E. SOMERSALO

BASIC PROBLEM OF STATISTICAL INFERENCE

Assume that we have a set of observations
S:{xl,xg,...,:vN}, a:jE]Rn.

The problem is to infer on the underlying probability distribution that gives
rise to the data S.

e Statistical modeling

e Statistical analysis.
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E. SOMERSALO

PARAMETRIC OR NON-PARAMETRIC?

e Parametric problem: The underlying probability density has a specified
form and depends on a number of parameters. The problem is to infer

on those parameters.

e Non-parametric problem: No analytic expression for the probability den-
sity is available. Description consists of defining the dependency/non-
dependency of the data. Numerical exploration.

Typical situation for parametric model: The distribution is the probability
density of a random variable X : {J — R",

e Parametric problem suitable for inverse problems

e Model for a learning process
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E. SOMERSALO

LAW OF LARGE NUMBERS
General result (“Statistical law of nature”):

Assume that X7, Xs,... are independent and identically distributed random
variables with finite mean p and variance o?. Then,

1
lim — (X7 +Xo+ - +X,) =p

n—oo N,
almost certainly.

Almost certainly means that with probability one,

1
lim — (21 +x2+ -+ xn) =,

n—oo N,

x; being a realization of Xj.
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EXAMPLE

Sample
S:{xl,wg,...,xN}, ijRQ.

Parametric model: x; realizations of

X ~ N (330, F),
with unknown mean xy € R? and covariance matrix I' € R?*2,
Probability density of X:

1

(x| 2o, ') = 27Tdet1(F)1/2 exp (—5(1’ —z0) T (2 — :130)) :

Problem: Estimate the parameters xy and I'.
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E. SOMERSALO

The Law of Large Number suggests that we calculate

1 < .
j=1

Covariance matrix: observe that if X, Xo,... arei.i.d, so are f(X1), f(X2),...
for any function f :R? — RF.

Try
' = cov(X E{ — x0)( —JJO)T}

E{ — ZEQ - fo)T} (2)

—Z —ZIL‘O —Qjo)T:f.

Q

Q

Formulas (1) and (2) are known as empirical mean and covariance, respec-
tively.

4
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E. SOMERSALO

CASE 1: (GAUSSIAN SAMPLE

45 | *
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157
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E. SOMERSALO

Sample size N = 200.

Eigenvectors of the covariance matrix:

T =UDU", (3)
where U € R?*? is an orthogonal matrix and D € R?*? is a diagonal,

Ut =u-1.

Scaled eigenvectors,
VUj,scaled — 2 V )\jvjv

where /\; =standard deviation (STD).
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CASE 2: NON-(GAUSSIAN SAMPLE

1.5 1.5
1 1!
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-1.5 -15 - . . . .
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ESTIMATE OF NORMALITY /NON-NORMALITY

Consider the sets

B,={zeR*|n(z) >a}, a>0.

If 7 is Gaussian, B, is an ellipse or (.

Calculate the integral

P{X € B, } :/B m(x)dx.

We call B, the credibility ellipse with credibility p, 0 < p < 1, if

P{X S Ba} = p, giving a = a(p).
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E. SOMERSALO

Assume that the Gaussian density 7 has the center of mass and covariance
matrix xg and I' estimated from the sample S of size V.

If S is normally distributed,

#{ZCj c Ba(p)} ~ pIN. (6)

Deviations due to non-normality.
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E. SOMERSALO

How do we calculate the quantity?

Eigenvalue decomposition:
(z —T0) T Yz —%) = (z—T)"UD'UT(z —Tp)
= [|ID7VPUT (& — o),
since U is orthogonal, i.e., U=! = U, and we wrote

p-t2 _ | VA
L/VAs |

We introduce the change of variables,

w=f(z)=W(x—-3,), W=D Y2UT,
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E. SOMERSALO

Write the the integral in terms of the new variable w,

/Ba m(x)dx 27r(det1(1N“))1/2 /Ba exp (_%(x %) Tz — %)) "

where we used the fact that

1 1
dr =

VAiAe  det(I)1/2

dw = det(W)dx = dzx.

Note:
det(T) = det(UDUT) = det(UTUD) = det(D) = A\ Ao.
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E. SOMERSALO

The equiprobability curves for the density for w are circles centered around

the origin, i.e.,
F(Bo) = Ds = {w € B | ] < 6}

for some 6 > 0.

Solve ¢: Integrate in radial coordinates (r, 6),

1 1 ; 1
— exp | —=[|w||? | dw = / exp (——7“2) rdr
o1 Jp, 2 0 2

implying that

5= o(p) = \/210g (ﬁ)
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E. SOMERSALO

To see if the sample points x; is within the confidence ellipse with confidence
p, it is enough to check if the condition

Jwil| < d(p), w;j=W(x; —29), 1<j<N

i1s valid.

Plot
1

pr— 3 #7; € Bag) }
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EXAMPLE

—&—— Gaussian
09| — - — Non-gaussian

0 20 40 60 80 100
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E. SOMERSALO

MATLAB CODE

N = length(S(1,:)); % Size of the sample
xmean = (1/N)*(sum(S’)’); 7% Mean of the sample
CS = S - xmean*ones(1,N); 7% Centered sample
Gamma = 1/N*CS*CS’; % Covariance matrix

%» Whitening of the sample

[V,D] = eig(Gamma) ; %» Eigenvalue decomposition
W = diag([1/sqrt(D(1,1));1/sqrt(D(2,2))]1)*V’;
WS = WxCS; %» Whitened sample

normWS2 = sum(WS."2);
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E. SOMERSALO

%» Calculating percentual amount of scatter points that are
%» included in the confidence ellipses

rinside = zeros(11,1);
rinside(11) = N;
for j = 1:9
delta2 = 2xlog(1/(1-3/10));
rinside(j+1) = sum(normWS2<delta?2) ;
end
rinside = (1/N)*rinside;

plot ([0:10:100] ,rinside, k.-’ ,’MarkerSize’,12)
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E. SOMERSALO

Which one of the following formulae?

or

The former, please.
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EXAMPLE

Calibration of a measurement instrument:

e Measure a dummy load whose output known
e Subtract from actual measurement

e Analyze the noise

Discrete sampling; Output is a vector of length n.

Noise vector x € R"™ is a realization of
X : O — R"™.

Estimate mean and variance

1 _ 1
:_E: - (offset 2 _
nj:1x] (offset), o - gz To)?
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E. SOMERSALO

Improving Signal-to-Noise Ratio (SNR):

e Repeat the measurement
e Average

e Hope that the target is stationary

Averaged noise:

| N
__E: (k) n
€Tr = k_laj c R".

How large must N be to reduce the noise enough?
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E. SOMERSALO

Averaged noise x is a realization of a random variable

1 N
X = N l}_lX c R".

If XMW, x®@ . iid., X is asymptotically Gaussian by Central Limit Theo-

rem, and its variance is

0.2

var(X) = -

Repeat until the variance is below a given threshold,

Q
\V}

— < T,
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E. SOMERSALO

Number of averaged signals = 1
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Number of averaged signals = 10
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E. SOMERSALO

MAXIMUM LIKELIHOOD ESTIMATOR: FREQUENTIST’S APPROACH

Parametric problem,

X ~mp(z) =m(x|0), 6cRF

Independent realizations: Assume that the observations x; are obtained inde-
pendently.

More precisely: X1, Xo,..., Xy 1.1.d, z; is a realization of X.
Independency:

7‘-(3:173:27 cees LN | 0) — 7T(.CI]1 | H)W(xQ | (9) o 'ﬂ.(xN | 9)7
or, briefly,

,’:]z

7(S | ) =

m(x; | 0),
71=1
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E. SOMERSALO

Maximum likelihood (ML) estimator of § = parameter value that maximizes
the probability of the outcome:

N
O = arg max H m(x; | 0).

j=1

Define
L(S [ 0) = —log(m(S | 0)).

Minimizer of L(S | §) = maximizer of 7(S | ).
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EXAMPLE

Gaussian model

7T(x|a:0,02):\/2;7€xp(2(17 (x—:co)2>, ezlig]:[g;].

Likelihood function is

N 1\ V2 ;N
_ o 2
H m(x; | 0) = (27?92> exp ~20, Z(xj 61)
J=1 71=1
N
1 N
= €exp —% Z(ZCJ —(91)2 — Elog (27’(’(92)
j=1
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E. SOMERSALO

We have
- oL 1 [ 1 & N T
8—91 _@Z_:lxj+(9_%91
veLs|o=| =) .
—_— — T —01) + —
96, 1| 2 3;( 1) 5, _

Setting Vo L(S | ) = 0 gives

| N
o = Omr,1 = N ;:1: Lj,s
2 1 < 2
0° = 0mML2 = N ;:1:(379 — 1)
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EXAMPLE
Parametric model
om o0
w(n|6) = —e,

sample S = {ny,---,nn}, nr € N, obtained by independent sampling.

The likelihood density is

N N gn
S ‘ 9 H _Ne kl_[ ’n/k;!7
=1

k=1

and its negative logarithm is

N

L(S|6)=—logm(S|0)= Z (6 — ni log 6 + log ng!).
k=1
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E. SOMERSALO

Derivative with respect to 6 to zero:

N

0 N
2 LS| 6) = (1——):0,
810 =2 (1-5
leading to
S
ML = 77 NnE-
k=1
Warning:
2
1 1 —
Va]r(N)%Nkz:1 nk—szlnj :
= J:

which is different from the estimate of 0y, obtained above.
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E. SOMERSALO

Assume that 6 is known a prior: to be relatively large.

Use Gaussian approximation:

N |\ N2 |
H WPoisson(nj | 0) ~ (ﬁ) exp _% Z(n] o (9)2
j=1 g=1

1\ V2 1
o S

N
> (nj —6)>+ Nlog6
=1

|~

L(S|6)= 2> (n;—6)*+ Nlog6.

j=1

| -
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An approximation for Oyr,: Minimize

N
1
L(S10)= 2> (n;— 0)* + N log 6.
j=1
Write
3, R , 2o N
@L(SW) _—ﬁzmj_@) - 52(”3 —9)+§ =0,
J=1 71=1
or
N N N
) (nj—6)> =2 6(n; —0)+NO=N6O+NO—» n’=0,
j=1 j=1 j=1
giving
N 1/2 N
H — 1 4+ 1 Z 2 1 7g 1 Z .
|2 szlnj > N £ K
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EXAMPLE

Multivariate Gaussian model,
X ~ N(ZIJQ, F),

where x¢g € R” is unknown, I' € R™"*™ is symmetric positive definite (SPD)
and known.

Model reduction: assume that zo depends on hidden parameters z € RF
through a linear equation,

o= Az, AeR™F  zecRF (8)

Model for an inverse problem: z is the true physical quantity that in the ideal
case is related to the observable xy through the linear model (8).
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Noisy observations:
X=Az+FE, E~N(0,T).

Obviously,
E{X}=Az+E{E} = Az =z,

and
cov(X) =E{(X — A2)(X — A2)"} =E{FE"'} =T.

The probability density of X, given z, is

1
(2m)"/2det

m(z | z) =
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E. SOMERSALO

Independent observations:
S = {a:l,...,:vN}, r; € R".

Likelihood function

— A)'T 7 (z; — Az)

l\')IH
Mz

m(x; | z) < exp

||:]2

J=1
is maximized by minimizing

1

L(S|z) = 52 — A2)TT Yz, — Az)

N N | N
— ?zT [ATF_lA]z — 7T [ATF_l Z xj] + 5 Z x?F_lxj.
j=1

g=1
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Zeroing of the gradient gives

N
V.L(S|2)=N[ATTT' Az = A'TT7' ) 2; =0,

j=1

i.e., the maximum likelihood estimator zyy, is the solution of the linear system
| N
(AT Ale = AT, 7= .
j=1

The solution may not exist; All depends on the properties of the model reduc-
tion matrix A € R™"**¥,

COMPUTATIONAL METHODS IN INVERSE PROBLEMS, MAT—1.3626 0-34



E. SOMERSALO

Particular case: one observation, S = {w},

Lz | x) = (x — A2)'T 7 (x — Az).

Eigenvalue decomposition of the covariance matrix,
I =UDU",

or,

r'=wTw, w=DbDY2uT

we have

L(z | z) = [W(Az — o).

Hence, the problem reduces to a weighted least squares problem
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