Chapter 4

Backpropagation and
minimization

1. The backpropagation algorithm

Suppose the input to the neural network is x and the output is y. The
purpose of the backpropaation algorithm is to calculate the derivative of
y with respect to the weights and thresholds of the network. Recall the
definition of a feed-forward network:

by = x,

a;=Wb;_1—1;, 1<j<1L,
b; =0j(a;), 1<j<L,

y = by.

(23)

Usually we take o, to be the identity. This definition contains the possibility
that each function o; consists of a vector of real-valued functions of a real
variable, but in general one assumes that all these functions are the same,
that is o; is applied to each component of the vector a;. Now we define the
functions f; so that

(24) fi(bj) =y
From the definition (23) we get

fi-1(bj1) = f;(0;(W;b;_1 — 7;)).
Differentiating both sides we get

(25) fi—1(bj1) = [i(bj)oj(a;)W;.
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In this formula o}(a;) is a diagonal matrix. Since fi(br) = I we can use
this formula to calculate all the derivatives fi(b;). Having calculated these
we get

(26) T = Ji e (m)
and
(21) T = b))

2. The minimization problem

Let w be a vector that contains all the matrices W; and threshold-vectors
75, ] =1,...,L. We denote the output of a neural network with parameters
w and input x by y = n(x,w). Suppose that we want the network to be
such that n(x;,w) = y;. Then one very reasonable criterion for choosing
the parameters w is to minimize the function

E(w) =1 In(xi,w) - yil*.
=1

With the aid of the backpropagation algorithm, it is straightforward to
calculate the derivative E’(w) and thus a large number of minimiization
algorithms can be used.

3. The conjugate gradient method

The conjugate gradient method for finding the the minimum of a function
f:R? — R is defined as follows:

Definition 15. If f € C(R?) is differentiable and wo € R?, then sy =
—f!(wo)T, and if k > 0 and wy, and s, are determined then Wiy, = Wi +1sk
where 1y, is chosen so that f(wy + tgsi) = minger f(Wg + isg), and

, fl 2
(28) %H:—fw%nT+H%%§4

In practice the function f is, of course, not a quadratic, at least exactly,
but if it is, then the conjugate gradient method works very efliciently.

Theorem 16. If f(w) = %W Aw +b-w+te, w e RY where A is a
positive definite symmetric d X d matriz, then the conjugate gradient method
terminates in at most d steps.
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Proof. Let us use the notation gr = f/(wy)!. The method terminates
when gr = 0 and we have to show that this happens when k£ < d, and for

this reason we assume that g # 0 for k =0,...,d.
It follows from the definition of the method that
(29) gi+1-s;, =0, j>1.

One consequence of this is that since g # 0 we also have s; # 0 for
k=0,...,d. Another consequence is that by (28) we have

(30) sk 8k = —|gkl®, k>0.

We have to show using induction that the following claims hold for 0 <
j<k<d:

(31) s; - Asp =0,
(32) g gr=0.

The fact that the function is quadratic implies that
(33) 8kt+1 = 8+t Ask, k>0,
where we then by (29) must have

-8
(34) th = —i’ﬁTs’“k.

If £ = 0 the claims (31) and (32) are empty and therefore hold. Suppose
they hold for some & > 0. Then by (34),

g 8Bki1 = 8 "8k T 118 - Asp = g; - 8k — ti(s; — Bj_18j-1) - Asy,

2
where 3; = %. From this equation one sees that gi - gr+1 = 0 by (31),

(30), and (35). If j < k then g; - gx+1 = 0 by (31) and (32).
Furthermore we have by (28) and (34)

S;j - Ask-l—l = —s;- Agk-}—l + ﬁij - Asp = —AS]' “Zhky1 T+ ﬁij - Asy,
1
= (8 — &i+1) - Grt1 + Brs; - As.
i
From this we conclude that s; - Asg41 = 0 by (32), (30), (35), and by the
definition of 8. If j < k we have s; - Asg41 = 0 by (31) and (32).

If none of the vectors gy is zero for k = 0,...,d we have found d + 1
orthogonal nonzero vectors in R? which is impossible. This contradiction
completes the proof. O

We have the following partial result on the convergence of the conjugate
gradient method.
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Theorem 17. Assume that wo € R? and that f € C*(R?) are such that the
set {w € R? | f(w) < f(wo)} is bounded. Let so = 0 and suppose that the
sequences (Wi)o2 ., (k)2 and (1), are such that for each k > 0,

(35) Wit = Wk + Sk,
(36) |8k+1 - sk| < —ogk - sk,
(37) F(wiy1) < f(wi) + ptrgr sk, e >0
(38) Sk41 = —Gk+1 + BkSk,
gkl
(39) Br = PAER

where g, = f'(wi)T, p>0, and0< o < 3
Then liminfy_, ., gr = 0.

Proof. We leave it as an exercise to show that
1 . 1-2
( 40) gk 52k B a
gkl

Since we assume that o < = 1t follows that we actually have g - s < 0 for
all £ such that gi # 0.

Furthermore, we have by (37) and (41) that

1-0¢ 1l—0"

2
si| < —ogp s < ——|gi|?
|8k+1 8k < —ogk sk < T8kl

Using this inequality together with the definitions (39) and (40) we get

l+o ka1 [*[skl”
|Sk+1|2 = |gk+1|2 - 25k8k+1 Skt ﬁzlskP < 1-— O'|gk+1|2 * %

Using this inequality in the induction step we can show that

1+o0 k
(41) st < T Tlgel* Y lesl
J=0

If liminfy_ o g # O (which includes the assumption that gi # 0 for all
k) then there is a constant € > 0 such that

(42) |gk| >€> 07

for all k. Since the points wj are contained in abounded set the numbers
|gi| are bounded from above and there is by (42) a constant ¢; such that

(43) Isg|> < er(k+1), k>0.
Using inequality (41) we get

- |gk-sk|2 1-20 gkt 1-20\? et 1
44 — —
(44) Z sz|? l1—0 Zst_ l1—0 c1 E+1’
=0
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and this goes to infinity as n — oc.

It follows from our assumptions that f” is bounded on compact sets and
therefore there is a constant ¢y such that

|8k+1 - Sk — 8k - k| < co|Wiyr — wi|[sk].

A consequence of this is that

and by (38) this implies that

p(1—0)|gk - skl?
ca |sk|?

J(We1) < f(wy) —

g sk
552

is bounded from above, which is a contradiction in view of (45). This com-
pletes the proof. O

But since f(wy,) is bounded from below this inequality implies that >} _,
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