4}. The quadratic basis functions
are shown in Fig. 26 and the B-spline curve corresponding to the control points (0, 1), (1,1),
(3,4), (4,2), (5,3), (6,4), (7,3) is shown in Fig. 27.

A B-spline curve of degree p can have any number of control points provided that the
knot vector is specified accordingly. Each basis function /V; , is determined by the p+2 knots
tiy...ytizpr1. If n+ 1 control points (and basis functions) are required, then n+ p+ 2 knots
must be specified. Therefore the number of knots m + 1 must equal the number of control
points plus the degree plus one. In other words,

m=n+p+ 1.
A knot may be repeated in the knot vector. The number of times a knot value occurs is

called the multiplicity of the knot.
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Figure 26: B-spline basis of degree p = 2 for the knot vector 7 = {0,0,0,1,2,3,3,4,4,4}.

Figure 27: B-spline curve of Example 7.2

7.2 Properties of B-spline Basis Functions and Curves

Theorem 6. The B-spline basis functions have the following properties

e Positivity: N;,(t) >0, t € (ti, tixps1)

Local support: N;,(t) =0, t & (t;,titp+1)

Piecewise polynomial: N;,(t) are piecewise polynomial functions of degree p.

Partition of unity: Nip(t)=1,t€ [t tr1)

T
i=r—p

Continuity: If the interior knot t; has multiplicity k;, then N;,(t) is CP™% at t = t,
and C* elsewhere.
Proof. (Partial) The first three properties can be proved by using induction. The step p = 0 is

clear from the definition of the basis. Suppose now that the basis functions N; o(t), ..., N; (%)
satisfy the properties and consider

t—t; tiipro —t
- Nip(t) + T Niy (0),

Nipu(t) = ———
wi(f) Litpr1 — i Livpr2 — tiv
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Suppose t & (ti,tiypi2). Then N;,(t) = Nip1,(t) = 0 because they are assumed to satisfy
the local support property. Hence, N; ,11(t) = 0. Suppose now that ¢ € (¢;,t;4,+2). Then

t—1; ligpt2 — 1 -0

)
bitpt1 — i tippya — tiya
Moreover, we have

Nip(t) >0, Niy1, >0, whent € (t;,tirpi1)
Nip(t) >0, Niy1p, >0, whent € (tiy1,tiipi2)

which imply N; ,11(¢) > 0 in both cases.

Since the sum of piecewise polynomials is a piecewise polynomial and the product of
a polynomial and a piecewise polynomial is a piecewise polynomial, N;,; is a piecewise
polynomial.

The partition of unity property can be also shown by using induction. We skip the
details.

The continuity property follows from the formula for the derivative of B-spline basis
functions (proof by induction):

p p
Nj,(t) = ———Nipa(t) = —————Nip1,1(t) (24)
’ bitp — ti Litpr1 — tig1
Namely, if N;,_; are CP~1=Fi then so is Ni’,p. Thus, N;, is CP=ki - Since N;, are C°) the
continuity property follows by induction. O

The properties of B-spline basis functions yield the following properties of B-spline curves.

Theorem 7. A B-spline curve B(t) =" b;N;,(t) of degree p associated to the knot vector
{to,...,tm} satisfies

Local control: Each segment of the curve depends on p+1 control points. Ift € [t,,t, 1)
withp <r <m—p—1, then

B(t) = i biNip(1)

i=r—p

Convex Hull property: Ift € [t,,t,11) (p <r <m—p—1), then
B(t)=CH(b,_q4,...,b,)

Continuity: if k; is the multiplicity of the breakpoint t = t; then B(t) is CP~% (or
greater) at t = t; and C™ elsewhere.

Invariance under affine transformations: If T is an affine transformation, then

T(Z b;Nip(t)) = Z T(bi)Nip(t).
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Open B-splines

A general B-spline curve does not interpolate the first and last control points by and b,,.
For curves of degree p, endpoint interpolation and tangency with the control polygon holds
for open, or clamped B-splines. For these the knots satisfy

to=---=t, and t, ,=---=t,

Namely, the local control property gives for ¢,

where, for 0 <1 < p,

t, —t; tiziap — L tizia, —1t
Nip(tp) = FL—=Nip1(ty) + ——L—L-Ni1po1(ty) = ——" N1y (ty)
bitp — ti lit14p — Lita Lit14p — Lita
since ty = --- = t,. A similar reasoning allows as to write
Livigp —Tp Tigoyp— 1t
Nip(tp) = I Niyapa(tp)
Livivp — tiv1 tivoyrp — tita
and finally
tiziap — by tigor, —1 t; —1
Nz’,p(tp) = Lt o £ Ni+p,0(tp)

Livigp — tix1 tivorp —tiva  Titprp — Livp

Because Nji,0(t,) > 0 for i > 0, it follows that N;,(t,) = 0 for i > 0. When ¢ = 0, we have

NO (t) _ t1+10 _tpt2+p _tp . tPer _tpN O(t ) — 1
" t1+p —h t2+p — 12 thrp _tp per

so that

Similar arguments show that B(t,,—,) = by,.
Open B-splines also satisfy

B(t,) = —L (b —by) and B(tm_p) = ————(by — byy)

lpr1 — 11 b1 — tm—p—1

so that the control polygon determines the tangent directions of an open B-spline curve at
the endpoints. Thus, the properties of open B-splines are very similar to those of Bézier
curves.
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7.3 NURBS

The NURBS curve of degree p with control points by, ..., b,, weights wy, ..., w,, and knot
vector tg, ..., t,, is the curve
2 i WibiNip (1)

> im0 wilVip(t)
where N, ,(t) are the B-spline basis functions defined on the specified knot vector. The curve
may also be written as

B(t) =

B(t) = b;R;,(t),
1=0
where
w;N;p(t)
ZZ‘L:O w; Ny p(t)

are the rational B-spline basis functions. Let b; = (x;,y;, z;) and define the homogeneous
control points by’ by

Ri,p(t) =

b = (w;x, w;y, w;z,w;), when w; # 0
b? = (z,y, z,0), when w; =0

In homogeneous coordinates, the NURBS curve has the form

B(t) = i by’ Ni ().

Example 7.3. A NURBS representation of a circle is obtained by taking knot vector
{O,O,O,Z—li, .5, 5,1,1,1}, control points (1,0), (1,1), (-1,1), (-1,0), (-1,-1), (1,-1), (1,0), and
weights 1, %, %, 1, %, 1 1. The circle is shown in Fig. 28.

7
\__/

Figure 28: An example of a NURBS circle.
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