E. SOMERSALO

CONJUGATE GRADIENT ALGORITHM

e Need: A symmetric positive definite;
e Cost: 1 matrix-vector product per step;

e Storage: fixed, independent of number of steps.

The CG method minimizes the A norm of the error,

T = arg xe}lg}l{i&,b) |z — z.]|%.

T, = true solution, ||z||% = 2" Az.
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E. SOMERSALO

KRYLOV SUBSPACES

The kth Krylov subspace associated with the matrix A and the vector b is
Ki(A,b) = span{b, Ab, ..., A*~1b}.

Iterative methods which seek the solution in a Krylov subspace are called
Krylov subspace iterative methods.
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E. SOMERSALO

At each step, minimize
a— [|zp—1 +apr_1 — z.|%

Solution:

New update
Tk = Tk—1 + Okg—1Pk—1-

Search directions:
po =19 = b — Axy,
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E. SOMERSALO

Iteratively, A-conjugate to the previous ones:
peAp; =0, 0<j<k-—1.
Found by writing
Pk =Tk + BrPr—1, Tk =0b— Axg,

Ire|”
lre—1 ]2

B =
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E. SOMERSALO

ALGORITHM (CG)

Initialize: zg = 0; 79 = b — Axg; po = ro;

for kK = 1,2, ... until stopping criterion is satisfied
N
p£_1Apk—1

Tk = T—1 + QAkPE—1;

e =Tk_1 — QpApr_1;

I
B = -
frii?

Pk =Tk + BrDPk—1;

end
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E. SOMERSALO

CGLS METHOD
Conjugate Gradient method for Least Squares (CGLS)

e Need: A can be rectangular (non-square);
e Cost: 2 matrix-vector products (one with A, one with A') per step;

e Storage: fixed, independent of number of steps.

Mathematically equivalent to applying CG to normal equations
At Az = A%

without actually forming them.
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E. SOMERSALO

CGLS MINIMIZATION PROBLEM

The kth iterate solves the minimization problem

T = arg min |6 — Ax||.
z€K, (AT A,ATb)

The kth iterate x; of CGLS method (zg = 0) is characterized by

o = I o
P8) = e (A ey P

where |
O(z) = §ZCTATAZE —zt At
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E. SOMERSALO

DETERMINATION OF THE MINIMIZER

Perform sequential linear searches along A' A-conjugate directions

Po,P1y---3Pk—1

that span Kp(AT A, ATS).

Determine x; from z_1 and pi_1 according to

Tk = Th—1 T Akg—1Pk—1

where aj_1 € R solves

n e _ 1),
min (xp_1+ apr_1)
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E. SOMERSALO

RESIDUAL ERROR

Introduce the residual error associated with xy:
rp = Ath — AT Axy.

Then
Pk =Tk + Br—1Pk—1

Choose B;_1 so that py is A A-conjugate to the previous search directions:

ppATAp; =0, 1<j<k-1.
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E. SOMERSALO

DISCREPANCY

The discrepancy associated with z is
Clk =b— ACE‘k

Then
Ty — ATdk

It was shown by Hestenes and Stiefel that

ldkrall < lldells  Nergall = k]
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E. SOMERSALO

ALGoOrITHM (CGLS)

zo:=0; do=0b; rg=Alb;
po =ro0; to = Apo;
for kK = 1,2, ... until stopping criterion is satisfied

ar = [[re—1 [/ te-11®

Tk = Th—1 T QkPE—1;

dry = dg—1 — aptr_1;

ri = At dy;

B = Irell®/ s

Pk = Tk + PrPr—1;

ty = Ap;

end
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E. SOMERSALO

EXAMPLE: A TOoy PROBLEM

An invertible 2 x 2-matrix A,

yj:AZC*+6j, ]:1,2

Preimages,
rj=A"y;, j=12
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E. SOMERSALO
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E. SOMERSALO

solution by iterative methods: semiconvergence.

Write
B=Ax,+E, E~N(0,0%]),

and generate a sample of data vectors, bq,bs,...,0,

Solve with CG
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E. SOMERSALO
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E. SOMERSALO

WHEN SHOULD ONE STOP ITERATING?

Let
Ar =b, +e=Ax, +e =0,

Approximate information
lell = n,

where 17 > 0 is known. Write

1A(z — 2| = [lell = 7

Any solution satisfying
Az =0l < 71

is reasonable.

Morozov discrepancy principle
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E. SOMERSALO

EXAMPLE: NUMERICAL DIFFERENTIATION

Let f:[0,1] — R be a differentiable function, f(0) = 0.

Data = f(t;)+ noise, t; ==, j=12,...n.

S |.

Problem: Estimate f'(¢;).

Direct numerical differentiation by, e.g., finite difference formula does not
work: the noise takes over.

Where is the inverse problem?
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E. SOMERSALO

DATA

2.5

-3 —2 -1 0 1 2 3
Noise level 5%
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E. SOMERSALO

SOLUTION BY FINITE DIFFERENCE

2.5

LS: A F\

-3 -2 -1 0 1 2 3
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E. SOMERSALO

FORMULATION AS AN INVERSE PROBLEM

Denote g(t) = f/(t). Then,
Linear model:

tj
Data:yj = f(tj)—i—ej = / g(T)dT+€j,
0

where e; 1s the noise.
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E. SOMERSALO

DISCRETIZATION
Write
t 1 J
| ot~ 2> gtt)
0 k=1
By denoting g(t;) = xy,
y = Ax + e,
where ) _
1
1 1 1
A= —
n
- 1 1 —
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