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1 Example: A statically indeterminate truss
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We have two equilibrium equations, but three unknowns, i.e. the forces in the bars. That
is, the structure is statically indeterminate. In order to solve the problem,the elongations
of the bars have to be taken into a account.

Let us consider an arbitrary bar and express the elongation using the displacement z =
(u,v) of the endpoint:

By Pythagoras we obtain:



(I = (lcos O — u)? + (Isin b — v)?
=1 cos® 0 — 2ul cos 0 4+ u? + > sin? 6 — 2ulsin 6 + v>
=1 = 2l(ucosf + vsin @) + u® + v*.

Naturally, we assume that u and v are "small” which allows us to drop the term 42 + v2.
Hence, we have

(') = 1* = 2l(ucosf + vsin )
=?[1 - %(ucos@%—vsin@)].

Taking square roots, and again using the assumption that u, v are small, we get using the
Taylor expansion

O

(1-2) z 0 < z="small",
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that )

U'=11- Z(ucos@ + vsin8)].
which gives

e=1—]=—ucosf — vsinb.

We can now collect the elongation of the three bars into a column vector (ey, eq,e5)7 = e

and the displacement as the vector = (u,v)”.

Then, we write the relation between e and z as a matrix equations:

€1 - COS 91 — sin 91 ”
ea | = | —cosfy —sinb, (v)
€3 —cosfl3 —sinfs
or more compactly
e= Ax.

The next step is to relate the elongations to the internal forces in the bars. This comes
from Hooke’s law

. = til;
Z—EiAi’

where #;, is the force in the i-th bar, I; its length and F; and A; are the Young’s modulus
and cross section, respectively. Writing

l; =cie,

with




we have

t=Ce
with
Cy 0 0
t=(ti,ta,t)T, C=[0 ¢y 0
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Equilibrium in the z-direction gives
fz +ticos by + tacos by + t3cosfy = 0,

and in y-direction
fy + 1 sin 91 + 14 sin 92 + 13 sin 93 = 0.

Or in matrix form

—cosf; —cosly —cosby ;1 ([
—sinf; —sinfy —sinb; t2 S\ Sy

3

That is
ATt = f.

The previous matrix A now reappears in transposed form.
A summary of what has been done.

A displacement-deformation relationship:
e = Az,

A constitutive equation:

t = Ce,
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The equilibrium equations:
ATt = f.

Collecting gives a 2 x 2 system for the deflection z = (u, v):
ATCAz = f.
Next, let us make some observations on this system. We recall that a matrix M is

Symmetric if M = M7,
positive definite if z7 Mz > 0 for all « # 0,
positive semidefinite if 7 Mz > 0 for all z # 0.

The constitutive matrix C' is clearly symmetric and positive definite, as it is a diagonal
matrix with strictly positive entries. Hence, we have

(ATCA)T = ATCT(AT)T = ATC A,
i.e. the matrix ATC A is symmetric. To check the definiteness of it we write
C=C:.C7

with

and we note that

Hence, we have for an arbitrary z
eTATC Az = 3T ATC21C? Ax = T AT (C2)TC% A
=(C3Az)TCi Az = ||C2 Az| > 0,
where || - || is the normal Euclidian norm of a vector.

Hence, the coefficient matrix is certainly positive semidefinite.

Further, . .
IC2Az||=0 < CrAz=0 & Az=0.

The condition Az = 0 for some z # 0 means a non zero deformation z giving rise to a
vanishing elongation in each bar. In the example this is impossible and we have

Ar=0 & z=0.
Therefore the coefficient matrix ATC A is positive definite and the problem
ATCAx = f

has a unique solution.



2 The general truss

A general truss is either

a) Statically determinate:
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that is, it can be solved by the equilibrium equations alone.

b) Statically indeterminate:
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The above unstable truss is a mechanism. Another form of instability is a rigid body

motion
g
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The equilibrium equations follows in exactly the same way as for the example. First, we

consider an arbitrary bar:

For the elongation e, we get
ey = —u; Cos th — u; cos Oy — v;sin by, — v; sin 6},

when the bar k connects the points ¢ and j. This gives a matrix equation
e = Ar,
where z is the column vector formed by the displacemnts of the joints:

z = (uy, vy, ug,v,...)7.

For a joint we again get two equilibrium equations:



flt .+ tpcosly +...=0.
ff, + ..+ i Sin@k + ... = (.
Again, it holds that
f=A",
where t is the vector of forces in the bars and f is the vector of the loads at the joints,
le.
2 T
f=( ;a g}’ x2>fy>"'> :

Finally, we again have that

t="Ce,
with
E;A;
ti =ciej, ¢ =
Li
Collecting gives again
ATCAz = f.

The coefficient matrix is symmetric and positively semidefinite. It is definite when
Ar=0 & =0,

i.e. when there are no non-trivial deformations giving zero elongation. For the case of a
mechanism of a rigid body motion there is a deformation z # 0 such that

Az = 0.

Then the problem does not have a unique solution. Still, there are some combination of
forces for which there is a solution. Consider, for instance, a rigid body motion:

For a civil engineer it is clear that the problem can be solved if we have force and moment
equilibrium, i.e. if



By components, we have

fr+ 2+ 2+ fi=0,
fotfa+fi+ =0,
f:%yl“fg}xl+f§y2”fy2$2+"'20.

How do we see this mathematically?
Let us go back to a basic result of linear algebra. Let B be a mapping/matrix from /R"
to IR™ i.e. M is a m x n matrix. We let

R(B) ={y € R™|y = Bz for some z € IR"},
N(B)={z € R"|Bx =0},

be the range and nullspace, respectively. Then it holds ("*” denotes the orthogonal
complement).

Theorem:
N(B) = R(BT)* .
Exercise: Prove this result.
Now, let us have a look on the equations for the displacement
ATCAz = f.

Clearly, it holds
R(ATCA) = R(AT).

Above we proved that ATC Az = 0 is equivalent to Az = 0. Hence, it holds

N(ATCA) = N(A).
Now, N(A) consists of the vectors for which Az = 0, that is the rigid body motions
spanned by the vectors

w=1 v=0 i=1234
w=0, v=1 i=1234

Oﬂz(*ﬂ,isz&L
V; x;

i.e. two translations and one rotation. From the theorem we have

N(ATCA) = N(A) = R(ATCA)* = R(AT)*.



A solution to the system exists only if f € R(ATCA) = R(AT) and hence we must have

f € N(A)* that is
4 4
dofi=0, > fi=0
i=1 i=1

which means orthogonality against translations, and

4 4
‘Z ff;yr%Z fyzi =0,
i=1 i=1

i.e. orthogonality against rotations. That is, force and moment equilibrium!

3 The minimum of the potential energy
Let M be a symmetric positive definite matrix. Then the function

P(z) = ixTMx —27b

has a unique minimum at the point where

Mz =b.

Proof: The Hessian matrix of P is M and the symmetry and positively definiteness
guarantees a unique minimum. Suppose z is such that Mz = b and let y be any other
vector. We have

1 1
P(y) — P(z) = §yTMy —yTh— 3 "Mz + 27

= %yTMy - yTMx - %xTMx + 2" Mz
= yTMy—yTMx+%3:TMx

== (y"My — 29" Ma + 2T M=z)

(y"My — y" Mz — 2" My + 2T Mz)  (the symmetry was used here)
=-(y—o)"M(y—-xz)>0.

= P(y) > P(z) and equality holds only when y = z.

Exercise: Prove this by the traditional method, i.e. from the condition —g—ff =0,1=
1,2,...,n. Z

In mechanics the problem of a truss is usually solved by the principle of the minimum of
potential energy (this is what Feng and Shi do). Consider the bar as a spring:
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Hooke’s law says that F' = ce and the elastic energy is

€ [

/Fde:/cede:%cez.

0 0

Here ¢ = E A/l (as before).
For a truss the sum of the elastic energies is

1 1
3 ;ci e = ~2—6TC'e.

Substituting e = Az gives 2T ATC Az .
The potential energy of the force is —z” f and hence the total energy is

E(z) = —;—xTATC’Ax i

Minimizing F gives
ATCAz = f.

That is the previous system of equations.

4 Dynamical systems and eigenvalues

Consider next a truss connecting the masses m; and assume that we can neglect the
masses of the bars (not very realistic, but common).

Newtons law for the masses gives

Mi = —ATt,

with z being the column vector for the displacemt of the masses, i.e.

r = (ulvvhu?)?}?) e )T>
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and M is the mass matriz

M = diag(mq, my, ma, ma, ... ).

The 7 " denotes the second derivative with respect to time:
. dz
T = —.
dt?

Expressing the traction by the displacement, as in the proceeding section, we get
Mi = -ATC Az,
or with the notation K = ATC A for the positively definite stiffness matriz:
Mi=—-Kz.
This system is most easily solved my making the ”guess”
z(t) = sin(wt) v,

" x(t) = cos(wt) y,

with y # 0 independent of the time ¢. Taking, e.g. the first choice and substituting into
the differential equation gives

—w?sin(wt) My = — sin(wt)Ky.
This gives the following equation for the angular velocity w and the vector y:
Ky =w*My.

We note that the second guess gives the same equation. This problem is a generalized
eigenvalue problem where A = w? is the generalized eigenvalue. Since M and K are
symmetric and and K positive definite, this problem has analoguous properties as the
(normal) symmetric eigenvalue problem. It holds:

The generalized eigenvalues are real.

The generalized eigenvectors can be chosen to form an ”M -orthogonal” basis, i.e.
yi My; =0

for the the eigenvectors y; # y;.

Furthermore, as K is positively definite, the eigenvalues \; = w? are positive.

Let y; be the generalized eigenvector for the eigenvalue w?. We note that

z(t) = sin(w;t) y;,
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solves the differential equation with the initial conditions
z(0) =0, z(0) = wy;,

whereas
z(t) = cos(w;t) yi,

is the solution with initial conditions
z(0) =y, x(0)=0.

Now, let us supplement the differential equations with the arbitrary initial conditions
z(0) = xg, (0) = .

As the y;’s form a basis, we can write

n n
Ty = Z&iyi, Ty = Zﬁzyz
i=1 gzl
Since the differential equation is linear, we see that the solution to
M3z = —Kx, with z(0) = 2 and #(0) = y,
is given by
z(t) = a; cos(w;t)y; + — sin{w;t)y;.
() = 3 oscos(uatyu + 3 Sty

To find the coefficients «; and f;, we use the M-orthogonality:

T - T T xE{Myk
zy My, = 5 oYy My = apyy My =y = yT My,
2

i=1

Similarly, we get
?J}:: My,

We have obtained an explicit solution to the problem. Let us next show that the solution
is unique. This we do by using an energy argument. We recall that the elastic energy of

the system is
1

T
—z' Kzx.
5% Kz
The kinetic energy is given by
Lor...
—i' M
5% Mz,
and hence the total energy is
Lopae 17
E = —2-56 M:c+§a: Kz.
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It now holds.

Theorem. The energy is conserved.

Proof. Using the chain rule, the symmetry of M and K, and the differential equation
we get
dE  d

1
zﬁ__%(%ﬂj&@+§ﬂkk):j?Mi+iTKx:iTMLi+KE):O

To prove the uniqueness, we have to show that the initial conditions z(0) = 0 and #(0) = 0
implies that x(¢) = 0 for all ¢ > 0 (by linearity). The total energy vanish when ¢ = 0 and
as it is conserves it vanishes for all ¢ > 0. If z(¢) # 0 the positive definiteness of M and
K gives
1
O:%fMi+5ﬂKx>O

which is a contradiction. Hence, z(¢) = 0 and the solution is unique.
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