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Matriisieksponenttifunktio. Seuraavassa A on reaalinen n × n-matriisi, jonka
alkiot ovat vakioita. Tarkoituksenamme on ratkaista alkuarvotehtävä y′ = Ay,
y(0) = y0.

Tavallisen differentiaaliyhtälön y′ = ay, y(0) = y0, ratkaisu saadaan eksponentti-
funktion avulla muodossa y(t) = y0e

at. Herää kysymys, voitaisiinko myös dy-ryhmän
y′ = Ay ratkaisu kirjoittaa suoraan muodossa y(t) = X(t)y0 sopivan ajasta riip-
puvan n × n-matriisin X(t) avulla. Tästä olisi mm. se etu, että alkuarvotehtävän
ratkaisu saadaan samalla vaivalla kuin yleinen ratkaisu. Sijoitetaan tällainen yrite
yhtälöön y′ = Ay, jolloin saadaan X ′(t)y0 = AX(t)y0. Tämä toteutuu, jos matrii-
sille X(t) pätee X ′(t) = AX(t). Alkuehdosta y(0) = y0 seuraa lisäksi, että X(0) = I
= yksikkömatriisi.

Yhtälön X ′(t) = AX(t) toteuttavaan matriisiin X voidaan päätyä monella eri tavalla.
Eräs mahdollisuus on etsiä matriisia X potenssisarjan avulla: kirjoitetaan (formaalisti
eli ilman huolta suppenemisesta)

X(t) = X0 + tX1 + t2X2 + t3X3 + . . . ,

missä n × n-matriisit X0, X1, . . . eivät riipu ajasta t. Koska X(0) = I, täytyy olla
X0 = I. Lisäksi

X ′(t) = X1 + 2tX2 + 3t2X3 + . . . ,

joten sijoittamalla yhtälöön X ′(t) = AX(t) saadaan

X ′(t) = X1 + 2tX2 + 3t2X3 + · · · = A(I + tX1 + t2X2 + t3X3 + . . . )

= A + tAX1 + t2X2 + . . . .

Vertaamalla lausekkeiden tn (matriisi)kertoimia, nähdään että X1 = A, 2X2 =
AX1, 3X3 = AX2 jne. Ratkaisemalla saadaan siis X1 = A, X2 = 1

2
A2, X3 = 1

3!
A3

jne. Matriisin X(t) täytyy siis olla muotoa

X(t) = I + tA +
1

2
(tA)2 +

1

3!
(tA)3 + . . . .

Koska yhteys tavalliseen eksponenttifunktion sarjakehitelmään on selvä, asetetaan
seuraava määritelmä.

Määritelmä 1. Olkoon B n×n-matriisi. Matriisieksponenttifunktio eB määritellään
sarjakehitelmällä

eB = I + B +
1

2
B2 +

1

3!
B3 + . . . .

Ensimmäinen ongelma on se, mitä tämä sarjakehitelmä tarkoittaa. Jos kehitelmä
katkaistaan (k + 1). termin jälkeen saadaan lauseke

I + B +
1

2
B2 +

1

3!
B3 + · · ·+ 1

k!
Bk,

joka on määritelty kaikille neliömatriiseille B. Sarjakehitelmän suppeneminen tar-
koittaa yksinkertaisesti sitä, että jokainen ylläolevan matriisin alkio lähestyy tiettyä
lukua, kun k → ∞. Voidaan osoittaa, että näin todella käy kaikille neliömatriiseille,
ja siten eB on hyvin määritelty n× n-matriisi.

Tämä on harjoitus 8 AV teht. 6: Osoita, että matriisieksponenttifunktion sarjan suppenee kaikilla
neliömatriiseilla A.
Tarvitset kahta asiaa:

1) ex = 1 + x + x2
2! + . . . + xn

n! + . . . suppenee kaikilla x ∈ R.

2) Yläraja-arviota matriisin Ak alkioille,jotta pääset käyttämään edellä olevaa sarjaa vertailusarjana kullekin al-

kiosarjalle.

Voit rajoittua matriisiin, jonka alkiot ovat samoja, koska sillekin asian tulee päteä, ja toisaalta mielivaltaisen mat-

riisin tapauksessa saadaan yläraja-arvio korvaamalla kaikki matriisin alkiot itseisrvoltaan suurimmalla. Käsittele

ensin matriisia E, jonka kaikki alkiot ovat ykkösiä, yleinen tapaus palautuu tähän helposti.

Kootaan yhteen eA:n ominaisuuksia.

Lause 1

1. eO = I, jos O on nollamatriisi

2. etI = etI, sillä In = I kaikilla n

3. jos D on lävistäjämatriisi diag([λ1, . . . , λn]),
niin eD = diag([eλ1 , . . . , eλn]). Syy: Dk = diag([λk

1 , . . . , λk
n])

4. d
dt

etA = AetA = etAA (johdettiin alussa!)

5. Alkuarvotehtävän y′ = Ay, y(0) = y0, yksikäsitteinen ratkaisu on y(t) = etAy0

6. Differentiaaliyhtälöryhmän y′ = Ay yleinen ratkaisu on muotoa y(t) = etAc,
missä c = [c1, . . . , cn]T on vapaista parametreista c1, . . . , cn muodostettu vektori

7. eA+B = eAeB , jos AB = BA, mutta ei yleensä muulloin

8. eA on aina kääntyvä ja (eA)−1 = e−A.



Tod: Kohdat 1,2,3 ovat varsin selviä.
Kohdan 4. tod. myös suoraan derivoimalla: [EN] Lause 2.2 s. 6.
5 ja 6 seuraavat suoraan dervoimiskaavasta 4. Huom! Ratkaisun yksikäsitteisyys
voidaan todistaa samantien, tarvitsematta nojautua yleiseen ratkaisujen olemassaolo-
ja yksikäsitteisyyslauseeseen. (Kts. [EN] Lause 2.2)
Kohta 7 voidaan todistaa aivan kuten sarjojen kertominen reaaliluvuilla ([TE] Lause
4.20).
Vaihtoehtoinen todistus kohtaan 7: Funktio y(t) = e(A+B)ty0 on alkuarvotehtävän
(lyh. AA-tehtävän) y′ = (A + B)y, y(0) = y0 1-käs. ratkaisu.

Toisaalta z(t) = eAteBty0 on saman AA-tehtävän ratkaisu, sillä

z′(t) = AeAteBty0 + eAtBeBty0.

Koska AB = BA, niin eAtB = BeAt, kuten nähdään kertomalla eAt:n sarjakehitelmä
vasemmalta ja oikealta B:llä. (Kysymys palautuu siihen, että AB = BA =⇒ AkB =
BAk.)

Niinpä z′(t) = (A + B)eAteBty0 = (A + B)z(t).
Lisäksi z(0) = eA0eB0y0 = y0.

Yksikäsitteisyyslauseen perusteella e(A+B)ty0 = eAteBty0 ∀y0 ∈ Rn.

Valitsemalla y0 = ek, k = 1 . . . n, missä ek on Rn:n k : s yksikkövektori, nähdään
kummankin matriisin k:s sarake samaksi kaikilla k:n arvoilla, eli matriisit e(A+B)t ja
eAteBt ovat samoja. 7

Kohta 8: A ja −A kommutoivat, joten I = EO = e(A−A) = eAe−A.

Huom! Tarkkaavainen lukija huomaa kehäpäättelyn aineksia, jos sattuu lukemaan
myös [EN]-prujusta yksikäsitteisyystodistuksen. Siinä tarvitaan kohdan 8 tulosta, jo-
ka todistetaan kohdan 7 avulla. No, [EN]/[TE]-prujuissa ei ole kehäpäättelyä, koska
siellä todistetaan ominaisuus 7 eri tavalla. Yllä oleva “puhdistuu” vetoamalla yleiseen
(lineaaristen systeemien) olemassaolo- ja yksikäs. lauseeseen.

Miten eAt käytännössä lasketaan?

Diagonalisoituvat matriisit: Helpoin tapaus on jälleen diagonalisoituva matriisi.
Jos A = XDX−1, missä A:n ominaisarvot ovat matriisin D lävistäjällä ja ominais-
vektorit matriisin X sarakkeina, niin ensinnäkin

Ak = (XDX−1)(XDX−1) . . . (XDX−1)(XDX−1) = XDkX−1,

sillä välissä olevat termit X−1X supistuvat pois! Tämän perusteella

eAt = I + tA +
1

2
t2A2 + · · · = X(I + tD +

1

2
t2D2 + . . . )X−1 = XetDX−1.

Nyt etD = diag([eλ1t, . . . , eλnt]) ja vastaus saadaan kertomalla nämä kolme matriisia
keskenään. Erityisesti on huomattava, että vaikka A:n ominaisarvot ja
-vektorit olisivat kompleksisia, niin lopputulos on tällöinkin reaalinen, koska kaikki
sarjakehitelmän potenssit Ak ovat reaalisia matriiseja!

Esimerkki 2. Olkoon A =

�
1 1
0 2

�
. Tällöin A = XDX−1, missä

D =

�
1 0
0 2

�
ja X =

�
1 1
0 1

�
;

tämä eli eräs aikaisempi esimerkki diagonalisoinnista. Nyt X−1 =

�
1 −1
0 1

�
, joten

etA =

�
1 1
0 1

� �
et 0
0 e2t

� �
1 −1
0 1

�
=

�
et e2t − et

0 e2t

�
.

Esimerkki 3. Olkoon A =

�
1 3
−3 1

�
. Tällöin ominaisarvot ovat 1 ± 3i ja niitä

vastaavat ominaisvektorit x(1) = [1, i]T ja x(2) = [1,−i]T . Edelleen on voimassa
A = XDX−1, jossa

D =

�
1 + 3i 0

0 1− 3i

�
ja X =

�
1 1
i −i

�
.

Nyt X−1 =

�
1/2 −i/2
1/2 i/2

�
ja siis

etA =

�
1 1
i −i

� �
e(1+3i)t 0

0 e(1−3i)t

� �
1/2 −i/2
1/2 i/2

�
=

"
1
2
e(1+3i)t + 1

2
e(1−3i)t −i

2
e(1+3i)t + i

2
e(1−3i)t

i
2
e(1+3i)t + −i

2
e(1−3i)t 1

2
e(1+3i)t + 1

2
e(1−3i)t

#
=

�
et cos(3t) et sin(3t)
−et sin(3t) et cos(3t)

�
sievennysten jälkeen.

Kuten huomaamme, laskujen välivaiheet saattavat näyttää hieman hankalilta, mutta
etuna on joka tapauksessa se, että alkuarvotehtävien ratkaisut saadaan heti.



Esimerkki 4. Ratkaise edellisiin matriiseihin liittyvät alkuarvotehtävät y′ = Ay,
y(0) = [1, 2]T .

Esimerkissä 2 ratkaisu on

y(t) = etAy(0) =

�
et e2t − et

0 e2t

� �
1
2

�
=

�
2e2t − et

2e2t

�
,

eli y1(t) = 2e2t − et ja y2(t) = 2e2t.

Esimerkissä 3 ratkaisu on muotoa

y(t) =

�
et cos(3t) et sin(3t)
−et sin(3t) et cos(3t)

� �
1
2

�
=

�
et cos(3t) + 2et sin(3t)
2et cos(3t)− et sin(3t)

�
,

eli y1(t) = et cos(3t) + 2et sin(3t) ja y2(t) = 2et cos(3t)− et sin(3t).

Matriisit, jotka eivät diagonalisoidu: Kaikki matriisit eivät kuitenkaan ole dia-
gonalisoituvia, ja niiden kohdalla on meneteltävä toisella tavalla. Esimerkki tällaisesta

matriisista on A =

�
1 1
0 1

�
, jolla on kaksinkertainen ominaisarvo λ1 = λ2 = 1. Kun

yritämme laskea ominaisvektoreita, saamme yhtälöparin

�
0 1
0 0

� �
x1

x2

�
=

�
0
0

�
, josta ei

millään tavalla saada kahta LRT ominaisvektoria.

Tällaisille matriiseille etA on laskettava jollakin muulla tavalla, ja esimerkiksi yllä

olevalle matriisille on Ak =

�
1 k
0 1

�
, joten

etA =

�
1 0
0 1

�
+ t

�
1 1
0 1

�
+

1

2
t2
�
1 2
0 1

�
+

1

3!
t3
�
1 3
0 1

�
+ . . .

=

�
1 + t + 1

2
t2 + . . . t + t2 + 1

2
t3 + . . .

0 1 + t + 1
2
t2 + . . .

�
=

�
et tet

0 et

�
.

Alkuarvotehtävän y′ = Ay, y(0) = [1, 2]T ratkaisu on tässä tapauksessa

y(t) =

�
et tet

0 et

� �
1
2

�
=

�
et + 2tet

2et

�
.

Huom. Toinen tapa laskea etA yllä olevassa esimerkissä on kirjoittaa A = I + B ja
käyttää kaavaa etA = etIetB , joka on voimassa yhtälön IB = BI perusteella.

Yleinen tapaus voidaan selvittää periaatteessa samalla tavalla, mutta diagonalisoin-
nin sijasta on käytettävä ns. Jordan-hajotelmaa. Yllä oleva esimerkki liittyykin yk-
sinkertaisimman Jordan-lohkon matriisieksponenttifunktion laskemiseen, ja vastaava
päättely yleistyy suuremmille matriiseille.

Matlabin avulla matriisieksponenttifunktio etA saadaan tekemällä ensin t:stää sym-
bolinen muuttuja käskyllä syms t ja kirjoittamalla sitten expm(A*t).

Epähomogeenisen yhtälöryhmän ratkaiseminen. Seuraavassa esitetään, kuin-
ka myös epähomogeeninen differentiaaliyhtälöryhmä y′ = Ay + g(t) voidaan rat-
kaista matriisieksponenttifunktion avulla. Tässä A on n × n-vakiomatriisi ja g(t) =
[g1(t), . . . , gn(t)]T on pystyvektori.

Kirjoitetaan yhtälö aluksi muotoon y′ − Ay = g(t) ja kerrotaan sen jälkeen molem-
mat puolet vasemmalta matriisilla e−tA, jolloin saadaan yhtälö e−tAy′ − e−tAAy =
e−tAg(t). Koska matriiseille on voimassa tulon derivoimissääntö (XY )′ = X ′Y +XY ′

(syy: (XY )ij =
P

k xikykj , mistä väite seuraa tavallisen tulon derivoimissäännön
avulla), niin yhtälö tulee muotoon

d

dt
(e−tAy) = e−tAg(t).

Matriiseja derivoidaan alkio kerrallaan, joten niitä voidaan myös integroida alkioit-
tain. Näin ollen saamme

e−tAy =

Z
e−tAg(t) dt + c,

missä integrointi kohdistuu erikseen pystyvektorin e−tAg(t) jokaiseen komponenttiin
ja c = [c1, . . . , cn]T on integroimisvakioista koostuva pystyvektori. Matriisin e−tA

käänteismatriisi on etA, joten ratkaisuksi saadaan

y(t) = etA

Z
e−tAg(t) dt + etAc.

Tässä termi etAc on vastaavan homogeeniyhtälön yleinen ratkaisu ja lauseke
etA

R
e−tAg(t) dt on puolestaan alkuperäisen yhtälön yksittäisratkaisu. Matriisiekspo-

nenttifunktion avulla yksittäisratkaisulle saadaan siis eksplisiittinen lauseke. Yleensä
saattaa kuitenkin olla helpompi hakea yksittäisratkaisua sopivan yritteen avulla, sillä
yo. kaava johtaa usein osittaisintegrointeihin.

Jos halutaan ratkaista yhtälöryhmään y′ = Ay+g(t) liittyvä alkuarvotehtävä y(0) =
y0, niin voidaan käyttää määrättyä integraalia välillä [0, t]. KoskaZ t

0

d

ds
(e−sAy(s)) ds = e−tAy(t)− eOy(0) = e−tAy(t)− y0,

niin alkuarvotehtävän ratkaisuksi saadaan

y(t) = etAy0 + etA

Z t

0

e−sAg(s) ds.



Esimerkki 5. Ratkaistaan ryhmä y′ = Ay + g(t), missä A on esimerkin 2 matriisi
ja g(t) = [1, et]T . Aikaisemmin laskettiin

etA =

�
et e2t − et

0 e2t

�
,

joten

e−tA = e(−t)A =

�
e−t e−2t − e−t

0 e−2t

�
.

Tällöin

e−tAg(t) =

�
e−t e−2t − e−t

0 e−2t

� �
1
et

�
=

�
2e−t − 1

e−t

�
,

joten Z
e−tAg(t) dt =

�R
(2e−t − 1) dtR

e−t dt

�
=

�−2e−t − t
−e−t

�
.

Ryhmän yksittäisratkaisu on siis muotoa

y0(t) = etA

Z
e−tAg(t) dt =

�
et e2t − et

0 e2t

� �−2e−t − t
−e−t

�
=

�−tet − et − 1
−et

�
,

jonka avulla yleiseksi ratkaisuksi saadaan(
y1(t) = (c1 − c2)e

t + c2e
2t − tet − et − 1

y2(t) = c2e
2t − et.

Vastaavalla tavalla saadaan esimerkiksi alkuarvotehtävän y(0) = [1, 2]T ratkaisuksi

y(t) =

�
et e2t − et

0 e2t

� �
1
2

�
+

�
et e2t − et

0 e2t

� �R t

0
(2e−s − 1) dsR t

0
e−s ds

�
=

�
3e2t − tet − et − 1

3e2t − et

�
.

Stabiilisuus. Matriisieksponenttifunktion avulla voidaan tutkia myös tasapainorat-
kaisujen stabiilisuutta ja tyyppiä. Diagonalisoituville matriiseille etA = XetDX−1,
joten tyyppi ja stabiilisuus selviävät suoraan lävistäjämatriisin etD käyttäytymistä
tutkimalla.


