
E. Somersalo

An example of Bayesian reasoning

Consider the one-dimensional deconvolution problem with various degrees of
prior information.

Model:
g(t) =

∫ ∞

−∞
a(t− s)f(s)ds + e(t),

where
a(t)

∣∣
|t|→∞ = 0 (rapidly).

The problem, even without discretization errors is ill-posed.
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Analytic solution

Noiseless model:
g(t) =

∫ ∞

−∞
a(t− s)f(s)ds.

Apply the Fourier transform,

ĝ(k) =
∫ ∞

−∞
e−iktg(t)dt.

The Convolution Theorem implies

ĝ(k) = â(k)f̂(k),

so, by inverse Fourier transform,

f(t) =
1
2π

∫ ∞

−∞
eitk ĝ(k)

â(k)
dk.
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Example: Gaussian kernel, noisy data:

a(t) =
1√

2πω2
exp

(
− 1

2ω2
t2

)
.

In the frequency domain,

â(k) = exp
(
−1

2
ω2k2

)
.

If
ĝ(k) = â(k)f̂(k) + ê(k),

the estimate fest(t) of f based on the Convolution Theorem is

fest(t) = f(t) +
1
2π

∫ ∞

−∞
ê(k)exp

(
1
2
ω2k2 + ikt

)
dk,

which may not be even well defined unless ê(k) drops faster than superexpo-
nentially at high frequencies.

Computational Methods in Inverse Problems, Mat–1.3626 0-2



E. Somersalo

Discretized problem

Finite sampling, finite interval:

g(tj) =
∫ 1

0

a(tj − s)f(s)ds + ej , 1 ≤ j ≤ m.

Discrete approximation of the integral by a quadrature rule. Use the piecewise
constant approximation with uniformly distributed sampling,

∫ 1

0

a(tj − s)f(s)ds ≈
n∑

j=1

1
n

a(tj − sk)f(sk) =
n∑

j=1

ajkxk,

where
sk =

k

n
, xk = f(sk), ajk =

1
n

a(tj − sk).
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Additive Gaussian noise: likelihood

Discrete equation
b = Ax + e, bj = g(tj).

Stochastic extension: X, E and B random variables,

B = AX + E.

Assume that E is Gaussian white noise with variance σ2,

E ∼ N (0, σ2I), or πnoise(e) ∝ exp
(
− 1

2σ2
‖e‖2

)
,

where σ2 is assumed known. Likelihood density

π(b | x) ∝ exp
(
− 1

2σ2
‖b−Ax‖2

)
.
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Prior according to the information available

Prior information: “The signal f varies rather slowly, the slope being not more
than of the order one, and vanishes at t = 0.”

Write an autoregressive Markov model (ARMA):

Xj = Xj−1 +
√

θWj , Wj ∼ N (0, 1), X0 = 0.

STD=γx
j−1

x
j
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How do we choose the variance θ of the innovation process?

Use the slope information: The slope is

Sj = n(Xj −Xj−1) = n
√

θWj

and

P
{
|Sj | < 2n

√
θ
}
≈ 0.95, 2n

√
θ = two standard deviations.

A reasonable choice would then be

2n
√

θ = 1, or θ =
1

4n2
.
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The ARMA model in matrix form:

Xj −Xj−1 =
√

θWj , 1 ≤ j ≤ n,

gives
LX =

√
θW, W ∼ N (0, I),

where

L =




1
−1 1

. . . . . .
−1 1


 .

Prior density: (1/
√

θ)LX = W , so

πprior(x) ∝ exp(− 1
2θ
‖Lx‖2), θ =

1
4n2

.
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Posterior density

From Bayes’ formula, the posterior density is

πpost(x) = π(x | b) ∝ πprior(x)π(b | x)

∝ exp
(
− 1

2σ2
‖b−Ax‖2 − 1

2θ
‖Lx‖2

)
.

This is a Gaussian density, whose maximum is the Maximum A Posteriori
(MAP) estimate,

xMAP = argmin
(

1
2σ2

‖b−Ax‖2 +
1
2θ
‖Lx‖2

)
,

or, equivalently, the least squares solution of the system
[

σ−1A
θ−1/2L

]
x =

[
σ−1b

0

]
.
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Posterior covariance: by completing the square,

1
2σ2

‖b−Ax‖2+ 1
2θ
‖Lx‖2 = xT

(
1
σ2

ATA +
1
θ
LTL

)

︸ ︷︷ ︸
=Γ−1

x+2xT

(
1
σ2

ATb

)
+

1
σ2
‖b‖2

=
(

x− Γ
1
σ2

ATb

)T

Γ−1

(
x− Γ

1
σ2

ATb

)
+ terms independent of x.

Denoting

x0 = Γ
1
σ2

ATb =
(

1
σ2

ATA +
1
θ
LTL

)−1 1
σ2

ATb.
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The posterior density is

πpost(x) ∝ exp
(
−1

2
(x− x0)TΓ−1(x− x0)

)
,

or in other words,

πpost ∼ N (x0, Γ),

Γ =
(

1
σ2

ATA +
1
θ
LTL

)−1

,

x0 = Γ
1
σ2

ATb =
(

1
σ2

ATA +
1
θ
LTL

)−1 1
σ2

ATb = xMAP.
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Example

Gaussian convolution kernel,

a(t) =
1√

2πω2
exp

(
− 1

2ω2
t2

)
, ω = 0.05.

Number of discretization points = 160.

See the attached Matlab file Deconvloution.m:

Test 1: Input function triangular pulse,

f(t) =
{

αt, t ≤ t0 = 0.7,
β(1− t), t > t0,

where
α = 0.6, β = α

t0
1− t0

= 1.4 > 1.

Hence, the prior information about the slopes is slightly too conservative.
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Posterior credibility envelope

Plotting the MAP estimate and the 95% credibility envelope:

If X is distributed according to the Gaussian posterior density,

var(Xj) = Γjj .

With 95% a posteriori probability

(x0)j − 2
√

Γjj < Xj < (x0)j + 2
√

Γjj .

Try the algorithm with various values of θ.
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Test 2: Input function, whose slope is locally larger than one:

f(t) = 10(t− 0.5)exp
(
− 1

2δ2
(t− 0.5)2

)
, δ2 = 1000.

The slope in the interval [0.4, 0.6] is much larger than one, while outside the
interval it is very small. The algorithm does not perform well.

Assume that we, for some source, have the following prior information:

Prior information: “The signal is almost constant (the slope of the order 0.1,
say) outside the interval [0.4, 0, 6], while within this interval, the slope can be
of order 10.”
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Non-stationary ARMA model

Write Write an autoregressive Markov model (ARMA):

Xj = Xj−1 +
√

θjWj , Wj ∼ N (0, 1), X0 = 0,

i.e., the variance of the innovation process varies.

How to choose the variance? Slope information:

The slope is
Sj = n(Xj −Xj−1) = n

√
θjWj

and

P
{
|Sj | < 2n

√
θj

}
≈ 0.95, 2n

√
θ = two standard deviations.

A reasonable choice would then be

2n
√

θj =
{

10, 0.4 < tj < 0.6
0.1 else
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Define the variance vector θ ∈ Rn,

θj =
25
n2

, if 0.4 < tj < 0.6 θj =
1

400n2
, else,

The ARMA model in matrix form:

D−1/2LX = W ∼ N (0, I),

where
D = diag(θ).

This leads to a prior model

πprior(x) ∝ exp
(
−1

2
‖D−1/2Lx‖2

)
.
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Posterior density

From Bayes’ formula, the posterior density is

πpost(x) = π(x | b) ∝ πprior(x)π(b | x)

∝ exp
(
− 1

2σ2
‖b−Ax‖2 − 1

2
‖D−1/2Lx‖2

)
.

This is a Gaussian density, whose maximum is the Maximum A Posteriori
(MAP) estimate,

xMAP = argmin
(

1
2σ2

‖b−Ax‖2 +
1
2
‖D−1/2Lx‖2

)
,

or, equivalently, the least squares solution of the system
[

σ−1A
D−1/2L

]
x =

[
σ−1b

0

]
.
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Posterior mean and covariance

Gaussian posterior density

πpost ∼ N (x0, Γ),

where

Γ =
(

1
σ2

ATA + LTD−1L

)−1

,

x0 = Γ
1
σ2

ATb =
(

1
σ2

ATA + LTD−1L

)−1 1
σ2

ATb = xMAP.
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Test 2 continued:

Use the non-stationary ARMA model based prior.

Try different values for the variance in the interval.

Observe the effect on the posterior covariance envelopes.

Test 3: Go back to the stationary ARMA model, and assume this time that

f(t) =
{

1, τ1 < t < τ2,
0 else

where τ1 = 5/16, τ2 = 9/16.

Observe that the prior is badly in conflict with the reality.

Notice that the posterior envelopes are very tight, but the true signal is not
within.

Is it wrong to say: “The p% credibility envelopes contain the true signal with
probability p%.”
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Smoothness prior and discontinuities

Assume that the prior information is:

Prior information: “The signal is almost constant (the slope of the order 0.1,
say), but is suffers a jump of order one somewhere around t50 = 6/16 and
t90 = 9/16.”

Build an ARMA model based on this information:

θj =
1

400n2
, except around j = 50 and j = 90,

and adjust the variances around the jumps to correspond to the jump ampli-
tude, e.g.,

θj =
1
4
,

corresponding to standard deviation
√

θj = 0.5.

Notice the large posterior variance around the jumps!
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Prior based on incorrect information

Note: I avoid the term incorrect prior: prior is what we believe a priori, it is
not right or wrong, but evidence may prove to be against it or supporting it.

In simulations, it is easy to judge a prior incorrect, because we control the
“truth”.

Test 4: What happens if we have incorrect information concerning the jumps?

• We believe that there is a third jump, which does not exist in the input;
or

• the prior information concerning the jump locations is completely wrong.
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A step up: unknown variance

Going back to the original problem, but with less prior information:

Prior information: “The signal f varies rather slowly, and vanishes at t = 0,
but no particular information about the slope is available.”

As before, start with the initial ARMA model:

Xj = Xj−1 +
√

θWj , Wj ∼ N (0, 1), X0 = 0,

or in the matrix form,

LX =
√

θW, W ∼ N (0, I).

As before, we write the prior, pretending that we knew the variance,

πprior(x | θ) = C exp
(
− 1

2θ
‖Lx‖2

)
.
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Normalizing constant: the integral of the density has to be one,

1 = C(θ)
∫

Rn

exp
(
− 1

2θ
‖Lx‖2

)
dx,

and with the change of variables

x =
√

θz, dx = θn/2dz,

we obtain

1 = θn/2C(θ)
∫

Rn

exp
(
−1

2
‖Lz‖2

)
dz

︸ ︷︷ ︸
independent of θ

,

so we deduce that
C(θ) ∝ θ−n/2,

and we may write

πprior(x | θ) ∝ exp
(
− 1

2θ
‖Lx‖2 − n

2
log θ

)
.
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Stochastic extension

Since θ is not known, it will be treated as a random variable Θ.

Any information concerning Θ is then coded the prior probability density
called the hyperprior, πhyper(θ).

The inverse problem is to infer on the pair of unknown, (X, Θ).

The joint prior density is

πprior(x, θ) = πprior(x | θ)πhyper(θ).

The posterior density of (X, Θ) is, by Bayes’ formula,

πpost(x, θ) ∝ πprior(x, θ)π(b | x) = πprior(x | θ)πhyper(θ)π(b | x).
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Here, we assume that the only prior information concerning Θ is its positivity,

πhyper(θ)π+(θ) =
{

1, θ > 0
0, θ ≤ 0

Note: this is, in fact an improper density, since i is not integrable. In practice,
we assume an upper bound that we hope will never play a role.

The posterior density is now

πpost(x, θ) ∝ π+(θ)exp
(
− 1

2σ2
‖b−Ax‖2 − 1

2θ
‖Lx‖2 − n

2
log θ

)
.
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Iterative algorithm for the MAP estimate

Sequential optimization:

1. Initialize θ = θ0 > 0, k = 1.

2. Update x,
xk = argmax

{
πpost(x | θk−1)

}
.

3. Update θ,
θk = argmax

{
πpost(θ | xk)

}
.

4. Increase k by one and repeat from 2. until convergence.

Notice: πpost(x | θ) means that we simply fix θ.

Computational Methods in Inverse Problems, Mat–1.3626 0-25



E. Somersalo

Updating steps in practice:

• Updating x: Since θ = θk−1 is fixed, we simply have

xk = argmin
{

1
2σ2

‖b−Ax‖2 +
1

2θk−1
‖Lx‖2

}
,

which is the Good Old Least Squares Solution (GOLSQ).

• Updating θ: The likelihood does not depend on θ, and so we have

θk = argmin
{

1
2θ
‖Lxk‖2 +

n

2
log θ

}
,

which is the zero of the derivative of the objective function,

− 1
2θ2

‖Lxk‖2 +
n

2θ
= 0,

or

θk =
‖Lxk‖2

n
.
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Undetermined variances

Qualitative description of problem:“Given a noisy indirect observation,
recover a signal or an image that varies slowly except for unknown number
of jumps of unknown size and location.”

Information concerning the jumps:

• The jumps should be sudden, suggesting that the variances should be
mutually independent.

• There is no obvious preference of one location over others, therefore the
components should be identically distributed.

• Only a few variances can be significantly large, while most of them should
be small, suggesting a hyperprior that allows rare outliers.
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Candidate probability densities:

Gamma distribution,

θj ∼ Gamma(α, θ0), πhyper(θ) ∝
n∏

j=1

θα−1
j exp

(
−θj

θ0

)
, (1)

inverse Gamma distribution,

θj ∼ InvGamma(α, θ0), πhyper(θ) ∝
n∏

j=1

θ−α−1
j exp

(
−θ0

θj

)
. (2)
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Random Draws
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Estimating the MAP

Outline of the algorithm is as follows:

1. Initialize θ = θ0, k = 1.

2. Update the estimate of the increments: xk = argmax π(x, θk−1 | b).
3. Update the estimate of the variances θ: θk = argmax π(xk, θ | b).
4. Increase k by one and repeat from 2. until convergence.
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In practice:

F (x, θ | b) = − log
(
π(x, θ | b)),

which becomes, when the hyperprior is the gamma distribution,

F (x, θ | b) ' 1
2σ2

‖Az − b‖2 +
1
2
‖D−1/2Lx‖2

+
1
θ0

n∑

j=1

θj −
(

α− 3
2

) n∑

j=1

log θj ,

and, when the hyperprior is the inverse gamma distribution,

F (x, θ | b) ' 1
2σ2

‖Ax− b‖2 +
1
2
‖D−1/2Lx‖2

+ θ0

n∑

j=1

1
θj

+
(

α +
3
2

) n∑

j=1

log θj ,

where D = Dθ.
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1. Updating x:

xk = argmin
(

1
2σ2

‖Ax− b‖2 +
1
2
‖D−1/2Lx‖2

)
, D = Dθk−1 ,

that is, xk is the least squares solution of the system
[

(1/σ)A
D−1/2L

]
x =

[
(1/σ)b

0

]
.

2. Updating θ: θk
j satisfies

∂

∂θj
F (xk, θ) = −1

2

(
zk
j

θj

)2

+
1
θ0
−

(
α− 3

2

)
1
θj

= 0,

zk = Lxk, which has an explicit solution,

θk
j = θ0


η +

√
(zk

j )2

2θ0
+ η2


 , η =

1
2

(
α− 3

2

)
.

Computational Methods in Inverse Problems, Mat–1.3626 0-32



E. Somersalo

Computed example: Signal and data
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MAP estimate, Gamma hyperprior
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MAP estimate, Gamma hyperprior

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
x 10

−3

Computational Methods in Inverse Problems, Mat–1.3626 0-35



E. Somersalo

MAP estimate, Inverse Gamma hyperprior
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MAP estimate, Inverse Gamma hyperprior
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