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Towards a Statistical Problem Setting

Traditional setup:

• We want to estimate a parameter x ∈ Rn that we cannot observe directly.

• We may or may not know something about x, e.g., x ∈ B.

• We observe another vector y ∈ Rk that depends on x through a mathe-
matical model:

y = f(x).

• Find an estimate x having the desired properties so that the above equa-
tion is approximately true. Use, e.g., constrained optimization:

minimize ‖y − f(x)‖ subject to constraint x ∈ B.
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Bayesian setting

We have

• a priori beliefs of the qualities of the unknown,

• a reasonable model that explains the observation, with all uncertainties
included

We need to

• express x as a parameter that defines the distribution of y; (construction
of the likelihood model)

• incorporate prior information into the model; (construction of the prior
model).
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Basic Principles and Techniques

Randomness means lack of information.

Basic principle: Everything that is not known for sure is a random variable.

Basic techniques are

• conditioning: take one unknown at a time and pretend that you know
the rest:

π(x, y) = π(x | y)π(y) = π(y | x)π(x),

• marginalization: if a variable is of no interest, integrate it out:

π(x, y) =
∫

π(x, y, v)dv.
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Construction of Likelihood

Likelihood answers to the question: Assuming that we knew the unknown x,
how would the measurement be distributed?

Randomness of the measurement y, provided that x is known, is due to

1. measurement noise

2. any incompleteness in the computational model:

(a) discretization

(b) incomplete description of “reality” (to the best of our
understanding)

(c) unknown nuisance parameters
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Example

Assume a functional dependence,

y = f(x),

when no errors in the observations.

A frequently used model is the additive noise model,

Y = f(X) + E,

where the distribution of the error is

E ∼ πnoise(e).

Assume πnoise known.

If E and X are mutually independent,

π(y | x) = πnoise(y − f(x)).
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f(x)
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The noise distribution may depend on unknown parameters θ:

πnoise(e) = πnoise(e | θ).

Likelihood in this case:

π(y | x, θ) = πnoise(y − f(x) | θ).

Example: E is zero mean Gaussian with unknown variance σ2,

E ∼ N (0, σ2I),

where I ∈ Rm×m is the identity matrix. In this case,

π(y | x, σ2) =
1

(2π)m/2σm
exp

(
− 1

2σ2
‖y − f(x)‖2

)
.
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Example

Assume that

• the device consists of a collecting lens and a photon counter,

• the photons come from N emitting sources.

Average photon emission/observation time = xj , 1 ≤ j ≤ N.

The geometry of the lens:

Average total count = weighted sum of the individual contributions.
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Expected output defined by the geometry:

yj = E
{
Yj

}
=

L∑

k=−L

akxj−k,

where

• weights aj determined by the geometry of the lens

• index L is related to the width of the lens

Here, xj = 0 if j < 1 or j > N .
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Repeating the reasoning over each source point, we arrive at a matrix model

y = E
{
Y

}
= Ax,

where A ∈ Rn×n is a Toeplitz matrix,

A =




a0 a−1 · · · a−L

a1 a0
. . .

...
. . . a−L

aL
. . .

...
. . . a0 a−1

aL · · · a1 a0




.

The parameter L defines the bandwidth of the matrix.
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Weak, the observation model described is a photon counting process:

Yj ∼ Poisson
(
(Ax)j

)
,

that is,

π(yj | x) =
(Ax)yj

j

yj !
exp

(− (Ax)j

)
.

Consecutive measurements are independent, Y ∈ RN has the density

π(y | x) =
N∏

j=1

π(yj | x) =
L∏

j=1

(Ax)yj

j

yj !
exp

(− (Ax)j

)
.

We express this relation simply as

Y ∼ Poisson(Ax).
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Gaussian approximation

Assuming that the count is high, we may write

π(y | x) ≈
L∏

`=1

(
1

2π(Ax)`

)1/2

exp
(
− 1

2(Ax)`

(
y` − (Ax)`

)2
)

=
(

1
(2π)Ldet(Γ)

)1/2

exp
(
−1

2
(y −Ax)TΓ−1(y −Ax)

)
,

Γ = Γ(x) = diag
(
Ax

)
.

The higher the signal, the higher the noise.
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Change of variables

Random variables X and Y in Rn,

Y = f(X),

where f is a differentiable function, and the probability distribution of Y is
known:

π(y) = p(y).

Probability density of X?

π(y)dy = p(y)dy = p(f(x))|det(Df(x))|dx,

Identify
π(x) = p(f(x))|det(Df(x))|.
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Example

Noisy amplifier: input f(t) amplified by a factor α > 1.

Ideal model for the output signal:

g(t) = αf(t), 0 ≤ t ≤ T.

Noise: α fluctuates.

Discrete signal:

xj = f(tj), yj = g(tj), 0 = t1 < t2 < · · · < tn = T.

Amplification at t = tj is aj :

yj = ajxj , 1 ≤ j ≤ n,
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Stochastic extension:
Yj = AjXj , 1 ≤ j ≤ n,

or in the vector notation as
Y = A.X, (1)

Assume: A has the probability density

A ∼ πnoise(a),

Likelihood density for Y , conditioned on X = x, is

π(y | x) ∝ πnoise

(y.

x

)
,

Normalizing:

π(y | x) =
1

x1x2 · · ·xn
πnoise

(y.

x

)
, (2)
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Formally:

y = a.x, or a =
y.

x
, x fixed,

or
aj =

yj

xj
, daj =

dyj

xj
.

p(a)da = p(a)da1 · · · dan = p
(y.

x

) dy1

x1
· · · dyn

xn

=
(

1
x1x2 · · ·xn

p
(y.

x

))

︸ ︷︷ ︸
=π(y)

dy1 · · · dyn.
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Example: all the variables are positive, and A is log-normally distributed:

Wi = log Ai ∼ N (w0, σ
2), w0 = log α0,

components mutually independent.

Note: the probability distributions transform as densities, not as functions!

P
{
Wi = log Ai < t

}
= P

{
Ai < et

}
. (3)

L.h.s. as an integral:

P
{
Wi < t

}
=

1√
2πσ2

∫ t

−∞
exp

(
− 1

2σ2
(wi − w0)2

)
dwi.
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Change of variables:

wi = log ai, dwi =
1
ai

dai,

and substitute w0 = log α0:

P
{
Wi < t

}
=

1√
2πσ2

∫ et

0

1
ai

exp
(
− 1

2σ2
(log ai − log α0)2

)
dai

=
1√

2πσ2

∫ et

0

1
ai

exp

(
− 1

2σ2

(
log

ai

α0

)2
)

dai.

Compare to the r.h.s. to identify

π(ai) =
1√

2πσ2

1
ai

exp

(
− 1

2σ2

(
log

ai

α0

)2
)

,

which is the one-dimensional log-normal density.
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Independent components:

π(y | x) = π(y1 | x) · · ·π(yn | x)

=
(

1
2πσ2

)n/2 1
y1y2 · · · yn

exp


 1

2σ2

n∑

j=1

(
log

yj

α0xj

)2

 .

Remark: Alternative approach:

log Y = log X + log A = log X + W,

and we may write the conditional density for log Y , as

π(log y | x) =
(

1
2πσ2

)n/2

exp


− 1

2σ2

n∑

j=1

(log yj − log xj − log α0)2


 .
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Example

Poisson noise and additive Gaussian noise:

Y = Z + E, Z ∼ Poisson(Ax), E ∼ N (0, σ2I).

First step: assume that X = x and Z = z are known, giving

π(yj | zj , x) ∝ exp
(
− 1

2σ2
(yj − zj)2

)
.

Conditioning:
π(yj , zj | x) = π(yj | zj , x)π(zj | x).

The value of zj (integer) is not of interest here, so

π(yj | x) =
∞∑

zj=0

π(yj , zj | x)

∝
∞∑

zj=0

π(zj | x)exp
(
− 1

2σ2
(yj − zj)2

)
.
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Construction of Priors

Example: Assume that we try to determine the hemoglobin level x in blood
by near-infrared (NIR) measurement at the patients finger.

Previous measurements directly from the patient’s blood,

S =
{
x1, . . . , xN

}
.

Think as realizations of a random variable with an unknown distribution.

• Non-parametric approach: Look at a histogram based on S.

• Parametric approach: Justify a parametric model, find the ML estimate
of the model parameters.
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Let us assume that
X ∼ N (x0, σ

2).

From previous analysis, the ML estimate for x0 is

x0,ML =
1
N

N∑

j=1

xj ,

and for σ2,

σ2
ML =

1
N

N∑

j=1

(xj − x0,ML)2.

Computational Methods in Inverse Problems, Mat–1.3626 0-23



E. Somersalo

Any future value x will be another realization from the same distribution.

Postulate:

• The unknown X is a random variable, whose probability distribution is
denoted as πpr(x) and called the prior distribution,

• By prior experience, and assuming that the Gaussian approximation of
the prior is justifiable, we use the parametric model

πpr(x) =
1

2πσ2
exp

(
− 1

2σ2
(x− x0)2

)
,

where x0 and σ2 are determined experimentally from S by the formulas
above.

The above approach, where the prior is defined through previous experience,
is called empirical Bayes approach.

Computational Methods in Inverse Problems, Mat–1.3626 0-24



E. Somersalo

Example

Rectangular array of squares. Each square contains a number of bacteria.

The inverse problem: estimate the density of the bacteria from some indirect
measurements.
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Set up a model based on your belief how bacteria grow:

Number of bacteria in a box ≈ average of neighbours,

or
xj ≈ 1

4
(xleft,j + xright,j + xup,j + xdown,j).

x
j

x
down

x
up

x
left

x
right
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Modification at boundary pixels: Define xj = 0 for pixels outside the square.

Matrix A ∈ RN×N , N = number of pixels,

(up) (down) (left) (right)

A(j, : ) =
[
0 · · · 1/4 · · · 1/4 · · · 1/4 · · · 1/4 · · · 0]

,

Absolute certainty of your model, (≈ −→ =):

x = Ax. (4)

But this does not work: write (4) as

(I −A)x = 0 ⇒ x = 0,

since
det(I −A) 6= 0.
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Solution: relax the model and write

x = Ax + r, r = uncertainty of the model. (5)

Since r is not known, model it as a random variable.

Postulate a distribution to it,

r ∼ πmod.error(r).

From x−Ax = r follows a natural prior model,

πprior(x) = πmod.error(x−Ax).

The model (5) is referred to as autoregressive Markov model, and r is an
innovation process.
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In particular, if r is a Gaussian variable with mutually independent and equally
distributed components,

r ∼ N (0, σ2I),

we obtain the prior model

πprior(x | σ2) =
(

1
2πσ2

)n/2

exp
(
− 1

2σ2
‖x−Ax‖2

)

=
(

1
2πσ2

)n/2

exp
(
− 1

2σ2
‖Lx‖2

)
,

where
L = I −A.

Note: if σ2 is not known (as it usually isn’t), it is part of the estimation
problem. Hierarchical models discussed later.
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Observe that L is a second order finite difference matrix with the mask



−1/4
−1/4 1 −1/4

−1/4


 .

The model leads to what is often referred to as the second order smoothness
prior.

Another derivation: Assume that

xj = f(pj), pj = point in the jth pixel.

Finite difference approximation,

∆f(pj) ≈ 1
h2

(
Ax

)
j
,

where h = discretization size.
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Sparse matrices in Matlab

n = 50; % Number of pixels per directions

% Creating an index matrix to enumerate the pixels

I = reshape([1:n^2],n,n);

% Right neighbors of each pixel

Icurr = I(:,1:n-1);
Ineigh = I(:,2:n);
rows = Icurr(:);
cols = Ineigh(:);
vals = ones(n*(n-1),1);

% Left neighbors of each pixel

Computational Methods in Inverse Problems, Mat–1.3626 0-31



E. Somersalo

Icurr = I(:,2:n);
Ineigh = I(:,1:n-1);
rows = [rows;Icurr(:)];
cols = [cols;Ineigh(:)];
vals = [vals;ones(n*(n-1),1)];

% Upper neighbors of each pixel

Icurr = I(2:n-1,:);
Ineigh = I(1:n-1,:);
rows = [rows;Icurr(:)];
cols = [cols;Ineigh(:)];
vals = [vals;ones(n*(n-1),1)];

% Lower neighbors of each pixel

Icurr = I(1:n-1,:);
Ineigh = I(2:n,:);
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rows = [rows;Icurr(:)];
cols = [cols;Ineigh(:)];
vals = [vals;ones(n*(n-1),1)];

A = 1/4*sparse(rows,cols,vals);
L = speye(n^2) - A;
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Posterior Densities

Fundamental identity:

π(x, y) = πprior(x)π(y | x) = π(y)π(x | y),

Bayes’ formula

π(x | y) =
πprior(x)π(y | x)

π(y)
, y = yobserved. (6)

Here π(x | y) is the posterior density

The posterior density is the solution Bayesian of the inverse problem.
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Example

Linear inverse problem, additive noise:

y = Ax + e, x ∈ Rn, y, e ∈ Rm, A ∈ Rm×n,

Stochastic extension

Y = AX + E.

Assume that X and E are independent and Gaussian,

X ∼ N (0, γ2Γ), E ∼ N (0, σ2I).
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The prior density is

πprior(x | γ) ∝ 1
γn

exp
(
− 1

2γ2
xTΓ−1x

)
.

Observe:
det

(
γ2Γ

)
= γ2ndet

(
Γ
)
.

Likelihood:

π(y | x) ∝ exp
(
− 1

2σ2
‖y −Ax‖2

)
.
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From Bayes’ formula:

π(x | y, γ) ∝ πprior(x | γ)π(y | x)

∝ 1
γn

exp
(
− 1

2γ2
xTΓ−1x− 1

2σ2
‖y −Ax‖2

)

=
1
γn

exp (−V (x | y, γ)) .
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The matrix Γ is symmetric positive definite. Cholesky factorization:

Γ−1 = RTR.

where R is upper triangular matrix.

From
xTΓ−1x = xTRTRx = ‖Rx‖2

it follows that

T (x) = 2σ2V (x | y, γ) = ‖y −Ax‖2 + δ2‖Rx‖2, δ =
σ

γ
. (7)

The functional T is called the Tikhonov functional
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Maximum A Posteriori (MAP) Estimator

Bayesian analogue of Maximum Likelihood estimator:

xMAP = arg max π(x | y),

or, equivalently,

xMAP = arg min V (x | y), V (x | y) = − log π(x | y).

Here,
xMAP = arg min

(‖y −Ax‖2 + δ2‖Rx‖2) (8)
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Maximum Likelihood estimator is the least squares solution of the problem

Ax = y, (9)

Equivalent characterization of the MAP estimator:

‖y −Ax‖2 + δ2‖Rx‖2 =
∥∥∥∥
[

y
0

]
−

[
A
δR

]
x

∥∥∥∥
2

,

so the MAP estimate is the least squares solution of
[

A
δR

]
x =

[
y
0

]
.
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