
Chapter 4Multiresolutions1. De�nitions and basi
 propertiesIn Chapter 1 we gave an example of how one starting from one fun
tion '
an 
onstru
t a s
ale of subspa
es : : : � Vm � Vm�1 � : : : . This is whatwe mean by a multiresolution (or multiresolution analysis) of L2(R; C ). Amore pre
ise de�nition is the following.De�nition 4.1. (fVmgm2Z; ') is an orthonormal multiresolution of L2(R; C )provided that ' 2 L2(R; C ) and Vm is, for ea
h m 2 Z, the
losed subspa
e of L2(R; C ) spanned by f'(2�m��k)gk2Z,(4.1) Vm � Vm�1, m 2Z,(4.2) limm!�1 Vm = L2(R; C ), i.e. limm!�1 infg2Vmkf�gkL2(R) = 0 for every f 2 L2(R; C ),(4.3) f'(��k)gk2Zis an orthonormal set in L2(R; C )and thus an orthonormal basis for the 
losedsubspa
e it spans.(4.4)The fun
tion ' is said to be a father wavelet or s
aling fun
tion, and is saidto generate the multiresolution.The de�nition of a multiresolution is often given in a slightly di�erentform, so that the fa
t that Vm is spanned by f'(2�m � �k)gk2Zis a 
onse-quen
e of the other 
onditions. The main motivation for this formulation is23



24 4. Multiresolutions 20.10.2006that it makes it easier to see whi
h properties of the fun
tion ' and the �lterto be de�ned below, depend on whi
h properties of the multiresolution.Lemma 4.2. Let g 2 L2(R; C ) and let gk = g(� � k). Then (gk)k2Zis anorthonormal sequen
e in L2(R; C ) if and only ifXk2Z��ĝ(�+ k)��2 a.e.= 1:Proof. Sin
e g belongs to L2(R; C ), it follows from Theorem 2.4 that itsFourier transform ĝ belongs to L2(R; C ) as well, and this means in parti
ularthat the fun
tion h def= Xk2Zjĝ(�+ k)j2(4.5)belongs to L1([0; 1℄;R). By the uniqueness of the Fourier 
oeÆ
ients of aperiodi
 fun
tion it is 
lear that h = 1 a.e. in [0; 1℄ (or equivalently on R) ifand only if ĥ(k) = (1 if k = 0;0 if k 6= 0:(4.6)A 
al
ulation where we use the de�nition of h, Plan
herel's theorem, andthe fa
t that the Fourier transform of g(�� k) is e�i2�k�ĝ, gives(4.7) ĥ(k) = Z 10 e�i2�k!h(!) d! = ZRe�i2�k!ĝ(!)ĝ(!) d!= ZRg(x� k)g(x)dx = ZRg(x� k �m)g(x�m) dx = hgk+m; gm; :iThus we see that the orthonormality of the set fgkgk2Zis equivalent to (4.6)and this is what we had to prove.Proposition 4.3. Let (4.1) and (4.4) hold. Then �2�m2 '(2�m � �k)	k2Z,is an orthonormal basis for Vm for ea
h m 2Zand Tm2ZVm = f0g.The proof is left as an exer
ise.Now we 
an start to approa
h the heart of the matter in the followingresult.Theorem 4.4. Let (4.1), (4.2), and (4.4) hold. Then the sequen
e �, 
alledthe �lter asso
iated with ' and de�ned by�(k) = h'; '(2 � �k)i ; k 2Z(4.8) 
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1. De�nitions and basi
 properties 25satis�es Pk2Zj�(k)j2 = 12 ,' = 2Xk2Z�(k)'(2 � �k);(4.9)or, equivalently, '̂(2�) = �̂(�)'̂(�);(4.10)and j�̂(�)j2+ ���̂��+ 12���2 = 1 a.e. on R:(4.11)A summable sequen
e f�jgj2Zsatisfying (4.11) above, is said to be a
onjugate quadrature �lter.Proof. Sin
e ' 2 V0 � V�1 and �p2'(2 � �k)	k2Zis a basis for V�1 (seeproposition 4.3), it follows that' =Xk2ZD';p2'(2 � �k)Ep2'(2 � �k):(4.12)Thus we see that (4.9) follows from (4.8) and the fa
t thatPk2Zj�(k)j2 = 12is a 
onsequen
e of Theorem 3.4.(iii).Taking the Fourier transform of both sides of (4.9) we get'̂(!) =Xk2Z�(k)e�i2�k!=2'̂�!2 �;(4.13)whi
h is the same as (4.10).By lemma 4.2, the orthonormality of f'(��k)gk2Z, and (4.10) it followsthat(4.14) 1 =Xk2Zj'̂(2! + k)j2= Xm2Z���̂�! + 2m2 ���2��'̂�! + 2m2 ���2 + Xm2Z���̂�! + 2m+12 ���2��'̂�! + 2m+12 ���2= j�̂(!)j2 Xm2Zj'̂(! +m)j2 + ���̂�! + 12���2 Xm2Z��'̂�! + 12 +m���2= j�̂(!)j2 + ���̂�! + 12���2:This 
ompletes the proof.In order to get a basis for the orthogonal 
omplement of Vm in Vm�1 we
onsider a general result on the "splitting" of an orthonormal basis.
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26 4. Multiresolutions 20.10.2006Theorem 4.5. Suppose that (ek)k2Zis an orthonormal basis in a Hilbertspa
e H, let � and � 2 `2(Z), and de�ne sequen
es (uk)k2Zand (vk)k2ZinH as follows: uk = p2(� � e)(2k);(4.15) vk = p2(� � e)(2k):(4.16)Let U and V denote the 
losed subspa
es of H spanned by the sequen
es(uk)k2Zand (vk)k2Z.Then (uk)k2Zis an orthonormal basis of U , (vk)k2Zis an orthonormalbasis of V , U ? V , and U � V = H if and only if the matrix��̂(!2 ) �̂(!2 + 12)�̂(!2 ) �̂(!2 + 12)� is unitary for almost every ! 2 R.(4.17)The 
onvolution notation used above means that for example uk =p2Pj2Z�(j)e2k�j for all k 2Z.Proof. Sin
e (ek)k2Zis an orthonormal sequen
e, some straightforward 
al-
ulations show that (uk)k2Zand (vk)k2Zare orthonormal sequen
es andU ? V if and only if 2Xj2Z �(j)�(j + 2m� 2n) = Æm;n;2Xj2Z �(j)�(j + 2m� 2n) = Æm;n;2Xj2Z �(j)�(j + 2m� 2n) = 0;(4.18)for all m and n 2 Z, (where we have Æm;m = 1 and Æm;n = 0 if m 6= n). Inorder to treat all these di�erent 
ases at the same time we let a and b 2 `2(Z)and de�ne 
(m) = 2Xj2Za(j)b(j+ 2m); m 2Z:
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1. De�nitions and basi
 properties 27Sin
e Pj2Ze�i2�!jb(j+ 2m) = ei2�2!mb̂(!) if follows from Plan
herel's the-orem, (Theorem 2.4.(
)), that
(m) = 2 Z 10 e�i2�2!mâ(!)b̂(!) d! = 2 Z 120 e�i2�2!mâ(!)b̂(!) d!+ 2 Z 112 e�i2�2!mâ(!)b̂(!) d!= 2 Z 120 e�i2�2!m �â(!)b̂(!) + â(! + 12)b̂(! 12)� d!= Z 10 e�i2�!m �â(!2 )b̂(!2 ) + â(!2 + 12)b̂(!2 + 12)� d!:From the uniqueness of the Fourier transform we seet that 
(m) = 0 for allm if and only if â(12!)b̂(12!) + â(12! + 12)b̂(12! + 12) a.e.= 0 and 
m = Æ0;m ifand only if â(12!)b̂(12!) + â(12! + 12)b̂(12! + 12) a.e.= 1. When we apply theseresults to the expressions in (4.18) we 
on
lude that (uk)k2Zand (vk)k2Zare orthonormal sequen
es and U ? V if and only if the matrix given in thestatement of the theorem is unitary.It remains to show that when these 
onditions hold, then it is also truethat U � V = H . Suppose that this is not the 
ase, but that there is anelement f 2 H n (U �V ). Thus we may assume that f 6= 0 but f ? (U �V )so that f ? U and f ? V . Thus it follows that hun; fi = hvn; fi = 0 for alln and if we let 
(j) = hf; e�ji, then it follows that0 = hu�m; fi = p2Xj2Z�(j)
(j+ 2m);0 = hv�m; fi = p2Xj2Z�(j)
(j+ 2m);for all m 2 Z. By the same argument that was used above, we 
on
ludethat this implies that��̂(12!) �̂(12! + 12)�̂(12!) �̂(12! + 12)� 
̂(12!)
̂(12! + 12)! a.e.= 0;on [0; 1℄ But sin
e this matrix is unitary, hen
e invertible, it follows that
̂(!2 ) =a.e.= 
̂(!2 + 12) a.e.= 0 on [0; 1℄ and therefore 
̂(!) a.e.= 0 on [0; 1℄ and bythe uniqueness of the Fourier transform we see that hf; eki = 0 for all k andhen
e f = 0. This 
ompletes the proof.

 G. Gripenberg 20.10.2006



28 4. Multiresolutions 20.10.2006De�nition 4.6. Let (4.1), (4.2), and (4.4) hold and let � be the �lter as-so
iated with '. Then the mother wavelet asso
iated with ' is the fun
tion = 2Xk2Z(�1)k�(1� k)'(2 � �k):(4.19)Theorem 4.7. Let (4.1), (4.2), and (4.4) hold, and let  be the asso
iatedmother wavelet. Then f2�m2  (2�m � �k)gk2Z is for ea
h m 2 Zan or-thonormal set. If Wm denotes the 
losed subspa
e of L2(R; C ) spanned bythis set, then Wm is the orthogonal 
omplement of Vm in Vm�1.Proof. If we de�ne the sequen
e f�gk2Zby�(k) = (�1)k�(1� k);(4.20)then we see that for ea
h ! 2 R we have(4.21) �̂(!) =Xk2Ze�i2�!kei�k�(1� k)= �Xk2Ze2�i!(1�k)e�i2�!e2�i(1�k) 12�(1� k)= �e�i2�!Xk2Ze�2�i!(1�k)e�2�i(1�k) 12�(1� k)= �e�i2���̂��+ 12�:It is easy to 
he
k that (4.17) is a dire
t 
onsequen
e of (4.11).If we let ek = p2'(2 � +k), uk = '(�+ k), and vk =  (�+ k), then itfollows that (4.15) and (4.16) hold. Now we 
an apply Theorem 4.5 and dosome easy 
al
ulations.Now we 
an �nally give a basi
 result on wavelets.Theorem 4.8. Let (fVmgm2Z; ') be a multiresolution of L2(R; C ) and let be the asso
iated mother wavelet. Then the setsf2m=2 (2m � �k)gm;k2Z;(4.22)and f2m0=2'(2m0 � �k); 2m=2 (2m � �k)gm�m0;k2Z;(4.23)where m0 2Zis arbitrary, are orthonormal bases for L2(R; C ).Proof. It follows from theorem 4.7 that Vm = Vj�Wj�Wj+1� : : :�Wm�1.Sin
e Vj ? Wj we easily see that the sets in question are orthonormal andthe fa
t that they span L2(R; C ) is a 
onsequen
e of (4.3) and proposition4.3. 
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2. Partitions of unity and limm!�1 Vm 292. Partitions of unity and limm!�1 VmIn this se
tion we prove that the s
aling fun
tion (or father wavelet) asso-
iated with a multiresolution gives a partition of unity when translated byintegers. Here we have to introdu
e the additional restri
tion that ' belongsto L1(R), but sin
e one usually wants the wavelets to have 
ompa
t supportor de
ay rapidly at in�nity, this is not a serious restri
tion.Theorem 4.9. Let (4.1), (4.3), and (4.4) hold, and assume that ' 2 L1(R; C ).Then ����ZR'(x) dx���� = 1;(4.24)and Xk2Z'(� � k) = ZR'(x) dx;(4.25)where the series 
onverges in L1lo
(R; C ).Usually one multiplies ' by a 
omplex number with absolute value 1 sothat RR'(x) dx = 1.Proof. Let fm be the orthogonal proje
tion of the fun
tion �[�4;4℄ onto thespa
e Vm. Then we havefm =Xk2Z2�m Z 4�4'(2�mx� k) dx '(2�m � �k):(4.26)Sin
e limm!�1 Vm = L2(R; C ) it follows that fm ! �[�4;4℄ in L2(R; C ) andtherefore also in L1lo
(R).Let 
 = RR'(x) dx and de�ne the numbers 
k;m by
k;m = 
 � Z 2�m+2�k�2�m+2�k '(x) dx; k;m 2Z:(4.27)Let b be the fun
tion Pk2Z'(� � k). Sin
e ' 2 L1(R) it follows thatb is lo
ally integrable and periodi
 with period 1. Now we 
an rewrite theexpression for fm to befm = 
b(2�m�)�Xk2Z
k;m'(2�m � �k):(4.28)If we 
an prove thatlimm!�1Xk2Zj
k;mj Z 1�1j'(2�mx� k)j dx = 0;(4.29) 
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30 4. Multiresolutions 20.10.2006then it follows from (4.28) thatlimm!�1 Z 1�1j
b(2�mx)� 1j dx = limm!�1 Z 1�1jfm(x)� 1j dx = 0;(4.30)and it follows that 
b must be 1 almost everywhere. Hen
e we get 1 =R 10 
b(x) dx = 
 RR'(x) dx = j
j2. Thus j
j = 1 and sin
e 
 = 1=
 we haveall the desired 
on
lusions.Next, let us show that (4.29) holds. Clearly,(4.31) Xk2Zj
k;mj Z 1�1j'(2�mx � k)j dx= 2�m+1�1Xp=0 Xq2Zj
q2�m+1+p;mj2m Z 2�m�q2�m+1+p�2�m�q2�m+1+pj'(x)j dx= 2m 2�m+1�1Xp=0 ZRhp;m(x) dxwherehp;m(x) = j
q2m+1+p;m'(x)j when� 2m � q2m+1 � p � x < 2m � q2m+1 � p:Let � > 0 be arbitrary and 
hoose m < 0 with jmj to be so large thatZjxj�2�m j'(x)j dx < �4(1 + k'kL1(R)) :Now 
k;m = Z �2�m�k�1 '(x) dx+ Z 12�m�k '(x) dx;(4.32)so that is 
lear that j
k;mj � k'kL1(R). Thus we see thatZjxj�2�m hp;m(x) dx < �4 ;(4.33)for all p. On the other hand we note that if jxj < 2�m, thenhp;m(x) � j'(x)j maxjkj�2�m+1j
k;mj:Sin
e it follows from (4.32) that j
k;mj � Rjxj�2�m+1 j'(x)j dx when jkj �2�m+1 we easily see that Zjxj<2�m hp;m(x) dx < �4 ;(4.34) 
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2. Partitions of unity and limm!�1 Vm 31as well. Using (4.33) and (4.33) in (4.31) we see thatPk2Zj
k;mj R 1�1j'(2�mx�k)j dx < �, and the proof is 
ompleted.Next we 
onsider the 
onverse of this result.Theorem 4.10. Let (4.1) and (4.4) hold, and assume thatlimS!�1T!+1 Z TS '(x) dx = 
 where j
j = 1:(4.35)Then (4.3) holds.Proof. We may multiply ' by 
 and thus assume that 
 = 1. Let Pm denotethe orthogonal proje
tion on L2(R; C ) onto Vm. The 
laim (4.3) is obviouslyequivalent to the fa
t that Pmf ! f as m ! �1 for every f 2 L2(R; C ),and sin
e kPmk = 1 and the spa
e spanned by 
hara
teristi
 fun
tions ofintervals is dense in L2(R; C ) it suÆ
es to show that Pm�[a;b℄ ! �[a;b℄ asm!1 for arbitrary a < b. Sin
e Pm is an orthogonal proje
tion, we havek�[a;b℄ � Pm�[a;b℄k2 = k�[a;b℄k2 � kPm�[a;b℄k2= b�a�Xk2Z����Z ba 2�m2 '(2�mx�k) dx����2 = b�a�Xk2Z2m����Z 2�mb�k2�ma�k '(x) dx����2:Thus we see that if we 
an prove thatlim infm!1 Xk2Z2m����Z 2�mb�k2�ma�k '(x) dx����2 � b� a;(4.36)then we get the desired 
on
lusion. Let � > 0 be arbitrary and 
hoose S0and T0 to be su
h that if S � S0 and T � T0, then����Z TS '(x) dx����2 � 1� �:(4.37)Let Im be the setIm = f k 2Zj 2�ma� k � S0; 2�mb� k � T0 g:(4.38)We 
learly haveXk2Z2m����Z 2�mb�k2�ma�k '(x) dx����2 � Xk2Im 2�m����Z 2�mb�k2�ma�k '(x) dx����2 � 2m#Im(1� �):(4.39)It is obvious that #Im = b2�mb � T0
 � d2�ma � S0e + 1 and therefore2�m#Im ! b � a as m ! 1. But then we get (4.36) and the proof is
ompleted.We need another version of this theorem as well:
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32 4. Multiresolutions 20.10.2006Theorem 4.11. Let (4.1) and (4.4) hold, and assume that '̂ is 
ontinuousat 0 and j'̂(0)j = 1. Then (4.3) holds.Proof. We may without loss of generality assume that '̂(0) = 1 sin
e wemay multiply ' by '̂(0).Let Pm denote the orthogonal proje
tion on L2(R; C ) onto Vm. Sin
ethe 
laim (4.3) is equivalent to the fa
t that Pmf ! f as m ! �1 forevery f 2 L2(R; C ), and sin
e kPmk = 1 and the spa
e C1# (R) is dense inL2(R; C ) it suÆ
es to show that Pmf ! f as m!1 for every f 2 C1# (R).Sin
e Pm is an orthogonal proje
tion, we havekf � Pmfk2L2(R) = kfk2L2(R) � kPmfk2L2(R)and hen
e it suÆ
es to show thatlim infm!1 kPmfk2L2(R) � ZRjf(t)j2 dt; f 2 C1# (R):(4.40)Let f 2 C1# (R) n f0g. Sin
e (2�m2 '(2�m � �k))k2Zis an orthonormal basisin Vm we havekPmfk2L2(R) =Xk2Z2�m ����ZRf(x)'(2�mx� k) dx����2 :Next we use Plan
herel's theorem, i.e., equation 2.5 and the fa
t thatthe Fourier transform of '(2�m � �k) is 2m'̂(2m!)e�i2�2m!k to getkPmfk2L2(R) =Xk2Z2m ����ZRf̂(!)'̂(2m!)ei2�2mk d!����2(4.41)The idea of the remaining part of the proof is that when �m is suÆ-
iently large, '̂(2m!) � 1 and then we get by the Fourier inversion formulaXk2Z2m ����ZRf̂(!)'̂(2m!)ei2�2mk d!����2 �Xk2Z2mjf(2mk)j2 � ZRjf(x)j2 dx:It remains to get error estimates for these approximations.Let � > 0. Sin
e f 2 C1# (R) there exists a positive integer n0 su
h thatif m � 0, then ������ZRjf(x)j2 dx� 2�m+n0Xk=�2�m+n0 2mjf(2mk)j2������ < �2 :(4.42)We 
an 
hoose a positive number !0 su
h thatZj!j�!0 jf̂(!)j d! < �kf̂kL1(R)2n0+6 :(4.43) 
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3. Filters that determine multiresolutions 33Finally we 
hoose m0 < 0 su
h that then��'̂(�)� 1�� < �kf̂k2L1(R)2n0+5 ; if j�j � 2m0!0.(4.44)Suppose now that m � m0. Then we get, for ea
h k 2 Z, by the fa
t thatj'̂(2m!)j a.e.� 1 and by (4.43) and (4.44) that����ZRf(!)'̂(2m!)ei2�2mk d! � ZRf(!)ei2�2mk d!����� 2 Zj!j�!jf̂(!)j d! + supj�j�2m!0��'̂(�)� 1��kf̂kL1(R) � �kf̂kL1(R)2n0+4:Taking into a

ount the fa
ts that ���RRf̂ (!)'̂(2m!)ei2�2mk d!��� � kf̂kL1(R)and ��RRf(!)ei2�2mk d!�� � kf̂kL1(R) we 
on
lude that����ZRf̂ (!)'̂(2m!)ei2�2mk d!����2 � ����ZRf̂(!)ei2�2mk d!����2 � �2n0+3 :and then by the Fourier inversion theorem 2.3 we haveXk2Z2m ����ZRf̂ (!)'̂(2m!)ei2�2mk d!����2� 2�m+n0Xk=�2�m+n0 2m jf(2mk)j2 � 2m(2�m+n0+1 + 1) �2n0+3 :Combining this inequality with (4.41) and (4.42) we �nally getkPmfk2L2(R) � ZRjf(x)j2 dx� �and sin
e � was arbitrary we get the desired 
on
lusion and the proof is
ompleted.3. Filters that determine multiresolutionsIn this se
tion we take as a starting point equation (4.9). Assume that asequen
e � 2 l1(Z; C ) � l2(Z; C ) is given su
h thatPk2Z�(k) = 1. Now thequestion to be studied is when this sequen
e is the �lter for a multiresolution.A number of 
onditions are immediately obvious, and some other are lessobvious. 
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34 4. Multiresolutions 20.10.2006Theorem 4.12. Let the sequen
e f�(k)gk2Z satisfy the following 
ondi-tions. Xk2Zlog(jkj+ 1)j�(k)j <1:(4.45) Xk2Z�(k) = 1:(4.46) j�̂(�)j2+ ���̂��+ 12���2 = 1 a.e. on R:(4.47) There exists a bounded Borel set G � R su
hthat Pk2Z�G(! + k) = 1 for all ! 2 R and �̂does not vanish on the set S1k=1�2�kG�.(4.48)Then there exists a multiresolution (fVmgm2Z; ') of L2(R; C ) su
h that � isthe asso
iated �lter.Here 2�kG is, of 
ourse, the set f 2�k! j ! 2 G g.Proof. De�ne the fun
tion hm for ea
h m 2 N to behm = mYk=1 �̂(2�k�)�2mG :(4.49)Sin
e �̂(0) = 1 we may 
learly assume that 0 2 int(G) and therefore itfollows from (4.45) and Lemma 5.1 (
onsider � as a measure supported onthe integers) that hm 
onverges uniformly on 
ompa
t sets to the fun
tionh = 1Yk=1 �̂(2�k�):(4.50)Sin
e �̂ is 
ontinuous it follows from the uniform 
onvergen
e that h is
ontinuous as well.An immediate 
onsequen
e of assumption (4.48) is that if f 2 L1(T; C )(that is, f 2 L1lo
(R; C ) is periodi
 with period 1), thenZG f(x) dx = Z 10 f(x) dx:(4.51)Let k 2Zbe arbitrary. Next we evaluate the integral RRjhm(!)j2ei2�k! d!for arbitrary m 2 N. Using (4.11), (4.51) and the fa
t that �̂ and e�i2�� are
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3. Filters that determine multiresolutions 35periodi
 with period 1 we getZRjhm(!)j2ei2�k! d! = Z2mG mYj=1���̂�2�j!���2ei2�k! d!= 2m ZG m�1Yj=0 ���̂(2j!)��2ei2�2mk! d!= 2m Z 10 m�1Yj=0 ���̂(2j!)��2ei2�2mk! d!= 2m Z 1=20 m�1Yj=1 ���̂(2j!)��2�j�̂(!)j2+ ���̂�! + 12���2�ei2�2mk! d!= 2m�1 Z 10 m�2Yj=0 ���̂(2j!)��2ei2�2m�1k! d!= ZRjhm�1(!)j2ei2�k! d!:Sin
e RRjh0(!)j2ei2�k! d! = RG ei2�k! d! = Æ0;k it follows by indu
tion thatZRjhm(!)j2ei2�k! d! = Æ0;k;(4.52)and, in parti
ular that khmkL2(R) = 1:(4.53)Thus we also get with the aid of Fatou's lemma that h 2 L2(R; C ) andkhkL2(R) � 1.The fun
tion h is 
ontinuous and does not vanish on G, therefore thereis a 
onstant C su
h that jh(x)j � C > 0 for all x 2 G. Be
ause hm vanishesoutside 2mG and satis�es hm = h=h(2�m�) on 2mG it follows thatjhm(x)j2 � C�2jh(x)j2; x 2 R:(4.54)This inequality allows us to apply the dominated 
onvergen
e theorem andwe 
on
lude that hm ! h in L2(R; C ):(4.55)If we de�ne ' 2 L2(R; C ) by '̂ = h, then it follows from (4.52) thatZRj'̂(!)j2ei2�k! d! = Æ0;k;(4.56) 
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36 4. Multiresolutions 20.10.2006and by lemma 4.2 this is equivalent to the fa
t thatf'(� � k)gk2Z is an orthonormal set in L2(R; C ):(4.57)It follows immediately from (4.50) that (4.10) holds, and therefore wealso have (4.9). But then we get (4.2). Finally, (4.3) follows from Theorem4.11 and the fa
t that '̂ is 
ontinuous with '̂(0) = 1 by de�nition.If we require somewhat more of the s
aling fun
tion, then we 
an getne
essary and suÆ
ient 
onditions.Theorem 4.13. Let M � 1. Thenthere is a multiresolution (fVmgm2Z; ') of L2(R; C )with �lter � and j�jM'(�) 2 L2(R; C )(4.58)if and only if the sequen
e � satis�es �M�(�) 2 `2(Z; C ), and(4.11), (4.46), and (4.48) hold.(4.59)If these 
onditions hold, then it follows that �M (�) 2 L2(R; C ) as well.Proof. Assume that (fVmgm2Z; ') is a multiresolution of L2(R; C ) with�lter � and j�jM'(�) 2 L2(R; C ). It follows immediately from theorem 2.8that '̂ 2 HM(R; C ).First we prove the series Pk2Zj'̂(! + k)j2 
onverges uniformly for all! 2 [0; 1℄. Sin
e '̂(!) = '̂(�) + Z �! '̂0(�) d�; !; � 2 [0; 1℄;(4.60)we have j'̂(! + k)j2 � 2 Z 10 j'̂(� + k)j2 d� + 2 Z 10 j'̂0(� + k)j2 d�:(4.61)Sin
e '̂ and '̂0 2 L2(R; C ) we get the desired result, in parti
ular, by (4.4)and lemma 4.2 that Xk2Zj'̂(! + k)j2 = 1; ! 2 R:(4.62)It follows that for ea
h ! 2 [0; 1℄ there exist numbers k! 2 Z and �! > 0su
h that j'̂(� + k!)j > 0 when j� � !j < �! . Sin
e [0; 1℄ is 
ompa
t we 
an
hoose �nitely many of these points !j , j = 1; 2; : : : ; n su
h that [0; 1℄ �Snj=1(!j � �!j ; !j + �!j). But then we 
an 
onstru
t the set G as the �niteunion of halfopen intervals. Sin
e it follows from (4.10) that'̂(!) = '̂(2�k�) kYj=1 �̂(2�j�)(4.63) 
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3. Filters that determine multiresolutions 37it follows from that fa
t that '̂ does not vanish on G that �̂ 
annot vanishon S1k=1�2�kG�. Thus we have established (4.48).But it is also a 
onsequen
e of the argument above that there existsa 
onstant C > 0 su
h that j'̂(� + k!j)j � C when j� � !j j < �!j forj = 1; : : : ; n. But sin
e �̂(�) = '̂(2(�+k!j))='̂(�+k!j) when j��!j j < �!j ,we 
on
ulude that we �̂ is M � 1 times 
ontinuously di�erentiable, and�̂(M�1) is absolutely 
ontinuous with a square integrable derivative on theinterval (!j � �!j ; !j + �!j ). But sin
e [0; 1℄ � Snj=1(!j � �!j ; !j + �!j ) we
on
lude that �̂ 2 HM(T; C ). But then it follows from theorem 2.8 that�M� 2 `2(Z; C ).It is a 
onsequen
e of theorem 4.9 that j'̂(0)j = 1. It follows that wehave �̂(0) = '̂(2 � 0)='̂(0) = 1, and sin
e � 2 `1(Z; C ) we get (4.46). This
omplete the �rst part of the proof sin
e it follows from Theorem 4.4 that(4.11) holds true.Next we assume that �M�(�) 2 `2, and (4.11), (4.46), and (4.48) hold.We know from theorem 4.12 that � is the �lter asso
iated with a multires-olution having s
aling fun
tion '. Sin
e �̂(0) = j'̂(0)j = 1 there exists anumber Æ > 0 su
h that j�̂(!)j � 1=2 and j'̂(!)j � 1=2 when j!j � Æ.But then it follows that b def= log(�̂) belongs to HM([�Æ; Æ℄; C ) and an easy
al
ulation shows thatsupm�1k mXk=1 b�2�k��kHM([�Æ;Æ℄) <1:(4.64)Sin
e Pmk=1 b(2�k!) ! log('̂(!)) as m ! 1 when j!j � Æ, we 
on-
lude that log('̂) and therefore also '̂ belong to HM([�Æ; Æ℄; C ). Usingan indu
tion argument and the formula '̂(2�) = �̂'̂ we 
an show that'̂ 2 HM([�2jÆ; 2jÆ℄; C ) for ea
h j � 0.Now we have to prove that '̂ 2 HM(R; C ) and by using an indu
-tion argument, we may assume that '̂ 2 HM�1(R; C ). Re
all also thatsup!2Rj�̂(j)(!)j <1 for j = 0; 1; : : : ;M �1 and that in parti
ular j�̂(!)j �1. If we di�erentiate both sides of the equation (4.10)M times we 
on
ludethat there exists a 
onstant C su
h that for every positive integer k we have2Mk'̂(M)(2�)kL2([�k;k℄)� C +sZ k�k j�̂(M)(!)j2j'̂(!)j2 d! +sZ k�k j�̂(!)j2j'̂(M)(!)j2 d!
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38 4. Multiresolutions 20.10.2006and therefore2M�1=2sZ k�kj'̂(M)(!)j2 d! � 2M�1=2sZ 2k�2kj'̂(M)(!)j2 d!� C +vuutZ 10 j�̂(M)(!)j2 k�1Xj=�kj'̂(! + j)j2 d! +sZ k�k j'̂(M)(!)j2 d!� C +sZ 10 j�̂(M)(!)j2 d! +sZ k�k j'̂(M)(!)j2 d!:Sin
e M � 1 we 
on
lude thatsupk�1 Z k�k j'̂(M)(!)j2 d! <1;(4.65)whi
h is what we want to prove. This 
ompletes the se
ond part of theproof.Finally we have to prove that if '̂ 2 HM(R; C ), then we also have ̂ 2 HM(R; C ) and this 
an be done with the aid of the equation ̂(2�) = �̂(�)'(�):(4.66)and an argument related to but easier than the one used above.It is quite 
lear that if �̂ does not vanish on [�14 ; 14 ℄, then (4.48) holdsbe
ause we 
an take G = [�12 ; 12). We 
an however improve this resultslightly, provided that we assume (4.11).Proposition 4.14. Assume that � 2 `1(Z; C ) satis�es (4.11) and �̂ doesnot vanish on the interval [�16 ; 16 ℄. Then (4.48) holds true.Proof. Sin
e � 2 `1(Z; C ) we know that �̂ 2 C(T; C ). By (4.11) we knowthat maxfj�̂(�)j; j�̂(�+ 12)jg � Æ > 0 (where, in fa
t Æ = 1=p2).We 
onstru
t G e.g. as follows. Let k1 = 0 if j�̂(16)j � Æ and k1 = 1otherwise (in whi
h 
ase j�̂(�13)j � Æ) and let kj+1 = 1 � kj for j � 1.Choose a1 = 13 andaj+1 = minfinff! j ! > aj ; ���̂�!�kj2 ��� � Æ2 g; 23g:(4.67)It follows from this 
onstru
tion that j�̂(aj�kj2 )j � Æ for all j and from the
ontinuity of �̂ we therefore get that there exists a number n su
h thatan+1 = 23 . Now we de�neG = n[j=1[aj � kj ; aj+1 � kj)[h�13 ; 13�:(4.68) 
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3. Filters that determine multiresolutions 39This set has all the desired properties be
ause S1k=2 2�kG � [�16 ; 16 ℄.As we see from the proof above, it is not essential that we have the fullfor
e of (4.11) it suÆ
es to assume that maxfj�̂(�)j; j�̂(�+ 12)jg � Æ > 0.On the other hand, we 
an also give 
onditions that guarantee that (4.48)is not satis�ed. Moreover, it follows from this result that there is no hopethat one 
ould repla
e the interval [�16 ; 16 ℄ by a smaller one. We shall alsouse this result later when proving that the only sa
ling fun
tion ' that has
ompa
t support and is symmetri
 is the Haar fun
tion.Proposition 4.15. Assume that � 2 `1(Z; C ) is su
h that for some integerm � 1 �̂� 2k + 12(2m+ 1)� = 0; k 2Z:(4.69)Then (4.48) does not hold.It is not really essential that � 2 `1(Z; C ), what we need is that �̂ is
ontinuous.Proof. If (4.48) holds, then there exists an integer j su
h that 12m+1+j 2 G.Be
ause m 6= 0 we get 12m+1 + j = 2p(2k+1)2m+1 ;(4.70)where p � 1. But then �̂�2�p� 12m+1 + j�� = 0;(4.71)and this 
ontradi
ts (4.48).An example where the result above is appli
able is the �lter �(�1) =�(2) = 12 and �(k) = 0 otherwise. Then one easily sees that �̂ = 
os(3��)e��i�and (4.11) is satis�ed but (4.48) fails by the result above.
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