
LIS�AYKSI�A
kirjaan Reaalimuuttujan analyysi

13.6. Numeerinen integrointi: Gaussin kaavat

Edell�a k�asitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat | Riemannin
summa, puolisuunnikass�a�ant�o ja Simpsonin s�a�ant�o | voidaan tulkita painotetuiksi
keskiarvoiksi sopivissa pisteiss�a lasketuista funktion arvoista. Painojen summa on
integroimisv�alin pituus. Kaavat ovat siten periaatteessa muotoa

Q(f) =

nX
k=0

wkf(xk);

miss�a kertoimet wk ovat painot ja funktion arvot lasketaan tukipisteiss�a xk.

Puolisuunnikass�a�ant�o integroi tarkasti jokaisen ensimm�aisen asteen polynomin, Simp-
sonin s�a�ant�o jokaisen kolmannen asteen polynomin. Tukipisteet on t�all�oin valittu
tasav�alisesti. Voidaan kysy�a, onko mahdollista p�a�ast�a parempaan tulokseen | ts.
siihen ett�a korkeampaa astetta oleva polynomi integroituu tarkasti | jos luovutaan
tukipisteiden tasav�alisyydest�a. T�all�oin tukipisteet valittaisiin tarkan integroitumisen
kannalta optimaalisella tavalla.

Tarkastelu rajoitetaan seuraavassa koskemaan integroimisv�ali�a [�1; 1]. T�am�a ei ole
oleellinen rajoitus, sill�a mink�a tahansa v�alin [a; b] yli otettu integraali voidaan muun-
taa sijoituksella

x =
b� a

2
t+

a + b

2
;

jolloin Z b

a

f(x) dx =
b � a

2

Z 1

�1
f

�
b � a

2
t+

a+ b

2

�
dt:

Olkoon aluksi tarkasteltavana kahteen tukipisteeseen x0 ja x1 perustuva kvadratuu-
rikaava

Q1(f) = w0f(x0) + w1f(x1):

Painot w0, w1 ja tukipisteet x0, x1 pyrit�a�an m�a�ar�a�am�a�an siten, ett�a mahdollisimman
korkea-asteiset polynomit integroituvat tarkasti yli v�alin [�1; 1]. Tarkkaa integraalia
merkit�a�an

I(f) =

Z 1

�1
f(x) dx:
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Koska tuntemattomia on nelj�a, voidaan yritt�a�a vaatia potenssien xj , j = 0; 1; 2; 3
tarkka integroituminen:

8>>><
>>>:

Q1(1) = I(1) eli w0 +w1 = 2;

Q1(x) = I(x) eli w0x0 + w1x1 = 0;

Q1(x
2) = I(x2) eli w0x

2
0 + w1x

2
1 =

2
3 ;

Q1(x
3) = I(x3) eli w0x

3
0 + w1x

3
1 = 0:

Kyseess�a on ep�alineaarinen yht�al�oryhm�a, jonka ratkaisu kuitenkin on helposti l�oydet-
t�aviss�a:

w0 = w1 = 1; �x0 = x1 =
1p
3
= 0:57735 : : : :

Saadut tukipisteet sijaitsevat integroimisv�alill�a ja painojen summa on v�alin pituus,
kuten on luonnollista odottaa.

Tuloksena on kertalukua 1 oleva Gaussin kvadratuuri (eli numeerisen integroinnin
kaava)

Q1(f) = f(� 1p
3
) + f( 1p

3
):

Voidaan osoittaa, ett�a integrointivirheelle p�atee

jI(f) �Q1(f)j �
1

135
max

x2[�1;1]
jf (4)(x)j:

Vastaavalla tavalla voidaan johtaa korkeampien kertalukujen kvadratuurikaavoja.
Toisen kertaluvun kvadratuurissa

Q2(f) = w0f(x0) + w1f(x1) + w2f(x2)

tukipisteit�a on kolme ja voidaan vaatia potenssien xj , j = 0; 1; 2; 3; 4; 5, tarkka
integroituminen:

8>>>>>>>><
>>>>>>>>:

Q2(1) = I(1) eli w0 + w1 +w2 = 2;

Q2(x) = I(x) eli w0x0 +w1x1 + w2x2 = 0;

Q2(x
2) = I(x2) eli w0x

2
0 +w1x

2
1 + w2x

2
2 =

2
3 ;

Q2(x
3) = I(x3) eli w0x

3
0 +w1x

3
1 + w2x

3
2 = 0;

Q2(x
4) = I(x4) eli w0x

4
0 +w1x

4
1 + w2x

4
2 =

2
5 ;

Q2(x
5) = I(x5) eli w0x

5
0 +w1x

5
1 + w2x

5
2 = 0:

Syntyv�a ep�alineaarinen yht�al�oryhm�a on hieman vaikeammin, mutta kuitenkin al-
gebrallisesti ratkaistavissa:

w0 = w2 =
5
9 = 0:55555 : : : ; w1 =

8
9 = 0:88888 : : : ;

�x0 = x2 =
q

3
5 = 0:77459 : : : ; x1 = 0:
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Kertalukua 2 oleva Gaussin kvadratuuri on siten

Q2(f) � 0:5556 f(�0:7746) + 0:8889 f(0) + 0:5556 f(0:7746):

Integrointivirheelle voidaan laskea arvio

jI(f) �Q2(f)j �
1

15750
max

x2[�1;1]
jf (6)(x)j:

Kertaluvun n tapauksessa kvadratuurikaava on

Qn(f) =
nX

k=0

wkf(xk):

Painoja ja tukipisteit�a on yhteens�a 2n + 2, jolloin voidaan vaatia potenssien xj ,
j = 0; 1; : : : ; 2n + 1, tarkka integroituminen. Syntyv�an ep�alineaarisen yht�al�oryhm�an
ratkaiseminen k�ay kuitenkin vaikeaksi kertaluvun kasvaessa.

Tukipisteet voidaankin l�oyt�a�a helpommin er�a�an polynomin nollakohtina:

Olkoon p(x) astetta n+ 1 oleva polynomi, joka toteuttaa integraaliehdot

Z 1

�1
xjp(x) dx = 0; j = 0; 1; : : : ; n:

N�am�a voidaan ilmeisestikin lausua my�os muodossa

Z 1

�1
p(x)q(x) dx = 0 kaikilla polynomeilla q, deg q � n:

Polynomia p kutsutaan potenssien xj ortogonaalipolynomiksi. Ajatuksena on tulkita
lauseke

(p j q) =

Z 1

�1
p(x)q(x) dx

sis�atuloksi; sill�a nimitt�ain on luonteenomaiset sis�atulon ominaisuudet (vrt. AG, lause
5.7.2). Jos kahden vektorin | tai polynomin | sis�atulo on = 0, niit�a on tapana
kutsua ortogonaalisiksi, mist�a nimitys ortogonaalipolynomi. Muunlaista, esimerkiksi
polynomien kuvaajiin liittyv�a�a kohtisuoruutta eiv�at integraaliehdot tarkoita.

Lause 13.6.1. Integraaliehdot

Z 1

�1
xjp(x) dx = 0; j = 0; 1; : : : ; n;
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t�aytt�av�a astetta n + 1 oleva polynomi p on olemassa. Se on yksik�asitteinen, kun
astetta n+ 1 olevan termin kertoimeksi kiinnitet�a�an 1.

Todistus. Merkit�a�an p(x) =
Pn+1

k=0 akx
k. Kun t�am�a sijoitetaan integraaliehtoihin,

saadaan kertoimille ak homogeeninen (ts. yht�al�oryhm�an vakiotermit ovat = 0) line-
aarinen yht�al�oryhm�a, jossa on n+ 1 yht�al�o�a ja n+ 2 tuntematonta. T�allaisella yht�a-
l�oryhm�all�a on �a�arett�om�an monta ratkaisua; siis my�os muita kuin nollien muodostama
ratkaisu.

Yht�al�oryhm�all�a on ratkaisu, jossa korkeimman potenssin kerroin an+1 on 6= 0. Jos
n�ain ei olisi, olisi polynomi p enint�a�an astetta n ja integraaliehtojen perusteella olisiR 1
�1 p(x)p(x) dx = 0. T�all�oin olisi p(x) = 0 kaikilla x ja yht�al�oryhm�all�a olisikin vain
yksi ratkaisu: a0 = a1 = � � � = an+1 = 0.

Polynomi p voidaan jakaa korkeimman potenssin kertoimella, jolloin saadaan polyno-
mi, jossa korkeimman potenssin kerroin on 1. Jakaminen ei vaikuta integraaliehtojen
toteutumiseen. Jos olisi olemassa kaksi erilaista t�allaista polynomia, p1 ja p2, olisi

Z 1

�1
[p1(x) � p2(x)]q(x) dx = 0

kaikilla enint�a�an asetta n olevilla polynomeilla q. Erotus p1 � p2 on itse enint�a�an
astetta n, jolloin siis on Z 1

�1
[p1(x) � p2(x)]

2 dx = 0:

T�ast�a seuraa, ett�a polynomit ovat samat: p1 = p2.

Lause 13.6.2. Jos astetta n+ 1 olevalle polynomille p(x) p�atee

Z 1

�1
xjp(x) dx = 0; j = 0; 1; : : : ; n;

niin sen nollakohdat xk, k = 0; 1; : : : ; n ovat eri suuret, reaaliset ja sijaitsevat v�alill�a
[�1; 1].

Todistus. Olkoot x1; x2; : : : ; xr sellaiset polynomin p v�alill�a [�1; 1] sijaitsevat nolla-
kohdat, joissa p(x) vaihtaa merkkins�a. Jos kaikki nollakohdat eiv�at ole eri suuria,
reaalisia ja sijaitse v�alill�a [�1; 1], on r < n+ 1. Polynomi

q(x) = (x� x1)(x � x2) : : : (x � xr)

on t�all�oin enint�a�an astetta n ja integraaliehtojen perusteella on siis

Z 1

�1
p(x)q(x) dx = 0:
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Koska sek�a p ett�a q vaihtavat merkki�a�an pisteiss�a x1; x2; : : : ; xr , tulo p(x)q(x) ei
vaihda niiss�a merkki�a�an, vaan on koko integrointiv�alill�a m�a�ar�atynmerkkinen (joko
positiivinen tai negatiivinen). T�all�oin integraali

Z 1

�1
p(x)q(x) dx

ei voi olla = 0.

Ainoa mahdollisuus on, ett�a r = n+1, ts. polynomin p kaikki nollakohdat sijaitsevat
v�alill�a [�1; 1], ovat reaalisia ja eri suuria.

Lause 13.6.3. Kertalukua n olevan Gaussin kvadratuurin

Qn(f) =
nX

k=0

wkf(xk)

tukipisteet xk, k = 0; 1; : : : ; n, ovat potenssien xj , j = 0; 1; : : : ; n, ortogonaalipoly-
nomin p(x) nollakohdat. Vastaavat painot wk, k = 0; 1; : : : ; n, saadaan integroimalla
tukipisteisiin liittyv�at Lagrangen interpolaation apufunktiot Lk(x), k = 0; 1; : : : ; n:

wk =

Z 1

�1
Lk(x) dx; k = 0; 1; : : : ; n:

Todistus. On osoitettava, ett�a kvadratuurikaava integroi tarkasti potenssit xj , j =
0; 1; : : : ; 2n+ 1, v�alill�a [�1; 1], kun tukipisteet ja painot valitaan em. tavalla.

Jakamalla potenssi xj , miss�a j = 0; 1; : : : ; 2n + 1, astetta n + 1 olevalla polynomilla
p saadaan osam�a�ar�aksi polynomi q ja jakoj�a�ann�okseksi polynomi r. N�am�a ovat
kumpikin enint�a�an astetta n. On siis xj = pq + r ja integroimalla yli v�alin [�1; 1]
saadaan

I(xj ) = I(pq + r) = I(pq) + I(r):

Koska I(xjp) = 0, kun j = 0; 1; : : : ; n, ja q on enint�a�an astetta n, on I(pq) = 0.

Koska r on enint�a�an astetta n, se yhtyy astetta n olevaan Lagrangen interpolaatio-
polynomiinsa ja

I(r) =

Z 1

�1
r(x) dx =

Z 1

�1

nX
k=0

r(xk )Lk(x) dx

=
nX

k=0

r(xk)

�Z 1

�1
Lk(x) dx

�
=

nX
k=0

wkr(xk):
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Koska p(xk) = 0, on x
j

k = p(xk)q(xk) + r(xk) = r(xk) jokaisessa tukipisteess�a xk.

Yhdist�am�all�a tulokset saadaan

I(xj ) = I(pq) + I(r) = I(r) =
nX

k=0

wkr(xk) =
nX

k=0

wkx
j

k = Qn(x
j )

jokaiselle eksponentille j = 0; 1; : : : ; 2n + 1. N�am�a potenssit siis integroituvat
tarkasti.

Kertalukua n olevan Gaussin kvadratuurin virhe voidaan my�os lausua vastaavan
ortogonaalipolynomin pn+1 avulla; oletetaan, ett�a t�ass�a on korkeimman potenssin
kerroin normeerattu arvoon 1. Virheen yl�arajaksi saadaan

jI(f) �Qn(f)j �
1

(2n+ 2)!

�Z 1

�1
pn+1(x)

2 dx

�
max

x2[�1;1]
jf (2n+2)(x)j:

T�am�an todistaminen edellytt�a�a t�ass�a k�asitelty�a laajempia interpolaatiotarkasteluja
(ns. Hermiten interpolaatiota) ja sivuutetaan.

Esimerkki 13.6.4. Kertalukua 3 olevan Gaussin kvadratuurin johtamiseksi on
muodostettava polynomi p(x) = a4x

4 + a3x
3 + a2x

2 + a1x + a0, joka toteuttaa
integraaliehdot

Z 1

�1
p(x) dx =

Z 1

�1
xp(x) dx =

Z 1

�1
x2p(x) dx =

Z 1

�1
x3p(x) dx = 0:

N�am�a johtavat lineaariseen yht�al�oryhm�a�an

8>>>>>>>><
>>>>>>>>:

a4

5
+

a2

3
+ a0 = 0;

a3

5
+

a1

3
= 0;

a4

7
+

a2

5
+

a0

3
= 0;

a3

7
+

a1

5
= 0;

jonka ratkaisu on a0 =
3
35
a4, a1 = 0, a2 = � 6

7
a4, a3 = 0. Ortogonaalipolynomi, jonka

korkeimman asteen termin kerroin on = 1, on siten

x4 � 6
7
x2 + 3

35
:

T�am�an nollakohdat ovat kvadratuurin tukipisteet

x0 � �0:861136; x1 � �0:339981; x2 � 0:339981; x3 � 0:861136:
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Muodostamalla tukipisteisiin liittyv�at Lagrangen interpolaation apufunktiot

L0(x) =
(x � x1)(x � x2)(x � x3)

(x0 � x1)(x0 � x2)(x0 � x3)
; L1(x) =

(x� x0)(x � x2)(x � x3)

(x1 � x0)(x1 � x2)(x1 � x3)
;

L2(x) =
(x � x0)(x � x1)(x � x3)

(x2 � x0)(x2 � x1)(x2 � x3)
; L3(x) =

(x� x0)(x � x1)(x � x2)

(x3 � x0)(x3 � x1)(x3 � x2)

ja integroimalla n�am�a v�alin [�1; 1] yli saadaan vastaavat painot:

w0 = w3 = 0:347855; w1 = w2 = 0:652145:

Kvadratuuri on siten

Q3(f) � 0:347855 f(�0:861136) + 0:652145 f(�0:339981)

+ 0:652145 f(0:339981) + 0:347855 f(0:861136):

Integrointivirheen yl�arajaksi saadaan

jI(f) �Q3(f)j �
1

8!

�Z 1

�1
(x4 � 6

7 x
2 + 3

35 )
2 dx

�
max

x2[�1;1]
jf (8)(x)j

=
1

3472875
max

x2[�1;1]
jf (8)(x)j:

Esimerkki 13.6.5. Olkoon laskettavana integraali (vrt. esimerkkiin 13.5.1)

Z 1

0

dx

1 + x2
:

Tekem�all�a sijoitus x = 1
2 t+

1
2 t�am�a saadaan muotoon

Z 1

�1

2

4 + (t + 1)2
dt:

Soveltamalla eri kertalukujen Gaussin kvadratuureja saadaan integraalille seuraavat
numeeriset approksimaatiot:

kertaluku integr. arvo
1 0.786885
2 0.785267
3 0.785403
4 0.785398
5 0.785398

Integraalin tarkka arvo on �
4 � 0:785398.
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