Harj. 3 LV

12.10.2001 HA

1.

> restart:

Warning, the name changecoords has been redefined

> yp:=t*(a*cos(w0*t)+b*sin(w0*t));

yp := t*(a*cos(w0*t)+b*sin(w0*t))

> vasen:=simplify(diff(yp,t,t)+w0^2*yp);
oikea:=F0*cos(w0*t)/m;

vasen := -2*w0*(a*sin(w0*t)-b*cos(w0*t))

oikea := F0*cos(w0*t)/m

> coeff(vasen,cos(w0*t))=coeff(oikea,cos(w0*t)),coeff(vasen,sin(w0*t))=coeff(oikea,sin(w0*t));

2*w0*b = F0/m, -2*w0*a = 0

> solve({%},{a,b});

{a = 0, b = 1/2*F0/(w0*m)}

> assign(%);

> a,b;

0, 1/2*F0/(w0*m)

> yp;

1/2*t*F0*sin(w0*t)/(w0*m)

> m:=1:F0:=1:w0:=10:plot(yp,t=0..30);

[Maple Plot]

2.

> restart:

Warning, the name changecoords has been redefined

> m:=2:k:=2: c:=1: r:=3*cos(3*t)-2*sin(3*t);

r := 3*cos(3*t)-2*sin(3*t)

> yp:=a*cos(3*t)+b*sin(3*t);

yp := a*cos(3*t)+b*sin(3*t)

> vasen:=m*diff(yp,t,t)+c*diff(yp,t)+k*yp;

vasen := -16*a*cos(3*t)-16*b*sin(3*t)-3*a*sin(3*t)+...

> oikea:=r:

> coeff(vasen,cos(3*t))=coeff(oikea,cos(3*t)),coeff(vasen,sin(3*t))=coeff(oikea,sin(3*t));

-16*a+3*b = 3, -16*b-3*a = -2

> ab:=solve({%},{a,b});

ab := {a = -42/265, b = 41/265}

> yp:=a*cos(3*t)+b*sin(3*t);

yp := a*cos(3*t)+b*sin(3*t)

> r:=3*cos(3*t)-2*sin(3*t):

> Yp:=R*cos(kolmetee-delta);

Yp := R*cos(-kolmetee+delta)

> vasen:=subs(kolmetee=3*t,expand(Yp)); oikea:=yp;

vasen := R*cos(3*t)*cos(delta)+R*sin(3*t)*sin(delta...

oikea := a*cos(3*t)+b*sin(3*t)

> coeff(vasen,cos(3*t))=coeff(oikea,cos(3*t)),coeff(vasen,sin(3*t))=coeff(oikea,sin(3*t));

R*cos(delta) = a, R*sin(delta) = b

> solve({%},{R,delta});Rdelta:=allvalues(%);

{R = RootOf(-b^2-a^2+_Z^2), delta = arctan(b/RootOf...

Rdelta := {R = sqrt(b^2+a^2), delta = arctan(b/(sqr...

> assign(ab);

>

Tässä on syytä kirjoittaa kaavat käsin (mahd. leikkaus/liimaus), Maple ei ymmärrä merkeistä eikä oikeista haaroista.

>

> R := sqrt(b^2+a^2); delta := arctan(b,a);

R := 1/265*sqrt(3445)

delta := -arctan(41/42)+Pi

> R:=evalf(R); delta:=evalf(-arctan(41/42.)+Pi);

>

R := .2214872542

delta := 2.368242100

> y:='y': HY:=m*diff(y(t),t,t)+c*diff(y(t),t)+k*y(t)=0;

HY := 2*diff(y(t),`$`(t,2))+diff(y(t),t)+2*y(t) = 0...

> m:=2:k:=2: c:=1:HY;

2*diff(y(t),`$`(t,2))+diff(y(t),t)+2*y(t) = 0

> dsolve(HY,y(t)): Yh:=rhs(%);

Yh := _C1*exp(-1/4*t)*sin(1/4*sqrt(15)*t)+_C2*exp(-...

> Y:=unapply(Yh+yp,t);

Y := proc (t) options operator, arrow; _C1*exp(-1/4...

> solve({Y(0)=1,D(Y)(0)=0},{_C1,_C2});

{_C2 = 307/265, _C1 = -37/795*sqrt(15)}

> assign(%);

> Y(t);

-37/795*sqrt(15)*exp(-1/4*t)*sin(1/4*sqrt(15)*t)+30...

>

> Y(0);D(Y)(0);

1

0

> plot([r,Y(t),yp],t=0..15,color=[blue,red,green]);

[Maple Plot]

3.

> restart:

Warning, the name changecoords has been redefined

> r:=2*cos(omega*t);

r := 2*cos(omega*t)

> kar:=lambda^2+lambda/4+2=0;solve(%,lambda);

kar := lambda^2+1/4*lambda+2 = 0

-1/8+1/8*I*sqrt(127), -1/8-1/8*I*sqrt(127)

> yp:=a*cos(omega*t)+b*sin(omega*t);

yp := a*cos(omega*t)+b*sin(omega*t)

> vasen:=diff(yp,t,t)+diff(yp,t)/4+2*yp;

vasen := -a*cos(omega*t)*omega^2-b*sin(omega*t)*ome...

> oikea:=r;

oikea := 2*cos(omega*t)

> coeff(vasen,cos(omega*t))=coeff(oikea,cos(omega*t)),coeff(vasen,sin(omega*t))=coeff(oikea,sin(omega*t));

-a*omega^2+1/4*b*omega+2*a = 2, -b*omega^2-1/4*a*om...

> ab:=solve({%},{a,b});

ab := {a = -32*(omega^2-2)/(-63*omega^2+16*omega^4+...

> Ampl:=sqrt(a^2+b^2);assign(ab);Ampl;simplify(%,symbolic);

>

Ampl := sqrt(a^2+b^2)

sqrt(1024*(omega^2-2)^2/((-63*omega^2+16*omega^4+64...

8*1/(sqrt(-63*omega^2+16*omega^4+64))

> g:=-63*omega^2+16*omega^4+64;dg:=diff(g,omega);solve(dg=0,omega);

g := -63*omega^2+16*omega^4+64

dg := -126*omega+64*omega^3

0, 3/8*sqrt(14), -3/8*sqrt(14)

> wmax:=%[2];evalf(%);

wmax := 3/8*sqrt(14)

1.403121520

> plot(Ampl,omega=0..10);subs(omega=wmax,Ampl);

[Maple Plot]

1/127*sqrt(4096)*sqrt(127)

> omega:=wmax:r;yp;

2*cos(3/8*sqrt(14)*t)

64/127*cos(3/8*sqrt(14)*t)+192/127*sqrt(14)*sin(3/8...

> plot([r,yp],t=0..20,color=[blue,red]);

[Maple Plot]

4.

> restart:

Warning, the name changecoords has been redefined

> yh:=A*cos(t)+B*sin(t); # Tämä jo osataan

yh := A*cos(t)+B*sin(t)

> diff(yh,t,t)+yh; # Tarkistetaan kuitenkin.

0

> r:=3*cos(omega*t);yp:=a*cos(omega*t)+b*sin(omega*t);

r := 3*cos(omega*t)

yp := a*cos(omega*t)+b*sin(omega*t)

> vasen:=diff(yp,t,t)+yp;oikea:=r:

> coeff(vasen,cos(omega*t))=coeff(oikea,cos(omega*t)),coeff(vasen,sin(omega*t))=coeff(oikea,sin(omega*t));ab:=solve({%},{a,b});

>

vasen := -a*cos(omega*t)*omega^2-b*sin(omega*t)*ome...

-a*omega^2+a = 3, -b*omega^2+b = 0

ab := {b = 0, a = -3*1/(omega^2-1)}

> assign(ab):

> yp;simplify(diff(yp,t,t)+yp); #Tarkistus.

-3*cos(omega*t)/(omega^2-1)

3*cos(omega*t)

> Y:=unapply(yh+yp,t);

Y := proc (t) options operator, arrow; A*cos(t)+B*s...

> A:='A':B:='B':AB:=solve({Y(0)=0,D(Y)(0)=2},{A,B});

AB := {A = 3*1/(omega^2-1), B = 2}

> assign(AB);

> Y(t);

3*cos(t)/(omega^2-1)+2*sin(t)-3*cos(omega*t)/(omega...

Amplitudi on hiukan huonosti asestettu tehtävä, yp:n amplitudi on näkyvissä suoraan, sensijaan koko Y:n amplitudi on hieman ongelmallinen, kun siinä lasketaan yhteen eri taajuksisia värähtelyjä.

> plot([subs(omega=0.7,Y(t)),subs(omega=0.8,Y(t)),subs(omega=0.9,Y(t))],t=0..10,color=[red,green,blue]);
plot([subs(omega=0.7,Y(t)),subs(omega=0.8,Y(t)),subs(omega=0.9,Y(t))],t=0..50,color=[red,green,blue]);

[Maple Plot]

[Maple Plot]

> A:='A':B:='B': AB:=solve({Y(0)=1,D(Y)(0)=1},{A,B});assign(%);

AB := {B = 1, A = (2+omega^2)/(omega^2-1)}

> Y(t);

(2+omega^2)*cos(t)/(omega^2-1)+sin(t)-3*cos(omega*t...

> plot([subs(omega=0.7,Y(t)),subs(omega=0.8,Y(t)),subs(omega=0.9,Y(t))],t=0..10,color=[red,green,blue]);
plot([subs(omega=0.7,Y(t)),subs(omega=0.8,Y(t)),subs(omega=0.9,Y(t))],t=0..50,color=[red,green,blue]);

[Maple Plot]

[Maple Plot]

Huojunta näkyy selvänä lähimpänä 1:tä olevalla kulmataajuudella. Ratkaisut näyttävät laajemmalla aikaskaalalla aivan samoilta, alussa on eroa, kun katsotaan lyhemmällä skaalalla.

>

Jätetään nyt tähän.

Ehkä niitä oli todella hiukan liikaa!!

>

>