Mat-1.3604 Stationary Processes.

Exercise 4.10. 2007 Tikanmäki/Valkeila.

1. Let C be a continuous function. Prove that

$$\lim_{\epsilon \to 0} \int_{-\infty}^{\infty} \frac{e^{-\frac{t^2}{2\epsilon^2}}}{\epsilon \sqrt{2\pi}} C(t) dt = C(0).$$

- Find the spectral density of the wide sense stationary process 2.with covariance kernel $C(t) = e^{-|t|} \cos(\alpha t)$.
- 3. Let η be an orthogonal random measure on (S, \mathcal{S}_0) with control measure ν . Show that for $A, B \in \mathcal{S}_0$
 - (i) $(\eta(A), \eta(B))_{L^2(\mathbb{P})} = \nu(A \cap B).$
 - (ii) $||\eta(A) \eta(B)||_{L^2(\mathbb{P})}^2 = \nu(A \bigtriangleup B).$
 - (iii) $\eta(A \cup B) = \eta(A) + \eta(B) \eta(A \cap B).$
- [Continuation] If $A \subset B$, then 4.
 - (i) $||\eta(A)||_{L^2(\mathbb{P})} \le ||\eta(B)||_{L^2(\mathbb{P})}.$
 - (ii) $\eta(B \setminus A) = \eta(B) \eta(A)$.
- 5. Let η be an orthogonal random measure on (S, \mathcal{S}_0) with conrol measure ν , and h is an elementary function on (S, \mathcal{S}_0) with

$$h = \sum_{k=1}^{n} c_k 1_{A_k} = \sum_{j=1}^{m} d_j 1_{B_j},$$

where B_j and A_k are disjoint, $c_k, d_j \in \mathbb{C}$. Show that I(h) is well defined, where

$$I(h) := \sum_{k=1}^{n} c_k \eta(A_k);$$

i.e. show that I(h) is the same random variable in $L^2(\mathbb{P})$ as $\sum_{j=1}^{d} d_j \eta(B_j).$ 6. Show that the stochastic integral *I* is linear: for two elementary

functions h, g and complex numbers α, β

$$I(\alpha h + \beta g) = \alpha I(h) + \beta I(g).$$