E. SOMERSALO

TOWARDS A STATISTICAL PROBLEM SETTING

Traditional setup:

e We want to estimate a parameter x € R™ that we cannot observe directly.
e We may or may not know something about z, e.g., x € B.

e We observe another vector y € R¥ that depends on = through a mathe-
matical model:

y = f(x).

e Find an estimate x having the desired properties so that the above equa-
tion is approximately true. Use, e.g., constrained optimization:

minimize ||y — f(x)|| subject to constraint x € B.
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BAYESIAN SETTING
We have

e a priori beliefs of the qualities of the unknown,

e a reasonable model that explains the observation, with all uncertainties
included

We need to

e express x as a parameter that defines the distribution of y; (construction

of the likelihood model)

e incorporate prior information into the model; (construction of the prior

model).
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BASiCc PRINCIPLES AND TECHNIQUES
Randomness means lack of information.
Basic principle: Everything that is not known for sure is a random variable.

Basic techniques are

e conditioning: take one unknown at a time and pretend that you know
the rest:

m(z,y) = n(z [ y)n(y) = n(y | v)m(2),

e marginalization: if a variable is of no interest, integrate it out:

w(x,y) = /W(w,y,v)dv.
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CONSTRUCTION OF LIKELIHOOD

Likelihood answers to the question: Assuming that we knew the unknown zx,
how would the measurement be distributed?

Randomness of the measurement y, provided that x is known, is due to

1. measurement noise
2. any incompleteness in the computational model:

(a) discretization

(b) incomplete description of “reality” (to the best of our
understanding)

(c) unknown nuisance parameters

COMPUTATIONAL METHODS IN INVERSE PROBLEMS, MAT—1.3626

0

3



E. SOMERSALO

EXAMPLE

Assume a functional dependence,

y = f(x),

when no errors in the observations.

A frequently used model is the additive noise model,
Y = f(X) + E,
where the distribution of the error is
E ~ Tyoise(€)-

Assume Tyoice KNOWN.

If £ and X are mutually independent,

7T(y ‘ CU) — 7Tnoise(y - f(ZE))
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E. SOMERSALO

The noise distribution may depend on unknown parameters 6:

7Tnoise<e) — 7-‘-r10ise<6 ‘ 9)

Likelihood in this case:
W(y | xae) = 7Tnoise(y — f(:IZ) | ‘9)-

Example: E is zero mean Gaussian with unknown variance o2,

E ~ N(0,0°%1),
where I € R™*™ is the identity matrix. In this case,

1 1
| 2.0%) = e (g ly = 1@
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EXAMPLE

Assume that

e the device consists of a collecting lens and a photon counter,

e the photons come from N emitting sources.

Average photon emission/observation time = z;, 1 < j < N.

The geometry of the lens:

Average total count = weighted sum of the individual contributions.
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J j+n

J=k ] J+n
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Ezxpected output defined by the geometry:

L
7 =B{Y;} = ) axj
k=—L

where

e weights a; determined by the geometry of the lens

e index L is related to the width of the lens

Here, z;, =0if j <lorj> N.
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Repeating the reasoning over each source point, we arrive at a matrix model
Y= E{Y} = Az,

where A € R"*" is a Toeplitz matrix,

B aO a’—]_ o o o a’—L 7]
aq ao
a—_r,
A=
ar,
ao a_1
i ar, .. a1 ao |

The parameter L defines the bandwidth of the matrix.
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Weak, the observation model described is a photon counting process:

Y; ~ Poisson((Az);),

that is,
Ax)?
m(y; | x) = ( )"7 exp( — (Az);).

Yj:

Consecutive measurements are independent, Y € R" has the density

N
m(y | x) :H (yj | ) =

yy

Eh

exp( — (Az);).

7=1
We express this relation simply as

Y ~ Poisson(Ax).
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(FAUSSIAN APPROXIMATION

Assuming that the count is high, we may write

Q

AR S R e e

(=1

= ((%)Lget(r) ) . exp (—%(y — Az)' Ty — Aw)) ,

I =T'(z) = diag(Az).

The higher the signal, the higher the noise.
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CHANGE OF VARIABLES

Random variables X and Y in R"™,

Y = f(X),

where f is a differentiable function, and the probability distribution of Y is
known:

Probability density of X7

m(y)dy = p(y)dy = p(f(x))|det(Df(x))|dz,

Identify
m(x) = p(f(x))|det(Df(z))]
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EXAMPLE

Noisy amplifier: input f(t¢) amplified by a factor o > 1.

Ideal model for the output signal:

Noise: o fluctuates.

Discrete signal:

:Cj:f(tj)a yj:g(tj), D=t <t <---

Amplification at ¢t = ¢, is a;:

<tn,=T1T.
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Stochastic extension:

or in the vector notation as
Y = AX,

Assume: A has the probability density

A~ Thoise (CL) )

Likelihood density for Y, conditioned on X = z, is

(Y | ) X Thoise (:c ,

Normalizing:

B 1 v.
7T(y ‘ CU) — 1%y T Tnoise (E) )
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Formally:
_ Yy
y=awx, or a=—,  fixed,
T
or ]
(Zj = y—‘77 daj — ﬂ
oy X j
A d dyy,
pla)da = pla)da; ---da, = p (y_) ayr  Yn
I L1 Ty
1 .
— ( P (y—)) dyy - - - dy,
L1T2 Ty T
Z;Ey)
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Example: all the variables are positive, and A is log-normally distributed:
Wi zlogA’L NN(wOJO-Q)a Wo :lOgOéo,

components mutually independent.

Note: the probability distributions transform as densities, not as functions!

P{WZ — lOgAZ < t} = P{AZ < et}. (3)

L.h.s. as an integral:

1 t 1
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Change of variables:

1
w; = 10g a;, dwz = —da,z-,
07}

and substitute wg = log ay:

1 1 1 ,
P{Wi < t} = W/o a—iexp (—T‘Q(logai — log ap) ) da;

et 2
1 / 1 1 | a; g
= —exp | ———= ([ log — a;.
V2ro? Jo G P 202 5 Q

Compare to the r.h.s. to identify

2
oy L1 L[, a
i) = \/ 2m o2 ajiexp 202 5 870 ’

which is the one-dimensional log-normal density.
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Independent components:

m(ylz) = w(ylz) - 7(yn|z)
n/2 n 2
1 1 1 v
— i ] J
(27“72) vz U 2‘72;(%@0%)

Remark: Alternative approach:

logY =log X +logA =1log X + W,

and we may write the conditional density for logY, as

22 2072

n/2 n
1 1
w(logy | z) = ( ) exp | ———= (logy; —logx; — log a0)2
J=1
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EXAMPLE

Poisson noise and additive Gaussian noise:

Y =Z+E, Z~Poisson(Azr), E ~ N(0,0°I).

First step: assume that X = x and Z = z are known, giving

1 2
m(y; | 25, %) o< exp (_ﬁ(yj — 25) ) :
Conditioning:
ﬂ-(yjazj | .T) — 7T(yj | Zjax)ﬂ(zj | SC)
The value of z; (integer) is not of interest here, so

m(y; | z) Zﬂ-yjaz]‘x
z;=0
> (e | 2)exp (— g s - 2)°
x O7r zj | @)exp (=55 (Y —2)7 ) -
Z5=
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CONSTRUCTION OF PRIORS

EXAMPLE: Assume that we try to determine the hemoglobin level x in blood
by near-infrared (NIR) measurement at the patients finger.

Previous measurements directly from the patient’s blood,

S = {xl,... ,ZIZ‘N}.
Think as realizations of a random variable with an unknown distribution.

e Non-parametric approach: Look at a histogram based on S.

e Parametric approach: Justify a parametric model, find the ML estimate
of the model parameters.
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Let us assume that

X NN(SEQ,O'Z).

From previous analysis, the ML estimate for xg is

and for o2,
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Any future value x will be another realization from the same distribution.

Postulate:

e The unknown X is a random variable, whose probability distribution is
denoted as 7,y (z) and called the prior distribution,

e By prior experience, and assuming that the Gaussian approximation of
the prior is justifiable, we use the parametric model

inle) = gz (5 (o - ao)?),

2mo?

where g and o2 are determined experimentally from S by the formulas
above.

The above approach, where the prior is defined through previous experience,
is called empirical Bayes approach.
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EXAMPLE

Rectangular array of squares. Each square contains a number of bacteria.
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The inverse problem: estimate the density of the bacteria from some indirect

measurements.
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Set up a model based on your belief how bacteria grow:

Number of bacteria in a box ~ average of neighbours,
or

Tj A —(Tieft,j T Tright,j T Tup,j + Tdown,j)-

| =
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Modification at boundary pixels: Define x; = 0 for pixels outside the square.

Matrix A € RV*N N = number of pixels,
(up) (down) (left) (right)
A(j,:):[O---1/4---1/4---1/4--- 1/4...()]7

Absolute certainty of your model, (= — =):

r = Ax. (4)

But this does not work: write (4) as
(I—-—A)x=0=z2=0,

since

det(I — A) # 0.
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Solution: relax the model and write
x = Ax +r, r = uncertainty of the model. (5)

Since 7 is not known, model it as a random variable.

Postulate a distribution to it,

T ~ Tmod.error (T) .

From x — Ax = r follows a natural prior model,

Tprior (.I’) — Tmod.error (CU — ACE)

The model (5) is referred to as autoregressive Markov model, and r is an
1mnovation process.
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In particular, if r is a Gaussian variable with mutually independent and equally
distributed components,

r ~N(0,0°1),

we obtain the prior model

2 1 \"? 1 2
Tprior(T | 0%) = ( ) exp (—ﬁﬂx — Az )

where
L=1-A.

Note: if 02 is not known (as it usually isn’t), it is part of the estimation
problem. Hierarchical models discussed later.
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Observe that L is a second order finite difference matrix with the mask

The model leads to what is often referred to as the second order smoothness

PTILOT.

“1/4

Another derivation: Assume that

Finite difference approximation,

Af(p;) = %(Aw)j,

where h = discretization size.
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SPARSE MATRICES IN MATLAB

n = 50; 7, Number of pixels per directions
% Creating an index matrix to enumerate the pixels
I = reshape([1:n"2],n,n);
%» Right neighbors of each pixel

Icurr = I(:,1:n-1);

Ineigh = I(:,2:n);

rows = Icurr(:);

cols = Ineigh(:);

vals = ones(n*(n-1),1);

%» Left neighbors of each pixel
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Tcurr = I(:,2:n);
Ineigh = I(:,1:n-1);

rows = [rows;Icurr(:)];
cols = [cols;Ineigh(:)];
vals = [vals;ones(n*(n-1),1)];

%» Upper neighbors of each pixel

Icurr = I(2:n-1,:);
Ineigh = I(1:n-1,:);

rows = [rows;Icurr(:)];
cols = [cols;Ineigh(:)];
vals = [vals;ones(n*(n-1),1)];

%» Lower neighbors of each pixel

Icurr = I(1:n-1,:);
Ineigh = I(2:n,:);

COMPUTATIONAL METHODS IN INVERSE PROBLEMS, MAT—1.3626 0-32



E. SOMERSALO

rows = [rows;Icurr(:)];
cols = [cols;Ineigh(:)];
vals [vals;ones(n*x(n-1),1)];

A = 1/4xsparse(rows,cols,vals);
L = speye(n”™2) - A;

COMPUTATIONAL METHODS IN INVERSE PROBLEMS, MAT—1.3626 0-33



E. SOMERSALO

POSTERIOR DENSITIES

Fundamental identity:

(2, Y) = Tprior ()7 (y | ) = 7(y)m (2 | y),

Bayes’ formula

Tprior ()T (y | )
y Y = Yobserved- 0
() )

m(x |y) =

Here 7(x | y) is the posterior density

The posterior density is the solution Bayesian of the inverse problem.
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EXAMPLE

Linear inverse problem, additive noise:
y=Axr+e, ze€R" y,ecR™ AecR™",
Stochastic extension
Y =AX+ F.

Assume that X and F are independent and Gaussian,

X ~N(0,4°T), E ~ N(0,0%I).
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The prior density is

1 |G
rior o T a.9 I .
Tprior (T | ) o exp ( 272513 90>

Observe:
det (’yQF) = y*"det (F)

Likelihood: .
o | o) s exp (5o ly — Asl?).
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From Bayes’ formula:

(x| y,y) o< Tprior(T | V)7(Y | T)

1 1 1
X —exp (——xTF_lx — -y — Ax\|2>

,-yn 2,72 20-2
1
= o0 (=Vi(z|y,7)).
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The matrix I' is symmetric positive definite. Cholesky factorization:

I'!'=R'R.

where R is upper triangular matrix.

From
' I 'e =2 R"Rx = |Rx||?

it follows that

T(x) =20"V(z | y,7) = lly — Az||* + 8*|| R[], &=

219

The functional T' is called the Tikhonov functional
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MAXIMUM A POSTERIORI (MAP) ESTIMATOR

Bayesian analogue of Maximum Likelihood estimator:

Tmap = argmax m(x | y),

or, equivalently,

amap = argmin V(z |y), V(z|y) =—logn(z|y).

Here,
rmap = argmin ([ly — Az||* + 6%|| Rz||?)
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Maximum Likelihood estimator is the least squares solution of the problem

Ax =,

Equivalent characterization of the MAP estimator:

2

Y

2 2 2 _ y | A
by - Al + el = || 4 |- | 5 |

so the MAP estimate is the least squares solution of

L fo=[0]
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