
Chapter 4Multiresolutions1. De�nitions and basi propertiesIn Chapter 1 we gave an example of how one starting from one funtion 'an onstrut a sale of subspaes : : : � Vm � Vm�1 � : : : . This is whatwe mean by a multiresolution (or multiresolution analysis) of L2(R; C ). Amore preise de�nition is the following.De�nition 4.1. (fVmgm2Z; ') is an orthonormal multiresolution of L2(R; C )provided that ' 2 L2(R; C ) and Vm is, for eah m 2 Z, thelosed subspae of L2(R; C ) spanned by f'(2�m��k)gk2Z,(4.1) Vm � Vm�1, m 2Z,(4.2) limm!�1 Vm = L2(R; C ), i.e. limm!�1 infg2Vmkf�gkL2(R) = 0 for every f 2 L2(R; C ),(4.3) f'(��k)gk2Zis an orthonormal set in L2(R; C )and thus an orthonormal basis for the losedsubspae it spans.(4.4)The funtion ' is said to be a father wavelet or saling funtion, and is saidto generate the multiresolution.The de�nition of a multiresolution is often given in a slightly di�erentform, so that the fat that Vm is spanned by f'(2�m � �k)gk2Zis a onse-quene of the other onditions. The main motivation for this formulation is23



24 4. Multiresolutions 20.10.2006that it makes it easier to see whih properties of the funtion ' and the �lterto be de�ned below, depend on whih properties of the multiresolution.Lemma 4.2. Let g 2 L2(R; C ) and let gk = g(� � k). Then (gk)k2Zis anorthonormal sequene in L2(R; C ) if and only ifXk2Z��ĝ(�+ k)��2 a.e.= 1:Proof. Sine g belongs to L2(R; C ), it follows from Theorem 2.4 that itsFourier transform ĝ belongs to L2(R; C ) as well, and this means in partiularthat the funtion h def= Xk2Zjĝ(�+ k)j2(4.5)belongs to L1([0; 1℄;R). By the uniqueness of the Fourier oeÆients of aperiodi funtion it is lear that h = 1 a.e. in [0; 1℄ (or equivalently on R) ifand only if ĥ(k) = (1 if k = 0;0 if k 6= 0:(4.6)A alulation where we use the de�nition of h, Planherel's theorem, andthe fat that the Fourier transform of g(�� k) is e�i2�k�ĝ, gives(4.7) ĥ(k) = Z 10 e�i2�k!h(!) d! = ZRe�i2�k!ĝ(!)ĝ(!) d!= ZRg(x� k)g(x)dx = ZRg(x� k �m)g(x�m) dx = hgk+m; gm; :iThus we see that the orthonormality of the set fgkgk2Zis equivalent to (4.6)and this is what we had to prove.Proposition 4.3. Let (4.1) and (4.4) hold. Then �2�m2 '(2�m � �k)	k2Z,is an orthonormal basis for Vm for eah m 2Zand Tm2ZVm = f0g.The proof is left as an exerise.Now we an start to approah the heart of the matter in the followingresult.Theorem 4.4. Let (4.1), (4.2), and (4.4) hold. Then the sequene �, alledthe �lter assoiated with ' and de�ned by�(k) = h'; '(2 � �k)i ; k 2Z(4.8)  G. Gripenberg 20.10.2006



1. De�nitions and basi properties 25satis�es Pk2Zj�(k)j2 = 12 ,' = 2Xk2Z�(k)'(2 � �k);(4.9)or, equivalently, '̂(2�) = �̂(�)'̂(�);(4.10)and j�̂(�)j2+ ���̂��+ 12���2 = 1 a.e. on R:(4.11)A summable sequene f�jgj2Zsatisfying (4.11) above, is said to be aonjugate quadrature �lter.Proof. Sine ' 2 V0 � V�1 and �p2'(2 � �k)	k2Zis a basis for V�1 (seeproposition 4.3), it follows that' =Xk2ZD';p2'(2 � �k)Ep2'(2 � �k):(4.12)Thus we see that (4.9) follows from (4.8) and the fat thatPk2Zj�(k)j2 = 12is a onsequene of Theorem 3.4.(iii).Taking the Fourier transform of both sides of (4.9) we get'̂(!) =Xk2Z�(k)e�i2�k!=2'̂�!2 �;(4.13)whih is the same as (4.10).By lemma 4.2, the orthonormality of f'(��k)gk2Z, and (4.10) it followsthat(4.14) 1 =Xk2Zj'̂(2! + k)j2= Xm2Z���̂�! + 2m2 ���2��'̂�! + 2m2 ���2 + Xm2Z���̂�! + 2m+12 ���2��'̂�! + 2m+12 ���2= j�̂(!)j2 Xm2Zj'̂(! +m)j2 + ���̂�! + 12���2 Xm2Z��'̂�! + 12 +m���2= j�̂(!)j2 + ���̂�! + 12���2:This ompletes the proof.In order to get a basis for the orthogonal omplement of Vm in Vm�1 weonsider a general result on the "splitting" of an orthonormal basis. G. Gripenberg 20.10.2006



26 4. Multiresolutions 20.10.2006Theorem 4.5. Suppose that (ek)k2Zis an orthonormal basis in a Hilbertspae H, let � and � 2 `2(Z), and de�ne sequenes (uk)k2Zand (vk)k2ZinH as follows: uk = p2(� � e)(2k);(4.15) vk = p2(� � e)(2k):(4.16)Let U and V denote the losed subspaes of H spanned by the sequenes(uk)k2Zand (vk)k2Z.Then (uk)k2Zis an orthonormal basis of U , (vk)k2Zis an orthonormalbasis of V , U ? V , and U � V = H if and only if the matrix��̂(!2 ) �̂(!2 + 12)�̂(!2 ) �̂(!2 + 12)� is unitary for almost every ! 2 R.(4.17)The onvolution notation used above means that for example uk =p2Pj2Z�(j)e2k�j for all k 2Z.Proof. Sine (ek)k2Zis an orthonormal sequene, some straightforward al-ulations show that (uk)k2Zand (vk)k2Zare orthonormal sequenes andU ? V if and only if 2Xj2Z �(j)�(j + 2m� 2n) = Æm;n;2Xj2Z �(j)�(j + 2m� 2n) = Æm;n;2Xj2Z �(j)�(j + 2m� 2n) = 0;(4.18)for all m and n 2 Z, (where we have Æm;m = 1 and Æm;n = 0 if m 6= n). Inorder to treat all these di�erent ases at the same time we let a and b 2 `2(Z)and de�ne (m) = 2Xj2Za(j)b(j+ 2m); m 2Z: G. Gripenberg 20.10.2006



1. De�nitions and basi properties 27Sine Pj2Ze�i2�!jb(j+ 2m) = ei2�2!mb̂(!) if follows from Planherel's the-orem, (Theorem 2.4.()), that(m) = 2 Z 10 e�i2�2!mâ(!)b̂(!) d! = 2 Z 120 e�i2�2!mâ(!)b̂(!) d!+ 2 Z 112 e�i2�2!mâ(!)b̂(!) d!= 2 Z 120 e�i2�2!m �â(!)b̂(!) + â(! + 12)b̂(! 12)� d!= Z 10 e�i2�!m �â(!2 )b̂(!2 ) + â(!2 + 12)b̂(!2 + 12)� d!:From the uniqueness of the Fourier transform we seet that (m) = 0 for allm if and only if â(12!)b̂(12!) + â(12! + 12)b̂(12! + 12) a.e.= 0 and m = Æ0;m ifand only if â(12!)b̂(12!) + â(12! + 12)b̂(12! + 12) a.e.= 1. When we apply theseresults to the expressions in (4.18) we onlude that (uk)k2Zand (vk)k2Zare orthonormal sequenes and U ? V if and only if the matrix given in thestatement of the theorem is unitary.It remains to show that when these onditions hold, then it is also truethat U � V = H . Suppose that this is not the ase, but that there is anelement f 2 H n (U �V ). Thus we may assume that f 6= 0 but f ? (U �V )so that f ? U and f ? V . Thus it follows that hun; fi = hvn; fi = 0 for alln and if we let (j) = hf; e�ji, then it follows that0 = hu�m; fi = p2Xj2Z�(j)(j+ 2m);0 = hv�m; fi = p2Xj2Z�(j)(j+ 2m);for all m 2 Z. By the same argument that was used above, we onludethat this implies that��̂(12!) �̂(12! + 12)�̂(12!) �̂(12! + 12)� ̂(12!)̂(12! + 12)! a.e.= 0;on [0; 1℄ But sine this matrix is unitary, hene invertible, it follows that̂(!2 ) =a.e.= ̂(!2 + 12) a.e.= 0 on [0; 1℄ and therefore ̂(!) a.e.= 0 on [0; 1℄ and bythe uniqueness of the Fourier transform we see that hf; eki = 0 for all k andhene f = 0. This ompletes the proof. G. Gripenberg 20.10.2006



28 4. Multiresolutions 20.10.2006De�nition 4.6. Let (4.1), (4.2), and (4.4) hold and let � be the �lter as-soiated with '. Then the mother wavelet assoiated with ' is the funtion = 2Xk2Z(�1)k�(1� k)'(2 � �k):(4.19)Theorem 4.7. Let (4.1), (4.2), and (4.4) hold, and let  be the assoiatedmother wavelet. Then f2�m2  (2�m � �k)gk2Z is for eah m 2 Zan or-thonormal set. If Wm denotes the losed subspae of L2(R; C ) spanned bythis set, then Wm is the orthogonal omplement of Vm in Vm�1.Proof. If we de�ne the sequene f�gk2Zby�(k) = (�1)k�(1� k);(4.20)then we see that for eah ! 2 R we have(4.21) �̂(!) =Xk2Ze�i2�!kei�k�(1� k)= �Xk2Ze2�i!(1�k)e�i2�!e2�i(1�k) 12�(1� k)= �e�i2�!Xk2Ze�2�i!(1�k)e�2�i(1�k) 12�(1� k)= �e�i2���̂��+ 12�:It is easy to hek that (4.17) is a diret onsequene of (4.11).If we let ek = p2'(2 � +k), uk = '(�+ k), and vk =  (�+ k), then itfollows that (4.15) and (4.16) hold. Now we an apply Theorem 4.5 and dosome easy alulations.Now we an �nally give a basi result on wavelets.Theorem 4.8. Let (fVmgm2Z; ') be a multiresolution of L2(R; C ) and let be the assoiated mother wavelet. Then the setsf2m=2 (2m � �k)gm;k2Z;(4.22)and f2m0=2'(2m0 � �k); 2m=2 (2m � �k)gm�m0;k2Z;(4.23)where m0 2Zis arbitrary, are orthonormal bases for L2(R; C ).Proof. It follows from theorem 4.7 that Vm = Vj�Wj�Wj+1� : : :�Wm�1.Sine Vj ? Wj we easily see that the sets in question are orthonormal andthe fat that they span L2(R; C ) is a onsequene of (4.3) and proposition4.3.  G. Gripenberg 20.10.2006



2. Partitions of unity and limm!�1 Vm 292. Partitions of unity and limm!�1 VmIn this setion we prove that the saling funtion (or father wavelet) asso-iated with a multiresolution gives a partition of unity when translated byintegers. Here we have to introdue the additional restrition that ' belongsto L1(R), but sine one usually wants the wavelets to have ompat supportor deay rapidly at in�nity, this is not a serious restrition.Theorem 4.9. Let (4.1), (4.3), and (4.4) hold, and assume that ' 2 L1(R; C ).Then ����ZR'(x) dx���� = 1;(4.24)and Xk2Z'(� � k) = ZR'(x) dx;(4.25)where the series onverges in L1lo(R; C ).Usually one multiplies ' by a omplex number with absolute value 1 sothat RR'(x) dx = 1.Proof. Let fm be the orthogonal projetion of the funtion �[�4;4℄ onto thespae Vm. Then we havefm =Xk2Z2�m Z 4�4'(2�mx� k) dx '(2�m � �k):(4.26)Sine limm!�1 Vm = L2(R; C ) it follows that fm ! �[�4;4℄ in L2(R; C ) andtherefore also in L1lo(R).Let  = RR'(x) dx and de�ne the numbers k;m byk;m =  � Z 2�m+2�k�2�m+2�k '(x) dx; k;m 2Z:(4.27)Let b be the funtion Pk2Z'(� � k). Sine ' 2 L1(R) it follows thatb is loally integrable and periodi with period 1. Now we an rewrite theexpression for fm to befm = b(2�m�)�Xk2Zk;m'(2�m � �k):(4.28)If we an prove thatlimm!�1Xk2Zjk;mj Z 1�1j'(2�mx� k)j dx = 0;(4.29)  G. Gripenberg 20.10.2006



30 4. Multiresolutions 20.10.2006then it follows from (4.28) thatlimm!�1 Z 1�1jb(2�mx)� 1j dx = limm!�1 Z 1�1jfm(x)� 1j dx = 0;(4.30)and it follows that b must be 1 almost everywhere. Hene we get 1 =R 10 b(x) dx =  RR'(x) dx = jj2. Thus jj = 1 and sine  = 1= we haveall the desired onlusions.Next, let us show that (4.29) holds. Clearly,(4.31) Xk2Zjk;mj Z 1�1j'(2�mx � k)j dx= 2�m+1�1Xp=0 Xq2Zjq2�m+1+p;mj2m Z 2�m�q2�m+1+p�2�m�q2�m+1+pj'(x)j dx= 2m 2�m+1�1Xp=0 ZRhp;m(x) dxwherehp;m(x) = jq2m+1+p;m'(x)j when� 2m � q2m+1 � p � x < 2m � q2m+1 � p:Let � > 0 be arbitrary and hoose m < 0 with jmj to be so large thatZjxj�2�m j'(x)j dx < �4(1 + k'kL1(R)) :Now k;m = Z �2�m�k�1 '(x) dx+ Z 12�m�k '(x) dx;(4.32)so that is lear that jk;mj � k'kL1(R). Thus we see thatZjxj�2�m hp;m(x) dx < �4 ;(4.33)for all p. On the other hand we note that if jxj < 2�m, thenhp;m(x) � j'(x)j maxjkj�2�m+1jk;mj:Sine it follows from (4.32) that jk;mj � Rjxj�2�m+1 j'(x)j dx when jkj �2�m+1 we easily see that Zjxj<2�m hp;m(x) dx < �4 ;(4.34)  G. Gripenberg 20.10.2006



2. Partitions of unity and limm!�1 Vm 31as well. Using (4.33) and (4.33) in (4.31) we see thatPk2Zjk;mj R 1�1j'(2�mx�k)j dx < �, and the proof is ompleted.Next we onsider the onverse of this result.Theorem 4.10. Let (4.1) and (4.4) hold, and assume thatlimS!�1T!+1 Z TS '(x) dx =  where jj = 1:(4.35)Then (4.3) holds.Proof. We may multiply ' by  and thus assume that  = 1. Let Pm denotethe orthogonal projetion on L2(R; C ) onto Vm. The laim (4.3) is obviouslyequivalent to the fat that Pmf ! f as m ! �1 for every f 2 L2(R; C ),and sine kPmk = 1 and the spae spanned by harateristi funtions ofintervals is dense in L2(R; C ) it suÆes to show that Pm�[a;b℄ ! �[a;b℄ asm!1 for arbitrary a < b. Sine Pm is an orthogonal projetion, we havek�[a;b℄ � Pm�[a;b℄k2 = k�[a;b℄k2 � kPm�[a;b℄k2= b�a�Xk2Z����Z ba 2�m2 '(2�mx�k) dx����2 = b�a�Xk2Z2m����Z 2�mb�k2�ma�k '(x) dx����2:Thus we see that if we an prove thatlim infm!1 Xk2Z2m����Z 2�mb�k2�ma�k '(x) dx����2 � b� a;(4.36)then we get the desired onlusion. Let � > 0 be arbitrary and hoose S0and T0 to be suh that if S � S0 and T � T0, then����Z TS '(x) dx����2 � 1� �:(4.37)Let Im be the setIm = f k 2Zj 2�ma� k � S0; 2�mb� k � T0 g:(4.38)We learly haveXk2Z2m����Z 2�mb�k2�ma�k '(x) dx����2 � Xk2Im 2�m����Z 2�mb�k2�ma�k '(x) dx����2 � 2m#Im(1� �):(4.39)It is obvious that #Im = b2�mb � T0 � d2�ma � S0e + 1 and therefore2�m#Im ! b � a as m ! 1. But then we get (4.36) and the proof isompleted.We need another version of this theorem as well: G. Gripenberg 20.10.2006



32 4. Multiresolutions 20.10.2006Theorem 4.11. Let (4.1) and (4.4) hold, and assume that '̂ is ontinuousat 0 and j'̂(0)j = 1. Then (4.3) holds.Proof. We may without loss of generality assume that '̂(0) = 1 sine wemay multiply ' by '̂(0).Let Pm denote the orthogonal projetion on L2(R; C ) onto Vm. Sinethe laim (4.3) is equivalent to the fat that Pmf ! f as m ! �1 forevery f 2 L2(R; C ), and sine kPmk = 1 and the spae C1# (R) is dense inL2(R; C ) it suÆes to show that Pmf ! f as m!1 for every f 2 C1# (R).Sine Pm is an orthogonal projetion, we havekf � Pmfk2L2(R) = kfk2L2(R) � kPmfk2L2(R)and hene it suÆes to show thatlim infm!1 kPmfk2L2(R) � ZRjf(t)j2 dt; f 2 C1# (R):(4.40)Let f 2 C1# (R) n f0g. Sine (2�m2 '(2�m � �k))k2Zis an orthonormal basisin Vm we havekPmfk2L2(R) =Xk2Z2�m ����ZRf(x)'(2�mx� k) dx����2 :Next we use Planherel's theorem, i.e., equation 2.5 and the fat thatthe Fourier transform of '(2�m � �k) is 2m'̂(2m!)e�i2�2m!k to getkPmfk2L2(R) =Xk2Z2m ����ZRf̂(!)'̂(2m!)ei2�2mk d!����2(4.41)The idea of the remaining part of the proof is that when �m is suÆ-iently large, '̂(2m!) � 1 and then we get by the Fourier inversion formulaXk2Z2m ����ZRf̂(!)'̂(2m!)ei2�2mk d!����2 �Xk2Z2mjf(2mk)j2 � ZRjf(x)j2 dx:It remains to get error estimates for these approximations.Let � > 0. Sine f 2 C1# (R) there exists a positive integer n0 suh thatif m � 0, then ������ZRjf(x)j2 dx� 2�m+n0Xk=�2�m+n0 2mjf(2mk)j2������ < �2 :(4.42)We an hoose a positive number !0 suh thatZj!j�!0 jf̂(!)j d! < �kf̂kL1(R)2n0+6 :(4.43)  G. Gripenberg 20.10.2006



3. Filters that determine multiresolutions 33Finally we hoose m0 < 0 suh that then��'̂(�)� 1�� < �kf̂k2L1(R)2n0+5 ; if j�j � 2m0!0.(4.44)Suppose now that m � m0. Then we get, for eah k 2 Z, by the fat thatj'̂(2m!)j a.e.� 1 and by (4.43) and (4.44) that����ZRf(!)'̂(2m!)ei2�2mk d! � ZRf(!)ei2�2mk d!����� 2 Zj!j�!jf̂(!)j d! + supj�j�2m!0��'̂(�)� 1��kf̂kL1(R) � �kf̂kL1(R)2n0+4:Taking into aount the fats that ���RRf̂ (!)'̂(2m!)ei2�2mk d!��� � kf̂kL1(R)and ��RRf(!)ei2�2mk d!�� � kf̂kL1(R) we onlude that����ZRf̂ (!)'̂(2m!)ei2�2mk d!����2 � ����ZRf̂(!)ei2�2mk d!����2 � �2n0+3 :and then by the Fourier inversion theorem 2.3 we haveXk2Z2m ����ZRf̂ (!)'̂(2m!)ei2�2mk d!����2� 2�m+n0Xk=�2�m+n0 2m jf(2mk)j2 � 2m(2�m+n0+1 + 1) �2n0+3 :Combining this inequality with (4.41) and (4.42) we �nally getkPmfk2L2(R) � ZRjf(x)j2 dx� �and sine � was arbitrary we get the desired onlusion and the proof isompleted.3. Filters that determine multiresolutionsIn this setion we take as a starting point equation (4.9). Assume that asequene � 2 l1(Z; C ) � l2(Z; C ) is given suh thatPk2Z�(k) = 1. Now thequestion to be studied is when this sequene is the �lter for a multiresolution.A number of onditions are immediately obvious, and some other are lessobvious.  G. Gripenberg 20.10.2006



34 4. Multiresolutions 20.10.2006Theorem 4.12. Let the sequene f�(k)gk2Z satisfy the following ondi-tions. Xk2Zlog(jkj+ 1)j�(k)j <1:(4.45) Xk2Z�(k) = 1:(4.46) j�̂(�)j2+ ���̂��+ 12���2 = 1 a.e. on R:(4.47) There exists a bounded Borel set G � R suhthat Pk2Z�G(! + k) = 1 for all ! 2 R and �̂does not vanish on the set S1k=1�2�kG�.(4.48)Then there exists a multiresolution (fVmgm2Z; ') of L2(R; C ) suh that � isthe assoiated �lter.Here 2�kG is, of ourse, the set f 2�k! j ! 2 G g.Proof. De�ne the funtion hm for eah m 2 N to behm = mYk=1 �̂(2�k�)�2mG :(4.49)Sine �̂(0) = 1 we may learly assume that 0 2 int(G) and therefore itfollows from (4.45) and Lemma 5.1 (onsider � as a measure supported onthe integers) that hm onverges uniformly on ompat sets to the funtionh = 1Yk=1 �̂(2�k�):(4.50)Sine �̂ is ontinuous it follows from the uniform onvergene that h isontinuous as well.An immediate onsequene of assumption (4.48) is that if f 2 L1(T; C )(that is, f 2 L1lo(R; C ) is periodi with period 1), thenZG f(x) dx = Z 10 f(x) dx:(4.51)Let k 2Zbe arbitrary. Next we evaluate the integral RRjhm(!)j2ei2�k! d!for arbitrary m 2 N. Using (4.11), (4.51) and the fat that �̂ and e�i2�� are G. Gripenberg 20.10.2006



3. Filters that determine multiresolutions 35periodi with period 1 we getZRjhm(!)j2ei2�k! d! = Z2mG mYj=1���̂�2�j!���2ei2�k! d!= 2m ZG m�1Yj=0 ���̂(2j!)��2ei2�2mk! d!= 2m Z 10 m�1Yj=0 ���̂(2j!)��2ei2�2mk! d!= 2m Z 1=20 m�1Yj=1 ���̂(2j!)��2�j�̂(!)j2+ ���̂�! + 12���2�ei2�2mk! d!= 2m�1 Z 10 m�2Yj=0 ���̂(2j!)��2ei2�2m�1k! d!= ZRjhm�1(!)j2ei2�k! d!:Sine RRjh0(!)j2ei2�k! d! = RG ei2�k! d! = Æ0;k it follows by indution thatZRjhm(!)j2ei2�k! d! = Æ0;k;(4.52)and, in partiular that khmkL2(R) = 1:(4.53)Thus we also get with the aid of Fatou's lemma that h 2 L2(R; C ) andkhkL2(R) � 1.The funtion h is ontinuous and does not vanish on G, therefore thereis a onstant C suh that jh(x)j � C > 0 for all x 2 G. Beause hm vanishesoutside 2mG and satis�es hm = h=h(2�m�) on 2mG it follows thatjhm(x)j2 � C�2jh(x)j2; x 2 R:(4.54)This inequality allows us to apply the dominated onvergene theorem andwe onlude that hm ! h in L2(R; C ):(4.55)If we de�ne ' 2 L2(R; C ) by '̂ = h, then it follows from (4.52) thatZRj'̂(!)j2ei2�k! d! = Æ0;k;(4.56)  G. Gripenberg 20.10.2006



36 4. Multiresolutions 20.10.2006and by lemma 4.2 this is equivalent to the fat thatf'(� � k)gk2Z is an orthonormal set in L2(R; C ):(4.57)It follows immediately from (4.50) that (4.10) holds, and therefore wealso have (4.9). But then we get (4.2). Finally, (4.3) follows from Theorem4.11 and the fat that '̂ is ontinuous with '̂(0) = 1 by de�nition.If we require somewhat more of the saling funtion, then we an getneessary and suÆient onditions.Theorem 4.13. Let M � 1. Thenthere is a multiresolution (fVmgm2Z; ') of L2(R; C )with �lter � and j�jM'(�) 2 L2(R; C )(4.58)if and only if the sequene � satis�es �M�(�) 2 `2(Z; C ), and(4.11), (4.46), and (4.48) hold.(4.59)If these onditions hold, then it follows that �M (�) 2 L2(R; C ) as well.Proof. Assume that (fVmgm2Z; ') is a multiresolution of L2(R; C ) with�lter � and j�jM'(�) 2 L2(R; C ). It follows immediately from theorem 2.8that '̂ 2 HM(R; C ).First we prove the series Pk2Zj'̂(! + k)j2 onverges uniformly for all! 2 [0; 1℄. Sine '̂(!) = '̂(�) + Z �! '̂0(�) d�; !; � 2 [0; 1℄;(4.60)we have j'̂(! + k)j2 � 2 Z 10 j'̂(� + k)j2 d� + 2 Z 10 j'̂0(� + k)j2 d�:(4.61)Sine '̂ and '̂0 2 L2(R; C ) we get the desired result, in partiular, by (4.4)and lemma 4.2 that Xk2Zj'̂(! + k)j2 = 1; ! 2 R:(4.62)It follows that for eah ! 2 [0; 1℄ there exist numbers k! 2 Z and �! > 0suh that j'̂(� + k!)j > 0 when j� � !j < �! . Sine [0; 1℄ is ompat we anhoose �nitely many of these points !j , j = 1; 2; : : : ; n suh that [0; 1℄ �Snj=1(!j � �!j ; !j + �!j). But then we an onstrut the set G as the �niteunion of halfopen intervals. Sine it follows from (4.10) that'̂(!) = '̂(2�k�) kYj=1 �̂(2�j�)(4.63)  G. Gripenberg 20.10.2006



3. Filters that determine multiresolutions 37it follows from that fat that '̂ does not vanish on G that �̂ annot vanishon S1k=1�2�kG�. Thus we have established (4.48).But it is also a onsequene of the argument above that there existsa onstant C > 0 suh that j'̂(� + k!j)j � C when j� � !j j < �!j forj = 1; : : : ; n. But sine �̂(�) = '̂(2(�+k!j))='̂(�+k!j) when j��!j j < �!j ,we onulude that we �̂ is M � 1 times ontinuously di�erentiable, and�̂(M�1) is absolutely ontinuous with a square integrable derivative on theinterval (!j � �!j ; !j + �!j ). But sine [0; 1℄ � Snj=1(!j � �!j ; !j + �!j ) weonlude that �̂ 2 HM(T; C ). But then it follows from theorem 2.8 that�M� 2 `2(Z; C ).It is a onsequene of theorem 4.9 that j'̂(0)j = 1. It follows that wehave �̂(0) = '̂(2 � 0)='̂(0) = 1, and sine � 2 `1(Z; C ) we get (4.46). Thisomplete the �rst part of the proof sine it follows from Theorem 4.4 that(4.11) holds true.Next we assume that �M�(�) 2 `2, and (4.11), (4.46), and (4.48) hold.We know from theorem 4.12 that � is the �lter assoiated with a multires-olution having saling funtion '. Sine �̂(0) = j'̂(0)j = 1 there exists anumber Æ > 0 suh that j�̂(!)j � 1=2 and j'̂(!)j � 1=2 when j!j � Æ.But then it follows that b def= log(�̂) belongs to HM([�Æ; Æ℄; C ) and an easyalulation shows thatsupm�1k mXk=1 b�2�k��kHM([�Æ;Æ℄) <1:(4.64)Sine Pmk=1 b(2�k!) ! log('̂(!)) as m ! 1 when j!j � Æ, we on-lude that log('̂) and therefore also '̂ belong to HM([�Æ; Æ℄; C ). Usingan indution argument and the formula '̂(2�) = �̂'̂ we an show that'̂ 2 HM([�2jÆ; 2jÆ℄; C ) for eah j � 0.Now we have to prove that '̂ 2 HM(R; C ) and by using an indu-tion argument, we may assume that '̂ 2 HM�1(R; C ). Reall also thatsup!2Rj�̂(j)(!)j <1 for j = 0; 1; : : : ;M �1 and that in partiular j�̂(!)j �1. If we di�erentiate both sides of the equation (4.10)M times we onludethat there exists a onstant C suh that for every positive integer k we have2Mk'̂(M)(2�)kL2([�k;k℄)� C +sZ k�k j�̂(M)(!)j2j'̂(!)j2 d! +sZ k�k j�̂(!)j2j'̂(M)(!)j2 d! G. Gripenberg 20.10.2006



38 4. Multiresolutions 20.10.2006and therefore2M�1=2sZ k�kj'̂(M)(!)j2 d! � 2M�1=2sZ 2k�2kj'̂(M)(!)j2 d!� C +vuutZ 10 j�̂(M)(!)j2 k�1Xj=�kj'̂(! + j)j2 d! +sZ k�k j'̂(M)(!)j2 d!� C +sZ 10 j�̂(M)(!)j2 d! +sZ k�k j'̂(M)(!)j2 d!:Sine M � 1 we onlude thatsupk�1 Z k�k j'̂(M)(!)j2 d! <1;(4.65)whih is what we want to prove. This ompletes the seond part of theproof.Finally we have to prove that if '̂ 2 HM(R; C ), then we also have ̂ 2 HM(R; C ) and this an be done with the aid of the equation ̂(2�) = �̂(�)'(�):(4.66)and an argument related to but easier than the one used above.It is quite lear that if �̂ does not vanish on [�14 ; 14 ℄, then (4.48) holdsbeause we an take G = [�12 ; 12). We an however improve this resultslightly, provided that we assume (4.11).Proposition 4.14. Assume that � 2 `1(Z; C ) satis�es (4.11) and �̂ doesnot vanish on the interval [�16 ; 16 ℄. Then (4.48) holds true.Proof. Sine � 2 `1(Z; C ) we know that �̂ 2 C(T; C ). By (4.11) we knowthat maxfj�̂(�)j; j�̂(�+ 12)jg � Æ > 0 (where, in fat Æ = 1=p2).We onstrut G e.g. as follows. Let k1 = 0 if j�̂(16)j � Æ and k1 = 1otherwise (in whih ase j�̂(�13)j � Æ) and let kj+1 = 1 � kj for j � 1.Choose a1 = 13 andaj+1 = minfinff! j ! > aj ; ���̂�!�kj2 ��� � Æ2 g; 23g:(4.67)It follows from this onstrution that j�̂(aj�kj2 )j � Æ for all j and from theontinuity of �̂ we therefore get that there exists a number n suh thatan+1 = 23 . Now we de�neG = n[j=1[aj � kj ; aj+1 � kj)[h�13 ; 13�:(4.68)  G. Gripenberg 20.10.2006



3. Filters that determine multiresolutions 39This set has all the desired properties beause S1k=2 2�kG � [�16 ; 16 ℄.As we see from the proof above, it is not essential that we have the fullfore of (4.11) it suÆes to assume that maxfj�̂(�)j; j�̂(�+ 12)jg � Æ > 0.On the other hand, we an also give onditions that guarantee that (4.48)is not satis�ed. Moreover, it follows from this result that there is no hopethat one ould replae the interval [�16 ; 16 ℄ by a smaller one. We shall alsouse this result later when proving that the only saling funtion ' that hasompat support and is symmetri is the Haar funtion.Proposition 4.15. Assume that � 2 `1(Z; C ) is suh that for some integerm � 1 �̂� 2k + 12(2m+ 1)� = 0; k 2Z:(4.69)Then (4.48) does not hold.It is not really essential that � 2 `1(Z; C ), what we need is that �̂ isontinuous.Proof. If (4.48) holds, then there exists an integer j suh that 12m+1+j 2 G.Beause m 6= 0 we get 12m+1 + j = 2p(2k+1)2m+1 ;(4.70)where p � 1. But then �̂�2�p� 12m+1 + j�� = 0;(4.71)and this ontradits (4.48).An example where the result above is appliable is the �lter �(�1) =�(2) = 12 and �(k) = 0 otherwise. Then one easily sees that �̂ = os(3��)e��i�and (4.11) is satis�ed but (4.48) fails by the result above.
 G. Gripenberg 20.10.2006


