Chapter 4

Multiresolutions

1. Definitions and basic properties

In Chapter 1 we gave an example of how one starting from one function ¢
can construct a scale of subspaces ... C V,, C V,,_1 C .... This is what
we mean by a multiresolution (or multiresolution analysis) of L*(R;C). A
more precise definition is the following.

Definition 4.1. ({Vi,}mez, ) is an orthonormal multiresolution of L*(R; C)
provided that

o € LY(R;C) and V,, is, for each m € Z, the

(4.1) closed subspace of L*(R; C) spanned by {p(27™e
_k)}kEZ;
(4.2) Vi, C Vi1, m € Z,
(4.3) limy——oo Vi = L3A(R; C), d.e. limp,— o inf ey, || f—
' 9llz2m) = 0 for every f € L*(R; C),
{p(e—k)}rez is an orthonormal set in L*(R; C)
(4.4) and thus an orthonormal basis for the closed

subspace it spans.

The function ¢ is said to be a father wavelet or scaling function, and is said
to generate the multiresolution.

The definition of a multiresolution is often given in a slightly different
form, so that the fact that V,,, is spanned by {¢(27™ @ —k)} ez is a conse-
quence of the other conditions. The main motivation for this formulation is
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24 4. Multiresolutions 20.10.2006

that it makes it easier to see which properties of the function ¢ and the filter
to be defined below, depend on which properties of the multiresolution.

Lemma 4.2. Let g € L*(R;C) and let g, = g(e — k). Then (gi)rez is an
orthonormal sequence in L*(R; C) if and only if

> la(e + k)| 0 1.

keZ

Proof. Since g belongs to L*(R;C), it follows from Theorem 2.4 that its
Fourier transform § belongs to L?(R; C) as well, and this means in particular
that the function

(4.5) hEY

keZ

gle + k)

belongs to L'([0,1];R). By the uniqueness of the Fourier coefficients of a
periodic function it is clear that h = 1 a.e. in [0, 1] (or equivalently on R) if

and only if
. 1 ifk=0
(4.6) hky=4 0T
0 ifk#0.
A calculation where we use the definition of h, Plancherel’s theorem, and
the fact that the Fourier transform of g(e — k) is e7127%* g gives

(4.7) h(k) = /0 e 2Tk p (W) dw = /]R e7i2mhe () g(w) dw

:/g(w—k)@dx:/g(w—k—m)g(w—m)dx:<gk+m,gm,.>
R R

Thus we see that the orthonormality of the set {g; }rez is equivalent to (4.6)
and this is what we had to prove. O

Proposition 4.3. Let (4.1) and (4.4) hold. Then {2_%99(2_7” ) _k)}keZ’
is an orthonormal basis for V,, for each m € Z and (), ,cy Vin = {0}.

The proof is left as an exercise.

Now we can start to approach the heart of the matter in the following
result.

Theorem 4.4. Let (4.1), (4.2), and (4.4) hold. Then the sequence a, called
the filter associated with ¢ and defined by

(48) Oé(k) = <99799(2 . _k)>7 kelZ
© G. Gripenberg 20.10.2006



1. Definitions and basic properties 25

salisfies Ekez|a(k)|2 = %,

(4.9) =2 alk)p(2e —k),

k€L
or, equivalently,
(4.10) P(20) = a(e)p(e),
and
(4.11) a0+ |a(e+ ) =1 ae on R

A summable sequence {a;};ez satisfying (4.11) above, is said to be a
conjugate quadrature filter.

Proof. Since ¢ € Vo C V_1 and {V2¢(2 _k)}kez is a basis for V_; (see
proposition 4.3), it follows that

(4.12) p=3 <¢,¢§¢(2 . —k)> V2p(2 0 —k).

keZ
Thus we see that (4.9) follows from (4.8) and the fact that Y, ., |a(k)[* =
is a consequence of Theorem 3.4.(iii).
Taking the Fourier transform of both sides of (4.9) we get
(4.13) plw) = a(kle ™™o (5),
keZ

which is the same as (4.10).

By lemma 4.2, the orthonormality of {¢(e —k)}rez, and (4.10) it follows
that

(4.14) 1= |p(2w + k)P
k€L

=Y Jalw+ ) lelw+ )T+ D [a(w + 255 *|p (w + 2|
meEZ meEZ
= @) Y [@w +m)* + |a(w+ 3P Y e + L +m)|?
meEZ meEZ

= lafw) + [l + 1)

This completes the proof. O

In order to get a basis for the orthogonal complement of V,,, in V,,,_; we
consider a general result on the ”splitting” of an orthonormal basis.

© G. Gripenberg 20.10.2006



26 4. Multiresolutions 20.10.2006

Theorem 4.5. Suppose that (ey)gez is an orthonormal basis in a Hilbert
space H, let a and 3 € (*(Z), and define sequences (uy)rez and (vg)kez in
H as follows:

(4.15) ug =
(4.16) v =

Let U and V denote the closed subspaces of H spanned by the sequences
(ur)kez and (vg)rez-
Then (ug)kez is an orthonormal basis of U, (v)kez is an orthonormal

basis of V, U LV, and U &V = H if and only if the matriz

1
%)) is unitary for almost every w € R.
2

SN CHE

The convolution notation used above means that for example u; =

ﬁz]‘ez a(j)egk—; for all k € Z.

Proof. Since (ey)iez is an orthonormal sequence, some straightforward cal-
culations show that (ug)rez and (vg)rez are orthonormal sequences and

U LV if and only if

QZa(j)a(j +2m —2n) = by,

JEZ
(4.18) 2% BB +2m = 2n) = by
JEZ
2 a(j)B(+2m —2n) = 0,
JEZ

for all m and n € Z, (where we have 6,, ,, = 1 and é,,, = 0if m # n). In
order to treat all these different cases at the same time we let ¢ and b € (*(7Z)

and define

c(m) =2 a(j)b(j+2m), m e
JEL

© G. Gripenberg 20.10.2006



1. Definitions and basic properties 27

Since » . ey e™i2mWip(j 4 2m) = ei2m2em () if follows from Plancherel’s the-
orem, (Theorem 2.4.(c)), that

e(m) =2 /0 le—imwma(w)b(w)dw =2 /0 eTIm20m G () b(w) dw

1
—|—2/ e 12 2m G (5 Yb(w) dw
1
2

From the uniqueness of the Fourier transform we seet that ¢(m) = 0 for all
m if and only if d(%g)i)(%g) +a(fw + %)i)(%g—l— 2 480 and ¢, = o,y if
and only if d(%g)i)(%g) +a(dw + %)Ia(%g + 1) %L 1. When we apply these
results to the expressions in (4.18) we conclude that (uy)rez and (vg)rez

are orthonormal sequences and U L V if and only if the matrix given in the
statement of the theorem is unitary.

It remains to show that when these conditions hold, then it is also true
that U & V = H. Suppose that this is not the case, but that there is an
element f € H\(U&V). Thus we may assume that f #Z0but f L (U V)
sothat f L U and f L V. Thus it follows that (u,, f) = (v,, f) = 0 for all
n and if we let v(5) = (f, e—;), then it follows that

0= (U, f)= \/_Z —|—2m)

JEL

0={(v_pm,f)= \/_zﬁ ]+2m)

JEL

for all m € Z. By the same argument that was used above, we conclude
that this implies that

n [0, 1] But since this matrix is unitary, hence invertible, it follows that
’y(%) =25 (£ 4+ 1) %2 0 on [0,1] and therefore 4(w) “* 0 on [0, 1] and by
the uniqueness of the Fourier transform we see that (f,e;) = 0 for all £ and
hence f = 0. This completes the proof. O

© G. Gripenberg 20.10.2006



28 4. Multiresolutions 20.10.2006

Definition 4.6. Let (4.1), (4.2), and (4.4) hold and let o be the filter as-
sociated with ¢. Then the mother wavelet associated with ¢ is the function

(4.19) Y =2 (=Dfa(l - k)p(2e —k).
k€L

Theorem 4.7. Let (4.1), (4.2), and (4.4) hold, and let 1) be the associated
mother wavelet. Then {272 (27 o —k)Yrez is for each m € Z an or-
thonormal set. If W,, denotes the closed subspace of L*(R;C) spanned by
this set, then W, is the orthogonal complement of V,,, in V1.

Proof. If we define the sequence {3}rcz by
(4.20) (k) = (~1}ra(1 ~ k),

then we see that for each w € R we have

(4.21) Blw) =) e kel (1 — k)

ke
_ _ z e27riw(1—k)e—i27rwe27ri(1—k)%m
ke
= —e‘im’E e=2miw(1-k)e=2mi(1=k)3 (1 — )
ke

= —e_i%'d(o + %)
It is easy to check that (4.17) is a direct consequence of (4.11).

If we let e, = v/2¢(2 o +k), ur = ¢(o + k), and vp = (e + k), then it
follows that (4.15) and (4.16) hold. Now we can apply Theorem 4.5 and do
some easy calculations. O

Now we can finally give a basic result on wavelets.

Theorem 4.8. Let ({Vi} ez, v) be a multiresolution of L*(R;C) and let
1 be the associated mother wavelet. Then the sets

(4.22) {277245(2™ @ —k)} i kezs
and
(4.23) {270/25(270 & — k), 2724 (2™ @ —k) } > mo keZs

where mg € Z is arbitrary, are orthonormal bases for L*(R;C).

Proof. It follows from theorem 4.7 that V,,, = V; W, oW, ;.1 ©...OW,,_1.
Since V; L W; we easily see that the sets in question are orthonormal and

the fact that they span L%(R;C) is a consequence of (4.3) and proposition
4.3. ]

© G. Gripenberg 20.10.2006
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2. Partitions of unity and lim,,_._. V,,

In this section we prove that the scaling function (or father wavelet) asso-
clated with a multiresolution gives a partition of unity when translated by
integers. Here we have to introduce the additional restriction that ¢ belongs
to L1(R), but since one usually wants the wavelets to have compact support
or decay rapidly at infinity, this is not a serious restriction.

Theorem 4.9. Let (4.1), (4.3), and (4.4) hold, and assume that ¢ € L*(R;C).
Then

(4.24)

and
(4.25) (o — k)= (z)dz,
%ﬁp /]R@o

where the series converges in Ll (R;C).

Usually one multiplies ¢ by a complex number with absolute value 1 so
that [; o(z)de = 1.

Proof. Let f,, be the orthogonal projection of the function y[_4 4 onto the
space V. Then we have

(4.26) fm = Z 27 /_i p(27me — k)de (277 o —k).

keZ
Since lim,,_. _o, V,, = L%(R; C) it follows that f,, — X[—4,4] I L*(R;C) and
therefore also in L{ (R).
Let v = [y ¢(2)dz and define the numbers ¢, by

2~k
(4.27) Chym = Y — / e(z)de, k,me€Z.
_g-mt2_

Let b be the function Y7, , w(e — k). Since ¢ € LY(R) it follows that
b is locally integrable and periodic with period 1. Now we can rewrite the
expression for f,, to be

(4.28) S = 76277 0) = > Tmp(27 @ k).
k€L
If we can prove that

1
(4.29) lim > Jegml / lp(27 ™2 — k)| de = 0,
-1

m——00

keZ

© G. Gripenberg 20.10.2006



30 4. Multiresolutions 20.10.2006

then it follows from (4.28) that

1 1
(4.30) lim |76(27"z) — 1| dez = lim | fn(2) — 1| dz = 0,
-1 -1

m——00 m——00
and it follows that b must be 1 almost everywhere. Hence we get 1 =

') de = 7 z)dz = |v|?%. Thus =1 and since ¥ = 1/~ we have
o7 TIr® v v 8l v
all the desired conclusions.

Next, let us show that (4.29) holds. Clearly,

1
(130 Ylewnl [ [o2 e = k)| do
k€T -1
2—m+1_1 2—m_q2—m+1+p

= Y Y leprttapl?” / ()] da

—27m—g2=m+14p

p=0  q€Z
g—mtl_q
=27 Z /hpm(x)dx
p=0 B

where

hp () = |cgomtr iy me(x)| when
—2m 2T _p < a < 2™ — g2t g,
Let € > 0 be arbitrary and choose m < 0 with |m| to be so large that

€

w(z)|dz < .
/|x|22-m' @l < T ol

Now

(4.32) ckm:/__rm_kcp(x)dx—l—/oo o(e)da,

00 2—m—fk

so that is clear that [cgm| < [[¢]|f1(r). Thus we see that

(4.33) / By (@) der < €,
22

for all p. On the other hand we note that if |z| < 2™, then

fom(@) < lpl)]| max  [ekm]-

Since it follows from (4.32) that |cg | < f|x|>2_m+1|cp(x)| dz when |k| <

27"+ we easily see that
(4.34) / hpm(z)de < §,
|z|<2—m™

© G. Gripenberg 20.10.2006



2. Partitions of unity and lim,,_._ .. Vi, 31

as well. Using (4.33)and (4.33)in (4.31) we see that >, ,|cg m| f_11|c,9(2_mx—
k)| dz < ¢, and the proof is completed. O

Next we consider the converse of this result.

Theorem 4.10. Let (4.1) and (4.4) hold, and assume that

T
(4.35) lim p(z)de =~ where |y]=1.

S——00
T—4+ S

Then (4.3) holds.

Proof. We may multiply ¢ by 7 and thus assume that v = 1. Let P, denote
the orthogonal projection on L%(R;C) onto V,,,. The claim (4.3) is obviously
equivalent to the fact that P, f — f as m — —oo for every f € L*(R;C),
and since ||P,|| = 1 and the space spanned by characteristic functions of
intervals is dense in L?(R;C) it suffices to show that PrX(ap] = Xap) 38
m — oo for arbitrary a < b. Since P, is an orthogonal projection, we have

IX[a,t] = PrX(a)ll = Xl = [1PouX(a ]

2
= b—a—z /62_%@(2_m$—k) de| = b—a—z 2"

kez '’ keZ

27h—k
/ o(z)da
2

—Ma—k

Thus we see that if we can prove that

27—k
/ o(z)de
2

—mg—k

2
Zb_av

(4.36) lim inf ) 2™
m—00 keZ

then we get the desired conclusion. Let € > 0 be arbitrary and choose 5y
and Ty to be such that if 5 < S5y and T > Tj, then

T 2
(4.37) / plz)de| >1—e
S
Let I, be the set
(438) Im:{k€Z|2_mQ—k§SO, Q_mb—kZTo}
We clearly have
(4.39)
27"h—k 2 2—Mp_L 2
ZQm / p(z)dz| > Z 27 / plz)dz| > 2M#1,(1 —¢).
ke 27 Ma—k kelm 2= Ma—k

It is obvious that #1, = [277b — Ty] — [27™a — So| + 1 and therefore
271, — b—aas m — oo. But then we get (4.36) and the proof is
completed. O

We need another version of this theorem as well:

© G. Gripenberg 20.10.2006



32 4. Multiresolutions 20.10.2006

Theorem 4.11. Let (4.1) and (4.4) hold, and assume that ¢ is continuous
#(0)| = 1. Then (4.3) holds.

Proof. We may without loss of generality assume that ¢(0) = 1 since we
may multiply ¢ by ¢(0).

Let P, denote the orthogonal projection on L%*(R;C) onto V,,. Since
the claim (4.3) is equivalent to the fact that P,f — f as m — —oo for
every f € L*(R;C), and since ||Py|| = 1 and the space C{°(R) is dense in
L%(R;C) it suffices to show that P, f — f as m — oo for every f € CfO(R).
Since F,, is an orthogonal projection, we have

1f = P2y = 112wy = 1P FllT2m)

and hence it suffices to show that
(4.40) lim inf] 2, £[132(5) > /]R|f(t)|2dt, f € C(R).

Let f € C[°(R)\ {0}. Since (272 (27" @ —k))gez is an orthonormal basis
in V,, we have

1P fllzo@y = 27"

keZ

2
p(27mx — k)da

Next we use Plancherel’s theorem, i.e., equation 2.5 and the fact that
the Fourier transform of ¢(27™ @ —k) is 27 3(2"w)e™1272"<F to get

1272k dw

(4.41) 1P f1172 3 sz

keZ

cfo (2mw)e

The idea of the remaining part of the proof is that when —m is suffi-
ciently large, $(2™w) =~ 1 and then we get by the Fourier inversion formula

w)P(2mw)el2™"k g z22m|f (27k)| /|f ) da.

keZ

> 2|

keZ

It remains to get error estimates for these approximations.

Let € > 0. Since f € C7°(R) there exists a positive integer ng such that
if m <0, then

2—m+n0

(4.42) Jir@Pae = 30 2l < 5.

k=—2—m+no

We can choose a positive number wg such that

(4.43) /| | e < et

1l (my2me 6

© G. Gripenberg 20.10.2006



3. Filters that determine multiresolutions 33

Finally we choose mg < 0 such that then
‘ €

4.44 S
) AU 2 gy 20+

@(n) — if 5] < 2™0wy.

Suppose now that m < mg. Then we get, for each k € Z, by the fact that
|P(27w)| < 1 and by (4.43) and (4.44) that

m m
2mw 1272 kdw /f 127T2 kdw‘

<2 / Fl o+ sup (o) = 11l < el ez,
|w|>w [n|<2mwq
Taking into account the facts that f]l& G(2mw)el 22k dw‘ < ||f||L1(]R)

and | [ f(w)e?™"F dw]| < ||f||L1(]R) we conclude that

€

2
P NTTom i2m2mk i2r2mE
W)P(2mw)e?™ M dw| > e | — IR
and then by the Fourier inversion theorem 2.3 we have
ZQm 95 2mw i2w2™k dw
k€L
2—m+n0
m m 2 m(a—m+n €
> Y, MA@TRP - 2mme 4
k=—2—m+no

Combining this inequality with (4.41) and (4.42) we finally get

1P 2 ey = /}R @) de — ¢

and since € was arbitrary we get the desired conclusion and the proof is
completed.

O

3. Filters that determine multiresolutions

In this section we take as a starting point equation (4.9). Assume that a
sequence a € I'(Z; C) C I>(Z; C) is given such that Y, ., a(k) = 1. Now the
question to be studied is when this sequence is the filter for a multiresolution.
A number of conditions are immediately obvious, and some other are less
obvious.

© G. Gripenberg 20.10.2006
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Theorem 4.12. Let the sequence {a(k)}res satisfy the following condi-
tions.

(4.45) > log(|k] + D)]a(k)] < .
k€L

(4.46) > alk)=1.

keZ

(4.47) a0’ + |a(e+ 1) =1 ae on R.

There exists a bounded Borel set G C R such
(4.48) that 3 cpXg(w+ k) =1 for all w € R and é
does not vanish on the set |J,, (Q_kg).

Then there exists a multiresolution ({Vy, }mez, ) of L*(R; C) such that a is
the associated filter.

Here 275G is, of course, the set {2 %w |w € G 1.

Proof. Define the function h,, for each m € N to be
(4.49) h = [T &(27F0)xamg.
k=1

Since &(0) = 1 we may clearly assume that 0 € int(G) and therefore it
follows from (4.45) and Lemma 5.1 (consider o as a measure supported on
the integers) that h,, converges uniformly on compact sets to the function

(4.50) h= ﬁ a(27"e).

Since & is continuous it follows from the uniform convergence that h is
continuous as well.

An immediate consequence of assumption (4.48) is that if f € L(T;C)
(that is, f € L _(R;C) is periodic with period 1), then

loc
(4.51) /gf(w)dx:/olf(x)dx.

Let k € Z be arbitrary. Next we evaluate the integral [;|hy,(w)|?e*™ dw
for arbitrary m € N. Using (4.11), (4.51) and the fact that & and e™12™® are

© G. Gripenberg 20.10.2006



3. Filters that determine multiresolutions 35

periodic with period 1 we get

2 i2mkw 7 27kw
/|h )|Zeizmh /zmgH‘aQ ) dw

2 3 m
— 9m e127T2 kw dw

s
—~
€
_'_
(NI
~—
]
N
(‘Db—t.
)
)
]
X
€
[al
€

— /|hm_1(w)|2ei27rkw dw.
R

Since [p|ho(w)]?e 127kw o = f el27hw dw = 8y 1 it follows by induction that

(4.52) /|h )2t dw = 6o 1,

and, in particular that
(4.53) 1l 2@y = 1.

Thus we also get with the aid of Fatou’s lemma that & € L*R;C) and
1Pl 2wy < 1.

The function A is continuous and does not vanish on ?, therefore there
is a constant C' such that |h(z)| > C' > 0 for all € G. Because h,, vanishes
outside 2™G and satisfies h,, = h/h(27"e) on 2™ it follows that

(4.54) |hm(2)]? < C73|R(2)]?, = €R.

This inequality allows us to apply the dominated convergence theorem and
we conclude that

(4.55) hpm — h in L*R;C).
If we define p € L*(R;C) by ¢ = h, then it follows from (4.52) that

(4.56) cfo(w)|2ei2”k‘” dw = bo

© G. Gripenberg 20.10.2006
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and by lemma 4.2 this is equivalent to the fact that
(4.57) {p(® — k)}rez is an orthonormal set in  L*(R;C).
It follows immediately from (4.50) that (4.10) holds, and therefore we

also have (4.9). But then we get (4.2). Finally, (4.3) follows from Theorem
4.11 and the fact that ¢ is continuous with ¢(0) = 1 by definition. O

If we require somewhat more of the scaling function, then we can get
necessary and sufficient conditions.

Theorem 4.13. Let M > 1. Then

(4.58) there is a multiresolution ({Vin }mez, ¢) of L*(R; C)
with filter a and |o|Mp(e) € L*(R;C)

if and only if

the sequence a satisfies #Ma(e) € (2(Z;C), and
(4.11), (4.46), and (4.48) hold.

If these conditions hold, then it follows that eMi(e) € L*(R;C) as well.

(4.59)

Proof. Assume that ({V,,}mez, ) is a multiresolution of L*(R;C) with
filter o and |o[M (o) € L2(R;C). It follows immediately from theorem 2.8
that ¢ € HM(R;C).

First we prove the series 7, ;|3(w + k)|* converges uniformly for all
w € [0,1]. Since

(4.60) ¢wwzﬂm+/m¢@m@ oo e 0.1,

we have

1 1
(4.61) aw+mﬁs2/‘an+mﬁm+2/‘a@+mﬁw.
0 0

Since ¢ and ¢’ € L*(R;C) we get the desired result, in particular, by (4.4)
and lemma 4.2 that

(4.62) dYpw+k)P=1, weR

keZ
It follows that for each w € [0,1] there exist numbers k, € Z and ¢, > 0
such that |@(£ + k)| > 0 when |€ — w| < €,. Since [0, 1] is compact we can
choose finitely many of these points w;, j = 1,2,...,n such that [0,1] C

i_q(wj — €u;,wj + €,,). But then we can construct the set G as the finite

union of halfopen intervals. Since it follows from (4.10) that
k

(4.63) ) = @2 ko) [[ a2 o)
7=1

© G. Gripenberg 20.10.2006
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it follows from that fact that ¢ does not vanish on G that & cannot vanish

on (J72,(27%G). Thus we have established (4.48).

But it is also a consequence of the argument above that there exists
a constant C' > 0 P&+ ky,)| > € when [§ — w;| < ¢, for
Jj=1,...,n. But since &(§) = @(2(&+ku,))/P(E+ku;) when [£ —wj| < e,
we conculude that we & is M — 1 times continuously differentiable, and
&M=1) i5 absolutely continuous with a square integrable derivative on the
interval (w; — €y, ,w; + ;). But since [0,1] C Ui (wj — €w),w) + €u,) we
conclude that & € HM(T;C). But then it follows from theorem 2.8 that

Ma € KQ(Z' C).

#(0)] = 1. It follows that we
have &(0) = ¢(2-0)/4(0) = 1, and since a € (1(Z;C) we get (4.46). This
complete the first part of the proof since it follows from Theorem 4.4 that
(4.11) holds true.

Next we assume that eMa(e) € (2, and (4.11), (4.46), and (4.48) hold.
We know from theorem 4.12 that « is the filter associated with a multires-
olution having scaling function ¢. Since &(0) = [@(0)| = 1 there exists a
number & > 0 such that |&(w)| > 1/2 H(w)| > 1/2 when |w| < 6.
But then it follows that b log(@) belongs to HM([—6,6]; C) and an easy
calculation shows that

(4.64) 511>P||Zb (27 @) || o (g7 < @
m2l

Since Y7, b(27%w) — log(¢(w)) as m — oo when |w| < 6, we con-
clude that log() and therefore also ¢ belong to HM([—6,6];C). Using
an induction argument and the formula ¢(2e) = a¢ we can show that
¢ € HM([-276,276); C) for each j > 0.

Now we have to prove that ¢ € HM(R;C) and by using an induc-
tion argument, we may assume that ¢ € HM~1(R;C). Recall also that
sup,ex|al)(w)| < oo for j = 0,1,..., M —1 and that in particular |a(w)| <
1. If we differentiate both sides of the equation (4.10) M times we conclude
that there exists a constant €' such that for every positive integer k& we have

2M||99 (2' ||L2 [—k,k])

<C+ H(M)(w)]2 dw

k
Aw>|2dw+\//_k|d<w>2
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and therefore

oM—1/2 w)2 dw < 2M- 1/2\// w))? dw
2k
1 k—1
<C+ / aM |22|pr—|—] |2 dw + w)|? dw
0 i
<C+ w)|?dw + w)|?dw.

Since M > 1 we conclude that

(4.65) sup/ |pM ?dw < oo,
k>1

which is what we want to prove. This completes the second part of the
proof.

Finally we have to prove that if ¢ € HM(R;(C), then we also have
v € HM(R;C) and this can be done with the aid of the equation

(4.66) ¥ (20) = (o)p().

and an argument related to but easier than the one used above. O

It is quite clear that if & does not vanish on [—1

%, 1], then (4.48) holds
because we can take G = [—%, %) We can however improve this result
slightly, provided that we assume (4.11).

Proposition 4.14. Assume that a € (Y(Z;C) satisfies (4.11) and é& does

not vanish on the interval (-3, ). Then (4.48) holds true.

Proof. Since a € (1(Z;C) we know that & € C(T;C). By (4.11) we know
that max{|a(e)|,|a(e + 1)} > & > 0 (where, in fact § = 1//2).

We construct G e.g. as follows. a(3)| > ¢ and ky =1
otherwise (in which case [&(—1)] > §) and let kjy1 = 1 — k; for j > 1.

Choose a1 = % and

(4.67) aj+1 = min{inf{w | w > qaj, d(‘”—zkﬂ)‘ <$1.2).

It follows from this (aﬂ_k )| > 6 for all j and from the

continuity of & we therefore get that there exists a number n such that
py1 = % Now we define

(4.68) G = Q[ay‘—kmaﬂl—kﬂU{—%v%)-
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This set has all the desired properties because | J;—,27%G C [-1,1]. O

As we see from the proof above, it is not essential that we have the full
force of (4.11) it suffices to assume that max{|a(e)l, |a(e + )|} > ¢ > 0.

On the other hand, we can also give conditions that guarantee that (4.48)
is not satisfied. Moreover, it follows from this result that there is no hope
that one could replace the interval [—%, %] by a smaller one. We shall also
use this result later when proving that the only sacling function ¢ that has
compact support and is symmetric is the Haar function.

Proposition 4.15. Assume that o € (1(Z;C) is such that for some integer
m>1

(4.69) j (%) =0, kez.

Then (4.48) does not hold.

It is not really essential that o € (1(Z;C), what we need is that & is
continuous.

Proof. If (4.48) holds, then there exists an integer 7 such that zmlﬁ—l—j €4g.
Because m # 0 we get

. 2P(2k41
(4.70) 2m1+1 +i= 2(m-|—1 )7
where p > 1. But then
(4.71) (27 (5 +4)) =0,
and this contradicts (4.48). O

An example where the result above is applicable is the filter a(—1) =
a(2) = § and a(k) = 0 otherwise. Then one easily sees that & = cos(3we)e "
and (4.11) is satisfied but (4.48) fails by the result above.
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