
E. Somersalo

Basic Problem of Statistical Inference

Assume that we have a set of observations

S =
{
x1, x2, . . . , xN

}
, xj ∈ Rn.

The problem is to infer on the underlying probability distribution that gives
rise to the data S.

• Statistical modeling

• Statistical analysis.

Computational Methods in Inverse Problems, Mat–1.3626 0-0



E. Somersalo

Parametric or non-parametric?

• Parametric problem: The underlying probability density has a specified
form and depends on a number of parameters. The problem is to infer
on those parameters.

• Non-parametric problem: No analytic expression for the probability den-
sity is available. Description consists of defining the dependency/non-
dependency of the data. Numerical exploration.

Typical situation for parametric model: The distribution is the probability
density of a random variable X : Ω → Rn.

• Parametric problem suitable for inverse problems

• Model for a learning process
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Law of Large Numbers

General result (“Statistical law of nature”):

Assume that X1, X2, . . . are independent and identically distributed random
variables with finite mean µ and variance σ2. Then,

lim
n→∞

1
n

(
X1 + X2 + · · ·+ Xn

)
= µ

almost certainly.

Almost certainly means that with probability one,

lim
n→∞

1
n

(
x1 + x2 + · · ·+ xn

)
= µ,

xj being a realization of Xj .
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Example

Sample
S =

{
x1, x2, . . . , xN

}
, xj ∈ R2.

Parametric model: xj realizations of

X ∼ N (x0, Γ),

with unknown mean x0 ∈ R2 and covariance matrix Γ ∈ R2×2.

Probability density of X:

π(x | x0, Γ) =
1

2πdet(Γ)1/2
exp

(
−1

2
(x− x0)TΓ−1(x− x0)

)
.

Problem: Estimate the parameters x0 and Γ.
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The Law of Large Number suggests that we calculate

x0 = E
{
X

} ≈ 1
n

n∑

j=1

xj = x̂0. (1)

Covariance matrix: observe that if X1, X2, . . . are i.i.d, so are f(X1), f(X2), . . .
for any function f : R2 7→ Rk.

Try

Γ = cov(X) = E
{
(X − x0)(X − x0)T

}

≈ E
{
(X − x̂0)(X − x̂0)T

}
(2)

≈ 1
n

n∑

j=1

(xj − x̂0)(xj − x̂0)T = Γ̂.

Formulas (1) and (2) are known as empirical mean and covariance, respec-
tively.
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Case 1: Gaussian sample
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Sample size N = 200.

Eigenvectors of the covariance matrix:

Γ̃ = UDUT, (3)

where U ∈ R2×2 is an orthogonal matrix and D ∈ R2×2 is a diagonal,

UT = U−1.

U =
[

v1 v2

]
, D =

[
λ1

λ2

]
,

Γ̃vj = λjv, , j = 1, 2.

Scaled eigenvectors,
vj,scaled = 2

√
λjvj ,

where
√

λj =standard deviation (STD).
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Case 2: Non-Gaussian Sample
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Estimate of normality/non-normality

Consider the sets

Bα =
{
x ∈ R2 | π(x) ≥ α

}
, α > 0.

If π is Gaussian, Bα is an ellipse or ∅.
Calculate the integral

P
{
X ∈ Bα

}
=

∫

Bα

π(x)dx. (4)

We call Bα the credibility ellipse with credibility p, 0 < p < 1, if

P
{
X ∈ Bα

}
= p, giving α = α(p). (5)
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Assume that the Gaussian density π has the center of mass and covariance
matrix x̃0 and Γ̃ estimated from the sample S of size N .

If S is normally distributed,

#
{
xj ∈ Bα(p)

} ≈ pN. (6)

Deviations due to non-normality.
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How do we calculate the quantity?

Eigenvalue decomposition:

(x− x̃0)TΓ̃−1(x− x̃0) = (x− x̃0)TUD−1UT(x− x̃0)

= ‖D−1/2UT(x− x̃0)‖2,

since U is orthogonal, i.e., U−1 = UT, and we wrote

D−1/2 =
[

1/
√

λ1

1/
√

λ2

]
.

We introduce the change of variables,

w = f(x) = W (x− x̃0), W = D−1/2UT.
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Write the the integral in terms of the new variable w,
∫

Bα

π(x)dx =
1

2π
(
det(Γ̃)

)1/2

∫

Bα

exp
(
−1

2
(x− x̃0)TΓ̃−1(x− x̃0)

)
dx

=
1

2π
(
det(Γ̃)

)1/2

∫

Bα

exp
(
−1

2
‖W (x− x̃0‖2

)
dx

=
1
2π

∫

f(Bα)

exp
(
−1

2
‖w‖2

)
dw,

where we used the fact that

dw = det(W )dx =
1√

λ1λ2

dx =
1

det(Γ̃)1/2
dx.

Note:
det(Γ̃) = det(UDUT) = det(UTUD) = det(D) = λ1λ2.
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The equiprobability curves for the density for w are circles centered around
the origin, i.e.,

f(Bα) = Dδ =
{
w ∈ R2 | ‖w‖ < δ

}

for some δ > 0.

Solve δ: Integrate in radial coordinates (r, θ),

1
2π

∫

Dδ

exp
(
−1

2
‖w‖2

)
dw =

∫ δ

0

exp
(
−1

2
r2

)
rdr

= 1− exp
(
−1

2
δ2

)
= p,

implying that

δ = δ(p) =

√
2 log

(
1

1− p

)
.
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To see if the sample points xj is within the confidence ellipse with confidence
p, it is enough to check if the condition

‖wj‖ < δ(p), wj = W (xj − x̃0), 1 ≤ j ≤ N

is valid.

Plot
p 7→ 1

N
#

{
xj ∈ Bα(p)

}
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Example
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Matlab code

N = length(S(1,:)); % Size of the sample
xmean = (1/N)*(sum(S’)’); % Mean of the sample
CS = S - xmean*ones(1,N); % Centered sample
Gamma = 1/N*CS*CS’; % Covariance matrix

% Whitening of the sample

[V,D] = eig(Gamma); % Eigenvalue decomposition
W = diag([1/sqrt(D(1,1));1/sqrt(D(2,2))])*V’;
WS = W*CS; % Whitened sample
normWS2 = sum(WS.^2);
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% Calculating percentual amount of scatter points that are
% included in the confidence ellipses

rinside = zeros(11,1);
rinside(11) = N;
for j = 1:9

delta2 = 2*log(1/(1-j/10));
rinside(j+1) = sum(normWS2<delta2);

end
rinside = (1/N)*rinside;

plot([0:10:100],rinside,’k.-’,’MarkerSize’,12)
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Which one of the following formulae?

Γ̂ =
1
N

N∑

j=1

(xj − x̂0)(xj − x̂0)T,

or

Γ̃ =
1
N

N∑

j=1

xjx
T
j − x̃0x̃

T
0 .

The former, please.
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Example

Calibration of a measurement instrument:

• Measure a dummy load whose output known

• Subtract from actual measurement

• Analyze the noise

Discrete sampling; Output is a vector of length n.

Noise vector x ∈ Rn is a realization of

X : Ω → Rn.

Estimate mean and variance

x0 =
1
n

n∑

j=1

xj (offset), σ2 =
1
n

n∑

j=1

(xj − x0)2.
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Improving Signal-to-Noise Ratio (SNR):

• Repeat the measurement

• Average

• Hope that the target is stationary

Averaged noise:

x =
1
N

N∑

k=1

x(k) ∈ Rn.

How large must N be to reduce the noise enough?
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Averaged noise x is a realization of a random variable

X =
1
N

N∑

k=1

X(k) ∈ Rn.

If X(1), X(2), . . . i.i.d., X is asymptotically Gaussian by Central Limit Theo-
rem, and its variance is

var(X) =
σ2

N
.

Repeat until the variance is below a given threshold,

σ2

N
< τ2.
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Maximum Likelihood Estimator: frequentist’s approach

Parametric problem,

X ∼ πθ(x) = π(x | θ), θ ∈ Rk.

Independent realizations: Assume that the observations xj are obtained inde-
pendently.

More precisely: X1, X2, . . . , XN i.i.d, xj is a realization of Xj .

Independency:

π(x1, x2, . . . , xN | θ) = π(x1 | θ)π(x2 | θ) · · ·π(xN | θ),

or, briefly,

π(S | θ) =
N∏

j=1

π(xj | θ),
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Maximum likelihood (ML) estimator of θ = parameter value that maximizes
the probability of the outcome:

θML = arg max
N∏

j=1

π(xj | θ).

Define
L(S | θ) = − log(π(S | θ)).

Minimizer of L(S | θ) = maximizer of π(S | θ).
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Example

Gaussian model

π(x | x0, σ
2) =

1√
2πσ2

exp
(

1
2σ2

(x− x0)2
)

, θ =
[

x0

σ2

]
=

[
θ1

θ2

]
.

Likelihood function is

N∏

j=1

π(xj | θ) =
(

1
2πθ2

)N/2

exp


− 1

2θ2

N∑

j=1

(xj − θ1)2




= exp


− 1

2θ2

N∑

j=1

(xj − θ1)2 − N

2
log

(
2πθ2

)



= exp (−L(S | θ)) .
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We have

∇θL(S | θ) =




∂L

∂θ1

∂L

∂θ2


 =




− 1
θ2
2

N∑

j=1

xj +
N

θ2
2

θ1

− 1
2θ2

2

N∑

j=1

(xj − θ1)2 +
N

2θ2




.

Setting ∇θL(S | θ) = 0 gives

x0 = θML,1 =
1
N

N∑

j=1

xj ,

σ2 = θML,2 =
1
N

N∑

j=1

(xj − θML,1)2.
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Example

Parametric model
π(n | θ) =

θn

n!
e−θ,

sample S = {n1, · · · , nN}, nk ∈ N, obtained by independent sampling.

The likelihood density is

π(S | θ) =
N∏

k=1

π(nk) = e−Nθ
N∏

k=1

θnk

nk!
,

and its negative logarithm is

L(S | θ) = − log π(S | θ) =
N∑

k=1

(
θ − nk log θ + log nk!

)
.
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Derivative with respect to θ to zero:

∂

∂θ
L(S | θ) =

N∑

k=1

(
1− nk

θ

)
= 0, (7)

leading to

θML =
1
N

N∑

k=1

nk.

Warning:

var(N) ≈ 1
N

N∑

k=1


nk − 1

N

N∑

j=1

nj




2

,

which is different from the estimate of θML obtained above.
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Assume that θ is known a priori to be relatively large.

Use Gaussian approximation:

N∏

j=1

πPoisson(nj | θ) ≈
(

1
2πθ

)N/2

exp


− 1

2θ

N∑

j=1

(nj − θ)2




=
(

1
2π

)N/2

exp


−1

2


1

θ

N∑

j=1

(nj − θ)2 + N log θ





 .

L(S | θ) =
1
θ

N∑

j=1

(nj − θ)2 + N log θ.
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An approximation for θML: Minimize

L(S | θ) =
1
θ

N∑

j=1

(nj − θ)2 + N log θ.

Write

∂

∂θ
L(S | θ) = − 1

θ2

N∑

j=1

(nj − θ)2 − 2
θ

N∑

j=1

(nj − θ) +
N

θ
= 0,

or

−
N∑

j=1

(nj − θ)2 − 2
N∑

j=1

θ(nj − θ) + Nθ = Nθ2 + Nθ −
N∑

j=1

n2
j = 0,

giving

θ =


1

4
+

1
N

N∑

j=1

n2
j




1/2

− 1
2


 6= 1

N

N∑

j=1

nj


 .
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Example

Multivariate Gaussian model,

X ∼ N (x0, Γ),

where x0 ∈ Rn is unknown, Γ ∈ Rn×n is symmetric positive definite (SPD)
and known.

Model reduction: assume that x0 depends on hidden parameters z ∈ Rk

through a linear equation,

x0 = Az, A ∈ Rn×k, z ∈ Rk. (8)

Model for an inverse problem: z is the true physical quantity that in the ideal
case is related to the observable x0 through the linear model (8).
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Noisy observations:
X = Az + E, E ∼ N (0, Γ).

Obviously,
E

{
X

}
= Az + E

{
E

}
= Az = x0,

and
cov(X) = E

{
(X −Az)(X −Az)T

}
= E

{
EET

}
= Γ.

The probability density of X, given z, is

π(x | z) =
1

(2π)n/2det(Γ)1/2
exp

(
−1

2
(x−Az)TΓ−1(x−Az)

)
.
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Independent observations:

S =
{
x1, . . . , xN

}
, xj ∈ Rn.

Likelihood function

N∏

j=1

π(xj | z) ∝ exp


−1

2

N∑

j=1

(xj −Az)TΓ−1(xj −Az)




is maximized by minimizing

L(S | z) =
1
2

N∑

j=1

(xj −Az)TΓ−1(xj −Az)

=
N

2
zT

[
ATΓ−1A

]
z − zT

[
ATΓ−1

N∑

j=1

xj

]
+

1
2

N∑

j=1

xT
j Γ−1xj .

Computational Methods in Inverse Problems, Mat–1.3626 0-33



E. Somersalo

Zeroing of the gradient gives

∇zL(S | z) = N
[
ATΓ−1A

]
z −ATΓ−1

N∑

j=1

xj = 0,

i.e., the maximum likelihood estimator zML is the solution of the linear system

[
ATΓ−1A

]
z = ATΓ−1x, x =

1
N

N∑

j=1

xj .

The solution may not exist; All depends on the properties of the model reduc-
tion matrix A ∈ Rn×k.
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Particular case: one observation, S =
{
x
}
,

L(z | x) = (x−Az)TΓ−1(x−Az).

Eigenvalue decomposition of the covariance matrix,

Γ = UDUT,

or,
Γ−1 = WTW, W = D−1/2UT,

we have
L(z | x) = ‖W (Az − x)‖2.

Hence, the problem reduces to a weighted least squares problem
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