Mat-1.3379 Dynaamisten systeemien erikoiskurssi Harjoitus 1, 26.1.2006 12-14 U345

Eirola/Hannukainen

Tehtävä 1 on kotitehtävä. Kotitehtävä palautetaan laskuharjoituksiin mennessä huoneen Y323b edessä sijaitsevaan lokeroon tai laskuharjoitusten alussa assistentille.

- 1. (Kotitehtävä, palautus 26.1.) (Problem 1.1 p. 53) Show that $f_x(x^0) \in \mathbb{R}^{n \times m}$ is onto if and only if it has a right inverse $f_x(x^0)^I \in \mathbb{R}^{m \times n}$
- 2. (Remark 1 p. 56) Show that, if A has a right inverse A^I and $I + V^T A^I U$ is invertible, then $A^I A^I U (I + V^T A^I U)^{-1} V^T A^I$ is a right inverse of $A + U V^T$.
- 3. (Problem 2.1 p.57) Suppose we have a QR-factorization of the matrix $A \in \mathbb{R}^{m \times n}$, and wantto find a QR-factorization of $A + uv^T$. Show how to achieve this with Givens rotations at a cost of O(mn) flops. Conclude from this that one can implement Broyden's method by updating a sequence of QR-factorizations of matrices differing always by a rank one correction.
- 5. (Problem 5.4 p.70) Let $A \in \mathbb{R}^{n \times n}$ be invertible and b, $c \in \mathbb{R}^n$. Show the following handy identity

$$\det(\mathbf{A} + \mathbf{b}\mathbf{c}^T) = (1 + \mathbf{c}^T \mathbf{A}^{-1}\mathbf{b}) \det \mathbf{A}.$$

Then, deduce that if b is an eigenvector of A such that $b^T c = 0$, then A and $A + bc^T$ have the same eigenvalues.

5. (Problem 5.7 p.71) The inverse of $\boldsymbol{f}_{\boldsymbol{u}}(\boldsymbol{u}_0)_{|_{W^{\perp}}}$ in the proof of Theorem 4.1 is called the Moore-Penrose pseudoinverse of $\boldsymbol{f}_{\boldsymbol{u}}(\boldsymbol{u}_0)$ (restricted to the subspace W^{\perp}). Generally, for a matrix \boldsymbol{A} it is defined as follows. If $\boldsymbol{A} \in \mathbb{C}^{n \times m}$ then $N(\boldsymbol{A})^{\perp}$ and $R(\boldsymbol{A})$ have the same dimension (i.e., $\operatorname{rank}(\boldsymbol{A})$) and the pseudoinverse of \boldsymbol{A} , denoted by \boldsymbol{A}^{\dagger} , is defined to be the inverse of

$$A_{|_{N(\boldsymbol{A})^{\perp}}} : N(\boldsymbol{A})^{\perp} \to R(\boldsymbol{A})$$
.

- (a) Let $A \in \mathbb{C}^{m \times p}$, $m \geq p$. Show that $x = A^{\dagger}b$ is the solution of the least-squares problem $\min_{x} |Ax b|$, that has the smallest norm. As usual, the norms are Euclidean. In particular, if A has full rank, then $A^{\dagger} = (A^T A)^{-1} A^T$. Also, show that $(A^T)^{\dagger} = (A^{\dagger})^T$.
- (b) Let $A \in \mathbb{C}^{m \times p}$, $m \geq p$, have rank r. Show that

$$\boldsymbol{A}^{\dagger} = \lim_{\varepsilon \to 0^+} (\boldsymbol{A}^* \boldsymbol{A} + \varepsilon \boldsymbol{I})^{-1} \boldsymbol{A}^* = \lim_{\varepsilon \to 0^+} \boldsymbol{A}^* (\boldsymbol{A} \boldsymbol{A}^* + \varepsilon \boldsymbol{I})^{-1} = \boldsymbol{V} \begin{bmatrix} \boldsymbol{S}^{\dagger} & 0 \end{bmatrix} \boldsymbol{U}^* \;,$$

where $\boldsymbol{A} = \boldsymbol{U} \begin{bmatrix} \boldsymbol{S} \\ 0 \end{bmatrix} \boldsymbol{V}^*$ is the singular value decomposition of $\boldsymbol{A}: \boldsymbol{S} \in \mathbb{R}^{p \times p}$, $\boldsymbol{S} = \operatorname{diag}(\sigma_1,...,\sigma_r,0,...,0)$, $\sigma_i \neq 0$, $i=1,\ldots,r$, and $\boldsymbol{S}^\dagger = \operatorname{diag}(1/\sigma_1,...,1/\sigma_r,0,...,0)$.