Backpropagation and minimization

1. The backpropagation algorithm

Suppose the input to the neural network is \mathbf{x} and the output is \mathbf{y} . The purpose of the backpropaation algorithm is to calculate the derivative of \mathbf{y} with respect to the weights and thresholds of the network. Recall the definition of a feed-forward network:

(23)
$$\mathbf{b}_{0} = \mathbf{x},$$

$$\mathbf{a}_{j} = W_{j} \mathbf{b}_{j-1} - \tau_{j}, \quad 1 \leq j \leq L,$$

$$\mathbf{b}_{j} = \sigma_{j}(\mathbf{a}_{j}), \quad 1 \leq j \leq L,$$

$$\mathbf{y} = \mathbf{b}_{L}.$$

Usually we take σ_L to be the identity. This definition contains the possibility that each function σ_j consists of a vector of real-valued functions of a real variable, but in general one assumes that all these functions are the same, that is σ_j is applied to each component of the vector \mathbf{a}_j . Now we define the functions f_j so that

$$(24) f_i(\mathbf{b}_i) = \mathbf{y}.$$

From the definition (23) we get

$$f_{j-1}(\mathbf{b}_{j-1}) = f_j(\sigma_j(W_j\mathbf{b}_{j-1} - \tau_j)).$$

Differentiating both sides we get

(25)
$$f'_{i-1}(\mathbf{b}_{j-1}) = f'_i(\mathbf{b}_j)\sigma'_i(\mathbf{a}_j)W_j.$$

In this formula $\sigma'_j(\mathbf{a}_j)$ is a diagonal matrix. Since $f'_L(\mathbf{b}_L) = I$ we can use this formula to calculate all the derivatives $f'_j(\mathbf{b}_j)$. Having calculated these we get

(26)
$$\frac{\partial \mathbf{y}}{\partial W_j(k,m)} = f'_j(\mathbf{b}_j)\sigma_j(\mathbf{a}_j(k))\mathbf{b}_{j-1}(m),$$

and

(27)
$$\frac{\partial \mathbf{y}}{\partial \mathbf{t} a u_j(k)} = -f_j'(\mathbf{b}_j) \sigma_j(\mathbf{a}_j(k)).$$

2. The minimization problem

Let \mathbf{w} be a vector that contains all the matrices W_j and threshold-vectors τ_j , $j = 1, \ldots, L$. We denote the output of a neural network with parameters \mathbf{w} and input \mathbf{x} by $\mathbf{y} = \eta(\mathbf{x}, \mathbf{w})$. Suppose that we want the network to be such that $\eta(\mathbf{x}_i, \mathbf{w}) = \mathbf{y}_i$. Then one very reasonable criterion for choosing the parameters \mathbf{w} is to minimize the function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} |\eta(\mathbf{x}_i, \mathbf{w}) - \mathbf{y}_i|^2.$$

With the aid of the backpropagation algorithm, it is straightforward to calculate the derivative $E'(\mathbf{w})$ and thus a large number of minimization algorithms can be used.

3. The conjugate gradient method

The conjugate gradient method for finding the the minimum of a function $f: \mathbb{R}^d \to \mathbb{R}$ is defined as follows:

Definition 15. If $f \in \mathbb{C}(\mathbb{R}^d)$ is differentiable and $\mathbf{w}_0 \in \mathbb{R}^d$, then $\mathbf{s}_0 = -f'(\mathbf{w}_0)^T$, and if $k \geq 0$ and \mathbf{w}_k and \mathbf{s}_k are determined then $\mathbf{w}_{k+1} = \mathbf{w}_k + t_k \mathbf{s}_k$ where t_k is chosen so that $f(\mathbf{w}_k + t_k \mathbf{s}_k) = \min_{t \in \mathbb{R}} f(\mathbf{w}_k + t \mathbf{s}_k)$, and

(28)
$$\mathbf{s}_{k+1} = -f'(\mathbf{w}_{k+1})^{\mathrm{T}} + \frac{|f'(\mathbf{w}_{k+1})|^2}{|f'(\mathbf{x}_k)|^2} \mathbf{s}_k.$$

In practice the function f is, of course, not a quadratic, at least exactly, but if it is, then the conjugate gradient method works very efficiently.

Theorem 16. If $f(\mathbf{w}) = \frac{1}{2}\mathbf{w} \cdot A\mathbf{w} + \mathbf{b} \cdot \mathbf{w} + c$, $\mathbf{w} \in \mathbb{R}^d$, where A is a positive definite symmetric $d \times d$ matrix, then the conjugate gradient method terminates in at most d steps.

Proof. Let us use the notation $\mathbf{g}_k = f'(\mathbf{w}_k)^{\mathrm{T}}$. The method terminates when $\mathbf{g}_k = \mathbf{0}$ and we have to show that this happens when $k \leq d$, and for this reason we assume that $\mathbf{g}_k \neq \mathbf{0}$ for $k = 0, \ldots, d$.

It follows from the definition of the method that

$$\mathbf{g}_{j+1} \cdot \mathbf{s}_j = 0, \quad j \ge 1.$$

One consequence of this is that since $\mathbf{g}_k \neq \mathbf{0}$ we also have $\mathbf{s}_k \neq \mathbf{0}$ for $k = 0, \dots, d$. Another consequence is that by (28) we have

$$(30) \mathbf{s}_k \cdot \mathbf{g}_k = -|\mathbf{g}_k|^2, \quad k \ge 0.$$

We have to show using induction that the following claims hold for $0 \le j < k \le d$:

$$\mathbf{s}_i \cdot A \mathbf{s}_k = 0,$$

$$\mathbf{g}_i \cdot \mathbf{g}_k = 0.$$

The fact that the function is quadratic implies that

$$\mathbf{g}_{k+1} = \mathbf{g}_k + t_k A \mathbf{s}_k, \quad k \ge 0,$$

where we then by (29) must have

$$(34) t_k = -\frac{\mathbf{g}_k \cdot \mathbf{s}_k}{\mathbf{s}_k \cdot A\mathbf{s}_k}.$$

If k = 0 the claims (31) and (32) are empty and therefore hold. Suppose they hold for some $k \geq 0$. Then by (34),

$$\mathbf{g}_i \cdot \mathbf{g}_{k+1} = \mathbf{g}_i \cdot \mathbf{g}_k + t_k \mathbf{g}_i \cdot A \mathbf{s}_k = \mathbf{g}_i \cdot \mathbf{g}_k - t_k (\mathbf{s}_i - \beta_{i-1} \mathbf{s}_{i-1}) \cdot A \mathbf{s}_k$$

where $\beta_j = \frac{|\mathbf{g}_{j+1}|^2}{|\mathbf{g}_j|^2}$. From this equation one sees that $\mathbf{g}_k \cdot \mathbf{g}_{k+1} = 0$ by (31), (30), and (35). If j < k then $\mathbf{g}_j \cdot \mathbf{g}_{k+1} = 0$ by (31) and (32).

Furthermore we have by (28) and (34)

$$\mathbf{s}_{j} \cdot A \mathbf{s}_{k+1} = -\mathbf{s}_{j} \cdot A \mathbf{g}_{k+1} + \beta_{k} \mathbf{s}_{j} \cdot A \mathbf{s}_{k} = -A \mathbf{s}_{j} \cdot \mathbf{g}_{k+1} + \beta_{k} \mathbf{s}_{j} \cdot A \mathbf{s}_{k}$$

$$= \frac{1}{t_{j}} (\mathbf{g}_{j} - \mathbf{g}_{j+1}) \cdot \mathbf{g}_{k+1} + \beta_{k} \mathbf{s}_{j} \cdot A \mathbf{s}_{k}.$$

From this we conclude that $\mathbf{s}_k \cdot A\mathbf{s}_{k+1} = 0$ by (32), (30), (35), and by the definition of β_k . If j < k we have $\mathbf{s}_j \cdot A\mathbf{s}_{k+1} = 0$ by (31) and (32).

If none of the vectors \mathbf{g}_k is zero for $k = 0, \ldots, d$ we have found d + 1 orthogonal nonzero vectors in \mathbb{R}^d which is impossible. This contradiction completes the proof.

We have the following partial result on the convergence of the conjugate gradient method.

Theorem 17. Assume that $\mathbf{w}_0 \in \mathbb{R}^d$ and that $f \in C^2(\mathbb{R}^d)$ are such that the set $\{\mathbf{w} \in \mathbb{R}^d \mid f(\mathbf{w}) \leq f(\mathbf{w}_0)\}$ is bounded. Let $\mathbf{s}_0 = \mathbf{0}$ and suppose that the sequences $(\mathbf{w}_k)_{n=0}^{\infty}$, $(\mathbf{s}_k)_{n=0}^{\infty}$ and $(t_k)_{n=0}^{\infty}$ are such that for each $k \geq 0$,

$$\mathbf{w}_{k+1} = \mathbf{w}_k + t_k \mathbf{s}_k,$$

$$|\mathbf{g}_{k+1} \cdot \mathbf{s}_k| \le -\sigma \mathbf{g}_k \cdot \mathbf{s}_k,$$

(37)
$$f(\mathbf{w}_{k+1}) \le f(\mathbf{w}_k) + \rho t_k \mathbf{g}_k \cdot \mathbf{s}_k, \quad t_k > 0$$

$$\mathbf{s}_{k+1} = -g_{k+1} + \beta_k \mathbf{s}_k,$$

$$\beta_k = \frac{|\mathbf{g}_{k+1}|^2}{|\mathbf{g}_k|^2},$$

where $\mathbf{g}_k = f'(\mathbf{w}_k)^T$, $\rho > 0$, and $0 < \sigma < \frac{1}{2}$.

Then $\liminf_{k\to\infty} \mathbf{g}_k = \mathbf{0}$.

Proof. We leave it as an exercise to show that

$$(40) -\frac{1}{1-\sigma} \le \frac{\mathbf{g}_k \cdot \mathbf{s}_k}{|\mathbf{g}_k|^2} \le -\frac{1-2\sigma}{1-\sigma}.$$

Since we assume that $\sigma < \frac{1}{2}$ it follows that we actually have $\mathbf{g}_k \cdot \mathbf{s}_k < 0$ for all k such that $\mathbf{g}_k \neq 0$.

Furthermore, we have by (37) and (41) that

$$|\mathbf{g}_{k+1} \cdot \mathbf{s}_k| \le -\sigma \mathbf{g}_k \cdot \mathbf{s}_k \le \frac{\sigma}{1-\sigma} |\mathbf{g}_k|^2.$$

Using this inequality together with the definitions (39) and (40) we get

$$|\mathbf{s}_{k+1}|^2 = |\mathbf{g}_{k+1}|^2 - 2\beta_k \mathbf{g}_{k+1} \cdot \mathbf{s}_k + \beta_k^2 |\mathbf{s}_k|^2 \le \frac{1+\sigma}{1-\sigma} |\mathbf{g}_{k+1}|^2 + \frac{|\mathbf{g}_{k+1}|^4 |\mathbf{s}_k|^2}{|\mathbf{g}_k|^4}.$$

Using this inequality in the induction step we can show that

(41)
$$|\mathbf{s}_k|^2 \le \frac{1+\sigma}{1-\sigma} |\mathbf{g}_k|^4 \sum_{i=0}^k |\mathbf{g}_j|^{-2}.$$

If $\liminf_{k\to\infty} \mathbf{g}_k \neq \mathbf{0}$ (which includes the assumption that $\mathbf{g}_k \neq 0$ for all k) then there is a constant $\epsilon > 0$ such that

$$|\mathbf{g}_k| \ge \epsilon > 0,$$

for all k. Since the points \mathbf{w}_k are contained in abounded set the numbers $|\mathbf{g}_k|$ are bounded from above and there is by (42) a constant c_1 such that

$$|\mathbf{s}_k|^2 \le c_1(k+1), \quad k \ge 0.$$

Using inequality (41) we get

$$(44) \qquad \sum_{k=0}^{n} \frac{|\mathbf{g}_{k} \cdot \mathbf{s}_{k}|^{2}}{|\mathbf{s}_{k}|^{2}} \ge \left(\frac{1-2\sigma}{1-\sigma}\right)^{2} \sum_{k=0}^{n} \frac{|\mathbf{g}_{k}|^{4}}{|\mathbf{s}_{k}|^{2}} \ge \left(\frac{1-2\sigma}{1-\sigma}\right)^{2} \frac{\epsilon^{4}}{c_{1}} \sum_{k=0}^{n} \frac{1}{k+1},$$

© G. Gripenberg 21.2.2002

and this goes to infinity as $n \to \infty$.

It follows from our assumptions that f'' is bounded on compact sets and therefore there is a constant c_2 such that

$$|\mathbf{g}_{k+1} \cdot \mathbf{s}_k - \mathbf{g}_k \cdot \mathbf{s}_k| \le c_2 |\mathbf{w}_{k+1} - \mathbf{w}_k| |\mathbf{s}_k|.$$

A consequence of this is that

$$t_k \ge -\frac{1-\sigma}{c_2} \frac{\mathbf{g}_k \cdot \mathbf{s}_k}{|\mathbf{s}_k|^2},$$

and by (38) this implies that

$$f(\mathbf{w}_{k+1}) \le f(\mathbf{w}_k) - \frac{\rho(1-\sigma)}{c_2} \frac{|\mathbf{g}_k \cdot \mathbf{s}_k|^2}{|\mathbf{s}_k|^2}.$$

But since $f(\mathbf{w}_k)$ is bounded from below this inequality implies that $\sum_{k=0}^{n} \frac{|\mathbf{g}_k \cdot \mathbf{s}_k|^2}{|\mathbf{s}_k|^2}$ is bounded from above, which is a contradiction in view of (45). This completes the proof.