
1. We use the notation

π(+ | m) = prob. of positive mammogram with a malignant tumor,

and similarly with the other cases. From the table,

π(+ | m) = 0.8, π(− | m) = 0.2,

π(+ | b) = 0.1, π(− | b) = 0.9,

The subjective probabilities of having malignant/beningn tumor, based
on the patient’s consulting the internet, are

π(m) = 0.01, π(b) = 0.99.

Notice: these numbers are not so reliable, since the probability of
having a lump in the brest is not taken into account, and one should
indeed condition on that.

(a) Probability of positive mammogram result:

π(+) = π(+ | m)π(m) + π(+ | b)π(b)

= 0.8 · 0.01 + 0.1 · 0.99

= 0, 107

≈ 0, 1.

(b) Conditional probability of the malignant tumor, conditioned on
the fact that the mammogram was positive, by Bayes formula:

π(m | +) =
π(+ | m)π(m)

π(+)

≈ 0, 07.

2. Your prior probability for believing the story

π(+) = x, π(−) = 1 − x.

Conditional probabilities: If the guy makes a wild guess, i.e., there is
no gift,

π(right | −) = 0.01, π(wrong | −) = 0.99.

The guy claims to have the gift, and gives the conditional probabilities
of his success:

π(right | +) = 0.8, π(wrong | −) = 0.2.
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In the light of this, your subjective probability for his success of getting
it right is

π(right) = π(right | +)π(+) + π(right | −)π(−)

= 0.8x+ 0.01(1 − x).

By Bayes formyla, the probability of the claimed gift, considering the
fact that the guy got it right, is

π(+ | right) =
π(right | +)π(+)

π(right)

=
0, 8x

0, 8x+ 0, 01(1 − x)
.

Set
π(+ | right) < 0.5,

and solve the bound for x.

3. Divide 24 hours in n intervals ∆j , the length of ∆j being tj (hours).
The probability density of your waiting time, assuming that you arrive
during ∆j to the station, is

π(t | ∆j) =
1

tj
χ∆j

(t).

The conditional expectation of your waiting time is then

E
{
T | ∆j

}
=

∫
tπ(t | ∆j)dt =

tj

2
.

The probability to arrive to the station during ∆j is

π(∆j) =
tj

24
,

so the average waiting time is

E
{
T
}

=
n∑

j=1

E
{
T | ∆j

}
π(∆j) =

4. Take a set B ∈ R+ and denote

B̃ =
{
(x1, x2) | r =

√
x2

1 + x2
2 ∈ B

}
⊂ R

2.
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The componets X1 and X2 are independent, so the joint density is

π(x1, x2) = π(x1)π(x2) =
1

2πσ2
exp

(
−

1

2σ2
(x2

1 + x2
2)

)
.

We have

P
{
R ∈ B

}
= P

{
(X1, X2) ∈ B̃

}
=

∫

eB

π(x1, x2)dx1dx2

=
1

2πσ2

∫

B

∫ 2π

0

exp


− 1

2σ2
(x2

1 + x2
2)︸ ︷︷ ︸

=r2


 dθrdr

=

∫

B

r

σ2
exp

(
−

1

2σ2
r2
)
dr,

so the Rayleigh distribution is given by the density

π(r) =
r

σ2
exp

(
−

1

2σ2
r2
)
.

5. For moments of the Gaussian random variable X ∼ N (µ, σ) we see
with the change of variable x = ψ(y) = y + µ that1

E{(X − x)k} =

(
1

2πσ

) 1
2
∫

R

(x− µ)ke
−

(x−µ)2

2σ2 dx

CoV
=

(
1

2πσ

) 1
2
∫

R

yke
−

y

2σ2 dy.

Hence the skewness of X is

(
1

2πσ

) 1
2
∫

R

y3e
−

y

2σ2 dy = 0,

since the integrad is an odd function (and integrable).

1CoV = Change of Variables
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For the kurtosis we use partial integration

E{(X − x)k} =

(
1

2πσ

) 1
2
∫

R

y4e
−

y

2σ2 dy

PI
=

(
1

2πσ

) 1
2




/
∞

−∞

− y3σ2e
−

y2

2σ2

︸ ︷︷ ︸
0

+

∫
∞

−∞

3y2σ2e
−

y

2σ2 dy




PI
=

(
1

2πσ

) 1
2




/
∞

−∞

− 3σ4e
−

y2

2σ2

︸ ︷︷ ︸
0

+

∫
∞

−∞

3σ4e
−

y

2σ2 dy




= 3σ4, (1)

since2 the integral of the Gaussian over R is 1.

2PI = Partial Integration
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