Ratk. 8
11-13.4.2000
Ti 11.4
4.
a)
> f:=(x,y)->x*y+y^2;
> F:=unapply(int(x*y+y^2,y=0..x),x);
> int(F(x),x=0..1);
> Int(Int(f(x,y),y=0..x),x=0..1):%=value(%);
>
ysimppeli:=proc(a,b,c,d)
local alayla,oikea,vasen,kp,keski;
alayla:=plot([c(x),d(x)],x=a..b,thickness=2,color=[red,red]);
vasen:=plot([[a,c(a)],[a,d(a)]],x=a..b,color=red);
oikea:=plot([[b,c(b)],[b,d(b)]],x=b..b,color=red);
kp:=(a+b)/2;
keski:=plot([[kp,c(kp)],[kp,d(kp)]],x=a..b,color=blue);
plots[display]([alayla,vasen,oikea,keski]);
end:
> ysimppeli(0,1,0,x->x);
> int(x^3/2+x^3/3,x=0..1);
> Int(Int(x*y+y^2,x=0..y),y=0..1):%=value(%);
b)
> c:=-b/a*(x-a);
> Int(Int(x-3*y,y=0..c),x=0..a);value(%);simplify(%);
Tämäpä ei toiminutkaan, sisempi integraali ei evaluoitunut ajoissa. Täytyy siis kirjoittaa:
> Int(Int(x-3*y,y=0..c),x=0..a)=simplify(int(int(x-3*y,y=0..c),x=0..a));
> Int(-b/a*x*(x-a)-3/2*b^2/a^2*(x-a)^2,x=0..a);simplify(value(%));
6.
> sys:={x*y=1,2*x+2*y=5};
> solve(sys,{x,y});
> ysimppeli(1/2,2,x->1/x,x->5/2-x);
> Int(Int(ln(x),y=1/x..5/2-x),x=1/2..2)=int(int(ln(x),y=1/x..5/2-x),x=1/2..2);
>
To 13.4.
1.
>
xsimppeli:=proc(a,b,c,d)
local vasen,oikea,yla,ala,kp,keski;
vasen:=plot([a(y),y,y=c..d],thickness=2,color=[red]);
oikea:=plot([b(y),y,y=c..d],thickness=2,color=[red]);
yla:=plot(d,x=a(d)..b(d),color=red):
ala:=plot(c,x=a(c)..b(c),color=red):
kp:=(c+d)/2;
keski:=plot(kp,x=a(kp)..b(kp),color=blue);
plots[display]([ala,yla,vasen,oikea,keski]);
end:
>
> xsimppeli(y->y^2,y->sqrt(y),0.2,0.8);
2.
a)
> Int(Int(x^2+y^2,y=-sqrt(a^2-x^2)..sqrt(a^2-x^2)),x=-a..a)=int(int(x^2+y^2,y=-sqrt(a^2-x^2)..sqrt(a^2-x^2)),x=-a..a);
Maple ei osaa tätä integroida. Siirrytään napakoord.:
> Int(Int(r^3,r=0..a),phi=0..2*Pi):%=value(%);
b)
Lasketaan käsin tähän saakka:
> a^6/24*Int(sin(2*phi)^2,phi=0..2*Pi):%=value(%);
3
> restart:with(plots):z1:=r^2;z2:=(4-r^2)/3;
>
para1:=plot3d([r*cos(phi),r*sin(phi),z1],r=0..1,phi=0..2*Pi):
para2:=plot3d([r*cos(phi),r*sin(phi),z2],r=0..1,phi=0..2*Pi):
> plots[display]([para1,para2]);
>
4.
> restart:with(plots):with(plottools):
> a:=2:b:=1:c:=1/4:
>
tedri1:=polygon([[1,0,0],[0,1,0],[0,0,1]],color=khaki):
tedri2:=polygon([[0,0,0],[0,1,0],[0,0,1]],color=yellow):
tedri3:=polygon([[0,0,0],[0,1,0],[1,0,0]],color=cyan):
tedri4:=polygon([[0,0,0],[0,0,1],[1,0,0]],color=pink):
> plots[display]([tedri1,tedri2,tedri3,tedri4],axes=boxed,labels=[x,y,z]);
> a:='a':b:='b':c:='c':Int(Int(Int(x,z=0..c*(1-x/a-y/b)),y=0..b*(1-x/a)),x=0..a);value(%);
5.
> restart:with(plots):z1:=sqrt(x^2+y^2);
Tapa 1 : Lasketaan tasointegraalina napakoordinaatistossa:
> z1:=r;z2:=sqrt(a^2-r^2);R:=solve(z1=z2,r);
> a:=1:x:=r*cos(Theta):y:=r*sin(Theta):kartio:=plot3d([x,y,z1],Theta=0..2*Pi,r=0..R,color=yellow):
> pallo:=plot3d([x,y,z2],Theta=0..2*Pi,r=0..R,color=blue):display([kartio,pallo]);
> a:='a':V:=Int(Int((z2-z1)*r,r=0..a/sqrt(2)),Theta=0..2*Pi): %=simplify(value(%),symbolic);
> x:=rho*sin(phi)*cos(Theta);y:=rho*sin(phi)*sin(Theta);z:=rho*cos(phi);
> a:=1:phi:=Pi/4;
> kartio:=plot3d([x,y,z1],rho=0..1/sin(phi),Theta=0..2*Pi):
>
> phi:='phi':rho:=a:pallo:=plot3d([x,y,z],phi=0..Pi,Theta=0..2*Pi):
> display([kartio,pallo]);
Tapa 2 . Lasketaan tilavuus pallokoordinaatistossa.
> a:='a':V:=Int(Int(Int(r^2*sin(phi),phi=0..Pi/4),theta=0..2*Pi),r=0..a);
> value(%);
>
>