Chapter 7

Subdivision
interpolation

Suppose that the values of some function is known for integer arguments. If
one wants to estimate the values of the function at other points, then one of
the simplest methods is to use linear interpolation. One way of expressing
this procedure is to say that one calculates the values of the function at the
half-integer points $m with m odd by the formula f(27'm) = L(f(3(m +
1))+ f(3(m = 1))). Then one calculates the values at the points *m (with
m odd) by the formula f(27%m) = $(f(27'3(m + 1)) + f(27'4(m — 1))),
and proceeds in this manner. In this chapter some generalizations of this
procedure will be considered.

1. Subdivision interpolation

In a subdivision cardinal interpolation scheme one calculates new values for
the function f by the formula

(7.1) fR7TIm) =2 y(m—2k)f277k), meZ, j>0,
ke

where the sequence (v(k))gez is the mask that determines interpolation
procedure. (The normalizing factor 2 is for convenience introduced here so
that it does not appear in the equations one obtains after taking Fourier
transforms.) It is clear that if the restriction F' = fjz of f to the integers is
known, then one finds from (7.1) the values of f at the half-integer values
Z + % (by taking j = 0), then the values at Z + % and Z + % (by taking
j = 1), and so on. Another way of formulating these calculations is to say
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that
f|2—J—1Z = Swf|2—J27

where 5., is the operator defined in Definition 6.2.

If the values of f are not given on Z but on some other set of evenly
spaced points, one can use a simple transformation of the argument to reduce
the problem to the one considered here.

If m =2pin (7.1) is even, then one has
F277p) = 29(0)£(277p) + 2> v (2(p — k) F(277 k).

k#p

Since we are studying an interpolation and not a refinement scheme (that is,
we do not want to change values of f already calculated) we have to require
that

1
(7.2) v(2k) = 5607;“ k€ Z,
(where 6; ; = 1if i = j and 0 otherwise).

Proposition 7.1. Suppose that v € (*(Z)and that the function ® € C(R)
satisfies the interpolation condition

(7.3) (k) =bop, k€.

Then

(7.4) (2) =2 (k@22 - k),
k€L

if and only if ®)y—j-17 = P95z for all j > 0, that is

(7.5) ®(27 7 m) =2 y(m - 26)(277m), mE€Z,

k€L
and ® is thus the fundamental interpolation function for the scheme deter-
mined by .

Proof. Since ¢ is continuous, equation (7.4) is equivalent to the conditiona
that for all 5 > 0 we have

(7.6) ®(27 " m) =2 y(k)®(27m — k), m € Z,
k€L

Next we observe that when j = 0 it follows from (7.3) that both (7.5)
and (7.6) say that ®(27'm) = v(m) and thus they are equivalent for j = 0
Next we show by induction that this equivalence holds for all j > 0.
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Suppose now that (7.5) and (7.6) hold when j = n — 1 for some n > 1.
Then we get

S (m =2k k) Z ST S 3 (m = 2k () @27 — p)

keZ keZ pel
= ()Y _v(m = 2k)®(27 "N (k — 27 1p))
pEL k€L
k—a2n—lp=1p n —(n—
="T ) v(m—2mp + 2r)®(27 ()
pEL r€Z
7.5 n
S (p)am - p).
pEL
Thus we conclude that (7.5) holds for j = n if and only if (7.6) holds for
7 = n and this is what we had to prove. O

The simplest way to get a fundamental interpolation function ® satisfy-
ing equation (7.4) is to start with an orthonomal scaling function.

Proposition 7.2. Assume that ¢ € L*(R) is such that (¢(e — k))gez is an
orthonormal sequence in L*(R) such that

__22 o(2z — k

keZ
where a € (*(Z;R). Then

o) [ oz +mar
R
satisfies (7.4) and (7.3) with

(k) =Y a(j)alk+ ).

JEL

Proof. It is clear from the definition of orthonormality that (7.3) holds so
it remains to establish (7.4). A straightforward calculation gives

<1>(£):/JR o(z41)p dt—4/z p(2z+2t—5) > a(k)p(2t — k) dt

JEL keZ
=43 > a(j / (22 + 2t — J)p(2t — k) dt
JEL kEL
QZZ P2z +k—j) —222 alk + p)®(2z — p),
JEZL kEL p€Z p€EL

and this gives the claim.
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2. Calculating projections for multiresolutions

Suppose we have a multiresolution ({V,, }mez, @), we know the values of a
function f at the points 2™k, and we want to calculate an approximation of
the projection of f onto the space V,,,. Since we do not know the function f
exactly we cannot get the exact projection. But the idea we present here is
to interpolate the function f, using a subdivision scheme, and then calculate
the exact projection of the interpolated function. If @ is the fundamental
interpolation function of some scheme, that is, ® satisfied the assumptions
of Proposition 7.1, then the interpolating function will be

(7.7) Io( fiomz)(z Ef (2"n)®(27™z — n).

neZ

What we want to calculate is the coefficients ¢,,(k) in the expression

Is(flamz)(2) = X pez em(k)p(27 ™2 — k). We get the following result:

Proposition 7.3. Suppose that ({Vy,} ez, ¢) is an orthonormal multires-
olution with filter o and suppose that the function ® € L*(R) N C(R) sat-
isfies the dilation equation (7.4) for some sequence v and that the interpo-

lation condition (7.3) holds. Then the sequence C,, (defined by Cy, (k) =
2m” o Ia( flamz (@) p(2="x — k) dx is given by

(7.8) Con(k) =27 fiamz(k — §)p(3)
J€L
where the sequence p(k f]l& (z — k) satisfies
(7.9) k) =2 Z p(2k — n)
nel

where (k) = > cq7(j)a(j — k).

It is of course clear that one in addition to (7.9) needs a normalization
condition and intuitively it is clear that if we calculate p from (7.9), then we
should require >, ., p(k) = 1, but we do not here go into the details about
which assumptions, if any, are needed for this to be follow from (7.8).

Proof. Clearly we have by equation (7.7) and some straightforward calcu-
lations

E)y=2"7% / Z Jizmz(n Tr—n)p(27"r — k) da

n€’Z
253 fana(n) | Ba)ele = (k= n)da.
n€’Z
so that we have (7.8).
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Since p(k) = [ ®( — k) we get from (4.9) and (7.4) that
k _4/ z’y (22— Ea(n)cp(Q(w—k)—n)dx
JEL nel
—422/ (22 — j)e(2z — 2k — n) da
JEL nEL
2$__]_t222/ ot —(2k+n—j)dt
JEL nEL

r€L \JEL

Z(Zv Jr)p(%r),

and we have the desired conclusion. O
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