LISAYKSIA

kirjaan Reaalimuuttujan analyysi

13.6. Numeerinen integrointi: Gaussin kaavat

Edell4 kisitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat — Riemannin
summa, puolisuunnikassdinté ja Simpsonin sdinté — voidaan tulkita painotetuiksi
keskiarvoiksi sopivissa pisteissd lasketuista funktion arvoista. Painojen summa on
integroimisvéilin pituus. Kaavat ovat siten periaatteessa muotoa

QUf) =D wrf(ar),

missé kertoimet wy, ovat painot ja funktion arvot lasketaan tukipisteissd xy.

Puolisuunnikassdints integroi tarkasti jokaisen ensimmaéisen asteen polynomin, Simp-
sonin sdantd jokaisen kolmannen asteen polynomin. Tukipisteet on talldin valittu
tasavilisesti. Voidaan kysyid, onko mahdollista pdisti parempaan tulokseen — ts.
sithen ettd korkeampaa astetta oleva polynomi integroituu tarkasti — jos luovutaan
tukipisteiden tasavilisyydestd. Till6in tukipisteet valittaisiin tarkan integroitumisen
kannalta optimaalisella tavalla.

Tarkastelu rajoitetaan seuraavassa koskemaan integroimisvilid [—1,1]. Tam4 ei ole
oleellinen rajoitus, silld minki tahansa vilin [a, b] yli otettu integraali voidaan muun-
taa sijoituksella

b—a a+b
= t
rE

b b—a ! b—a a+b
/af(w)dw: 5 /_1f< 5 t+ 5 )dt.

Olkoon aluksi tarkasteltavana kahteen tukipisteeseen z¢ ja z; perustuva kvadratuu-

jolloin

rikaava

Q1(f) = wof(zo) + w1 f(z1).

Painot wg, wy ja tukipisteet g, ¢; pyritddn madrdaméin siten, ettd mahdollisimman
korkea-asteiset polynomit integroituvat tarkasti yli vélin [—1,1]. Tarkkaa integraalia
merkitddn

1= [ fz)ds.
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Koska tuntemattomia on nelji, voidaan yrittii vaatia potenssien z/, j = 0,1,2,3
tarkka integroituminen:

eli wy+w; =2,

eli wozo + wizy

(
(

1(2?) = I(z*) eli wozd + wyz? =
( I(

-

z) eli wozd + wya

O why O

Kyseessd on epélineaarinen yhtéléryhmaé, jonka ratkaisu kuitenkin on helposti 16ydet-
tavissé:

’wO:’wl:]_, —$0:$1:%:057735
Saadut tukipisteet sijaitsevat integroimisvililli ja painojen summa on vilin pituus,
kuten on luonnollista odottaa.

Tuloksena on kertalukua 1 oleva Gaussin kvadratuuri (eli numeerisen integroinnin
kaava)

Qi) = F(—25) + f( ).

Voidaan osoittaa, ettd integrointivirheelle péitee

_ A e (e
1) - Q)] < g5 _max, 179(a)]

Vastaavalla tavalla voidaan johtaa korkeampien kertalukujen kvadratuurikaavoja.
Toisen kertaluvun kvadratuurissa

Q2(f) = wof(mo) + w1 f(z1) + wa f(z2)

tukipisteiti on kolme ja voidaan vaatia potenssien z’, ; = 0,1,2,3,4,5, tarkka
integroituminen:

Q:(1) =1I(1) eli wy+ wy +wy =2,

Q2(z) = I(z) eli wozg +wizy + wezy =0,

Q2(z®) = I(z®) eli woz) + wizl + wazj = 2,

Q2(w3) = I(w?’) eli wozd +wizd + wozs =0,

Q2(w4) = I(w4) eli woxy +wiz] + wozy = %,

Q2(w5) = I(w5) eli wozy +wiz + wozy = 0.

Syntyvd epilineaarinen yhtédléryhmi on hieman vaikeammin, mutta kuitenkin al-
gebrallisesti ratkaistavissa:

wy =wy = g =0.55555..., w; =35 =0.88888...,

—w0:m2:\/§:0.77459..., z1 = 0.
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Kertalukua 2 oleva Gaussin kvadratuuri on siten
Q2(f) ~ 0.5556 f(—0.7746) + 0.8889 f(0) + 0.5556 f(0.7746).

Integrointivirheelle voidaan laskea arvio

1) - Q)] < frz5 max, £V

Kertaluvun n tapauksessa kvadratuurikaava on

£) = wef(ze).

Painoja ja tukipisteiti on yhteensi 2n + 2, jolloin voidaan vaatia potenssien z7,
7 =0,1,...,2n + 1, tarkka integroituminen. Syntyviin epilineaarisen yhtdléryhmén
ratkaiseminen kiy kuitenkin vaikeaksi kertaluvun kasvaessa.

Tukipisteet voidaankin 16ytas helpommin erdéin polynomin nollakohtina:

Olkoon p(z) astetta n + 1 oleva polynomi, joka toteuttaa integraaliehdot
1 .
/ z’p(z)de =0, j=0,1,...,n
-1

N&améi voidaan ilmeisestikin lausua my6s muodossa

1
/ p(z)g(z)dz =0 kaikilla polynomeilla ¢, deg ¢ < n.
-1

Polynomia p kutsutaan potenssien z/ ortogonaalipolynomiksi. Ajatuksena on tulkita
lauseke

(plq) = / p(z)g(z)dz

-1

sisdtuloksi; silld nimittdin on luonteenomaiset sisdtulon ominaisuudet (vrt. AG, lause
5.7.2). Jos kahden vektorin — tai polynomin — sisidtulo on = 0, niiti on tapana
kutsua ortogonaalisiksi, mistd nimitys ortogonaalipolynomi. Muunlaista, esimerkiksi
polynomien kuvaajiin liittyvdd kohtisuoruutta eivit integraaliehdot tarkoita.

Lause 13.6.1. Integraaliehdot

1
/ eip(x)de =0, j=0,1,...,n,
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tdyttdvd astetta m + 1 oleva polynomi p on olemassa. Se on yksikiisitteinen, kun
astetta n + 1 olevan termin kertoimeksi kiinnitet&in 1.

Todistus. Merkitddn p(z) = EZ;} arz®. Kun timi sijoitetaan integraaliehtoihin,
saadaan kertoimille a homogeeninen (ts. yhtdloryhmén vakiotermit ovat = 0) line-
aarinen yhtéléryhma4, jossa on n 4+ 1 yhtil6a ja n + 2 tuntematonta. Téllaisella yhta-
l6ryhmaélld on d4rettémén monta ratkaisua; siis my6s muita kuin nollien muodostama
ratkaisu.

Yhtiloryhmélld on ratkaisu, jossa korkeimman potenssin kerroin a,1; on # 0. Jos
néin ei olisi, olisi polynomi p enintdin astetta n ja integraaliehtojen perusteella olisi

. plz)plz)dr = 0. Lalléin olis1 p(xz) = aikilla = ja yhtéloryhmalla olisikin vain
11 d 0. T&lloin olisi 0 kaikill ja yhtdloryhmaélld olisiki i
yksi ratkaisu: a9 = a; =--- = ap41 = 0.

Polynomi p voidaan jakaa korkeimman potenssin kertoimella, jolloin saadaan polyno-
mi, jossa korkeimman potenssin kerroin on 1. Jakaminen ei vaikuta integraaliehtojen
toteutumiseen. Jos olisi olemassa kaksi erilaista tillaista polynomia, p; ja po, olisi

/_I[Pl(w) — p2(z)]g(z)dz = 0

kaikilla enintddn asetta n olevilla polynomeilla ¢q. Erotus p; — p, on itse enintdin
astetta n, jolloin siis on

/ [p1(z) — p2(2)])? dz = 0.

-1

Tasta seuraa, ettd polynomit ovat samat: p; = p;. B

Lause 13.6.2. Jos astetta n + 1 olevalle polynomille p(z) pétee
1 .
/ ’p(z)de =0, j=0,1,...,n,
-1

niin sen nollakohdat =y, k = 0,1,...,n ovat eri suuret, reaaliset ja sijaitsevat vililla

[_171]'

Todistus. Olkoot z1,z3,...,z, sellaiset polynomin p vililla [—1,1] sijaitsevat nolla-
kohdat, joissa p(z) vaihtaa merkkinsd. Jos kaikki nollakohdat eivit ole eri suuria,
reaalisia ja sijaitse vililla [—1,1], on r < n 4+ 1. Polynomi

g(z) =(z —z1)(z —22)... (¢ — z,)

on tdlléin enintdin astetta n ja integraaliehtojen perusteella on siis

[ pente)a =0

-1
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Koska sekd p ettd ¢ vaihtavat merkkidan pisteissid z1,z2,...,2z,, tulo p(z)g(z) el
vaihda niissd merkkiddn, vaan on koko integrointivililld ma&ratynmerkkinen (joko
positiivinen tai negatiivinen). Till6in integraali

1
[ pedate)as
-1
ei voi olla = 0.

Ainoa mahdollisuus on, ettd » = n 4+ 1, ts. polynomin p kaikki nollakohdat sijaitsevat
valilla [—1,1], ovat reaalisia ja eri suuria. B

Lause 13.6.3. Kertalukua n olevan Gaussin kvadratuurin
Qn(f) =) wif(zx)
k=0

tukipisteet zz, k = 0,1,...,n, ovat potenssien z/, j = 0,1,...,n, ortogonaalipoly-
nomin p(z) nollakohdat. Vastaavat painot wg, & = 0,1,...,n, saadaan integroimalla
tukipisteisiin liittyvdt Lagrangen interpolaation apufunktiot Ly(z), k =0,1,...,n:

1
wk:/ Ly(z)de, k=0,1,...,n.

-1

Todistus. On osoitettava, ettd kvadratuurikaava integroi tarkasti potenssit 7, j =
0,1,...,2n 4+ 1, vilillda [—1, 1], kun tukipisteet ja painot valitaan em. tavalla.

Jakamalla potenssi z7, missid j = 0,1,...,2n + 1, astetta n + 1 olevalla polynomilla
p saadaan osaméaidriksi polynomi ¢ ja jakojadnnokseksi polynomi r. N&mi ovat
kumpikin enintidin astetta n. On siis z/ = pg + r ja integroimalla yli vilin [—1,1]
saadaan

I(z') = I(pq + ) = I(pq) + I(r).

Koska I(z'p) = 0, kun j = 0,1,...,n, ja ¢ on enintdin astetta n, on I(pq) = 0.

Koska r on enintdin astetta n, se yhtyy astetta n olevaan Lagrangen interpolaatio-
polynomiinsa ja
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Koska p(zr) =0, on wfc = p(zk)q(zk) + r(zr) = r(zk) jokaisessa tukipisteessd z.

Yhdistamalla tulokset saadaan
I(2?) = I(pg) + I(r) = I(r) = Y wer(zs) = Y wiz) = Qn(a?)

jokaiselle eksponentille ;5 = 0,1,...,2n + 1. N&ami potenssit siis integroituvat
tarkasti. B

Kertalukua n olevan Gaussin kvadratuurin virhe voidaan myos lausua vastaavan
ortogonaalipolynomin p,; avulla; oletetaan, etti tidssd on korkeimman potenssin
kerroin normeerattu arvoon 1. Virheen ylirajaksi saadaan

1 1
I(f) = Qa(f)] < @n 12 [/_1 Prt1(z)? dm] | max £+ ().

Tamén todistaminen edellyttdd tdssd kisiteltyd laajempia interpolaatiotarkasteluja
(ns. Hermiten interpolaatiota) ja sivuutetaan.

Esimerkki 13.6.4. Kertalukua 3 olevan Gaussin kvadratuurin johtamiseksi on
muodostettava polynomi p(z) = asz? + a3z® + a22® + a;z + ag, joka toteuttaa
integraaliehdot

/CZZKw)dw ::/C:wp(w)dw ::/f:wzp(w)dw:: /f:w3p(w)dw o

N&am4i johtavat lineaariseen yhtéaléryhméain

T+ Tt =0,
T+5 =0,
e L
2+ =0,
jonka ratkaisu on ag = %a4, a; =0,a = —$a4, a3 = 0. Ortogonaalipolynomi, jonka

korkeimman asteen termin kerroin on = 1, on siten

Tamé&n nollakohdat ovat kvadratuurin tukipisteet
zg ~ —0.861136, z; ~ —0.339981, =, ~ 0.339981, z3 ~ 0.861136.
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Muodostamalla tukipisteisiin liittyvit Lagrangen interpolaation apufunktiot

B (z —z1)(z — z2)(z — 23) ) — (z —zo)(z — z2)(z — @3)
Lole) = (2o — z1)(zo — z2)(z0 — 23)’ L1() (21 — zo)(z1 — z2) (21 — 23)’

B (z —zo)(z —z1)(z — 23) ) — (z —zo)(z —z1)(z — 22)
Lofe) = (22 — zo)(z2 — z1)(22 — 23)’ Ls(z) (23 — zo)(z3 — z1)(z3 — z2)

ja integroimalla ndm4 vélin [—1,1] yli saadaan vastaavat painot:
wy = ws = 0.347855, w1 = wy, = 0.652145.
Kvadratuuri on siten

Qs(f) ~ 0.347855 f(—0.861136) + 0.652145 f(—0.339981)
+0.652145 £(0.339981) + 0.347855 £(0.861136).

Integrointivirheen ylidrajaksi saadaan

1
10 -l < g |[ - 3a2+ 37 de|_max 179)

-1 z€[—1,1]

L max |f®(z)]. m
3472875 z¢c[—1,1]

Esimerkki 13.6.5. Olkoon laskettavana integraali (vrt. esimerkkiin 13.5.1)

/1 dz
0 14+ z2°

Tekemilla sijoitus x = %t + % timi saadaan muotoon

1 2
/ 2y
4+ (t+1)?

Soveltamalla eri kertalukujen Gaussin kvadratuureja saadaan integraalille seuraavat
numeeriset approksimaatiot:

kertaluku integr. arvo
1 0.786885
2 0.785267
3 0.785403
4 0.785398
5 0.785398

Integraalin tarkka arvo on 7 =~ 0.785398. W
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