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Matriisieksponenttifunktio. Seuraavassa A on reaalinen n X n-matriisi, jonka

alkiot ovat vakioita. Tarkoituksenamme on ratkaista alkuarvotehtivi y' = Ay,
y(0) = yo.
Tavallisen differentiaaliyhtélén y' = ay, y(0) = yo, ratkaisu saadaan eksponentti-

funktion avulla muodossa y(t) = yoe®t. Herds kysymys, voitaisiinko myos dy-ryhmsin
y’ = Ay ratkaisu kirjoittaa suoraan muodossa y(t) = X (t)yo sopivan ajasta riip-
puvan n X n-matriisin X (¢) avulla. Téstd olisi mm. se etu, ettd alkuarvotehtdvin
ratkaisu saadaan samalla vaivalla kuin yleinen ratkaisu. Sijoitetaan téllainen yrite
yht#lson y’ = Ay, jolloin saadaan X'(t)yo = AX(t)yo. Tdmi toteutuu, jos matrii-
sille X (t) patee X'(t) = AX(t). Alkuehdosta y(0) = yo seuraa lisiksi, ettd X (0) = I
= yksikkomatriisi.

Yhtilon X'(t) = AX(t) toteuttavaan matriisiin X voidaan péiityd monella eri tavalla.
Er#s mahdollisuus on etsid matriisia X potenssisarjan avulla: kirjoitetaan (formaalisti
eli ilman huolta suppenemisesta)

X(t) = Xo+tX1 + 2 X0 + X5 4.,

missd n X n-matriisit Xo, X1,... eivit riipu ajasta t. Koska X(0) = I, tidytyy olla
Xo = I. Liséksi
X'(t) = X1 4+ 2tXo +3t° X3 + ...,

joten sijoittamalla yht#léon X'(t) = AX (t) saadaan

X'(t) = X1 +2Xo+3°Xs 4= AT +tX1 +°Xo +t° X3 +...)
A+tAX + X0+ ...

Vertaamalla lausekkeiden ¢" (matriisi)kertoimia, ndhdddn etti X; = A, 2X, =
AX;, 3X3 = AX5 jne. Ratkaisemalla saadaan siis X1 = A, X = %Az, X35 = %Azs
jne. Matriisin X (¢) tdytyy siis olla muotoa

X(t)=T+tA+ %(tA)Q + %(tA)S-F....

Koska yhteys tavalliseen eksponenttifunktion sarjakehitelméén on selvé, asetetaan
seuraava maéritelma.

Misritelma 1. Olkoon B n x n-matriisi. Matriisieksponenttifunktio e? mésritellasin
sarjakehitelmalld
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Ensimmaéinen ongelma on se, mitd tdmé sarjakehitelmé tarkoittaa. Jos kehitelma
katkaistaan (k 4+ 1). termin jéilkeen saadaan lauseke
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joka on méiritelty kaikille neliomatriiseille B. Sarjakehitelmédn suppeneminen tar-
koittaa yksinkertaisesti sitd, ettd jokainen ylldolevan matriisin alkio ldhestyy tietty&
lukua, kun k — oo. Voidaan osoittaa, ettd néin todella kidy kaikille neliomatriiseille,
ja siten e on hyvin mééritelty n x n-matriisi.
Taméi on ha.rjoitus 8 AV teht. 6: Osoita, ettd matriisieksponenttifunktion sarjan suppenee kaikilla

neliomatriiseilla A.
Tarvitset kahta asiaa:
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2) Ylaraja-arviota matriisin A¥ alkioille,jotta péasset kiayttamasn edelléd olevaa sarjaa vertailusarjana kullekin al-
kiosarjalle.

Voit rajoittua matriisiin, jonka alkiot ovat samoja, koska sillekin asian tulee péated, ja toisaalta mielivaltaisen mat-
riisin tapauksessa saadaan ylaraja-arvio korvaamalla kaikki matriisin alkiot itseisrvoltaan suurimmalla. Kisittele

ensin matriisia E, jonka kaikki alkiot ovat ykkésid, yleinen tapaus palautuu téhén helposti.
A . .
Kootaan yhteen e”:n ominaisuuksia.

Lause 1

1. €2 =1, jos O on nollamatriisi
2. ! =¢€'I, silld I™ = I kaikilla n
3. jos D on lavistdjamatriisi diag([A1,...,An]1),
niin e? = diag([eM, ..., e*1). Syy: D* = diag([AF,...,AED)
4. %em = Ae!” = ¢! A (johdettiin alussal)
5. Alkuarvotehtivin y' = Ay, y(0) = yo, yksikésitteinen ratkaisu on y(t) = e*yo

6. Differentiaaliyhtéléryhméin y’ = Ay yleinen ratkaisu on muotoa y(t) = e“c,
missd ¢ = [c1, ..., cn]T on vapaista parametreista ci, ..., ¢, muodostettu vektori
7. eMB =e%e®B jos AB = BA, mutta ei yleensi muulloin

8. e® on aina kidntyvi ja (e?)7! = e~ 4.



Tod: Kohdat 1,2,3 ovat varsin selvié.

Kohdan 4. tod. myds suoraan derivoimalla: [EN] Lause 2.2 s. 6.

5 ja 6 seuraavat suoraan dervoimiskaavasta 4. Huom! Ratkaisun yksikasitteisyys
voidaan todistaa samantien, tarvitsematta nojautua yleiseen ratkaisujen olemassaolo-
ja yksikésitteisyyslauseeseen. (Kts. [EN] Lause 2.2)

Kohta 7 voidaan todistaa aivan kuten sarjojen kertominen reaaliluvuilla ([TE] Lause
4.20).

Vaihtoehtoinen todistus kohtaan 7: Funktio y(t) = eA+tBtyq on alkuarvotehtivin
(Iyh. AA-tehtivin) y' = (A + B)y, y(0) = yo 1-kis. ratkaisu.

Toisaalta z(t) = e**ePtyy on saman AA-tehtéivin ratkaisu, silld
Z/(t) — AeAteBtyo + eAtBeBtyo.

Koska AB = BA, niin e**B = Be”?, kuten nihdiin kertomalla e”*:n sarjakehitelmé
vasemmalta, ja oikealta B:lli. (Kysymys palautuu siihen, etti AB = BA — A*B =
BAF)

Niinpi z'(t) = (A + B)e**ePlyo = (A + B)z(t).
Liséksi z(0) = eAOeBOyO = yo.

Yksikésitteisyyslauseen perusteella e By = eAteBlyy Vyo € R™.

Valitsemalla yo = er,k = 1...n, missd ex on R™:n k : s yksikkévektori, ndhdain
kummankin matriisin k:s sarake samaksi kaikilla k:n arvoilla, eli matriisit e*T5)* j

ja
eAteBt ovat samoja.

Kohta 8: A ja —A kommutoivat, joten I = EC = (A=) = g4e=4,

O

Huom! Tarkkaavainen lukija huomaa kehdpéittelyn aineksia, jos sattuu lukemaan
myos [EN]-prujusta yksikésitteisyystodistuksen. Siind tarvitaan kohdan 8 tulosta, jo-
ka todistetaan kohdan 7 avulla. No, [EN]/[TE]-prujuissa ei ole kehépééttelys, koska
sielld todistetaan ominaisuus 7 eri tavalla. Y14 oleva “puhdistuu” vetoamalla yleiseen
(lineaaristen systeemien) olemassaolo- ja yksikis. lauseeseen.

Miten e?? kiiytinnsssi lasketaan?

DIAGONALISOITUVAT MATRIISIT: Helpoin tapaus on jélleen diagonalisoituva matriisi.
Jos A = XDX ™! missi A:n ominaisarvot ovat matriisin D livistéjilld ja ominais-
vektorit matriisin X sarakkeina, niin ensinnékin

AP = (XDX ") (XDX ') ... (XDX ') (XDX ') =XDF*X,

silli vilissd olevat termit X ~1X supistuvat pois! Tamén perusteella

eM=T4+tA+ %t2A2 +.=X({T+tD+ %t2D2 +. )X T=XxePXx

Nyt et? = diag([e*?, ..., e*?]) ja vastaus saadaan kertomalla nimi kolme matriisia
keskenéén. Erityisesti on huomattava, ettd vaikka A:n ominaisarvot ja

-vektorit olisivat kompleksisia, niin lopputulos on télléinkin reaalinen, koska kaikki
sarjakehitelmin potenssit A® ovat reaalisia matriiseja!
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tamai eli eréds aikaisempi esimerkki diagonalisoinnista. Nyt X ' = {(1) —11] , joten
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vastaavat ominaisvektorit x®) = [1,i]T ja x® = [1,—i]T. Edelleen on voimassa
A=XDX"! jossa

Esimerkki 2. Olkoon A = { } . T&allsin A = XDX !, missi

Esimerkki 3. Olkoon A = ] Té&lloin ominaisarvot ovat 1 + 3¢ ja niitd

143 0 . 1o
D‘[ 0 1—31'] JaX_[i —z}'
Nyt X' = Bg ;;/22] ja siis
a1 1] [etHso 0 /2 —i/2
€ i —i 0 et=st| 172 /2

- %6(1+3i)t + 56(1731')15 —71'6(1+3i)t + %6(173i)t :|

%e(1+31)t + —71'6(1732')1& Lo(43i)t 4 %e(ksz')t
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[ etcos(3t)  e'sin(3t)
| —e’sin(3t) e’ cos(3t)

sievennysten jilkeen.

Kuten huomaamme, laskujen vélivaiheet saattavat nayttda hieman hankalilta, mutta
etuna on joka tapauksessa se, ettd alkuarvotehtdvien ratkaisut saadaan heti.



Esimerkki 4. Ratkaise edellisiin matriiseihin liittyvit alkuarvotehtiviit y' = Ay,
y(0) =[1,2]".

Esimerkissa 2 ratkaisu on

eli y1(t) = 2e* — €' ja ya(t) = 2.

Esimerkissi 3 ratkaisu on muotoa
() = e'cos(3t)  e'sin(3t)] [1] _ [e’ cos(3t) + 2¢" sin(3t)
YW= et sin(3t) e'cos(3t)| [2]| T [2e’ cos(3t) — e’ sin(3t)
eli y1(t) = e’ cos(3t) + 2¢' sin(3t) ja ya(t) = 2¢* cos(3t) — e’ sin(3t).

MATRIISIT, JOTKA EIVAT DIAGONALISOIDU: Kaikki matriisit eivit kuitenkaan ole dia-
gonalisoituvia, ja niiden kohdalla on meneteltévé toisella tavalla. Esimerkki tdllaisesta

1 1], jolla on kaksinkertainen ominaisarvo A1 = A2 = 1. Kun

matriisista on A = {0 1

yritimme laskea ominaisvektoreita, saamme yhtéloparin [8 (1)} [zl} = {8} , josta ei
2

millddn tavalla saada kahta LRT ominaisvektoria.

Tillaisille matriiseille e on laskettava jollakin muulla tavalla, ja esimerkiksi yll&

olevalle matriisille on A* = [(1] ﬂ , joten
ta _ |10 I 1], 1.1 2]  13[1 3
et = {0 1]+t[0 1]+2t [0 1:|+3!t 0 1|t
I e U o Al o L e s I [ 70
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Alkuarvotehtivin y' = Ay, y(0) = [1,2]7 ratkaisu on tiissi tapauksessa
(t) = et te'] [1] _ [e* + 2te’
YW=10 et |2~ 2¢’ ’

Huom. Toinen tapa laskea e*? ylli olevassa esimerkissi on kirjoittaa A = I + B ja

kiiyttid kaavaa ! = e'fe!B, joka on voimassa yhtélon IB = BI perusteella.

Yleinen tapaus voidaan selvittdd periaatteessa samalla tavalla, mutta diagonalisoin-
nin sijasta on kéytettdvé ns. Jordan-hajotelmaa. Y1l& oleva esimerkki liittyykin yk-
sinkertaisimman Jordan-lohkon matriisieksponenttifunktion laskemiseen, ja vastaava
paéttely yleistyy suuremmille matriiseille.

Matlabin avulla matriisicksponenttifunktio e saadaan tekemélld ensin ¢:stdd sym-

bolinen muuttuja késkylld syms t ja kirjoittamalla sitten expm(A*t).

Epdhomogeenisen yhtdléryhmin ratkaiseminen. Seuraavassa esitetddn, kuin-
ka myds epdhomogeeninen differentiaaliyhtéilsryhmé y’ = Ay + g(t) voidaan rat-
kaista matriisieksponenttifunktion avulla. Téssd A on n X n-vakiomatriisi ja g(t) =
[g1(2), ..., gn(t)]T on pystyvektori.

Kirjoitetaan yht#ld aluksi muotoon y’ — Ay = g(t) ja kerrotaan sen jilkeen molem-
mat puolet vasemmalta matriisilla e %4, jolloin saadaan yht&lo ety — et Ay =
e t4g(t). Koska matriiseille on voimassa tulon derivoimissiénts (XY) = X'V + XY’
(syy: (XY)i; = >, Tiryrs, mistd viite seuraa tavallisen tulon derivoimissdénnon
avulla), niin yht&ls tulee muotoon

d, _ _
ey =" g().

Matriiseja derivoidaan alkio kerrallaan, joten niitd voidaan myos integroida alkioit-
tain. Niin ollen saamme

ety = /eimg(t) dt + c,

missé integrointi kohdistuu erikseen pystyvektorin e~‘“g(t) jokaiseen komponenttiin

jac = [e,... ,cn]T on integroimisvakioista koostuva pystyvektori. Matriisin et
kiisnteismatriisi on €', joten ratkaisuksi saadaan

y(t) = etA/eftAg(t) dt + e'*e.

Téssd termi e'“c on vastaavan homogeeniyhtilon yleinen ratkaisu ja lauseke
et4 f eftAg(t) dt on puolestaan alkuperaisen yhtélon yksittaisratkaisu. Matriisiekspo-
nenttifunktion avulla yksittaisratkaisulle saadaan siis eksplisiittinen lauseke. Yleensé
saattaa kuitenkin olla helpompi hakea yksittédisratkaisua sopivan yritteen avulla, silla
yo. kaava johtaa usein osittaisintegrointeihin.

Jos halutaan ratkaista yhtiléryhmidn y’ = Ay +g(t) liittyvi alkuarvotehtéivi y(0) =
Yo, niin voidaan kiyttad médrittyd integraalia vililla [0, t]. Koska

[ ) ds = (0 = y(0) = Ty - vo.

niin alkuarvotehtavan ratkaisuksi saadaan

¢
y(t) = eyo + etA/ e *Ag(s) ds.
0



Esimerkki 5. Ratkaistaan ryhmé y’ = Ay + g(t), missi A on esimerkin 2 matriisi
ja g(t) = [1,¢']T. Aikaisemmin laskettiin

=lo o2t
joten
a (—tya et o2t _ ot
€ =€ = 0 e~ 2t
Téallsin , 0 , .
_ e " e " —e 1 2¢e " —1
€ tAg(t) = [ 0 e—2t :| |:et:| = |: e—t :| k]
joten

- 2e”" —1) dt —2e " —t
[ettg = [fE D) [
Ryhmaén yksittédisratkaisu on siis muotoa
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jonka avulla yleiseksi ratkaisuksi saadaan

2t t

y1(t) = (c1 — cz)et + coe?t —tet —et — 1
y2(t) = coe’ — e’

Vastaavalla tavalla saadaan esimerkiksi alkuarvotehtivin y(0) = [1,2]” ratkaisuksi

et e —e' [1 et et —et ft(QE_S —1)ds 3e? —tel —ef —1
— 0 —
y(t) = { o2t ] {2}4'[0 o2t ] [ f(f =% ds } = { 3e2t _ ot

Stabiilisuus. Matriisieksponenttifunktion avulla voidaan tutkia myos tasapainorat-
kaisujen stabiilisuutta ja tyyppid. Diagonalisoituville matriiseille ef4 = Xe!P? X1,
joten tyyppi ja stabiilisuus selvidvit suoraan ldvistdjamatriisin e'? kdyttiaytymista
tutkimalla.



