Harjoitus 8 AV

7.11.2001 Ha

1.

> restart: with(inttrans): alias(LL=laplace,IL=invlaplace,u=Heaviside): # Joudumme käyttämään LL-nimea, koska L on tässä tehtävässä varattu kelan induktanssille.

Warning, the name changecoords has been redefined

> silmu1:=L*diff(i1(t),t,t)-L*diff(i2(t),t,t)+i1(t)/C=diff(e(t),t); silmu2:=L*diff(i2(t),t)-L*diff(i1(t),t)+R*i2(t)=0;

silmu1 := L*diff(i1(t),`$`(t,2))-L*diff(i2(t),`$`(t...

silmu2 := L*diff(i2(t),t)-L*diff(i1(t),t)+R*i2(t) =...

> L:=2;C:=50*10^(-6);R:=100;e:=t->50*sin(100*t);

L := 2

C := 1/20000

R := 100

e := proc (t) options operator, arrow; 50*sin(100*t...

> Ls1:=LL(silmu1,t,s);Ls2:=LL(silmu2,t,s);

Ls1 := 2*s*(s*LL(i1(t),t,s)-i1(0))-2*D(i1)(0)-2*s*(...
Ls1 := 2*s*(s*LL(i1(t),t,s)-i1(0))-2*D(i1)(0)-2*s*(...

Ls2 := 2*s*LL(i2(t),t,s)-2*i2(0)-2*s*LL(i1(t),t,s)+...

> AE:=i1(0)=0,i2(0)=0:

>

> Ls1:=subs(AE,Ls1);Ls2:=subs(AE,Ls2);

Ls1 := 2*s^2*LL(i1(t),t,s)-2*D(i1)(0)-2*s^2*LL(i2(t...

Ls2 := 2*s*LL(i2(t),t,s)-2*s*LL(i1(t),t,s)+100*LL(i...

> solve({Ls1,Ls2},{LL(i1(t),t,s),LL(i2(t),t,s)});

{LL(i1(t),t,s) = 1/50*(2500*s+D(i1)(0)*s^2+10000*D(...
{LL(i1(t),t,s) = 1/50*(2500*s+D(i1)(0)*s^2+10000*D(...

> I12:=subs(%,[LL(i1(t),t,s),LL(i2(t),t,s)]);

I12 := [1/50*(2500*s+D(i1)(0)*s^2+10000*D(i1)(0)-D(...
I12 := [1/50*(2500*s+D(i1)(0)*s^2+10000*D(i1)(0)-D(...

> I1:=I12[1]; I2:=I12[2];

I1 := 1/50*(2500*s+D(i1)(0)*s^2+10000*D(i1)(0)-D(i2...

I2 := 1/50*s*(2500*s+D(i1)(0)*s^2+10000*D(i1)(0)-D(...

> I1:=convert(I1,parfrac,s);I2:=convert(I2,parfrac,s);

I1 := 1/4*(s+50)/(s^2+10000)+1/100*(-25-2*D(i2)(0)+...

I2 := 1/4*s/(s^2+10000)+1/100*(-25-2*D(i2)(0)+2*D(i...

> ii1:=IL(I1,s,t);ii2:=IL(I2,s,t);

ii1 := 1/4*cos(100*t)+1/8*sin(100*t)+(-1/4-1/50*D(i...

ii2 := 1/4*cos(100*t)+(-1/4-1/50*D(i2)(0)+1/50*D(i1...

Tarvitsemme vielä lisäalkuehdon. Virtojen derivaatat eivät yleensä ole nollia. Koska kondensaattorin varaus = 0 alkuhetkellä, on

sen jännite =0, siten kelan jännitteen on oltava jännitelähteen jännite e(0), joka = 0.

Siispä 2(i1'-i2')=0 hetkellä t=0, joten i1'(0)=i2'(0).

Tämä riittääkin, kuten nähdään.

> ii1:=subs(D(i1)(0)=di0,D(i2)(0)=di0,ii1);ii2:=subs(D(i1)(0)=di0,D(i2)(0)=di0,ii2);

ii1 := 1/4*cos(100*t)+1/8*sin(100*t)-1/4*exp(-100*t...

ii2 := 1/4*cos(100*t)-1/4*exp(-100*t)+25*t*exp(-100...

Tarkistus:

> (eval@subs)(i1(t)=ii1,i2(t)=ii2,silmu1);(eval@subs)(i1(t)=ii1,i2(t)=ii2,silmu2);

5000*cos(100*t) = 5000*cos(100*t)

0 = 0

> (eval@subs)(t=0,ii2);

0

> plot([ii1,ii2],t=0..0.1);plot([ii1,ii2],t=0.1..0.4);plot([ii1,ii2],t=0.4..1);

[Maple Plot]

[Maple Plot]

[Maple Plot]

Rakennetaan nyt yhtälöt suoraan integraalimuodosta:

> restart: with(inttrans): alias(LL=laplace,IL=invlaplace,u=Heaviside): # Joudumme käyttämään LL-nimea, koska L on tässä tehtävässä varattu kelan induktanssille.

Warning, the name changecoords has been redefined

> silmu1:=L*diff(i1(t),t)-L*diff(i2(t),t)+int(i1(tau),tau=0..t)/C=e(t); silmu2:=L*diff(i2(t),t)-L*diff(i1(t),t)+R*i2(t)=0;

silmu1 := L*diff(i1(t),t)-L*diff(i2(t),t)+int(i1(ta...

silmu2 := L*diff(i2(t),t)-L*diff(i1(t),t)+R*i2(t) =...

> L:=2;C:=50*10^(-6);R:=100;e:=t->50*sin(100*t);

L := 2

C := 1/20000

R := 100

e := proc (t) options operator, arrow; 50*sin(100*t...

> Ls1:=LL(silmu1,t,s);Ls2:=LL(silmu2,t,s);

Ls1 := 2*s*LL(i1(t),t,s)-2*i1(0)-2*s*LL(i2(t),t,s)+...

Ls2 := 2*s*LL(i2(t),t,s)-2*i2(0)-2*s*LL(i1(t),t,s)+...

> AE:=i1(0)=0,i2(0)=0;

AE := i1(0) = 0, i2(0) = 0

> Ls1:=subs(AE,Ls1);Ls2:=subs(AE,Ls2);

Ls1 := 2*s*LL(i1(t),t,s)-2*s*LL(i2(t),t,s)+20000*LL...

Ls2 := 2*s*LL(i2(t),t,s)-2*s*LL(i1(t),t,s)+100*LL(i...

> solve({Ls1,Ls2},{LL(i1(t),t,s),LL(i2(t),t,s)});

{LL(i1(t),t,s) = 50*s*(s+50)/(200*s^3+s^4+20000*s^2...
{LL(i1(t),t,s) = 50*s*(s+50)/(200*s^3+s^4+20000*s^2...

> I12:=subs(%,[LL(i1(t),t,s),LL(i2(t),t,s)]);

I12 := [50*s*(s+50)/(200*s^3+s^4+20000*s^2+2000000*...

> I1:=I12[1]; I2:=I12[2];

I1 := 50*s*(s+50)/(200*s^3+s^4+20000*s^2+2000000*s+...

I2 := 50*s^2/(200*s^3+s^4+20000*s^2+2000000*s+10000...

> I1:=convert(I1,parfrac,s);I2:=convert(I2,parfrac,s);

I1 := 25/2*1/((s+100)^2)-1/4*1/(s+100)+1/4*(s+50)/(...

I2 := 25*1/((s+100)^2)-1/4*1/(s+100)+1/4*s/(s^2+100...

> ii1:=IL(I1,s,t);ii2:=IL(I2,s,t);

ii1 := 25/2*t*exp(-100*t)-1/4*exp(-100*t)+1/4*cos(1...

ii2 := 25*t*exp(-100*t)-1/4*exp(-100*t)+1/4*cos(100...

> ii1;ii2;

25/2*t*exp(-100*t)-1/4*exp(-100*t)+1/4*cos(100*t)+1...

25*t*exp(-100*t)-1/4*exp(-100*t)+1/4*cos(100*t)

Tarkistus:

> (eval@subs)(i1(t)=ii1,i2(t)=ii2,silmu1);(eval@subs)(i1(t)=ii1,i2(t)=ii2,silmu2);

-25*exp(-100*t)+2500*t*exp(-100*t)+25*cos(100*t)+20...

0 = 0

> -25*exp(-100*t)+2500*t*exp(-100*t)+25*cos(100*t)+20000*int(ii1,tau = 0 .. t) = 50*sin(100*t);map(eval,%);map(simplify,%);

>

Katsotaan alkuehdot:

-25*exp(-100*t)-2500*t*exp(-100*t)+25*cos(100*t)+25...
-25*exp(-100*t)-2500*t*exp(-100*t)+25*cos(100*t)+25...

-25*exp(-100*t)-2500*t*exp(-100*t)+25*cos(100*t)+25...
-25*exp(-100*t)-2500*t*exp(-100*t)+25*cos(100*t)+25...

-25*exp(-100*t)-2500*t*exp(-100*t)+25*cos(100*t)+25...
-25*exp(-100*t)-2500*t*exp(-100*t)+25*cos(100*t)+25...

> (eval@subs)(t=0,ii1);(eval@subs)(t=0,diff(ii1,t));(eval@subs)(t=0,ii2);(eval@subs)(t=0,diff(ii2,t));

0

50

0

50

Derivaatat alkuhetkellä ovat kaukana 0:sta, ne ovat 50, mutta samat, kuten edellä todettiin.

> plot([ii1,ii2],t=0..0.3);

[Maple Plot]

2.

> restart: with(inttrans): alias(L=laplace,u=Heaviside):

Warning, the name changecoords has been redefined

a)

> plot(t*u(t),t=-1..1,axes=boxed);

[Maple Plot]

> L(t*u(t),t,s);

1/(s^2)

b)

> f:=(t-1)*u(t-1):plot(f,t=0..2,axes=boxed);

[Maple Plot]

> L(f,t,s);

exp(-s)/(s^2)

c)

> f:=4*u(t-1)*cos(t);

f := 4*u(t-1)*cos(t)

> plot(f,t=0..3*Pi,axes=boxed);

[Maple Plot]

> L(f,t,s);

4*exp(-s)*(cos(1)*s/(s^2+1)-sin(1)/(s^2+1))

> Int(exp(-s*t)*4*cos(t),t=1..T): %=value(%);integr:=rhs(%);

Int(4*exp(-s*t)*cos(t),t = 1 .. T) = -4*(s*exp(-s*T...

integr := -4*(s*exp(-s*T)*cos(T)-exp(-s*T)*sin(T)-e...

> assume(s>0): limit(integr,T=infinity);

(4*exp(-s)*s*cos(1)-4*exp(-s)*sin(1))/(s^2+1)
(4*exp(-s)*s*cos(1)-4*exp(-s)*sin(1))/(s^2+1)

>

3.

> restart: with(inttrans): alias(L=laplace,IL=invlaplace,u=Heaviside):

Warning, the name changecoords has been redefined

a)

> F:=4/s*(exp(-2*s)-2*exp(-5*s));

F := 4*(exp(-2*s)-2*exp(-5*s))/s

> IL(F,s,t);

4*u(t-2)-8*u(t-5)

b)

> G:=exp(-3*s)/(s-1)^3;

G := exp(-3*s)/((s-1)^3)

> IL(G,s,t);

1/2*u(t-3)*exp(t-3)*t^2-3*u(t-3)*exp(t-3)*t+9/2*u(t...

> factor(%);

1/2*u(t-3)*(t-3)^2*exp(t-3)

c)

> G:=s*exp(-2*s)/(s^2+Pi^2);

G := s*exp(-2*s)/(s^2+Pi^2)

> IL(G,s,t);

u(t-2)*cos(sqrt(Pi^2)*(t-2))

> simplify(%);

u(t-2)*cos(Pi*t)

4.

> restart: with(inttrans): alias(L=laplace,IL=invlaplace,u=Heaviside,esubs=eval@subs):

Warning, the name changecoords has been redefined

Ensin käsin laskien:

> F:=1/(s*(s+2));F:=convert(F,parfrac,s);

F := 1/(s*(s+2))

F := 1/2*1/s-1/2*1/(s+2)

> f:=IL(F,s,t);

f := 1/2-1/2*exp(-2*t)

> G:=normal(F/s): G:=convert(%,parfrac,s);

G := 1/2*1/(s^2)-1/4*1/s+1/4/(s+2)

> g:=IL(G,s,t);

g := 1/2*t-1/4+1/4*exp(-2*t)

g saadaan myös integraalin muunnoskaavasta takaperin:

> int(subs(t=tau,f),tau=0..t);

1/2*t-1/4+1/4*exp(-2*t)

> x:=f+u(t-1)*subs(t=t-1,g);

>

x := 1/2-1/2*exp(-2*t)+u(t-1)*(1/2*t-3/4+1/4*exp(-2...

Tarkistus:

> diff(x,t,t)+2*diff(x,t);simplify(%);

Dirac(1,t-1)*(1/2*t-3/4+1/4*exp(-2*t+2))+2*Dirac(t-...
Dirac(1,t-1)*(1/2*t-3/4+1/4*exp(-2*t+2))+2*Dirac(t-...

u(t-1)

> subs(t=0,x);eval(%);

1/2-1/2*exp(0)+u(-1)*(-3/4+1/4*exp(2))

0

> esubs(t=0,x);esubs(t=0,diff(x,t));

0

1

> diff(x,t);simplify(%);

exp(-2*t)+Dirac(t-1)*(1/2*t-3/4+1/4*exp(-2*t+2))+u(...

1/2*(2+u(t-1)*exp(2*t)-u(t-1)*exp(2))*exp(-2*t)

> plot([u(t-1),x],t=0..4,axes=boxed);

[Maple Plot]

>

5.

> restart: with(inttrans): alias(u=Heaviside): plots[setoptions](axes=boxed):

Warning, the name changecoords has been redefined

> fa:=u(t+1)-u(t);

fa := u(t+1)-u(t)

> plot(fa,t=-2..1);

[Maple Plot]

> fb:=u(t+2)-u(t+1)+u(t-1)-u(t-2);

fb := u(t+2)-u(t+1)+u(t-1)-u(t-2)

> plot(fb,t=-3..3);

[Maple Plot]

> CHI[1]:=u(t+2)-u(t); CHI[2]:=u(t)-u(t-3);

CHI[1] := u(t+2)-u(t)

CHI[2] := u(t)-u(t-3)

> fc:=(t+2)*CHI[1]+(2-2*t/3)*CHI[2];

fc := (t+2)*(u(t+2)-u(t))+(2-2/3*t)*(u(t)-u(t-3))

> plot(fc,t=-3..4);

[Maple Plot]

d)

> CHI:=u(t+2)-u(t-2);

CHI := u(t+2)-u(t-2)

> fd:=-1+u(t+2)+t*CHI/2+u(t-2);

fd := -1+u(t+2)+1/2*t*(u(t+2)-u(t-2))+u(t-2)

> plot(fd,t=-3..3);

[Maple Plot]

>

6.

> restart: with(inttrans): alias(u=Heaviside,L=laplace,IL=invlaplace): plots[setoptions](axes=boxed):

Warning, the name changecoords has been redefined

> g:=u(t)-2*u(t-1)+u(t-2);

g := u(t)-2*u(t-1)+u(t-2)

> plot(g,t=-1..3);

[Maple Plot]

> dy:=diff(y(t),t,t)+3*diff(y(t),t)+y(t)=g;AE:=y(0)=1,D(y)(0)=1;

dy := diff(y(t),`$`(t,2))+3*diff(y(t),t)+y(t) = u(t...

AE := y(0) = 1, D(y)(0) = 1

> Ldy:=subs(AE,L(dy,t,s));

Ldy := s*(s*L(y(t),t,s)-1)-4+3*s*L(y(t),t,s)+L(y(t)...

> Y:=solve(Ldy,L(y(t),t,s));

Y := (s^2+4*s+1-2*exp(-s)+exp(-2*s))/(s*(s^2+3*s+1)...

> nim:=denom(Y);oso:=-(-s^2-4*s-1+2*exp(-s)-exp(-2*s))
;#-s^2-4*s-1+2*exp(-s)-exp(-2*s)

>

nim := s*(s^2+3*s+1)

oso := s^2+4*s+1-2*exp(-s)+exp(-2*s)

> oso1:=s^2+4*s+1;
oso2:=-2*exp(-s)+exp(-2*s);

oso1 := s^2+4*s+1

oso2 := -2*exp(-s)+exp(-2*s)

> Y1:=oso1/nim;Y2:=oso2/nim;

Y1 := (s^2+4*s+1)/(s*(s^2+3*s+1))

Y2 := (-2*exp(-s)+exp(-2*s))/(s*(s^2+3*s+1))

> Y1:=convert(Y1,parfrac,s);

Y1 := 1/s+1/(s^2+3*s+1)

> Q2:=convert(1/nim,parfrac,s);

Q2 := 1/s-(3+s)/(s^2+3*s+1)

> y1:=IL(Y1,s,t);

y1 := 1+1/5*sqrt(5)*(exp((-3/2+1/2*sqrt(5))*t)-exp(...

> y2:=IL(Y2,s,t);

y2 := -2*u(t-1)+6/5*u(t-1)*exp(-3/2*t+3/2)*sqrt(5)*...
y2 := -2*u(t-1)+6/5*u(t-1)*exp(-3/2*t+3/2)*sqrt(5)*...

> convert(y2,exp);

-2*u(t-1)+6/5*u(t-1)*exp(-3/2*t+3/2)*sqrt(5)*(1/2*e...
-2*u(t-1)+6/5*u(t-1)*exp(-3/2*t+3/2)*sqrt(5)*(1/2*e...
-2*u(t-1)+6/5*u(t-1)*exp(-3/2*t+3/2)*sqrt(5)*(1/2*e...
-2*u(t-1)+6/5*u(t-1)*exp(-3/2*t+3/2)*sqrt(5)*(1/2*e...

> convert(a,exp);

a

> yy:=y1+y2;

yy := 1+1/5*sqrt(5)*(exp((-3/2+1/2*sqrt(5))*t)-exp(...
yy := 1+1/5*sqrt(5)*(exp((-3/2+1/2*sqrt(5))*t)-exp(...
yy := 1+1/5*sqrt(5)*(exp((-3/2+1/2*sqrt(5))*t)-exp(...

> plot([g,yy],t=0..4);

[Maple Plot]

>