Mat-1.3604 Stationary Processes.

Exercise 20.9. 2007 Tikanmäki/Valkeila.

1. Let $L^2(\mathbb{P})$ be a space of square integrable complex valued random variables. Let $Z_1, Z_2 \in L^2(\mathbb{P})$. Show that $Z_1 \perp Z_2$ if and only for every complex number α we have

$$||Z_1 + \alpha Z_2|| = ||Z_1 - \alpha Z_2||.$$

- 2. Prove that if $(Z_k)_{k\geq 1}$ is orthonormal, then
 - (i) For any $Z \in L^2(\mathbb{P}) \lim_k (Z, Z_k) = 0$.
 - (ii) For $j \neq k ||Z_k Z_j|| = \sqrt{2}$.
- 3. Let $(Z_k)_{k=1}^n \in L^2(\mathbb{P})$ be orthonormal: $j \neq k \Rightarrow Z_j \perp Z_k$. Show that for every $Z \in L^2(\mathbb{P})$

$$\inf\left(||Z - \sum_{k=1}^{n} \alpha_k Z_k||\right)$$

is attained, if $\alpha_k = (Z, Z_k)$.

4. Let ξ_k be square integrable complex valued random variables with

 $E\xi_k = 0$, $E\xi_k\bar{\xi}_j = 0$, when $j \neq k$, and $\sigma_k^2 = E\xi_k\bar{\xi}_k$.

Let $\alpha_k \in \mathbb{R}$. Show that the process

$$X_t = \sum_{k=1}^n e^{i\alpha_k t} \xi_k$$

is stationary [in the weak sense].

5. Let h_1, \ldots, h_n be real functions and $a_k \in \mathbb{R}, a_k > 0$. Show that

$$C(s,t) = \sum_{k=1}^{n} a_k h_k(s) h_k(t)$$

is a covariance function.

6. Let ψ_k be functions such that $\int_a^b \psi_k(s) \bar{\psi}_j(s) ds = 0$, $j, k = 1, \ldots, n$, $j \neq k$, and $\int_a^b \psi_k(s) \bar{\psi}_k(s) ds = \sigma_k^2$. Let X_t be a L^2 process defined on [a, b], $EX_t = 0$ and covariance

$$C(s,t) = \sum_{k=1}^{n} \psi_k(s) \bar{\psi}_k(t).$$

Put $\xi_k = \int_a^b X_u \bar{\psi}_k(u) du$. Compute $E(\xi_j \bar{\xi}_k)$.