Chapter 9

Ridgelets

1. The continuous transform

In this section we study a version of the continuous ridgelet ransform which
is also closely related to a neural network with one hidden layer.

If now % is a given function, then we define

1 u-x—=o
¢u,a,b(x) = \/_E¢ (T) , |11| = 1, a > 0, beR.

We have the following result.
Theorem 9.1. Let d > 1 and let ¢ and ¢ € L*(R) be such that

Bellg@ L aa [ B@)w)
/]R dw < d fw_/]R dw # 0.

el el

If f € LYR?) is such that f € L*(R?), then
1 o0
fix) = = / / / Uy Pans) fuas(x) db da du.
Yy Jsd=t Jo JR

where (-,-) denotes the inner product in L*(R?).

Observe that if 1 and ¢ are real-valued functions, then K , is real-
valued as well. From the proof we see that we have

/Sd_1 /0°° /]R<f7¢u,a,b> Puap(x)db

and that the integral f]l& (f, %u.apb) Puap(x)dbis the convolution of L!-functions,
and hence well-defined. If v = ¢, then it is not difficult to show that the
triple integral converges absolutely as well.

dadu < o0,
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Proof. Let u € R? be such that |u| = 1. We define the Radon-transform
P.f as follows:

(R = [ fus Uhs)as,

where U+ is a d x (d — 1) matrix with columns that form an orthonormal

basis for the subspace of vectors in R? orthogonal to u. It is not difficult to
show that Py f € L*(R) and that

(9.1) Puf(w) = f(wn).

Furthermore, we let, abusing our notation somewhat,

Va(t) = ilﬁ (2) and  Pu(t) = ¥o(—1), a>0 teR.

We observe that
(92) <f7 ¢u,a,b> = (&a * Pllf)(b)
We let

$(w) = P(W)P(w) + P(-w)(~w),

and observe that

| dtawrrda=utt [T o5 da

_ wd_l/ ¢(7|7)TZ07) dy = wd_llx’d,’@, w>0.
R n

The same calculation shows, of course, that there is a constant C' such that

&0 1
(9.3) / |p(aw) Eda <Cw™l w>o.
0

If we now let x € R? be arbitrary and define

(9.4) ) et /Sd / / ei2monx g aw)f(wu)%dadwdu,

then it follows from (9.3) and our assumptions on f that this integral con-
verges absolutely, and we have in fact

(9.5) g(x)= Ky, /d / M X £ u)wdt dw du
§41 Jo

=Ky, /]Rd PV X f(y)dy = Ky o f(%).
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By Fubini’s theorem and the fact that $! is invariant under the mapping
u— —u we get

= [ ] (et

4 gTizrwu X¢( wW)P(— aw)f(wu)) L dwdadu

= [ [ e i

Next we note from (9.1) that the Fourier transform of the function 1,

Pof*@qis at(aw)@(aw) f(wu), and therefore we get by the Fourier inversion
formula

(9.7) g(x) = /Sd—l /OOO(QEG * Puf * @oq)(u- X)adlﬁ da du.

(By the results above we know that [ya— fooo|(1;a*Puf*cpa)(u-x)| —rdadu <
o0.) Now by (9.2)

(zza k Puf*pq)(u-x) = /]R(Q;a * Py f)(b)pa(u-x—0)db
= [ U bua) enaatx) a0,
R

When this result is combined with (9.5) and (9.7) we get the claim of the
theorem. O

2. An orthonormal basis of almost-ridgelets

Let us consider the space L2(R?) and construct a special kind of orthonormal
basis. Let ¢ be the scaling function and 1) be the corresponding wavelet
function for an orthonormal multiresolution of L?(R) and we assume that ¢
and 1 have compact support. For ng < 0 we define

Wgpo(z) = Y 27927z 4 j) — p), p=0,...,2"07"
JEL
Wopt = 3 273027z +j)—p). n<nop=0,...,2"7"
JEL

We leave it as an exercise to show that these functions form an orthonormal

basis for L*(T).

Next we choose a wavelet function ¥ such that (U, ), rez is an or-

thonormal basis in L2(R) where W, p(z) = 272 ¥(2~™z — k). But in addi-
tion we require that

Wm,k(_i) = Wm,l—k(i)-
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(Other variants of this condition could be used as well). In order to con-
struct such a wavelet one can start by taking an even function ¥, such that
S s [ B (27 22 1 and () ((w + b)) % S5 S + )
for all odd integers k, and then one takes ¥(z) = W,.(z + %) or equivalently
U(w) = eiﬂﬁ/\*(g). One possible choice, which does not give very fast decay
for W is to take ¥ (w) =1 when < w < 1 and 0 otherwise.

Now we choose ng < —1 and we define the functions py where A =
(m,k,n,p,o)with m € Z, k > 10 € {0,1},n = ngif c =0 and n < ng
ifeo =1, and p = 0,1...,27" — 1. We do this by defining the Fourier
transform

px (7 cos(2n8), rsin(276))

- \/ﬁ(\pm’k(r)wn’p’g(e) + Vo k(= 7)wnp o (0 + %))

Now we have

{(Px, px) = (Px, P7)

/ / 27r7‘ (r)wnpo(8) + @(—T)wnmﬂ(e + %))

27r7‘

X (W 1o (1) 0011,00(8) + W (=1 )00 00(0 + 3)) dO
= [T ) [ 0 (800
+ [T [ 005 00
o A Ty T R S o
b TR Tt 00 [ w04 T D a6

Observe that wy, , (8 + %) = wy 5.,(8) where [p—p| =271 If now A = X
then we have

1 1
/ wn7p7g(0)wn/7p/7g/(0) df = / wn7p7g(0 + %)wn/7p/7g/(0 + %) do =1,
0 0
1

1 -
R e G U G e e S
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and hence we get

<pA,pA,>:/ \Ilmk(r)\llm/’k/(r)dr—l—/ T (=) U pr(—r) dr
0 0
= [ Upr(r)Tp(r)dr = 1.

If 0 # o' or n # n' or neither p = p’ nor |p— p/| = 277! then

1
/ wn7p70'(0 —|— 2%)wn/7p/7g/(0 —|— Z/%) d0 =0
0

for all z,z" € {0,1}. Thus when A # X it remains to consider the cases
where ¢ = ¢/, n = n/ and either p = p’ or |p — p/| = 27"~L. Assume first
that p = p’. Then we get by the same argument as above that

Oo/\ e ——

{Pr, prr) = Vo k(1) g (1) dr = 0,

— 00

because we have (m, k) # (m', k). Next we assume that |p — p/| = 27771,
Then we have

1 1
| 080 @108 = [ 008+ D0+ 1106 =0,
0 0

1 1
/0 wn7p7g(0 + %)wn/7p/7g/(0) dg = /0 wn7p7g(0)wn/7p/7g/(0 + %)d@ = 1,

and then we get

<p/\7p/\/> :/ \Ilm7k(7‘)\11m/7k/(—7‘)d7‘—|—/ \IJmJg(—T)\IJm/’k/(T)dT
0 0

= [ EnTenndr = [ St dr <o,

— 00 — 00

because k # 1 — k' since k, k' > 1.

It remains to show that the functions py span L%(R?), but we leave this
as an exercise.

Another way to look at these functions, and which is the reason why
they could be called ridgelets is to define

V0= [ VRl
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Then we get by the Fourier inversion formula (without worrying about con-
vergence questions for the moment)

0o 1
pA((z1,22)) = / / o pei2r(raey cos(2mf)tras sin(276))
o Jo
1 (/\ S

o ()0 (8) + (=1 )0 o (6 + 3)) O dr

X

\2mr
1 0 . . e —
_ / / meﬂr(mcl cos(2m8)+rzs Sm(%e))\Ilm7k(r)wn7p7g(0)dr d6
0 0

1 0
+ / / \/mei%r((—r)xl COS(27T(€+%))+(—7’)1’2 sin(27r(€-|-;—)))
0 0

X U (1) p o (8 + L)dr 6

1 0 e~
_ / (/ /27T|T|e127r(rx1 cos(278)+rzo 51n(27r€))\11m7k(r)d7=) wn7p7g(0) dé
0

— 00

1
= / \Ilj;LJg (raq cos(2m0) + rag sin(276))w,, ., (0) d6.
0
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